
Getting Started with Asterisk™
Free eBook

A step-by-step guide to building a simple IP PBX

Flavio E. Gonçalves

Published by V.Office Networks

ii

Getting Started with Asterisk PBX

Copyright © 2006-2010 V.Office Networks Ltda., All rights reserved

Printing History

First Edition: November 2006,

File Date: Thursday, July 01, 2010

Some manufacturers claim trademarks for several designations that distinguish their products.

Wherever those designations appear in this book and we are aware of them, the designation is printed
in CAPS or the initials are capitalized. Although a great degree of care was used in writing this book,

the author assumes no responsibility for errors and omissions, or damages resulting from the use of

the information contained in this book.

We have done the maximum effort to provide trademark informationabout all the companies and

products mentioned in this book by the appropriate use of capitals.

Asterisk, Digium, IAX and DUNDI trademarks are property of Digium Inc.

iii

License

THE WORK (AS DEFINED BELOW) IS PROVIDED UNDER THE TERMS OF THIS CREATIVE COMMONS

PUBLIC LICENSE ("CCPL" OR "LICENSE"). THE WORK IS PROTECTED BY COPYRIGHT AND/OR OTHER

APPLICABLE LAW. ANY USE OF THE WORK OTHER THAN AS AUTHORIZED UNDER THIS LICENSE OR

COPYRIGHT LAW IS PROHIBITED.

BY EXERCISING ANY RIGHTS TO THE WORK PROVIDED HERE, YOU ACCEPT AND AGREE TO BE

BOUND BY THE TERMS OF THIS LICENSE. TO THE EXTENT THIS LICENSE MAY BE CONSIDERED TO BE

A CONTRACT, THE LICENSOR GRANTS YOU THE RIGHTS CONTAINED HERE IN CONSIDERATION OF

YOUR ACCEPTANCE OF SUCH TERMS AND CONDITIONS.

1. Definitions

a. "Adaptation" means a work based upon the Work, or upon the Work and other pre-existing works,

such as a translation, adaptation, derivative work, arrangement of music or other alterations of a literary

or artistic work, or phonogram or performance and includes cinematographic adaptations or any other

form in which the Work may be recast, transformed, or adapted including in any form recognizably

derived from the original, except that a work that constitutes a Collection will not be considered an

Adaptation for the purpose of this License. For the avoidance of doubt, where the Work is a musical

work, performance or phonogram, the synchronization of the Work in timed-relation with a moving

image ("synching") will be considered an Adaptation for the purpose of this License.

b. "Collection" means a collection of literary or artistic works, such as encyclopedias and anthologies, or

performances, phonograms or broadcasts, or other works or subject matter other than works listed in

Section 1(f) below, which, by reason of the selection and arrangement of their contents, constitute

intellectual creations, in which the Work is included in its entirety in unmodified form along with one or

more other contributions, each constituting separate and independent works in themselves, which

together are assembled into a collective whole. A work that constitutes a Collection will not be

considered an Adaptation (as defined above) for the purposes of this License.

c. "Distribute" means to make available to the public the original and copies of the Work or Adaptation,

as appropriate, through sale or other transfer of ownership.

d. "Licensor" means the individual, individuals, entity or entities that offer(s) the Work under the terms of

this License.

e. "Original Author" means, in the case of a literary or artistic work, the individual, individuals, entity or

entities who created the Work or if no individual or entity can be identified, the publisher; and in addition

(i) in the case of a performance the actors, singers, musicians, dancers, and other persons who act,

sing, deliver, declaim, play in, interpret or otherwise perform literary or artistic works or expressions of

folklore; (ii) in the case of a phonogram the producer being the person or legal entity who first fixes the

sounds of a performance or other sounds; and, (iii) in the case of broadcasts, the organization that

transmits the broadcast.

f. "Work" means the literary and/or artistic work offered under the terms of this License including without

limitation any production in the literary, scientific and artistic domain, whatever may be the mode or form

of its expression including digital form, such as a book, pamphlet and other writing; a lecture, address,

iv

sermon or other work of the same nature; a dramatic or dramatico-musical work; a choreographic work

or entertainment in dumb show; a musical composition with or without words; a cinematographic work to

which are assimilated works expressed by a process analogous to cinematography; a work of drawing,

painting, architecture, sculpture, engraving or lithography; a photographic work to which are assimilated

works expressed by a process analogous to photography; a work of applied art; an illustration, map,

plan, sketch or three-dimensional work relative to geography, topography, architecture or science; a

performance; a broadcast; a phonogram; a compilation of data to the extent it is protected as a

copyrightable work; or a work performed by a variety or circus performer to the extent it is not otherwise

considered a literary or artistic work.

g. "You" means an individual or entity exercising rights under this License who has not previously violated

the terms of this License with respect to the Work, or who has received express permission from the

Licensor to exercise rights under this License despite a previous violation.

h. "Publicly Perform" means to perform public recitations of the Work and to communicate to the public

those public recitations, by any means or process, including by wire or wireless means or public digital

performances; to make available to the public Works in such a way that members of the public may

access these Works from a place and at a place individually chosen by them; to perform the Work to the

public by any means or process and the communication to the public of the performances of the Work,

including by public digital performance; to broadcast and rebroadcast the Work by any means including

signs, sounds or images.

i. "Reproduce" means to make copies of the Work by any means including without limitation by sound or

visual recordings and the right of fixation and reproducing fixations of the Work, including storage of a

protected performance or phonogram in digital form or other electronic medium.

2. Fair Dealing Rights. Nothing in this License is intended to reduce, limit, or restrict any uses free from

copyright or rights arising from limitations or exceptions that are provided for in connection with the copyright

protection under copyright law or other applicable laws.

3. License Grant. Subject to the terms and conditions of this License, Licensor hereby grants You a worldwide,

royalty-free, non-exclusive, perpetual (for the duration of the applicable copyright) license to exercise the rights in

the Work as stated below:

a. to Reproduce the Work, to incorporate the Work into one or more Collections, and to Reproduce the

Work as incorporated in the Collections;

b. to create and Reproduce Adaptations provided that any such Adaptation, including any translation in

any medium, takes reasonable steps to clearly label, demarcate or otherwise identify that changes were

made to the original Work. For example, a translation could be marked "The original work was

translated from English to Spanish," or a modification could indicate "The original work has been

modified.";

c. to Distribute and Publicly Perform the Work including as incorporated in Collections; and,

d. to Distribute and Publicly Perform Adaptations.

v

The above rights may be exercised in all media and formats whether now known or hereafter devised. The

above rights include the right to make such modifications as are technically necessary to exercise the rights in

other media and formats. Subject to Section 8(f), all rights not expressly granted by Licensor are hereby

reserved, including but not limited to the rights set forth in Section 4(d).

4. Restrictions. The license granted in Section 3 above is expressly made subject to and limited by the following

restrictions:

a. You may Distribute or Publicly Perform the Work only under the terms of this License. You must include

a copy of, or the Uniform Resource Identifier (URI) for, this License with every copy of the Work You

Distribute or Publicly Perform. You may not offer or impose any terms on the Work that restrict the

terms of this License or the ability of the recipient of the Work to exercise the rights granted to that

recipient under the terms of the License. You may not sublicense the Work. You must keep intact all

notices that refer to this License and to the disclaimer of warranties with every copy of the Work You

Distribute or Publicly Perform. When You Distribute or Publicly Perform the Work, You may not impose

any effective technological measures on the Work that restrict the ability of a recipient of the Work from

You to exercise the rights granted to that recipient under the terms of the License. This Section 4(a)

applies to the Work as incorporated in a Collection, but this does not require the Collection apart from

the Work itself to be made subject to the terms of this License. If You create a Collection, upon notice

from any Licensor You must, to the extent practicable, remove from the Collection any credit as

required by Section 4(c), as requested. If You create an Adaptation, upon notice from any Licensor You

must, to the extent practicable, remove from the Adaptation any credit as required by Section 4(c), as

requested.

b. You may not exercise any of the rights granted to You in Section 3 above in any manner that is primarily

intended for or directed toward commercial advantage or private monetary compensation. The

exchange of the Work for other copyrighted works by means of digital file-sharing or otherwise shall not

be considered to be intended for or directed toward commercial advantage or private monetary

compensation, provided there is no payment of any monetary compensation in connection with the

exchange of copyrighted works.

c. If You Distribute, or Publicly Perform the Work or any Adaptations or Collections, You must, unless a

request has been made pursuant to Section 4(a), keep intact all copyright notices for the Work and

provide, reasonable to the medium or means You are utilizing: (i) the name of the Original Author (or

pseudonym, if applicable) if supplied, and/or if the Original Author and/or Licensor designate another

party or parties (e.g., a sponsor institute, publishing entity, journal) for attribution ("Attribution Parties") in

Licensor's copyright notice, terms of service or by other reasonable means, the name of such party or

parties; (ii) the title of the Work if supplied; (iii) to the extent reasonably practicable, the URI, if any, that

Licensor specifies to be associated with the Work, unless such URI does not refer to the copyright

notice or licensing information for the Work; and, (iv) consistent with Section 3(b), in the case of an

Adaptation, a credit identifying the use of the Work in the Adaptation (e.g., "French translation of the

Work by Original Author," or "Screenplay based on original Work by Original Author"). The credit

required by this Section 4(c) may be implemented in any reasonable manner; provided, however, that in

the case of a Adaptation or Collection, at a minimum such credit will appear, if a credit for all

contributing authors of the Adaptation or Collection appears, then as part of these credits and in a

manner at least as prominent as the credits for the other contributing authors. For the avoidance of

doubt, You may only use the credit required by this Section for the purpose of attribution in the manner

vi

set out above and, by exercising Your rights under this License, You may not implicitly or explicitly

assert or imply any connection with, sponsorship or endorsement by the Original Author, Licensor

and/or Attribution Parties, as appropriate, of You or Your use of the Work, without the separate, express

prior written permission of the Original Author, Licensor and/or Attribution Parties.

d. For the avoidance of doubt:

i. Non-waivable Compulsory License Schemes. In those jurisdictions in which the right to

collect royalties through any statutory or compulsory licensing scheme cannot be waived, the

Licensor reserves the exclusive right to collect such royalties for any exercise by You of the

rights granted under this License;

ii. Waivable Compulsory License Schemes. In those jurisdictions in which the right to collect

royalties through any statutory or compulsory licensing scheme can be waived, the Licensor

reserves the exclusive right to collect such royalties for any exercise by You of the rights

granted under this License if Your exercise of such rights is for a purpose or use which is

otherwise than noncommercial as permitted under Section 4(b) and otherwise waives the right

to collect royalties through any statutory or compulsory licensing scheme; and,

iii. Voluntary License Schemes. The Licensor reserves the right to collect royalties, whether

individually or, in the event that the Licensor is a member of a collecting society that

administers voluntary licensing schemes, via that society, from any exercise by You of the

rights granted under this License that is for a purpose or use which is otherwise than

noncommercial as permitted under Section 4(c).

e. Except as otherwise agreed in writing by the Licensor or as may be otherwise permitted by applicable

law, if You Reproduce, Distribute or Publicly Perform the Work either by itself or as part of any

Adaptations or Collections, You must not distort, mutilate, modify or take other derogatory action in

relation to the Work which would be prejudicial to the Original Author's honor or reputation. Licensor

agrees that in those jurisdictions (e.g. Japan), in which any exercise of the right granted in Section 3(b)

of this License (the right to make Adaptations) would be deemed to be a distortion, mutilation,

modification or other derogatory action prejudicial to the Original Author's honor and reputation, the

Licensor will waive or not assert, as appropriate, this Section, to the fullest extent permitted by the

applicable national law, to enable You to reasonably exercise Your right under Section 3(b) of this

License (right to make Adaptations) but not otherwise.

5. Representations, Warranties and Disclaimer

UNLESS OTHERWISE MUTUALLY AGREED TO BY THE PARTIES IN WRITING, LICENSOR OFFERS THE

WORK AS-IS AND MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND CONCERNING THE

WORK, EXPRESS, IMPLIED, STATUTORY OR OTHERWISE, INCLUDING, WITHOUT LIMITATION,

WARRANTIES OF TITLE, MERCHANTIBILITY, FITNESS FOR A PARTICULAR PURPOSE,

NONINFRINGEMENT, OR THE ABSENCE OF LATENT OR OTHER DEFECTS, ACCURACY, OR THE

PRESENCE OF ABSENCE OF ERRORS, WHETHER OR NOT DISCOVERABLE. SOME JURISDICTIONS DO

NOT ALLOW THE EXCLUSION OF IMPLIED WARRANTIES, SO SUCH EXCLUSION MAY NOT APPLY TO

YOU.

6. Limitation on Liability. EXCEPT TO THE EXTENT REQUIRED BY APPLICABLE LAW, IN NO EVENT WILL

LICENSOR BE LIABLE TO YOU ON ANY LEGAL THEORY FOR ANY SPECIAL, INCIDENTAL,

vii

CONSEQUENTIAL, PUNITIVE OR EXEMPLARY DAMAGES ARISING OUT OF THIS LICENSE OR THE USE

OF THE WORK, EVEN IF LICENSOR HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

7. Termination

a. This License and the rights granted hereunder will terminate automatically upon any breach by You of

the terms of this License. Individuals or entities who have received Adaptations or Collections from You

under this License, however, will not have their licenses terminated provided such individuals or entities

remain in full compliance with those licenses. Sections 1, 2, 5, 6, 7, and 8 will survive any termination of

this License.

b. Subject to the above terms and conditions, the license granted here is perpetual (for the duration of the

applicable copyright in the Work). Notwithstanding the above, Licensor reserves the right to release the

Work under different license terms or to stop distributing the Work at any time; provided, however that

any such election will not serve to withdraw this License (or any other license that has been, or is

required to be, granted under the terms of this License), and this License will continue in full force and

effect unless terminated as stated above.

8. Miscellaneous

a. Each time You Distribute or Publicly Perform the Work or a Collection, the Licensor offers to the

recipient a license to the Work on the same terms and conditions as the license granted to You under

this License.

b. Each time You Distribute or Publicly Perform an Adaptation, Licensor offers to the recipient a license to

the original Work on the same terms and conditions as the license granted to You under this License.

c. If any provision of this License is invalid or unenforceable under applicable law, it shall not affect the

validity or enforceability of the remainder of the terms of this License, and without further action by the

parties to this agreement, such provision shall be reformed to the minimum extent necessary to make

such provision valid and enforceable.

d. No term or provision of this License shall be deemed waived and no breach consented to unless such

waiver or consent shall be in writing and signed by the party to be charged with such waiver or consent.

e. This License constitutes the entire agreement between the parties with respect to the Work licensed

here. There are no understandings, agreements or representations with respect to the Work not

specified here. Licensor shall not be bound by any additional provisions that may appear in any

communication from You. This License may not be modified without the mutual written agreement of the

Licensor and You.

f. The rights granted under, and the subject matter referenced, in this License were drafted utilizing the

terminology of the Berne Convention for the Protection of Literary and Artistic Works (as amended on

September 28, 1979), the Rome Convention of 1961, the WIPO Copyright Treaty of 1996, the WIPO

Performances and Phonograms Treaty of 1996 and the Universal Copyright Convention (as revised on

July 24, 1971). These rights and subject matter take effect in the relevant jurisdiction in which the

License terms are sought to be enforced according to the corresponding provisions of the

implementation of those treaty provisions in the applicable national law. If the standard suite of rights

viii

granted under applicable copyright law includes additional rights not granted under this License, such

additional rights are deemed to be included in the License; this License is not intended to restrict the

license of any rights under applicable law.

ix

Preface
This book is for anyone who wants to learn how to install and configure a simple PBX (Private

Branch eXchange) based on Asterisk 1.6. Asterisk is an open source telephony platform capable to

use VoIP and TDM channels.

This is an excerpt from the book Learning Guide for Asterisk PBX a full 15 chapters book. I have

organized the book in two parts. The first three chapters works like a Getting Started. You have

everything necessary to learn how to build a simple PBX and it is free. The full book is available
from amazon.com.

1. Introduction to Asterisk PBX
 2. How to download and install Asterisk

3. Building a simple PBX
 4. Analog channels

 5. Digital channels
 6. Designing a VoIP network

 7. The IAX Protocol
 8. The SIP Protocol
 9. Dial Plan advanced features

 10. Using PBX features
 11. Call Queues
 12. Asterisk Call Detail Records

 13. Extending Asterisk with AMI and AGI

14. Asterisk Real-Time
 15. Building a simple PBX using AsteriskNOW

The Asterisk Open Source PBX concept is revolutionary. For many years, telephony has been
dominated by huge companies with proprietary systems. Finally, users can recover their buying

power by having access to an open telephony platform. Thus, things that were not possible before,

because they were not economically viable are likely to start happening. Examples include resources

such as CTI (computer telephony integration, IVR (interactive voice response), ACD (automatic call
distribution), and voicemail, that are now available to everybody.

This book was not designed to teach every single detail of Asterisk. In fact, you will probably not

become a guru simply by reading this book. However, you will be able to build and configure a PBX
with advanced features such as voicemail, IVR an ACD by the end of reading. I hope you enjoy as

much learning about Asterisk as I have enjoyed writing about it.

x

Notes about this edition
In this edition we had changed all the chapters to reflect the changes for the Asterisk version 1.6. A

new chapter about Asterisk Now was included and all the formatting of the book has changed. For

ecological reasons, we tried to reduce the number of pages as much as possible reducing the
unnecessary white spaces. So even increasing the amount of content in the book we still got an

approximate reduction of 20% in the number of pages compared to the last formatting.

Flavio E. Gonçalves

CEO

V.Office Networks

flavio@asteriskguide.com

xi

Audience
This book is intended for those who are new to Asterisk. We assume your are familiar with Linux,

Linux shell commands and Linux text editors. You could test Asterisk using a Linux system with a

graphical interface which may be easier for Linux newbies. Some users will try to execute Asterisk

using VMWare and this is really not a problem, except for poorer voice quality. For production
systems we do not encourage VMware or Linux with a graphical user interface. It is also desirable

that the reader has some knowledge of IP networks, voice over IP (VoIP) and telephony concepts.

Mistakes and errors in the e-Book
We always try to find and eliminate errors and mistakes. Please, if you find something wrong, give us

feedback and we will act on it immediately. E-mail address for feedback: flavio@asteriskguide.com

Use as a training material
We use this book for Asterisk training. If you are interested to use it in your training center, please

send an e-mail to flavio@asteriskguide.com. We have additional materials such as presentations and

Lab Guides.

Credits
 Cover Work:

 Karla Braga

Reviewers:

Luis F. Goncalves

Guilherme Goes dCAP

Edit Avenue, professional proofreaders

mailto:flavio@asteriskguide.com

xii

About the Author
Flavio E. Goncalves was born in 1966 in Brazil. Having always had a strong interest in
computers, he got his first personal computer in 1983 and since then it has been almost an
addiction. He received his degree in Engineering in 1989 with focus in the computer aided
design and computer aided manufacturing.

He is also, CEO of V.Office Networks in Brazil, a consulting company dedicated to the areas
of Networks, Security and Telecomunications and a training center since its foundation in
1996. Since 1993, he has participated in a series of certifications programs having being
certificated as Novell MCNE/MCNI, Microsoft MCSE/MCT, Cisco CCSP/CCNP/CCDP,
Asterisk dCAP and some others.

He started writing about open source software, because, he thinks the way certification
programs were organized in the past, were very good to help learners. Some books today
are written by strictly technical people, who, sometimes, do not have a clear idea on how
people learn. He tried to use his 15 year experience as instructor to help people learn open
source telephony software. His experience with networks, protocol analyzers and IP
telephony, combined with the teaching experience, give him and edge to write this book.
This is the second book he writes; the first one was the Configuration Guide for Asterisk
PBX.

As the CEO of V.Office, Flavio E. Goncalves, balance his time between family, work and
fun. He is a father of two children and lives in Florianopolis, Brazil, one of the most beautiful
places in the world. He dedicates his free time in water sports such as surfing and sailing.

Writing this book has been a process that involved many people. I would like to thank the
staff at V.Office Networks in all the process of reviewing and editing the book. I would like to
thank Guilherme Goes by the countless tips on Asterisk and the book itself. I would also like
to thank several students, who took courses of Asterisk for their feedback, more than a
thousand users have already taken classes using this material in the last five years. Finally,
I would like to thank my family, for all the support they gave me during all these years.

You can contact him at flavio@asteriskguide.com, or visit his website
www.asteriskguide.com.

mailto:flavio@asteriskguide.com
http://www.asteriskguide.com/

xiii

Summary
Preface 9

Notes about this edition 10

Audience 11

Mistakes and errors in the e-Book 11

Use as a training material 11

Credits 11

About the Author 12

Summary 13

Objectives 1

What is Asterisk? 1

What is AsteriskNOW? 2

Role of Digium™ 2

The Zapata project and its relationship with Asterisk 3
Why Asterisk? 3

Extreme cost reduction 4

Telephony system control and independence 4

Easy and rapid development environment 4

Feature rich 4

Dynamic content on the phone 4

Flexible and powerful dial plan 5

Open-source running on top of Linux 5

Asterisk architecture limitations 5
Main objections to Asterisk PBX 5

Asterisk’s market share is too small 5

If it is free, how does the manufacturer survive? 6

It is hard to find technical support! 6

Does Asterisk support more than 200 extensions? 6

Only ―geeks‖ are able to install Asterisk 6

What if the server fails? 6

Our company does not use open-source software 6

Using the PC's CPU to process signalling and media is not recommended 7

Asterisk Architecture 7

Channels 7

Codec and codec translation 8

Protocols 9

Applications 10

xiv

Overview of an Asterisk system 10

Comparing the old and the new world 11

Telephony using Asterisk 11
Building a test system 12

One FXO, one FXS 13

VoIP Service Provider: ATA 13

Inexpensive FXO card or ATA 13
Asterisk scenarios 14

IP PBX 14

IP-enabling legacy PBXs 14

Toll Bypass 15

Application Server (IVR, Conference, Voicemail) 16

Media Gateway 17

Contact Center Platform 18
Finding information and help 19

Additional references: Non-official websites 19

Mailing lists 20
Summary 20

Objectives 21

Minimum Hardware Required 21

Hardware configuration 22

IRQ sharing 23
Choosing a Linux distribution 23

Required dependencies 23
Installing Linux for Asterisk 24

Preparing Linux for Asterisk 24

Which version to choose 25

Obtaining and compiling Asterisk 25

Starting and stopping Asterisk 29

Installation directories 31

Log files and log rotation 32

Starting Asterisk with a non-root user 34

Uninstalling Asterisk 35

Asterisk installation notes 35

Summary 36

Quiz 36
Objectives 37

Understanding the configuration files 37

xv

Grammars 38

Simple Group 38

Object options inheritance grammar 38

Complex entity object 39
Options to build a LAB for Asterisk 39

Option 1: Complete LAB 39

Option 2: Economy LAB 40

Option 3: Super economy lab 40
Installation Sequence 40

Configuration of the extensions 41

SIP extensions 42

Using Templates 43

IAX Extensions 44
Configuring the SIP devices 46

Configuring the IAX devices 47

Configuring a PSTN interface 48

Analog lines using DAHDI 49

Connecting to the PSTN using a VoIP provider 50
Dial plan introduction 51

The structure of the file extensions.conf 51

The section [general] 51

The section [globals] 52
Contexts 52

Extensions 53

Patterns 55

Special extensions 55

Variables 56

Global variables 57

Channel-specific variables 57

Environment-specific variables 58

Application-specific variables 58
Expressions 58

Operators 59
LAB. Evaluate the following expressions: 60

Functions 61

String concatenation 61
Applications 62

xvi

Answer() 62

Dial() 62

Hangup() 65

Goto() 65
Building a dial plan 65

Dialing between extensions 65

Dialing to an external destination 66

Dialing 9 to get a PSTN line 66

Receiving a call in the operator extension 66

Receiving a call using direct inward dialing (DID) 67

Playing several extensions simultaneously 67

Routing by Caller ID 67

Using variables in the dial plan 67

Recording an announcement 68

Receiving the calls in an digital receptionist 68
Summary 70

Quiz 70

1
Introduction to Asterisk PBX

The popularity of ready-to-run distributions such as TrixBox and AsteriskNOW has
recently grown. In this book, we will cover the classic Asterisk, which is the foundation

for understanding these distributions. Asterisk PBX is open-source software capable of

transforming an ordinary PC into a powerful multiprotocol PBX. In this chapter, we will
learn about the possibilities of this new technology and its basic architecture. As it is

much simpler to install Asterisk from a ready-to-run distribution, the last chapter will

cover AsteriskNOW and its graphical interface called FreePBX.

Objectives
By the end of this chapter you should be able to:

 Explain what Asterisk is and what it does;

 Describe the role of Digium™;

 Recognize the basic architecture of Asterisk and its components;

 Point out several usage scenarios; and

 Identify sources of information and help.

What is Asterisk?
Asterisk is an open-source PBX software once installed in a PC‘s hardware along with

the correct interfaces—can be used as a full-featured PBX for home users, enterprises,
VoIP service providers, and phone companies. Asterisk is also both an open-source

community and a commercial product from Digium™. You are free to use and modify

Asterisk to suit your needs.

Asterisk allows real-time connectivity between PSTN and VoIP networks. Since Asterisk

is much more than a PBX, you not only have an exceptional upgrade to your existing

PBX, but you can also do new things in telephony, such as:

| What is AsteriskNOW? |

- 2 -

 Connect employees working from home to an Office PBX over broadband
Internet;

 Connect several offices in different places over an IP network, private

network, or even through the Internet itself;

 Give your employees a voicemail integrated with the web and e-mail;

 Build applications like IVRs that allow connections to your ordering system

or other applications;

 Give traveling users access to the company PBX from anywhere with a
simple broadband or VPN connection; and

 much more....

Asterisk includes several advanced resources previously only found in high-end systems,

such as:

 Music for customers on hold waiting in call queues, supporting media
streaming and MP3 files;

 Call queues, whereby a team of agents can answer calls and monitor queues;

 Integration with text-to-speech and voice recognition;

 Detailed records transferred to both text files and SQL databases; and

 PSTN connectivity through both digital and analog lines.

What is AsteriskNOW?
Asterisk in its purest form, also known as ―classic asterisk‖ (Debian package

denomination) is considered more of a development tool than a finished product by itself.

AsteriskNOW is an initiative to transform Asterisk in a soft-appliance. The distribution
includes CentOS as the operating system and the FreePBX, which is the most used

graphical interface. This distribution is licensed according to the GPL and can be freely

downloaded. In 2007, Digium acquired a product called Switchvox targeted to
commercial users in the SMB market, which it has been promoting vigorously. You can

check out this good piece of software at www.digium.com.

Role of Digium™
Digium, a company located in Huntsville, Alabama, is the creator and primary developer

of Asterisk. In addition to being the primary sponsor of Asterisk development, Digium

also produces telephony interface cards and other hardware for Asterisk's PBX.

Digium offers Asterisk under three types of license agreements:

| Chapter 1 - Introduction to Asterisk PBX |

- 3 -

 General Public License (GPL) Asterisk. This is the most used version. It
includes all features and is free to be used and modified according to the

terms of the GPL license.

 Asterisk Business Edition is a more recent version of Asterisk. Some
companies use the business edition because they do not want or cannot use

the GPL license—usually because they don't want to release their source

code together with Asterisk. The GPL license requires that any further code
development of a GPL-licensed code be released to the source code.

 Asterisk OEM. This version is mostly used by PBX manufacturers who do
not want to reveal to the public that their software is based on Asterisk.

The Zapata project and its relationship with Asterisk
The Zapata project was developed by Jim Dixon, who was also responsible for the
development of this revolutionary hardware for use with Asterisk. Note that the hardware

is open-source too; as such, it can be used by any company. Today, several companies

produce cards compatible with this architecture. More details about the project can be
seen at:

<http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10>)

The Zapata project produced an architecture called Zaptel (recently renamed Digium

Asterisk Hardware Drivers Interface [DAHDI]). One of the main benefits of this

architecture is the ability to use the PC CPU to process media streaming, echo
cancellation, and transcoding. In contrast, most existing cards use digital signal

processors (DSP) to perform these tasks. The use of the PC CPU instead of dedicated

DSPs reduces the board's price dramatically. Thus, these cards are significantly cheaper

than previously available interfaces from other manufacturers. On the other hand, these
cards require a lot of CPU; a misuse of the PC CPU can significantly impact voice

quality. Recently, Digium launched a coprocessor card that uses DSPs to encode and

decode G.729 and G.723, allowing better scalability for a large number of channels.

Why Asterisk?
I remember my first contact with Asterisk. Usually, the first reaction to something new—

especially something that competes with what you already know—is to reject it! This is
exactly what happened in 2003. Asterisk was competing with a solution that I was selling

to a customer (4 E1 VoIP Gateway), and it was ten times less expensive than what I was

charging for the solution I already knew. This disproportionate price led me to start
studying Asterisk in order to identify potential pitfalls and drawbacks. For example, I

found that the PC CPU at that time would not support 120 g.729 simultaneous sections,

At the end of the day, I won the proposal with my Gateway solution. However, this

| Why Asterisk? |

- 4 -

exercise led me to the discovery that Asterisk could solve a variety of very expensive

problems for my customer base. We were in trouble with expensive quotes for IVR,
unified messaging, call recording, and dialers; with appropriate dimensioning, the CPU

problems could be worked around. Indeed, in just three years Asterisk became the

flagship product of my company (I actually decided to open another company just for the

Asterisk business). In my opinion, Asterisk is a revolution in telecommunication that
represents to IP telephony what Apache represents to web services.

Extreme cost reduction
If you compare a traditional PBX with Asterisk in regard to digital interfaces and phones,

Asterisk is slightly cheaper than those PBXs. However, Asterisk really pays off when you

add advanced features such as voicemail, ACD, IVR and CTI. With these advanced
features, Asterisk becomes significantly less expensive than traditional PBXs. In fact,

comparing Asterisk PBXs with low-end analog PBXs is unfair because Asterisk offers so

many features not available in low-end analog systems.

Telephony system control and independence
One of customers‘ most often-quoted benefits of asterisk is the independence that it
provides. Some of today‘s manufacturers do not even give the customer the system‘s

password or the configuration documentation. With Asterisk's ―do-it-yourself‖ approach,

the user achieves total freedom; as a bonus, the user has access to a standard interface.

Easy and rapid development environment
Asterisk can be extended using script languages like PHP and Perl with AMI and AGI
interfaces. Asterisk is open-source, and its source code can be modified by the user. The

source code is written mostly in ANSI C programming language.

Feature rich
Asterisk has several features that are either not found or optional in traditional PBXs

(e.g., voicemail, CTI, ACD, IVR, built-in music on hold, and recording). The costs of
these features in some platforms exceed the price of the platform itself.

Dynamic content on the phone
Asterisk is programmed using C language and other languages common in today's

development environment. The possibility to provide dynamic content is practically

limitless.

| Chapter 1 - Introduction to Asterisk PBX |

- 5 -

Flexible and powerful dial plan

Another Asterisk breakthrough is its powerful dial plan. In traditional PBXs, even simple
features like least cost routing (LCR) are either not feasible or optional. With Asterisk,

choosing the best route is easy and clean.

Open-source running on top of Linux
One of the greatest features of Asterisk is its community. Several resources are available,

including the Asterisk wiki (www.voip-info.org <http://www.voip-info.org>), e-mail
distribution lists, and forums. As Asterisk becomes increasingly adopted, any bugs found

and fixed quickly. Asterisk is probably the most tested PBX software in the world. From

versions 1.0 to 1.2, more than 3,000 changes and bugs in the source code were corrected,
thereby ensuring a code that is both stable and almost error free.

Asterisk architecture limitations
Some limitations in Asterisk stem from the use of the Zapata telephony design. In this

design, Asterisk uses the PC CPU to process voice channels instead of dedicated digital

signal processors (DSPs), which are common in other platforms. Although this allows for

a huge cost reduction in hardware interface, the system becomes dependent on the PC
CPU. My recommendation is to run Asterisk in a dedicated machine and be conservative

about hardware dimensioning. You can also use Asterisk in a separate VLAN to avoid

excessive broadcasts that consume the CPU (broadcast storms caused by loops or
viruses). Some newer interface cards from several vendors are now including DSPs to

process echo cancellation, codecs, and other features, which will make Asterisk even

better.

Main objections to Asterisk PBX
It is common to hear objections to adopting Asterisk, which we will address here.

Asterisk’s market share is too small

The market share is usually measured by the number of PBXs sold. These statistics are

generally acquired from the biggest distributors. Asterisk is free software that does not
appear in sales statistics. However, independent numbers prove that Asterisk ―rocks the

world‖. According to VoIP-Supply, more than 300,000 systems run Asterisk, and Digium

has sold more than 4 million voice interfaces. Last year, the Eastern Management Group
concluded that open-source PBXs account for 18% of the market share, with the vast

majority of them being Asterisk. In fact, 85% of the open-source PBX market is based on

Asterisk, which now ranks second in terms of lines connected to an IP PBX.

| Main objections to Asterisk PBX |

- 6 -

If it is free, how does the manufacturer survive?

Actually, there is no such thing as open-source software manufacturer. Digium is a
software development company, as well as a community, and has been developing

Asterisk since 1999. With more than a hundred employees, it has revenues attached to the

sales of telephony interface cards, PBX systems such as Switchvox, and related software.
The company has made a profit in the last 24 quarters.

It is hard to find technical support!
Digium provides technical support for those who buy the Asterisk Business Edition.

Recently, technical support for open-source Asterisk has become available as well.

Hundreds of professionals have already been certified as Digium Certified Asterisk
Professional (dCAP) and serve as the first line of support and professional services, much

like any IT company.

Does Asterisk support more than 200 extensions?
Yes, absolutely. Asterisk has been used in installations with more than 10,000 users. It is

largely scalable using load balancing and failover systems. It is not uncommon to see

more than a thousand users on a single server.

Only ―geeks‖ are able to install Asterisk
With AsteriskNOW and freePBX, even professionals with limited knowledge about

Linux are able to install and configure a PBX of medium complexity. With the help of a

GUI, it is possible to configure an entire PBX in just a few hours.

What if the server fails?

One of the main advantages of Asterisk is its capability to run in fault-tolerant systems. It

is relatively simple and inexpensive to have two servers running in parallel. I dare you to
try this with a conventional PBX!

Our company does not use open-source software
Your company probably uses open-source software without even realizing it. Several

appliances use Linux as their operating system. Moreover, you can still license Asterisk

commercially using the Asterisk Business Edition.

| Chapter 1 - Introduction to Asterisk PBX |

- 7 -

Using the PC's CPU to process signalling and media is not
recommended
Asterisk uses the server's CPU to process signaling and media for voice channels instead
of having dedicated DSPs. Although this allows a cost reduction of up to five times, it

makes the system dependent on the performance of the main CPU. With the correct

dimensioning, Asterisk is capable of handling large volumes. If you still want to release
the main CPU from these tasks, you can also use hardware echo cancellation and even

transcoder cards, such as the Digium's TC400B based on DSPs.

Asterisk Architecture
This section will explain how Asterisk‘s architecture works. The figure below shows the

basic Asterisk architecture. Next, we will explain architecture-related concepts, including

channels, codecs, and applications.

Channels
A channel is the equivalent of a telephone line, but in a digital format. It usually consists

of an analog or digital (TDM) signaling system or a combination of codec and signaling
protocol (e.g., SIP-GSM, IAX-uLaw). Initially, all telephony connections were analog

and susceptible to echo and noise. Later, most systems were converted to digital systems,

with the analogical sound converted into a digital format using pulse code modulation

| Main objections to Asterisk PBX |

- 8 -

(PCM) in most cases. This format allows voice transmission in 64 kilobits/second

without compression.

Channels interfacing with the Public Switch Telephony Service (PSTN)

 chan_dahdi: Supports cards from Sangoma, Digium, Xorcom, and others

 chan_mISDN: Supports ISDN cards based in the Linux ISDN drivers

Channels interfacing with Voice-over IP

 chan_sip: Supports voice-over IP using SIP protocol. Dial string:
sip/channel

 chan_iax: Supports voice-over IP using IAX2 protocol. Dial string:
iax2/channel

 chan_h323: H.323 is one of the oldest and most implemented voice-over IP
protocols. It's useful for connecting to existing H.323 networks. There are

different flavors of H.323 in Asterisk, including chan_h323, chan_oh323,
and chan_ooH323. The channel chan_h323 can be used in Asterisk as a

gateway. Asterisk can point to a gatekeeper, but cannot work as one. Dial

string h323/hostname if using a gatekeeper or h323/extension@hostname if
going directly to the gateway.

 chan_mgcp: Supports the voice-over IP protocol using MGCP. Currently
Asterisk supports MGCP phones, but it cannot connect to a VoIP provider
using MGCP. Dial string: MGCP/aaln/1@hostname

 chan_skinny: Supports Cisco™ voice-over IP skinny protocol. Dial String:
skinny/channel.

Miscellaneous channels

 chan_agent: Used for automatic call distribution (ACD). It is not related to
specific hardware or protocol. It can also be used for mobility, allowing any

person to use any phone just by logging in to the agent.

 chan_local: Is a pseudo channel that simply loops back into the dial plan in a
different context. This is useful for recursive routing. Dial string:
Local/extension@context

Codec and codec translation
We usually try to put as many voice connections as possible in a data network. Codecs

enable new features in digital voice, including compression, which is one of the most

important features as it allows compression rates larger than 8 to 1. Other features include

voice activity detection, packet loss concealment, and comfort noise generation. Several
codecs are available for Asterisk and can be transparently translated from one to another.

| Chapter 1 - Introduction to Asterisk PBX |

- 9 -

Internally, Asterisk uses slinear as the stream format when it needs to convert from one

codec to another. Some codecs in Asterisk are supported only in pass-through mode;
these codecs cannot be translated. To verify which codecs are installed in your system,

you can use the console command:

CLI>core show translation

The following codecs are supported:

 G.711 ulaw (USA) - (64 Kbps).

 G.711 alaw (Europe) - (64 Kbps).

 G.722 (High Definition) – (64 Kbps)

 G.723.1 - Only pass-through mode

 G.726 - (16/24/32/40kbps)

 G.729 - Needs licensing (8Kbps)

 GSM - (12-13 Kbps)

 iLBC - (15 Kbps)

 LPC10 - (2.5 Kbps)

 Speex - (2.15-44.2 Kbps)

Protocols
Sending data from one phone to another should be easy provided that the data find a path

to the other phone on their own. Unfortunately, it doesn't happen this way, and a

signaling protocol is necessary in order to establish connections between phones,
discover end devices, and implement telephony signaling. It has recently become

extremely common to use SIP as a signaling protocol. IAX is another option becoming

popular because it works well with NAT traversal and some bandwidth can be saved in

trunk mode. Asterisk supports the following protocols.

 SIP

 H323

 IAX2

 MGCP

 SCCP (Cisco Skinny)

 Nortel unistim

| Overview of an Asterisk system |

- 10 -

Applications

To bridge calls from one phone to another, the application dial() is used. Most Asterisk
features (e.g., voicemail and conferencing) are implemented as applications. You can see

available Asterisk applications by using the core show applications console

command.

CLI>core show applications

You can add applications from Asterisk add-ons, third-party providers, or even those you

develop yourself.

Overview of an Asterisk system
Asterisk is an open-source PBX that acts like a hybrid PBX, integrating technologies

such as TDM and IP telephony. Asterisk is ready to implement functionality such as

interactive voice response (IVR) and automatic call distribution (ACD); moreover, as
previously mentioned, it is open to the development of new applications.

This figure shows how Asterisk connects to the PSTN and existing PBXs using analog
and digital interfaces as well as supports analog and IP phones. It can act as a soft-switch,

media gateway, voicemail, and audio conference and also has built-in music on hold.

| Chapter 1 - Introduction to Asterisk PBX |

- 11 -

Comparing the old and the new world
In the old soft-switch model, all components were sold separately, meaning you had to

purchase each component separately and then integrate to the PBX or soft-switch

environment. The costs and risks were high and most of the equipment proprietary.

Telephony using Asterisk
All functions are integrated in the Asterisk platform in the same or in different boxes
according to the dimensioning, and all are GPL licensed. Sometimes it is easier to install

Asterisk than license some of the mainstream IP-PBXs

| Building a test system |

- 12 -

Building a test system
When implementing an Asterisk solution, our first step is generally to build a test

machine. The easiest test machine is the 1x1 PBX, including at least one phone and one
line. There are several ways to do this.

| Chapter 1 - Introduction to Asterisk PBX |

- 13 -

One FXO, one FXS
The first and simplest way to build a test machine is to purchase a card with one FXO and

one FXS interface. Connect the FXO port to an existing line and connect one FXS to an

analog phone. Thus, you have a 1x1 PBX.

VoIP Service Provider: ATA
This is the VoIP option. In this case, you would sign up with a voice service provider to
have the SIP trunks and will have to purchase a SIP analog telephony adapter. You will

probably spend less than a hundred dollars if you already have the PC.

Inexpensive FXO card or ATA

I started with an inexpensive FXO card. Some inexpensive V.90 fax/modems work with
Asterisk as an FXO card. Some of the first Digium cards were created using these cards

(e.g., X100P and X101P), which are old modems based on Motorola and Intel chipsets

(Motorola 68202-51, Intel 537PU, Intel 537PG, and Intel Ambient MD3200 are known to
work). These modems are often incompatible with new motherboards. Recently some

manufacturers started to sell these cards as X100P clones. Some of the incompatibilities

can be solved using a patch, more information can be found at:

| Asterisk scenarios |

- 14 -

 http://www.asteriskguide.com/mediawiki/index.php/Asterisk_patch_for_the_X10
0P_card

Asterisk scenarios
Asterisk can be used in several different scenarios. We will list some of them and explain

the advantages and possible limitations of each.

IP PBX
The most common scenario is the installation of a new or the replacement of an existing

PBX. If you compare Asterisk with some other alternatives, you will find it to be cheaper
and richer in features than most PBXs currently available on the market. Several

companies are now changing their specifications to Asterisk instead of other brand-name

PBXs.

IP-enabling legacy PBXs
The following image illustrates one of the most commonly used setups. Large companies

generally do not want to take significant risk when investing in new technologies and

simultaneously wish to preserve their investments in legacy equipment. IP-enabling
legacy PBX can be very expensive; thus, connecting an Asterisk PBX using T1/E1 lines

| Chapter 1 - Introduction to Asterisk PBX |

- 15 -

can be a good alternative for cost-conscious customers. Another benefit is the possibility

of connecting to a VoIP service provider with better telephony rates.

Toll Bypass
A very useful application for VoIP is connecting branch offices over the Internet or a

WAN. Using an existing data connection allows you to bypass toll charges incurred in
telecommunication connections between headquarters and branch offices.

| Asterisk scenarios |

- 16 -

Application Server (IVR, Conference, Voicemail)
Asterisk can be used as an application server for the existing PBX or be directly

connected to PSTN. Asterisk offers services such as voicemail, fax reception, call

recording, IVR connected to a database, and an audio conferencing server. If you
integrate voicemail and fax into an existing e-mail server, you will have a unified

messaging system, which is usually an expensive solution. Using Asterisk as an

application server provides extreme cost reduction compared to other solutions.

| Chapter 1 - Introduction to Asterisk PBX |

- 17 -

Media Gateway
Most voice-over IP service providers use an SIP proxy to host all registration, location,

and authentication of SIP users. They still have to send calls to the PSTN directly or route

it through a wholesale call termination provider using an SIP or H.323 voice-over IP

connection. Asterisk can act as a back-to-back user agent (B2BUA) or media gateway,
replacing very expensive soft switches or media gateways. Compare the price of a four

E1/T1 gateway from the main market manufacturers with Asterisk. The Asterisk solution

can cost several times less than other solutions and is capable of translating signaling
protocols (H.323, SIP, IAX…) and codecs (G.711, G.729…).

| Asterisk scenarios |

- 18 -

Contact Center Platform
A contact center is a very complex solution that combines several technologies, such as

automatic call distribution (ACD), interactive voice response (IVR), and call supervision.
Basically, three types of contact centers are available: inbound, outbound, and blended.

Inbound contact centers are very sophisticated and usually require ACD, IVR, CTI,

recording, supervision, and reports. Asterisk has a built-in ACD to queue the calls. IVR
can be done using Asterisk Gateway Interface (AGI) or internal mechanisms such as the

application background(). Computer telephony integration (CTI) is achieved using

Asterisk Manager Interface (AMI); recording and reporting are built in to Asterisk. For
an outbound contact center, a predictive or power dialer is one of the main components.

Although several dialers are available for the open-source Asterisk, it is not hard to build

your own for the platform if you so desire. A blended contact center allows simultaneous

inbound and outbound operation, saving money by ensuring better use of the agent's time.
It is possible to use Asterisk and its ACD mechanism to implement a blended solution.

| Chapter 1 - Introduction to Asterisk PBX |

- 19 -

Finding information and help
This section will provide some of the main sources of information related to Asterisk.

 Asterisk‘s official website: <http://www.asterisk.org> Here you can find information
about:

o Support-> <http://www.asterisk.org/support>

o Knowledge base-> <http://kb.digium.com/>

o Forum-><http://forums.digium.com/>

o Bug tracking-><http://bugs.digium.com/>

Additional references: Non-official websites
These sites are not official, but they provide useful content.

 <http://www.voip-info.org>

 <http://www.asteriskguru.com>

 <http://svn.digium.com/svn> (check the doc directory on each branch)

| Summary |

- 20 -

Mailing lists

Mailing lists are quite handy when you have questions. Usually, you will receive answers
for your questions. Try to gather as much information as possible before posting to the

list. Nobody will help you if you haven't done your homework. In other words, try at least

once to solve the problem by yourself.

 <http://www.asterisk.org/support/mailing-lists>

Summary
The Asterisk is software licensed according to the GPL that enables an ordinary PC to act

as a powerful IP PBX platform. Digium‘s Mark Spencer created Asterisk in the late
1990s. Digium survives by selling hardware related to Asterisk. Hardware is open-

sourced as well and originated in the Zapata project developed by Jim Dixon. The

Asterisk architecture has the following main components:

 CHANNELS: Analog, digital, or voice-over IP.

 PROTOCOLS: Communication protocols, which are responsible for signaling
the calls, can be SIP, H323, MGCP, and IAX.

 CODECS: Translate digital formats of voice allowing compressions, packet loss
concealment, silence suppression, and comfort noise generation. Asterisk does

not support silence suppression.

 APPLICATIONS: Responsible for the Asterisk PBX functionality. Conference,
voicemail, and fax are examples of Asterisk applications.

Asterisk can be used in various scenarios, from a small IP PBX to a sophisticated contact

center. You can easily find help at www.asterisk.org

2

How to download and install
Asterisk

In the first chapter, we learned a bit about how Asterisk is useful in the telephony environment. In this
chapter, we will cover how to download and install Asterisk. Before starting, it is essential to learn

how to compile and install it. The compilation process may seem weird for traditional Microsoft™

Windows™ users, but it is fairly common in the Linux™ environment. One can get an optimized

code for your hardware when compiling Asterisk, which is what we will do here. Asterisk runs in
several operating systems, but we chose to keep things easy and start with only one of them: Linux.

We chose Debian as the Linux™ distribution because the dependencies are easy to install and the

distribution is stable, with a low footprint. If you want to use another distribution, please change the
name of the dependencies accordingly.

Objectives
By the end of this chapter you should be able to:

 Determine the hardware requirements for Asterisk;

 Install Linux with the required dependencies;

 Download a stable version using FTP;

 Compile Asterisk; and

 Learn how to start Asterisk at boot time.

Minimum Hardware Required

Asterisk does not need a lot of hardware to run, however there are some tips to choose the

best hardware for your requirements. You should take into consideration the following main

factors when choosing your hardware:

 Total number of registered users. Define how many registrations per second you need to

support

| Minimum Hardware Required |

- 22 -

 Total number of simultaneous calls. Define how many network conversations you need to
process in the network adapter and bridge on the Asterisk server

 Which codecs you need to support. High complexity codecs will require a lot of CPU/FPU

power in your server, a single iLBC session can require as much as 18MIPS

 Echo cancellation. Echo cancellation may take a lot of CPU/FPU, in some cases you should
choose hardware echo cancellation using DSPs in the telephony interface card

 Availability. Use RAID1 or 5 to increase availability. Remember, Asterisk is 24x7

application.
 Redundancy on the telephony interfaces. Xorcom (http://www.xorcom.com) and Red-fone(

http://www.red-fone-com) have very good solutions for this.

The main component for an Asterisk Server is the network adapter. A good server network

adapter is recommended. CPU is important when you need to support high complexity

codecs such as g.729 and iLBC and echo cancellation. You may choose to use dedicated

DSPs, Digium provides a DSP card named TC400B capable to support 120 g729

simultaneous calls.

The best practice is to choose a new, server class, computer from a known manufacturer. To

know exactly how many simultaneous calls or how many registered users an specific

machine can support, you should test this hardware with a stress test tool such as SIPP

(http://sipp.sourceforge.net). Some hardware manufacturers such as Xorcom

(http://www.xorcom.com) publish its results in the website.

Note: Some Asterisk applications, such as meetme and music on hold, requires a clock

source. Usually, the clock source is an telephony interface card. If your system does not use a

telephony interface card, you will have to load dahdi_dummy to provide a clock source.

Hardware configuration

The Asterisk hardware does not need to be sophisticated. You don't need an expensive video card or

numerous peripherals. Some tips about hardware configuration;

 Disable unused USB, serial and parallel ports to avoid the consumption of unnecessary

interrupts.

 A robust network interface card is essential.

 Take particular care if you are using telephony interface cards. Some cards use a 3.3 volts

PCI bus, and it is not easy to find motherboards for them. In these days, PCI express is
more easily found.

 Pay a close attention to the hard disk, PBX used to work in a 24x7 regime while desktops

work 8x5. Do not use desktop hardware for a PBX, usually the hard disk fails before the

first year if used intensively. My recommendation is to use a server machine or an

appliance designed to run 24x7 applications.

http://www.xorcom.com/
http://www.red-fone-com/
http://sipp.sourceforge.net/
http://www.xorcom.com/

| Chapter 2 - How to download and install Asterisk |

- 23 -

IRQ sharing
Telephony interface cards (e.g., X100P) generate large quantities of interruptions. Serving these

interruptions requires processor time. The drivers can't do this processing if you have another device

using the same interruption. In a single CPU system, you should avoid IRQ sharing between devices.
We recommend the use of dedicated hardware to run Asterisk. Don't forget to disable any foreign or

unnecessary hardware. Some hardware can be disabled in the motherboard bios setup. Once you have

started your computer, see your assigned interrupts in /proc/interrupts.

#cat /proc/interrupts

CPU0

0: 41353058 XT-PIC timer

1: 1988 XT-PIC keyboard

2: 0 XT-PIC cascade

3: 413437739 XT-PIC wctdm <-- TDM400

4: 5721494 XT-PIC eth0

7: 413453581 XT-PIC wcfxo <-- X100P

8: 1 XT-PIC rtc

9: 413445182 XT-PIC wcfxo <-- X100P

12: 0 XT-PIC PS/2 Mouse

14: 179578 XT-PIC ide0

15: 3 XT-PIC ide1

NMI: 0

ERR: 0

Here you can see three Digium cards, each in their own IRQ. If this is the case in your system, go

ahead and install the hardware drivers. If this is not the case, go back and try something else to avoid

IRQ sharing.

Choosing a Linux distribution
Asterisk was initially developed to run on Linux. However, it can also run on BSD Unix or Mac OS

X. If you are new to Asterisk, try using Linux first since it is much easier. Several Linux distributions
were successfully tested with Asterisk (e.g., Fedora, Redhat, SuSe, Debian, and Gentoo); choose one

for your system. You can download the Debian distribution from the address below:

http://www.us.debian.org/CD/netinst/#netinst-stable.

Required dependencies
The following dependencies are required to compile Asterisk.

 bison

 libssl-dev

 openssl

 libasound2-dev

 libc6-dev

http://www.us.debian.org/CD/netinst/#netinst-stable

| Installing Linux for Asterisk |

- 24 -

 libnewt-dev

 zlib1g-dev

 gcc

 g++

 make

 libncurses5-dev

 doxigen

 libxml2-dev

Required by DAHDI

 kernel sources

Caution: DAHDI packages are necessary to compile some Asterisk applications like

meetme(). If you have compiled Asterisk before DAHDI, you will have to recompile it
again to include the application meetme() as well as certain others.

Required by Xorcom Astribank

 libusb-dev

 fxload

Installing Linux for Asterisk
Install your Linux as usual, without a graphical user interface. Install and configure the email server

as well. We will need the email server (exim4) to send voicemail notifications later in this book.

Caution: This installation will format your PC. All your disk data will be erased. Please make

sure to back up all data before starting.

Step 1: Put the CD in the CD-ROM drive and boot your PC. Most questions are very simple to

answer.

Preparing Linux for Asterisk
Immediately after installing Asterisk, we will install the packages required for the subsequent

compilation of Asterisk and DAHDI drivers. First, we will indicate to Debian where the packages will

be downloaded from. This is done by using the apt-setup utility.

Step 1: Login as root.

Step 2: Install the kernel headers.

| Chapter 2 - How to download and install Asterisk |

- 25 -

apt-get install linux-headers-`uname –r`

ln -s /usr/src/kernel-headers-`uname -r` /usr/src/linux

Step 3: Install the required packages.

apt-get install bison openssl libssl-dev libusb-dev fxload libasound2-dev libc6-
dev libnewt-dev libncurses5-dev zlib1g-dev gcc g++ make doxygen libxml2-dev

Which version to choose

As a rule of thumb, you should use the version with the required features. Versions 1.2 and 1.4 are

more stable than the newest 1.6 while the newer versions include the new features, meaning 1.2 and
1.4 are feature frozen. The Asterisk team has changed the version system for 1.6. Now, instead of

having major versions each year, they are releasing major and minor versions. The newest version is

1.6.2; it is undergoing just bug fixes, too. All new development is integrated in the trunk. With 1.6
you will have at least three versions maintained simultaneously, which allows you an extended period

to upgrade from one version to another. Recently they announced the change back to the old

versioning system.

All examples in this book were created or converted to Asterisk 1.6.2, but most should work
in 1.4.

Obtaining and compiling Asterisk
The next step is the installation of Asterisk. To obtain the sources, you should download them from

www.asterisk.org. We will use the wget utility to download them. Create a directory /usr/src to

receive the files. You should consult www.asterisk.org to verify which version is the newest.

For Asterisk 1.4

Download the source files from the Asterisk repository. Please, check for a newer version.

cd /usr/src

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
1.4.29.1.tar.gz

wget http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-
1.4.10.1.tar.gz

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
addons-1.4.10.tar.gz

For Asterisk 1.6

Download the source files from the Asterisk repository. Please, check for a newer version.

cd /usr/src

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
1.6.2.5.tar.gz

wget http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-
1.4.10.2.tar.gz

http://www.asterisk.org/
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-1.4.29.1.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-1.4.29.1.tar.gz
http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-1.4.10.2.tar.gz
http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-1.4.10.2.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.4.10.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.4.10.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-1.6.2.5.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-1.6.2.5.tar.gz
http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-1.4.10.2.tar.gz
http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-1.4.10.2.tar.gz

| Installing Linux for Asterisk |

- 26 -

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
addons-1.6.2.0.tar.gz

DAHDI

The same version of DAHDI is used for both versions.
wget http://downloads.asterisk.org/pub/telephony/dahdi-linux/releases/dahdi-linux-
2.2.1.tar.gz

wget http://downloads.asterisk.org/pub/telephony/dahdi-tools/releases/dahdi-tools-
2.2.1.tar.gz

Uncompress the files using:

tar xzvf file.tar.gz

Compiling DAHDI drivers

You will need to compile the DAHDI modules. The commands ./configure and make menuselect

were added in version 1.4. The latter enables you to select which utilities and modules to build. The

following commands will do this:

cd /usr/src/dahdi-linux-2.2.1

make

make install

cd /usr/src/dahdi-tools-2.2.1

./configure

make menusect #(optional, you may select some options)

make

make install

make config #(optional, it installs the init scripts)

Use make menuselect to install only the necessary modules. This is the make menuselect

screenshot.

http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.6.2.0.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.6.2.0.tar.gz
http://downloads.asterisk.org/pub/telephony/dahdi-linux/releases/dahdi-linux-2.2.1.tar.gz
http://downloads.asterisk.org/pub/telephony/dahdi-linux/releases/dahdi-linux-2.2.1.tar.gz
http://downloads.asterisk.org/pub/telephony/dahdi-tools/releases/dahdi-tools-2.2.1.tar.gz
http://downloads.asterisk.org/pub/telephony/dahdi-tools/releases/dahdi-tools-2.2.1.tar.gz

| Chapter 2 - How to download and install Asterisk |

- 27 -

Just after executing make config, the init scripts will be installed, and the following screen will be
shown.

install -D dahdi.init /etc/init.d/dahdi

/usr/bin/install -c -D -m 644 init.conf.sample /etc/dahdi/init.conf

/usr/bin/install -c -D -m 644 modules.sample /etc/dahdi/modules

/usr/bin/install -c -D -m 644 blacklist.sample /etc/modprobe.d/dahdi.blacklist

/usr/sbin/update-rc.d dahdi defaults 15 30

 Adding system startup for /etc/init.d/dahdi ...

 /etc/rc0.d/K30dahdi -> ../init.d/dahdi

 /etc/rc1.d/K30dahdi -> ../init.d/dahdi

 /etc/rc6.d/K30dahdi -> ../init.d/dahdi

 /etc/rc2.d/S15dahdi -> ../init.d/dahdi

 /etc/rc3.d/S15dahdi -> ../init.d/dahdi

 /etc/rc4.d/S15dahdi -> ../init.d/dahdi

 /etc/rc5.d/S15dahdi -> ../init.d/dahdi

DAHDI has been configured.

If you have any DAHDI hardware it is now recommended you

edit /etc/dahdi/modules in order to load support for only

the DAHDI hardware installed in this system. By default

| Installing Linux for Asterisk |

- 28 -

support for all DAHDI hardware is loaded at DAHDI start.

I think that the DAHDI hardware you have on your system is:

usb:004/002 xpp_usb- e4e4:1150 Astribank-multi no-firmware

This screen (above) asks you to change the file /etc/dahdi/modules to load only the required

drivers for your specific configuration and show the detected hardware. Edit the file
/etc/dahdi/modules and load only the required hardware. In my case, I was using a test machine

with a Xorcom Astribank 6FXS and 2FXO. The file is shown below.

Contains the list of modules to be loaded / unloaded by /etc/init.d/dahdi.

NOTE: Please add/edit /etc/modprobe.d/dahdi or /etc/modprobe.conf if you

would like to add any module parameters.

Format of this file: list of modules, each in its own line.

Anything after a '#' is ignore, likewise trailing and leading

whitespaces and empty lines.

Digium TE205P/TE207P/TE210P/TE212P: PCI dual-port T1/E1/J1

Digium TE405P/TE407P/TE410P/TE412P: PCI quad-port T1/E1/J1

Digium TE220: PCI-Express dual-port T1/E1/J1

Digium TE420: PCI-Express quad-port T1/E1/J1

#wct4xxp

Digium TE120P: PCI single-port T1/E1/J1

Digium TE121: PCI-Express single-port T1/E1/J1

Digium TE122: PCI single-port T1/E1/J1

#wcte12xp

Digium T100P: PCI single-port T1

Digium E100P: PCI single-port E1

#wct1xxp

Digium TE110P: PCI single-port T1/E1/J1

#wcte11xp

Digium TDM2400P/AEX2400: up to 24 analog ports

Digium TDM800P/AEX800: up to 8 analog ports

Digium TDM410P/AEX410: up to 4 analog ports

#wctdm24xxp

X100P - Single port FXO interface

X101P - Single port FXO interface

#wcfxo

Digium TDM400P: up to 4 analog ports

#wctdm

| Chapter 2 - How to download and install Asterisk |

- 29 -

Xorcom Astribank Devices

xpp_usb

Re-initialize your computer and verify the correct loading of the drivers.

Compiling Asterisk

If you have previously compiled software, compiling Asterisk will be an easy task. Run the following
commands to compile and install Asterisk. Remember, you can choose which applications and

modules to build using make menuselect.

cd /usr/src/libpri-1.4.10.2

make

make install

cd /usr/src/asterisk-1.6.2.5

./configure

make menuselect

make

make install

make samples ;use to create sample configuration files

make config ;to start asterisk at boot time

Use make menuselect to install only the necessary modules.

Starting and stopping Asterisk

With this minimal configuration, it‘s possible to start Asterisk successfully.

/usr/sbin/asterisk –vvvgc

Use the CLI command stop now to shutdown Asterisk.

| Installing Linux for Asterisk |

- 30 -

CLI>stop now

Asterisk runtime options

The Asterisk starting process is very simple. If Asterisk is run without any parameters, it is launched
as a daemon.

/sbin/asterisk

You can access the Asterisk console by executing the following command. Please note that more than
one console process can be run at the same time.

/sbin/asterisk -r

Available runtime options for Asterisk

You can show the available runtime options using asterisk –h

sipast:/usr/src/asterisk-1.6# asterisk -h

Asterisk 1.6.1.1, Copyright (C) 1999 - 2008, Digium, Inc. and others.

Usage: asterisk [OPTIONS]

Valid Options:

 -V Display version number and exit

 -C <configfile> Use an alternate configuration file

 -G <group> Run as a group other than the caller

 -U <user> Run as a user other than the caller

 -c Provide console CLI

 -d Enable extra debugging

 -f Do not fork

 -F Always fork

 -g Dump core in case of a crash

 -h This help screen

 -i Initialize crypto keys at startup

 -I Enable internal timing if DAHDI timer is available

 -L <load> Limit the maximum load average before rejecting new calls

 -M <value> Limit the maximum number of calls to the specified value

 -m Mute debugging and console output on the console

 -n Disable console colorization

 -p Run as pseudo-realtime thread

 -q Quiet mode (suppress output)

 -r Connect to Asterisk on this machine

 -R Same as -r, except attempt to reconnect if disconnected

 -t Record soundfiles in /var/tmp and move them where they

 belong after they are done

 -T Display the time in [Mmm dd hh:mm:ss] format for each line

 of output to the CLI

 -v Increase verbosity (multiple v's = more verbose)

 -x <cmd> Execute command <cmd> (only valid with -r)

| Chapter 2 - How to download and install Asterisk |

- 31 -

 -s <socket> Connect to Asterisk via socket <socket> (only valid with -r)

Installation directories

Asterisk is installed on several directories, which can be modified in the asterisk.conf file.

asterisk.conf
[directories](!) ; remove the (!) to enable this

astetcdir => /etc/asterisk

astmoddir => /usr/lib/asterisk/modules

astvarlibdir => /var/lib/asterisk

astdbdir => /var/lib/asterisk

astkeydir => /var/lib/asterisk

astdatadir => /var/lib/asterisk

astagidir => /var/lib/asterisk/agi-bin

astspooldir => /var/spool/asterisk

astrundir => /var/run/asterisk

astlogdir => /var/log/asterisk

[options]

;verbose = 3

;debug = 3

;alwaysfork = yes ; same as -F at startup

;nofork = yes ; same as -f at startup

;quiet = yes ; same as -q at startup

;timestamp = yes ; same as -T at startup

;execincludes = yes ; support #exec in config files

;console = yes ; Run as console (same as -c at startup)

;highpriority = yes ; Run realtime priority (same as -p at startup)

;initcrypto = yes ; Initialize crypto keys (same as -i at startup)

;nocolor = yes ; Disable console colors

;dontwarn = yes ; Disable some warnings

;dumpcore = yes ; Dump core on crash (same as -g at startup)

;languageprefix = yes ; Use the new sound prefix path syntax

;internal_timing = yes

;systemname = my_system_name ; prefix uniqueid with a system name for global
uniqueness issues

;autosystemname = yes ; automatically set systemname to hostname - uses
'localhost' on failure, or systemname if set

;maxcalls = 10 ; Maximum amount of calls allowed

;maxload = 0.9 ; Asterisk stops accepting new calls if the load average exceed
this limit

;maxfiles = 1000 ; Maximum amount of openfiles

;minmemfree = 1 ; in MBs, Asterisk stops accepting new calls if the amount of
free memory falls below this watermark

;cache_record_files = yes ; Cache recorded sound files to another directory
during recording

;record_cache_dir = /tmp ; Specify cache directory (used in cnjunction with
cache_record_files)

| Installing Linux for Asterisk |

- 32 -

;transmit_silence_during_record = yes ; Transmit SLINEAR silence while a
channel is being recorded

;transmit_silence = yes ; Transmit SLINEAR silence while a channel is being
recorded or DTMF is being generated

;transcode_via_sln = yes ; Build transcode paths via SLINEAR, instead of
directly

;runuser = asterisk ; The user to run as

;rungroup = asterisk ; The group to run as

;lightbackground = yes ; If your terminal is set for a light-colored background

documentation_language = en_US ; Set the Language you want Documentation
displayed in. Value is in the same format as locale names

;hideconnect = yes ; Hide messages displayed when a remote console connects and
disconnects

; Changing the following lines may compromise your security.

;[files]

;astctlpermissions = 0660

;astctlowner = root

;astctlgroup = apache

;astctl = asterisk.ctl

[compat]

pbx_realtime=1.6

res_agi=1.6

app_set=1.6

Log files and log rotation

Asterisk PBX logs its messages on the /var/log/asterisk directory. The file that controls the logs

is the logger.conf.

; Logging Configuration

;

; In this file, you configure logging to files or to

; the syslog system.

;

; "logger reload" at the CLI will reload configuration

; of the logging system.

[general]

; Customize the display of debug message time stamps

; this example is the ISO 8601 date format (yyyy-mm-dd HH:MM:SS)

; see strftime(3) Linux manual for format specifiers

;dateformat=%F %T

;

; This appends the hostname to the name of the log files.

;appendhostname = yes

;

; This determines whether or not we log queue events to a file

; (defaults to yes).

| Chapter 2 - How to download and install Asterisk |

- 33 -

;queue_log = no

;

; This determines whether or not we log generic events to a file

; (defaults to yes).

;event_log = no

;

;

; For each file, specify what to log.

;

; For console logging, you set options at start of

; Asterisk with -v for verbose and -d for debug

; See 'asterisk -h' for more information.

;

; Directory for log files is configures in asterisk.conf

; option astlogdir

;

[logfiles]

;

; Format is "filename" and then "levels" of debugging to be included:

; debug

; notice

; warning

; error

; verbose

; dtmf

;

; Special filename "console" represents the system console

;

; We highly recommend that you DO NOT turn on debug mode if you are simply

; running a production system. Debug mode turns on a LOT of extra messages,

; most of which you are unlikely to understand without an understanding of

; the underlying code. Do NOT report debug messages as code issues, unless

; you have a specific issue that you are attempting to debug. They are

; messages for just that -- debugging -- and do not rise to the level of

; something that merit your attention as an Asterisk administrator. Debug

; messages are also very verbose and can and do fill up logfiles quickly;

; this is another reason not to have debug mode on a production system unless

; you are in the process of debugging a specific issue.

;

;debug => debug

console => notice,warning,error

;console => notice,warning,error,debug

messages => notice,warning,error

;full => notice,warning,error,debug,verbose

;syslog keyword : This special keyword logs to syslog facility

;

;syslog.local0 => notice,warning,error

| Installing Linux for Asterisk |

- 34 -

;

Some console commands are associated with the logger process.

CLI> logger list channels

Channel Type Status Configuration

------- ---- ------ -------------

/var/log/asterisk/messages File Enabled - Warning Notice Error

 Console Enabled - Warning Notice Error

CLI> logger rotate

 == Parsing '/etc/asterisk/logger.conf': Found

Asterisk Event Logger restarted

Asterisk Queue Logger restarted

You can control the log rotation using the logrotate daemon. Edit the file
/etc/logrotate.d and include the content below to start rotating the log files.

/var/log/asterisk/messages /var/log/asterisk/*log {
 missingok
 rotate 5
 weekly
 create 0640 asterisk asterisk
 postrotate
 /usr/sbin/asterisk -rx 'logger reload'
 endscript
}

More information about logrotate can be obtained using:

#man logrotate

Starting Asterisk with a non-root user

It is safer to execute Asterisk with a non-root user. In case of a security failure or a buffer overflow

attack, running Asterisk within an environment with fewer privileges to the user limits an intruder‘s

possible actions.

To change Asterisk’s running user:

Step 1: Edit the file: vi /etc/init.d/asterisk

Step 2: Uncomment the following lines:

AST_USER="asterisk"

AST_GROUP="asterisk"

Step 3: To change user rights in Asterisk folders, type:

cd /

chown --recursive asterisk:asterisk /etc/asterisk

chmod --recursive u=rwX,g=rX,o= /etc/asterisk

chown --recursive asterisk:asterisk /var/lib/asterisk

chown --recursive asterisk:asterisk /var/log/asterisk

chown --recursive asterisk:asterisk /var/run/asterisk

chown --recursive asterisk:asterisk /var/spool/asterisk

chown --recursive asterisk:asterisk /dev/dahdi

chmod --recursive u=rwX,g=rX,o= /var/lib/asterisk

chmod --recursive u=rwX,g=rX,o= /var/log/asterisk

| Chapter 2 - How to download and install Asterisk |

- 35 -

chmod --recursive u=rwX,g=rX,o= /var/run/asterisk

chmod --recursive u=rwX,g=rX,o= /var/spool/asterisk

chmod --recursive u=rwX,g=rX,o= /dev/dahdi

Step 4: Test changes using /etc/init.d/asterisk

Uninstalling Asterisk
To uninstall Asterisk, use:

make uninstall

To uninstall Asterisk and all configuration files, use:

make uninstall-all

Asterisk installation notes

This section will provide some advice about issues to address before installing Asterisk.

Production Systems

If Asterisk is installed in a production environment, you should pay attention to the system design. A

server has to be optimized in such a way that telephony systems have priority over other system

processes. Asterisk should not run together with processor-intensive software such as X-Windows. If
you need to run CPU-intensive processes (e.g., a huge database), use a separate server. Generally

speaking, Asterisk is susceptible to hardware performance variations. Thus, try using Asterisk in a

hardware environment that does not require more than 40% of CPU utilization.

Network Tips

If you plan to use IP phones, it is important that you pay attention to your network. Voice protocols

are very good and resistant to latency and even jitters; however, if you use a poorly configured local

area network, voice quality will suffer. It is only possible to guarantee good voice quality using
quality of service (QoS) in switches and routers. Voice in a local area network tends to be good, but

even in a LAN environment, if you have 10 Mbps hubs with too many collisions, you will end up

having a distorted or crappy voice. Follow these recommendations to ensure the best possible voice
quality:

 Use end-to-end QoS if possible or economically feasible. With end-to-end QoS, the voice

quality is perfect. No excuses!

 Avoid using 10/100 Mbps hubs for voice in a production environment. Collisions can impose

jitters on the network. Full duplex 10/100 Mbps are preferred because no collisions occur.

 Use VLANs to separate unnecessary broadcasts of the voice network. You don‘t want a virus

destroying your voice network with ARP broadcasts.

 Educate users about expectations in a voice network. Without QoS, don‘t state that the voice

will be perfect as in most cases it won‘t be. A quality of voice similar to a mobile phone will

most often be achieved. Use quality phones as problems with firmware and hardware design
are common.

| Installing Linux for Asterisk |

- 36 -

Summary
In this chapter, you have learned about the minimum hardware requirements as well as how to

download, install, and compile Asterisk. Asterisk should be executed with a non-root user for security

reasons. You should check your network environment before starting the production environment.

Quiz

1. What‘s the minimal Asterisk hardware configuration?

2. Telephony interface cards for Asterisk usually have some Digital Signal Processors (DSPs) built in
and do not need a lot of CPU resources from the PC.

A. True

B. False

3. If you want perfect voice quality, you need to implement end-to-end quality of service (QoS).

A. True

B. False

4. You should always choose the latest Asterisk version as it is the most stable version.

A. True

B. False

5. List the necessary packages for Asterisk and the DAHDI compilation.

6. If you don‘t have a TDM interface card, you will end up needing a clock source for

synchronization. The dahdi_dummy driver fills this role by using the USB as a clock source (Kernel
2.4). This is necessary because some applications like _______ and ________ require a time

reference.

7. When you install Asterisk, it‘s better to leave desktop interfaces such as GNOME or KDE out.
Graphical user interfaces take up numerous CPU cycles.

A. True

B. False

8. Asterisk configuration files are located in the ____________________ directory.

9. To install Asterisk sample files, you need to type the following command:

10. Why is it important to start Asterisk with a non-root user?

3
Building a simple PBX

In this chapter, you will learn how to perform a basic Asterisk PBX configuration. The main objective
here is to see the PBX running for the first time, be able to dial between extensions, dial a message

being played, and dial to a single analog or SIP trunk. The idea behind this chapter is to ensure that

your Asterisk is up and running as soon as possible. After completing the work in this chapter, you
will have sufficient background to prepare for subsequent chapters, where we will delve more deeply

into configuration details.

Objectives
By the end of this chapter, you should be able to:

 Understand and edit configuration files;

 Install soft-phones based on SIP;

 Install and configure a SIP trunk;

 Install and configure an analog connection;

 Dial between extensions;

 Dial between phones and external destinations; and

 Configure an auto attendant.

Understanding the configuration files
Asterisk is controlled by text configuration files located in /etc/asterisk. The file format is similar to
the Windows ―.ini‖ files. A semicolon is used as a remark character, the signs ―=‖ and ―=>‖ are

equivalent, and spaces are ignored.

;

; The first line without a comment should be the session title.

;

[Session]

Key = value; Variable designation

[Session 2]

Key => value; Object declaration

| Grammars |

- 38 -

Asterisk interprets ―=‖ and ―=>‖ in the same way. Differences in syntax are used to distinguish
between objects and variables. Use ―=‖ when you want to declare a variable and ―=>‖ to designate an

object. The syntax is the same between all files, but three types of grammar are used, as discussed

below.

Grammars
Grammar Object is created: Conf. File Example

Simple Group All in the same line extensions.conf exten=>4000,1,Dial(SIP/4000)

Option Inheritance Options are defined first, object
inherit the options

chan_dahdi.conf [channels]
context=default
signalling=fxs_ks

group=1

channel => 1

Complex Entity Each entity receives a context sip.conf,
iax.conf

[cisco]
type=friend
secret=mysecret
host=10.1.30.50
context=trusted

[xlite]

type=friend
secret=xlite
host=dynamic

Simple Group

The simple group format used in extensions.conf, meetme.conf, and voicemail.conf is the most

basic grammar. Each object is declared with options in the same line.

Example:

[Session]

Object 1 => op1,op2,op3

Object 2=> op1b,op2b,op3b

In this example, object 1 is created with options op1, op2, and op3 while object 2 is created with

options op1, op2, and op3.

Object options inheritance grammar
This format is used by the files chan_dahdi.conf and agents.conf, where numerous options are

available, and most interfaces and objects share the same options. Typically, one or more sections
have objects and channels declarations. Options to the object are declared above the object and can

be changed to another object. Although this concept is hard to understand, it is very easy to use.

Example:

[Session]

op1 = bas

op2 = adv

| Chapter 3 - Building a simple PBX |

- 39 -

object=>1

op1 = int

object => 2

The first two lines configure the value of the options op1 and op2 to ―bas‖ and ―adv‖, respectively.

When object 1 is instanced, it is created using option 1 as ―bas‖ and option 2 as ―adv‖. After defining
object 1, we change option 1 to ―int‖. Next, we create object 2 with option 1 as ―int‖ and option 2 as

―adv‖.

Complex entity object
This format is used by iax.conf, sip.conf, and other configuration files in which numerous entities

with many options exist. Typically, this format does not share a large volume of common

configurations. Each entity receives a context. Sometimes reserved contexts exist, like [general] for
global configurations. Options are declared in the context declarations.

Example:

[entity1]

op1=value1

op2=value2

[entity2]

op1=value3

op2=value4

The entity [entity1] has values ―value1‖ and ―value2‖ for options op1 and op2, respectively. The

entity [entity2] has values ―value3‖ and ―value4‖ for options op1 and op2.

Options to build a LAB for Asterisk
To configure a PBX, you will need some basic hardware. It is not hard or expensive, but there are

some options to be considered. All you will need are two phones and a connection to the public

network. Some options and combinations are possible when creating your lab, which we will discuss
below.

Option 1: Complete LAB

With the complete LAB, it is possible to test all the scenarios available and compare solutions such as

ATA, IP-phones, and soft-phones. You can also learn about analog and SIP trunks.

Qty. Description

1 SIP Analog Telephone Adapter

2 IP Phone

3 Dedicated Server for the Asterisk Server

4 Workstation with the soft-phone

5 Analog Interface Card with at least two interfaces: 1 FXO and 1 FXS

6 VoIP provider Account

| Installation Sequence |

- 40 -

Option 2: Economy LAB

With the economy LAB, we simplify it a bit. We use the ATA, which is usually less expensive than
the IP-phone, and a single FXO card, which is really inexpensive. We won‘t be able to use analog

phones connected directly to the server, but this does not commonly occur in practice.

Qty. Description

1 SIP Analog Telephone Adapter

2 Dedicated Server for Asterisk

3 Workstation for the soft-phone

4 Analog Interface Card with 1 FXO

5 Account in a VoIP provider

Option 3: Super economy lab

The third LAB uses a virtualized server in the student‘s own notebook. The problem with this model
is the conflicts generated by the UDP port. Sometimes both the Asterisk server and the soft-phone try

to access the same port, preventing Asterisk from binding the address port. Another issue is the

quality of the calls; virtual environments are not indicated for real-time applications such as Asterisk.

Use a free soft-phone for the server and workstation and a trunk connection to a SIP provider.

Qty. Description

1 Laptop with 1 GB memory and a soft-phone

3 Virtual Machine (VMWare, Xen, or other) to install Asterisk and a soft-phone

4 Account in a VoIP provider

Installation Sequence
To help you understand the installation sequence, we outlined the sequence of steps necessary to

install and configure Asterisk.

| Chapter 3 - Building a simple PBX |

- 41 -

IAX soft-phoneSIP soft-phone

Ethernet

FXO

Asterisk

PSTN

VOIP

Provider

Broadband

ETH0

IP Phone

Analog

Telephony

Adapter

Analog

Phone

Analog

phone

FXS

T
ru

n
k
s

E
x
te

n
s
io

n
s

A
s
te

ri
s
k

1

2

3

1. Extensions configuration

a. SIP extensions (ATA, Soft-phone, IP Phone)

b. IAX extensions

c. FXS extensions

2. Trunk configuration

a. Configuration of a SIP trunk

b. Configuration of a FXO trunk

3. Building a basic dial plan

a. Dialing between extensions

b. Dialing external destinations

c. Receiving a call from in the operator extension

d. Receiving a call in an auto-attendant

Configuration of the extensions
The extensions are SIP, IAX, or analog phones connected to an FXS port. To configure an extension,

you should edit the configuration file related to the channel (sip.conf, iax.conf, chan_dahdi.conf)

| Configuration of the extensions |

- 42 -

SIP extensions
Let‘s configure the SIP phones. The idea is to configure a simple PBX. (Subsequent chapters will

provide an entire SIP session with all the details.) SIP is configured in the /etc/asterisk/sip.conf

directory and has all the parameters related to SIP phones and VoIP providers. SIP clients have to be
configured before you can make and receive calls.

The section [general] includes some parameters to be configured; it is the first section we will

configure. The main options are:

 allow/disallow: Defines which codecs are going to be used.

 bindaddr: Address to be bound to the Asterisk SIP listener. If you set it up as 0.0.0.0

(default), it will bind to all interfaces.

 context: Sets the default context for all clients unless it is changed in the client section.

We used dummy for security reasons. Unauthenticated users get into this context when

the option allowguest is set to yes.

 bindport: SIP UDP port to listen.

 maxexpirey: Maximum time to register (seconds).

 defaultexpirey: Default time to register (seconds).

 register: Registers Asterisk to another host.

 allowguest: Usually set to no to avoid non-authenticated users in the context of the

[general] section.

 alwaysauthreject: When an incoming INVITE or REGISTER is received, always reject

with an identical response (valid username, invalid password). This avoids username

guessing.

Example:

[general]

bindport = 5060

bindaddr = 10.1.30.45

context = dummy

disallow = all

allow = ulaw

maxexpirey = 120

defaultexpirey = 80

allowguest=no

alwaysauthreject=yes

SIP clients

After completing the general sections, it is time to set up the SIP clients. I would once again like to

remind the reader that we will have an entire SIP chapter later in the book. For now, let‘s concentrate

on the basics and leave the details for later.

| Chapter 3 - Building a simple PBX |

- 43 -

 [name]: When a SIP device connects to Asterisk, it uses the username part of the SIP

URI to find the peer/user.

 type: Configures the connection class. Options are peer, user, and friend.

o peer: Asterisk sends calls to a peer.

o user: Asterisk receives calls from a user.

o friend: Both occur at the same time.

 host: IP address or host name. The most common option is ―dynamic‖, which is used

when the host registers to Asterisk.

 secret: Password to authenticate peers and users.

Warning: Use strong passwords, with at least 8 characters, alphanumeric and numeric

characters, and at least one symbol. Reports of hacked servers have appeared in the mailing
lists, and brute force password crackers for SIP are easily available for script kiddies. Toll

fraud costs thousands of dollars for consumers and providers.

Example:

[6000]

type=friend

secret=#MySecret1#7

host=10.1.30.50

context=from-internal

[6001]

type=friend

secret=Mys3cr3t#

host=dynamic

context=from-internal

defaultip=10.1.30.17

Using Templates
One of the greatest benefits of the version 1.6 is the use of templates. You can now define a template

for your SIP/IAX peers. The syntax for defining templates is as follows:

[section](options)
label = value

Example #1 - Defining a template

[default](!)

type=friend

host=dynamic

In the example above, the character (!) tells the parser that this section is only a template, it should not

be parsed.

| Configuration of the extensions |

- 44 -

Example #2 – You can use a pre-defined template simply adding the template name after the object
using parenthesis. Do not leave a space between the end bracket ―]‖end the parenthesis ―(―.

Templates are transitive, so you can define templates inheriting from other templates.

[2003](default)

secret=2003

context=default

In the example above the resulting peer will be parsed as:

[2003]

type=friend

host=dynamic

secret=2003

context=default

There are more advanced scenarios using templates, you can check some more advanced examples in

the sip.conf sample file.

IAX Extensions

You may also create IAX extensions. This protocol is native to the Asterisk, and we will have an
entire section devoted to it later in this book. For now, let‘s create a few extensions using the

protocol.

The file is very similar to sip.conf. As the first section to be configured, the section [general] has

certain parameters to be configured. The main options are:

 allow/disallow: Defines which codecs are going to be used.

 bindaddr: Address to be bound to Asterisk SIP listener. If you set it up as 0.0.0.0

(default), it will bind to all interfaces.

 context: Sets the default context for all clients unless changed in the client section. We

used dummy for security reasons. Unauthenticated users get into this context when the

option allowguest is set to yes.

 bindport: SIP UDP port to listen.

 delayrejects: When set to yes, delays sending the authentication rejects, which improves

the security against brute force password attacks.

 bandwidth: When set to high, it allows the selection of high bandwidth codecs, such as

the g711 in their variants ulaw and alaw.

The following is a sample of the [general] section of the file iax.conf.

[general]

bindport = 4569

bindaddr = 10.1.30.45 ;(use your IP)

context = dummy

delayreject=yes

bandwidth=high

disallow = all

| Chapter 3 - Building a simple PBX |

- 45 -

allow = ulaw

IAX Clients

After finishing the general sections, it is time to set up the IAX clients.

 [name]: When a SIP device connects to Asterisk, it uses the username part of the SIP

URI to find the peer/user.

 type: Configures the connection class. Options are peer, user, and friend.

o peer: Asterisk sends calls to a peer.

o user: Asterisk receives calls from a user.

o friend: Both occur at the same time.

 host: IP address or host name. The most common option is dynamic, which is used when

the host registers to Asterisk.

 secret: Password to authenticate peers and users.

Warning: Use strong passwords with at least 8 characters, alphanumeric and numeric
characters, and at least one symbol. Reports of hacked servers have appeared in the mailing

lists, and brute force password crackers for SIP md5 hashes are available for script kiddies.

Toll fraud costs thousands of dollars for consumers and providers.

Example:

[guest]

type=user

context=dummy

callerid=”Guest IAX User”

[6003]

context=from-internal

type=friend

secret=#sup3rs3cr3t#

host=dynamic

context=from-internal

[6004]

context=from-internal

type=friend

secret=#s3cr3ts3cr3t#

host=dynamic

context=from-internal

| Configuring the SIP devices |

- 46 -

Configuring the SIP devices
After defining the phones in the Asterisk configuration file, it is time to configure the phone itself. In

this example, we will show how to configure a free soft-phone—in this case, xlite from Counterpath
(http://www.counterpath.com). Check your device‘s manual to understand the parameters of your

phone.

Step 1: Configure the phone to use the extension 6000

Execute the installation program.

After the execution, click the mouse‘s right button and choose SIP Account Settings.

Select the button Add...

Fill in the required information.

| Chapter 3 - Building a simple PBX |

- 47 -

Display Name: 6000
User Name: 6000
Password: =#MySecret1#7
Authorization User Name: 6000
Domain: ip_of your_server

Confirm that your phone is registered using the console command sip show peers.

Repeat the configuration for the phone 6001.

Configuring the IAX devices
In this example, we are going to use the free soft-phone Zoiper, which you can download from

www.zoiper.com.

1. Download and install the Zoiper Free.

2. Click with the right button to access options.

http://www.zoiper.com/

| Configuring a PSTN interface |

- 48 -

3. Select new IAX account.

4. Insert the related options for the 6003 phone and optionally for the 6004.

5. Save the configuration and check if the phone is registered using iax2 show peers.

Important: Use one account for SIP and another one for IAX. If you want to configure the
system to ring both IAX and SIP at the same time, we will show you how to do so in the dial

plan section.

Configuring a PSTN interface
To connect to the PSTN, you will need an interface foreign exchange office (FXO) and a telephone

line. You can use an existing PBX extension too. You can obtain a telephony interface card with an

FXO interface from several manufacturers. In this example, we will show you how to install a

DAHDI interface card.

| Chapter 3 - Building a simple PBX |

- 49 -

Analog lines using DAHDI

You can buy an analog card compatible with the DAHDI from several manufacturers. X100P was one

of the first Digium cards and had already been discontinued. Some manufacturers still produce similar
clones. In addition to the price of the X100P, we have found several issues between these cards and

new motherboards, so use it with care. X100P, in my opinion, is not a good choice for a production

environment. Any card compatible with DAHDI should work.

Thanks to the team of DAHDI developers, we now have a tool for detecting and configuring the

interface cards almost automatically. If you have just installed the DAHDI drivers, please don‘t forget

to run make config and reboot the machine to load it automatically. You can use the commands

below to detect and configure your card.

Step 1: To detect your hardware, use:

dahdi_hardware.

Step 2: To configure use:

dahdi_genconf.

The command above will generate two files /etc/system/dahdi.conf and /etc/asterisk/dahdi-

channels.conf. The default parameters for dahdi_genconf are usually fine, but you can change

them in the file /etc/dahdi/genconf_parameters. By default, it will insert the lines (FXO) in the
context from-pstn and the phones (FXS) in the context from-internal.

Step 3: After running dahdi_genconf, in the last line of the file /etc/asterisk/chan_dahdi.conf

insert the following line:

#include dahdi-channels.conf

| Configuring a PSTN interface |

- 50 -

Step 4: Edit the file /etc/dahdi/modules and comment for all the unused drivers. Reboot before
proceeding and check if the channels are being recognized using:

CLI>dahdi show channels

Connecting to the PSTN using a VoIP provider
If your budget is really limited, you can configure a SIP trunk to connect to the PSTN. It is certainly

the most affordable way to connect to the PSTN. Thousands of VoIP providers exist worldwide. To

connect to one of them, you will need some parameters.

Parameters provided by the SIP provider.

 username: login

 password: secret

 Provider‘s domain: domain

 UDP port: 5060

 Allowed codecs:g729, ilbc, alaw

Two parameters should be determined by you.

 Extension to receive calls—in this case: 9999

 context: from-sip

Configure the file sip.conf using the following parameters:

 [general]

srvlookup=yes

register => login:secret@domain:port/9999

[siptrunk]

username=login

type=peer

secret=secret

port=5060

insecure=invite

host=dominio

fromuser=login

fromdomain=domain

dtmfmode=rfc2833

context=from-sip

disallow=all

allow=ilbc

allow=alaw

allow=g729

To access this trunk, we will use the channel name SIP/siptrunk

| Chapter 3 - Building a simple PBX |

- 51 -

Dial plan introduction
Dial plan is like Asterisk‘s heart. It defines how Asterisk handles every single call to the PBX. It

consists of extensions that make an instruction list for Asterisk to follow. Instructions are fired by
digits received from the channel or application. In order to configure Asterisk successfully, it is

crucial to understand the dial plan. Most of the dial plan is contained in the extensions.conf file in

the /etc/asterisk directory. This file uses the simple group grammar and has four major concepts:

 Extensions

 Priorities

 Applications

 Contexts

Let‘s create a basic dial plan. In subsequent sections of this book, I will devote a chapter exclusively
to the dial plan. If you installed the sample files (make samples), the extensions.conf already

exists. Save it with another name and start with a blank file.

The structure of the file extensions.conf
The extensions.conf file is separated into sections. The first is the [general] section followed by

the [globals] section. The beginning of each section starts with its name definition (i.e.,
[default]) and finishes when another section is created.

The section [general]

The general section sits at the top of the file. Before starting to configure the dial plan, it is helpful to

know the general options that control certain dial plan behaviors. These options are:

 static and write protect: If static=yes and writeprotect=no, you can use the CLI

command save dialplan.

Warning: If you issue a save dialplan command from the CLI, you will end up losing any

remarks and comments in the file.

 autofallthrough: If autofallthrough is set, then if an extension runs out of things to
do, it will terminate the call with BUSY, CONGESTION, or HANGUP depending on

Asterisk's best guess. This is the default. If autofallthrough is not set, then if an

extension runs out of things to do, Asterisk will wait for a new extension to be dialed. In

version 1.4, the default is yes.

 clearglobalvars: If clearglobalvars is set, global variables will be cleared and reparsed

into an dialplan reload or Asterisk reload. If clearglobalvars is not set, then global

variables will persist through reloads and—even if deleted from the extensions.conf or
one of its included files—they will remain set to the previous value.

| Contexts |

- 52 -

 extenpatternmatchnew (new in the 1.6 version): This uses a new algorithm to match the

extension from 1.5 to 300 times faster than the existing one, particularly if you have a
large number of extensions. It is a new feature and should be used with care; it defaults to

no.

 userscontext: This is the context where the entries from the users.conf are registered.

The section [globals]

In the [globals] section you will define global variables and their initial values. You can access the
variable in the dial plan using ${GLOBAL(variable)}. You can even access variables defined in the

linux/unix environment using ${ENV(variable)}.

Global variables are not case sensitive. A few examples could be:

INCOMING>DAHDI/8&DAHDI/9

RINGTIME=>3

In the following example, you can set and test a global variable in the dial plan.

exten=9000,1,set(GLOBAL(RINGTIME)=4)

exten=9000,n,Noop(${GLOBAL(RINGTIME)})

exten=9000,n,hangup()

Contexts
Context is the named partition of the dial plan. After the [general] and [globals] sections, the dial

plan is a set of contexts in which each context has several extensions, each extension has several
priorities, and each priority calls an application with several arguments.

| Chapter 3 - Building a simple PBX |

- 53 -

You can build a simple dial plan to reach other phones and the PSTN. However, Asterisk is much
more powerful than that. Our objective is to teach you more details of what is possible in the dial

plan.

Extensions
Unlike the traditional PBX, where extensions are associated with phones, interfaces, menus, and so
on, in Asterisk an extension is a list of commands to be processed when a specific extension number

or name is triggered. The commands are processed in priority order.

| Extensions |

- 54 -

An extension can be literal, standard, or special. A standard extension includes only numbers or

names and the characters * and #; 12#89* is a valid literal extension. Names can be used for extension

matching as well. Extensions are case sensitive. However, you cannot create two extensions with the
same name but different cases.

When an extension is dialed, the command with the first priority is executed followed by the

command with priority 2 and so on. This happens until the call is disconnected or some command
returns the number one, indicating failure. What Asterisk does when the last priority is executed is

regulated by the parameter autofallthrough. See the [general] section in this chapter.

Example:

exten=>123,1,Answer

exten=>123,n,Playback(tt-weasels)

exten=>123,n,Hangup

Above you find the list of instructions to be processed when the extension 123 is dialed. The first

priority is to answer the channel (necessary when the channel is in the ringing state: i.e., FXO

channels). The second priority is to play back an audio file called tt-weasels. The third priority

hangs up the channel.

Another option is to handle the call according to the caller ID. You can use the / character to specify

the caller ID to be processed.

Examples:

exten=>123/100,1,Answer()

exten=>123/100,n,Playback(tt-weasels)

exten=>123/100,n,Hangup()

| Chapter 3 - Building a simple PBX |

- 55 -

This example will trigger extension 123 and execute the following options only if the caller ID is 100.
This can also be done by using the pattern described below:

exten=>1234/_256NXXXXXX,1,Answer()

hint: maps an extension to a channel. It is used to monitor the channel state. It is used in conjunction

with presence. The phone has to support it.

Patterns
You can use patterns and literals in the dial plan. Patterns are very useful for reducing the dial plan

size. All patterns start with the ―_‖ character. The following characters may be used to define a

pattern. The figure identifies the patterns available for use with Asterisk.

Special extensions
Asterisk uses some extension names as standard extensions.

| Variables |

- 56 -

Description:

s: Start. It is used to handle a call when there is no dialed number. It is useful for FXO trunks and in-

menu processing.

t: Timeout. It is used when calls remain inactive after a prompt has been played. It is also used to

hang up an inactive line.

T: AbsoluteTimeout. If you establish a call limit using the absolutetimeout() function, once the
call exceeds the limit defined, it will be sent to the T extension.

h: Hangup. It is called after the user disconnects the call.

i: Invalid. It is triggered when you call an non-existent extension in the context. Using these

extensions can affect the content of CDR records—specifically, the dst that does not contain the

number dialed.

o: Operator. It is used to go to operator when the user presses ―0‖ during the voicemail.

The use of these extensions can change the content of the billing records (CDR)—in particular, the

field dst will not have the number dialed. To work around this problem, you should use the option g
in the dial() application and consider the functions resetcdr(w) and/or nocdr()

Variables
In the Asterisk PBX, variables can be global, channel-specific, and environment-specific. You can

use the NoOP() application to see the content of a variable in the console.

It can use a global variable or a channel-specific variable as applications arguments. A variable can be
referenced as in the following example, where varname is the name of the variable.

${varname}

| Chapter 3 - Building a simple PBX |

- 57 -

A variable name can be an alphanumeric string starting with a letter. Global variable names are not
case sensitive. However, system variables (Asterisk-defined are channel-defined) are case sensitive.

Thus, the variable ${EXTEN} is different from ${exten}.

Global variables
Global variables can be configured in the [global] section in the extensions.conf file or using the

application:

set(Global(variable)=content)

Channel-specific variables
Channel-specific variables are configured using the application set(). Each channel receives its own

variable space. There is no chance of collisions between variables from different channels. A channel-
specific variable is destroyed when the channel hangs up. Some of the most commonly used variables

are:

 ${EXTEN} Extension dialed

 ${CONTEXT} Current context

 ${CALLERID(name)}

 ${CALLERID(num)}

 ${CALLERID(all)} Current caller ID

 ${PRIORITY} Current priority

Other channel-specific variables are all uppercase. You can see the content of several variables using

the dumpchan() application. Below is a simple excerpt of dump-channel variables.

exten=9001,1,dumnpchan()

exten=9001,n,echo()

exten=9001,n,hangup()

Dumpchan output:

Dumping Info For Channel: SIP/4400-08191828:

==

Info:

Name= SIP/4400-08191828

Type= SIP

UniqueID= 1161186526.0

CallerID= 4400

CallerIDName= laptop

DNIDDigits= 9001

RDNIS= (N/A)

State= Ring (4)

Rings= 0

NativeFormat= 0x4 (ulaw)

WriteFormat= 0x4 (ulaw)

ReadFormat= 0x4 (ulaw)

1stFileDescriptor= 16

Framesin= 0

Framesout= 0

| Expressions |

- 58 -

-TimetoHangup= 0

ElapsedTime= 0h0m0s

Context= default

Extension= 9001

Priority= 1

CallGroup=

PickupGroup=

Application= DumpChan

Data= (Empty)

Blocking_in= (Not Blocking)

Variables:

SIPCALLID=500CEBC0-9483-4CED-B1E4-16D953655CFC@192.168.1.116

SIPUSERAGENT=SJphone/1.61.312b (SJ Labs)

SIPDOMAIN=192.168.1.133

SIPURI=sip:4400@192.168.1.116

Environment-specific variables

Environment-specific variables can be used to access variables defined in the operating system. You

can set environment-specific variables using the function ENV(). For example:

${ENV(LANG)}

Set(ENV(LANG))=en_US

Application-specific variables
Some applications use variables for data input and output. You can set variables before calling the

application or retrieve the variable after the application execution. For example:

The Dial application returns the following variables:

 ${DIALEDTIME} ->This is the time from dialing a channel until it is disconnected.

 ${ANSWEREDTIME} -> This is the amount of time for the actual call.

 ${DIALSTATUS} This is the status of the call:

o CHANUNAVAIL

o CONGESTION

o NOANSWER

o BUSY

o ANSWER

o CANCEL

o DONTCALL

o TORTURE

 ${CAUSECODE} -> Error message for the call.

Expressions
Expressions can be very useful in the dial plan. They are used to manipulate strings and perform math
and logical operations.

| Chapter 3 - Building a simple PBX |

- 59 -

The expression syntax is defined as follows:

$[expression1 operator expression2]

Let‘s suppose that we have a variable called ―I‖ and we want to add 100 to the variable:

$[${I}+100]

When Asterisk finds an expression in the dial plan, it changes the entire expression by the resulting
value.

Operators
The following operators can be used to build expressions. It is important to observe operator

precedence.

1. Parentheses ―()‖

2. Unary operators ―! -―

3. Regular expression ―: =~

4. Multiplicative operators ―* / %‖

5. Additive operators ―+ -―

6. Comparison operators

7. Logical operators

8. Conditional operators

Math Operators

 Addition (+)

 Subtraction (-)

| LAB. Evaluate the following expressions: |

- 60 -

 Multiplication(*)

 Division (/)

 Modulus (%)

Logical Operators

 Logical ―AND‖ (&)

 Logical ―OR‖ (|)

 Logical Unary Complement (!)

Regular expression operators

 Regular expression matching (:)

 Regular expression exact matching (=~)

A regular expression is a special text string used to describe a search pattern. You can think of regular
expressions as wildcards. Regular expressions are used to match a string to a pattern to check the

matching. If the match succeeds and the regular expression contains at least one match, the first

match is returned; otherwise, the result is the number of characters matched.

Comparison operators

The result of a comparison is 1 if the relation is true or 0 if it is false.

 = equal

 != not equal

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

LAB. Evaluate the following expressions:
Put these expressions in your dial plan and use the NoOP() application to evaluate the expressions.

Dial 9002 and examine the results in the Asterisk console. Use verbose 15 to show the results.

exten=9002,1,set(NAME="FLAVIO") ;Set NAME=FLAVIO

exten=9002,n,set(I=4)

exten=9002,n,set(URI="40001@asteriskguide.com")

exten=9002,n,NoOP(${NAME})

exten=9002,n,NoOP(${I})

exten=9002,n,NoOP($[${I}+${I}])

exten=9002,n,NoOP($[${I}=4])

exten=9002,n,NoOP($[${I}=4 & ${NAME}=FLAVIO])

exten=9002,n,NoOP($[${URI} =~ "4[0-9][0-9][0-9][0-9]@."])

| Chapter 3 - Building a simple PBX |

- 61 -

exten=9002,n,NoOP($[${I}=4?"MATCH"::"DO NOT MATCH"])

exten=9002,n,hangup

Functions
After version 1.2, some applications were replaced by functions to allow the processing of certain
variables in a more advanced way than only expressions. You can see the full list of functions by

issuing the following console command:

CLI>core show functions

String length: ${LEN(string)} returns the string length

Example:

exten=>100,1,Set(Fruit=pear)
exten=>100,2,NoOp(${LEN(Fruit)})
exten=>100,3,NoOp(${LEN(${Fruit})})

In the first operation, the system shows 5 as the result (the number of letters in the word ―fruit‖). The

second returns the number 4 (the number of letters in the word ―pear‖).

Substrings: Returns the substring, starting from the positing defined by the ―offset‖ parameter, with

the string length defined in the ―length‖ parameter. If the offset is negative, it starts from right to left,

beginning at the end of the string. If the length is omitted or negative, it takes the whole string starting
with the offset.

${string:offset:length }

Example #1: Several substrings

${123456789:1}-returns 23456789

${123456789:-4}-returns 6789

${123456789:0:3}-returns 123

${123456789:2:3}-returns 345

${123456789:-4:3}-returns 678

Example #2: Take the area code from the first three digits.

exten=>_NXX.,1,Set(areacode=${EXTEN:0:3})

Example #3: Takes all digits from the variable ${EXTEN}, except for the area code.

exten=>_516XXXXXXX,1,Dial(${EXTEN:3})

String concatenation
To concatenate two strings, simply write them together.

${foo}${bar}

555${number}

${longdistanceprefix}555${number}

| Applications |

- 62 -

Applications
To build a dial plan, we need to understand the concept of applications. You will use applications to

handle the channel in the dial plan. Applications are implemented in several modules. Available
applications depend on modules. You can show all Asterisk applications using the console command:

CLI>core show applications

Alternatively, you can show details of a specific application using the following example:

CLI>core show application dial

To build a simple dial plan, you need to know a few applications. We will discuss more advanced

examples later in the book.

Simple applications to build a dialplan

 Answer – Answer a channel

 Dial – Dial other channel

 Hangup – Hang up a channel

 Playback – Play back an audio file

 Goto – Jump to a particular priority,

extension or context

We will use these applications (above) to create a simple dial plan for two basic PBXs.

Answer()

[Synopsis]

Answers a channel if ringing

[Description]

Answer([delay]): If the call has not been answered, the application will answer it. Otherwise, it has no

effect on the call. If a delay is specified, Asterisk will wait the number of milliseconds specified in

‗delay‘ before answering the call.

Dial()

The following description can be obtained by issuing the show application dial in the dial plan. For
easy searching, it is reproduced below. The syntax for the Dial application is also shown below:

;dial to a single channel

Dial(type/identifier,timeout,options, URL)

;Dialing to multiple channels

Dial(Technology/resource[&Tech2/resource2...][|timeout][|options][|URL]):

| Chapter 3 - Building a simple PBX |

- 63 -

This application will place calls to one or more specified channels. As soon as one of the requested
channels answers, the originating channel will be answered—if it has not already been answered.

These two channels will then be active in a bridged call. All other requested channels will then be

hung up.

Unless a timeout is specified, the Dial application will wait indefinitely until one of the called

channels answers, the user hangs up, or all of the called channels are busy or unavailable. The

execution of the dial plan will continue if no requested channels can be called or if the timeout
expires. This application sets the following channel variables upon completion:

 DIALEDTIME - This is the time from dialing a channel until the time that it is

disconnected.

 ANSWEREDTIME - This is the amount of time for an actual call.

 DIALSTATUS - This is the status of the call:

o CHANUNAVAIL

o CONGESTION

o NOANSWER

o BUSY

o ANSWER

o CANCEL

o DONTCALL

o TORTURE

For the Privacy and Screening Modes, the DIALSTATUS variable will be set to DONTCALL if the called

party chooses to send the calling party to the 'Go Away' script. The DIALSTATUS variable will be set to

TORTURE if the called party wants to send the caller to the 'torture' script.

This application will report normal termination if the originating channel hangs up or if the call is

bridged and either of the parties in the bridge ends the call.

The optional URL will be sent to the called party if the channel supports it. If the OUTBOUND_GROUP
variable is set, all peer channels created by this application will be included in that group (as in

Set(GROUP()=...).

The following table summarizes some of the most frequently used options for the application dial. For
the complete list, use the console command core show application dial.

A(x) Plays an announcement to the called party, using 'x' as the file.

C Resets the CDR for this call.

D Allows the calling user to dial a 1-digit extension while waiting for
a call to be answered. Exits to that extension if it exists in the
current context or to the context defined in the EXITCONTEXT
variable, if it exists.

D([called][:calling]) Sends the specified DTMF strings after the called party has
answered, but before the call gets bridged. The 'called' DTMF

| Applications |

- 64 -

string is sent to the called party, and the 'calling' DTMF string is
sent to the calling party. Both parameters can be used alone.

f Forces the caller ID of the calling channel to be set as the
extension associated with the channel using a dial plan 'hint’. For
example, some PSTNs do not allow caller ID to be set to anything
other than the number assigned to the caller.

g Proceeds with dial plan execution at the current extension if the
destination channel hangs up.

G(context^exten^pri) If the call is answered, transfers the calling party to the specified
priority and the called party to the specified priority+1.Optionally,
an extension—or extension and context—can be specified.
Otherwise, the current extension is used.

h Allows the called party to hang up by sending the '*' DTMF digit

H Allows the calling party to hang up by hitting the '*' DTMF digit.

L(x[:y][:z]) Limits the call to 'x' ms. Plays a warning when 'y' ms are left.
Repeats the warning every 'z' ms. The following special variables
can be used with this option:

LIMIT_PLAYAUDIO_CALLER yes|no (default yes) Plays sounds
for the caller.

LIMIT_PLAYAUDIO_CALLEE yes|no Plays sounds for the person
called.

LIMIT_TIMEOUT_FILE File to be played when time is up.

LIMIT_CONNECT_FILE ->File to be played when the call begins.

LIMIT_WARNING_FILE ->File to be played as a warning if 'y' is
defined. The default is to say the time remaining.

m([class]) Provides hold music to the calling party until a requested channel
answers. A specific MusicOnHold class can be specified.

r Indicates ringing to the calling party. Passes no audio to the
calling party until the called channel has answered.

S(x) Hangs up the call 'x' seconds after the called party has answered
the call.

t Allows the called party to transfer the calling party by sending the
DTMF sequence defined in features.conf.

T Allows the calling party to transfer the called party by sending the
DTMF sequence defined in features.conf.

w Allows the called party to enable recording of the call by sending
the DTMF sequence defined for one-touch recording in
features.conf.

W Allows the calling party to enable recording of the call by sending

| Chapter 3 - Building a simple PBX |

- 65 -

the DTMF sequence defined for one-touch recording in
features.conf.

K Allows the called party to enable parking of the call by sending the
DTMF sequence defined for call parking in features.conf.

K Allows the calling party to enable parking of the call by sending
the DTMF sequence defined for call parking in features.conf.

Example:

exten=_4XXX,1,Dial(SIP/${EXTEN},20,tTm)

In the example above, the application will dial to the corresponding SIP channel. Both caller and

called could transfer the call (Tt). Music on hold will be heard instead of ring back. If nobody
answers within 20 seconds, the extension will go to the next priority.

Hangup()
Hangs up the calling channel

[Description]

Hangup([causecode]): This application will hang up the calling channel. If a cause code is given,

the channel's hang-up cause will be set to the given value.

Goto()
Jump to a particular priority, extension, or context

[Description]

Goto([[context|]extension|]priority): This application will cause the calling channel to

continue the dial plan execution at the specified priority. If no specific extension (or extension and

context) are specified, this application will jump to the specified priority of the current extension. If
the attempt to jump to another location in the dial plan is not successful, the channel will continue at

the next priority of the current extension.

Building a dial plan
To build a simple dial plan, you need to treat all incoming and outgoing calls by creating contexts and

extensions. In this section, we will show you how to build the most common extensions.

Dialing between extensions

To enable dialing between extension, we could use the channel variable ${EXTEN}, which refers to

the dialed extension. For example, if the extension range is between 4000 and 4999 and all extensions
use SIP, we could adopt the following command:

[from-internal]

exten=_4XXX,1,Dial(SIP/${EXTEN})

| Building a dial plan |

- 66 -

Dialing to an external destination
To dial an external destination you could precede the number dialed with a route. In North America, it

is common to use 9 followed by the number to be dialed externally. If you are using an analog or

digital channel to the PSTN, the command should look like the following:

If you want to use the SIP trunk instead of the DAHDI, use SIP/trunk as the channel

[from-internal]

exten=_9NXXXXXX,1,Dial(DAHDI/1/${EXTEN:1},20,tT)

or

exten=_9NXXXXXX,1,Dial(SIP/trunk/${EXTEN:1},20,tT)

The above line will permit you to dial 9 and the desired number. In the example given, you will use
the first DAHDI channel (DAHDI/1). If you have several lines and this one is busy, the call will not

be completed. However, you could use the following line to automatically choose the first available

DAHDI channel. Optionally, you can use the SIP trunk instead of DAHDI.

[from-internal]

exten=_9NXXXXXX,1,Dial(DAHDI/g1/${EXTEN:1},20,tT)

The ―g1‖ parameter will search for the first available channel in the group, allowing the use of all

channels. Using the line below, you could dial a long distance number.

[from-internal]

exten=_91NXXNXXXXXX,1,Dial(DAHDI/g1/${EXTEN:1},20,tT)

Dialing 9 to get a PSTN line

If you do not have any restrictions to external dialing, you could simplify and use the following:

[from-internal]

exten=9,1,Dial(DAHDI/g1,20,tT)

Receiving a call in the operator extension
In the following example, the operator extension is 4000. The PSTN line is connected to an FXO

interface. In the chan_dahdi.conf file, the context specified is from-pstn. Any call coming from the

PSTN will be routed to the context from-pstn in the dial plan. This line does not have direct inward

dialing (DID); as such, we will have to receive the call via the ―s‖ extension. If receiving from the SIP
trunk, use the context [from-sip].

[globals]

OPERATOR=SIP/6000

[from-pstn]

exten = s,1,Dial(${OPERATOR},40,tT)

| Chapter 3 - Building a simple PBX |

- 67 -

exten = s,n,Hangup()

[from-sip]

exten = s,1,Dial(${OPERATOR},40,tT)

exten = s,n,Hangup()

Receiving a call using direct inward dialing (DID)

If you have a digital line, you will receive the dialed extension. When this is the case, you don‘t need

to forward the call to the operator; rather, you can forward the call directly to the destination. Suppose

your DID range is from 3028550 to 3028599 and the last four numbers are passed in the DID. The
configuration would look like the following example:

[from-pstn]

exten => _85[5-9]X,1,Answer()

exten => _85[5-9]X,n,Dial(SIP/${EXTEN},15,tT)

exten => _85[5-9]X,n,Hangup()

Playing several extensions simultaneously
You can set Asterisk to dial an extension and, if it is not answered, to dial several other extension

simultaneously, as indicated in the following example:

exten => 0,1,Dial(DAHDI/1,15,tT)

exten => 0,n,Dial(DAHDI/1&DAHDI/2&DAHDI/3,15)

exten => 0,n,Hangup()

In this example, when someone dials the operator, the channel DAHDI/1 is initially tried. If nobody

answers after 15 seconds (timeout), the channels DAHDI/1, DAHDI/2 and DAHDI/3 will ring
simultaneously for another 15 seconds.

Routing by Caller ID
In this example, you could give different treatments based on the caller ID, which could be useful for

call spammers. For example:

exten => 8590/4832518888,1,Playback(I-have-moved-to-china)

exten => 8590,1,Dial(DAHDI/1,20)

In this example, we have added a special rule that, if the caller ID is 4832518888, you play back a

message from the previously recorded file ―I-have-moved-to-china‖. Other calls are accepted as

usual.

Using variables in the dial plan

Asterisk can use global and channel variables in the dial plan as arguments for certain applications.
Look at the following examples:

[globals]

Flavio => DAHDI/1

Daniel => DAHDI/2&SIP/pingtel

| Building a dial plan |

- 68 -

Anna => DAHDI/3

Christian => DAHDI/4

[mainmenu]

exten => 1,1,Dial(${Daniel}&${Flavio})

exten => 2,1,Dial(${Anna}&${Christian})

exten => 3,1,Dial(${Anna}&${Flavio})

Using variables makes future changes easier. If you change the variable, all references are changed
immediately.

Recording an announcement
In some of the options discussed later in this section, we will use recorded prompts. Here we show

you an easy way to record them. We will use the application Record() to save the announcement

using one‘s own phone.

[from-internal]

exten => _record.,1,Record(${EXTEN:6}:gsm)

exten => _record.,n,wait(1)

exten => _record.,n,Playback(${EXTEN:6})

exten => _record.,n,Hangup()

These instructions allow you to record any message from a soft-phone.

Example: dialing recordmenu from the softphone

The instructions will call the recording with the variable ${EXTEN:6} without the first six letters. In
other words, the instruction is equivalent to record(menu:gsm). All you have to do is dial record +

name_of_the_file_to_be_recorded, press # to finish the recording, and wait to hear the recording.

Receiving the calls in an digital receptionist

Now that we have some simple examples, let‘s expand our learning about the applications

background() and goto(). The key for interactive systems in Asterisk is the application
background(), which allows you to execute an audio file that, when the caller presses a key, is

interrupted in order to send the call to the extension dialed.

Syntax of the background() application:

exten=>extension, priority, background(filename)

Another application very useful is goto(). As the name implies, it jumps to the context, extension,
and priority indicated.

Syntax of the application goto():

exten=>extension, priority,goto(context, extension, priority)

Valid formats for the goto() command:

goto(context,extension,priority)

goto(extension,priority)

goto(priority)

| Chapter 3 - Building a simple PBX |

- 69 -

In the following example, we will create a digital receptionist. It is very simple to edit the file
extensions.conf and configure the following extensions:

[globals]

OPERATOR=SIP/6000

[from-pstn]

include=aapstn

[from-sip]

include=aasip

[aapstn]

exten=>s,1,answer()

exten=>s,n,set(TIMEOUT(response)=10)

exten=>s,n,background(menu1)

exten=>s,n,WaitExten(30)

exten=>s,n,Dial(${OPERATOR})

exten=>6000,1,Dial(SIP/6000)

exten=>6001,1,Dial(SIP/6001)

exten=>6003,1,Dial(IAX2/6003)

exten=>6004,1,Dial(IAX2/6004)

[aasip]

exten=>9999,1,answer()

exten=>9999,n,set(TIMEOUT(response)=10)

exten=>9999,n,background(menu1)

exten=>s,n,WaitExten(30)

exten=>9999,n,Dial(${OPERATOR})

exten=>6000,1,Dial(SIP/6000)

exten=>6001,1,Dial(SIP/6001)

exten=>6003,1,Dial(IAX2/6003)

exten=>6004,1,Dial(IAX2/6004)

In the file menu1.gsm, record the message ―press the extension or wait for the operator‖. When the

user dials the number 6000, he will be sent to extension 6000.

At this point, you should have a clear understanding of the use of several applications, including

answer(), background(), goto(), hangup(), and playback(). If you do not have a clear

understanding, please read this chapter again until you feel comfortable with the content. You will use
the background application very often.

Once you understand the basics of extensions, priorities, and applications, it will be easy to create a

simple dial plan. These concepts will be explored in greater depth later in the book, and you will see
that the dial plan will become more powerful.

| Summary |

- 70 -

Summary
In this chapter, you‘ve learned that configuration files are stored in the /etc/asterisk directory.

To use Asterisk, it is first necessary to configure the channels (e.g., sip, dahdi, iax). Three different
grammars exist for configuration files: simple group, object inheritance, and complex entity. The dial

plan is created in the file extensions.conf and is a set of contexts and extensions. In the dial plan,

each extension triggers an application. You‘ve learned to use playback, background, dial, goto,
hangup, and answer applications.

Quiz
1. The channel configuration files are:

A. /etc/dahdi/system.conf

B. /etc/asterisk/chan_dahdi.conf

C. sip.conf

D. iax.conf

2. It is important to define a context in the channel configuration file as this will define the incoming

context for a call. In the extensions configuration file extensions.conf, a call from this channel will

be processed in the matching incoming context.

A. True

B. False

3. The main differences between the playback() and background() applications are (choose two):

A. Playback simply plays a prompt, but does not wait for digits.

B. Background simply plays a prompt, but does not wait for digits.

C. Background plays a message and waits for digits to be pressed.

D. Playback plays message and waits for digits to be pressed.

4. When a call gets into Asterisk using a telephony interface card (FXO), this call is handled in the

special extension:

A. ‗0‘

B. ‗9‘

C. ‗s‘

D. ‗i‘

5. Valid formats for the goto() application are (choose three):

A. Goto(context,extension, priority)

B. Goto(priority, context, extension)

C. Goto(extension,priority)

| Chapter 3 - Building a simple PBX |

- 71 -

D. Goto(priority)

6. An extension cannot be defined as (choose all correct answers):

A. An alphanumeric literal

B. A numeric literal

C. A pattern beginning with a ―.‖ (dot) character

D. A pattern starting with a ―_‖ (underscore) character

7. The pattern _7[1-5]XX matches (choose all correct answers):

A. 7100

B. 7600

C. 7630

D. 7230

8. An incoming context for a DAHDI-compatible telephony interface is defined in the _________
configuration file:

A. /etc/dahdi/system.conf

B. /etc/asterisk/chan_dahdi.conf

C. /etc/asterisk/asterisk.conf

D. /etc/asterisk/modules.conf

9. In the Options Inheritance grammar used by chan_dahdi.conf, you:

A. Define the object in a single line.

B. Define options first and declare the objects below the defined options.

C. Define a context for each object.

10. Priorities must be consecutive!

A. False

B. True

Thank you for downloading the Free Getting Started with Asterisk. Other
books and trainings available from the same author:

Learning Guide for Asterisk PBX
Language: English
Paperback: 324 pages
Release Date: June 2010
ISBN-10: 1452889368
ISBN-13: 978-1452889368
Author(s) : Flavio E. Goncalves

Learn how to build an IP PBX reading this book. It was prepared not as a

reference but as a text book to teach you how to install, configure and

manage the most advanced open source IP-PBX available in the market.

This is the 10th edition of the Book, and this version was extensively

reviewed. The book covers the installation, design and configuration of IP

telephony networks based on the Asterisk PBX. Please, check the

availability at http://www.amazon.com/Learning-Guide-Asterisk-1-

6-Learn/dp/1452889368.

Building Telephony Systems with OpenSIPS 1.6
Language : English
Paperback : 284 pages [235mm x 191mm]

Release Date : January 2010

ISBN : 1849510741
ISBN 13 : 9781849510745

Author(s) : Flavio E. Goncalves

SIP is the most important VoIP protocol and OpenSIPS is clearly the open

source leader in VoIP platforms based on pure SIP. The whole

telecommunication industry is changing to an IP environment, and telephony

in the way we know today will disappear in less than ten years. SIP is the

protocol leading this disruptive revolution and it is one of the main protocols

on next-generation networks. While a VoIP provider is not the only kind of SIP

infrastructure created using OpenSIPS, it is certainly one of the most difficult

to implement.

This book will give you a competitive edge by helping you to create a SIP infrastructure capable of handling tens of

thousands of subscribers. You can extend the examples given in this book easily to other applications such as a SIP

router, load balancing, IP PBX, and Hosted PBX as well. This book is an update of the title Building Telephony

Systems with OpenSER.

The book starts with the simplest configuration and evolves chapter by chapter teaching you how to add new

features and modules. It will first teach you the basic concepts of SIP and SIP routing. Then, you will start applying

the theory by installing OpenSIPS and creating the configuration file. You will learn about features such as

https://www.packtpub.com/authors/profiles/flavio-goncalves
http://www.amazon.com/Learning-Guide-Asterisk-1-6-Learn/dp/1452889368
http://www.amazon.com/Learning-Guide-Asterisk-1-6-Learn/dp/1452889368
https://www.packtpub.com/authors/profiles/flavio-goncalves

| Chapter 3 - Building a simple PBX |

- 73 -

authentication, PSTN connectivity, user portals, media server integration, billing, NAT traversal, and monitoring. The

book uses a fictional VoIP provider to explain OpenSIPS. The idea is to have a simple but complete running VoIP

provider by the end of the book.

Building Telephony Systems with OpenSER

 Language : English

Paperback : 324 pages [235mm x 191mm]

Release Date : April 2008

ISBN : 1847193730

ISBN 13 : 978-1-847193-73-5

Author(s) : Flavio E. Goncalves

OpenSER is a flexible, free open-source VoIP server based on the Session

Initiation Protocol (SIP), an application-layer control (or signaling) protocol for

creating, modifying, and terminating sessions with one or more participants,

including internet telephone calls, multimedia distribution, and multimedia

conferences. Engineered to power IP telephony infrastructures up to large

scale, OpenSER is written in pure C for Linux/Unix-like systems with

architecture-specific optimizations to offer high performance; it is able to

handle 4 million users on a single processor server. The server keeps track of users, sets up VoIP sessions, relays

instant messages, and creates space for new plug-in applications. It can be used on systems with limited resources

as well as on carrier-grade servers, scaling up to thousands of call setups per second. It is customizable, being able

to feature as fast load balancer; SIP server flavors: registrar, location server, proxy server, redirect server; gateway

to SMS/XMPP; or advanced VoIP application server. This book teaches how to develop a fast and flexible Session

Initiation Protocol (SIP) server using OpenSER and shows how OpenSER can be used to implement features not

available in Asterisk PBX.

OpenSIPS Bootcamp

The OpenSIPS 1.6 Bootcamp is a full 5 day (40 hours) intensive training providing in depth coverage of OpenSIPS

Installation, Configuration and Administration. The students will learn how to download, compile and install

OpenSIPS. After the installation, you will start to learn step by step how to configure OpenSIPS to authenticate

users, install a GUI to help with daily administration, forward calls to the PSTN through Dialplan, integrate Asterisk

and Voice Mail, Presence agent, Load Balancing, Traverse Nat for SIP and generate CDR records to a Radius

Server. At the end, you will learn how to use troubleshooting tools to solve end user problems. All the knowledge

that is transferred to you will be strongly backed-up by practice sessions where you will get hands-on experience in

handling OpenSIPS SIP Server. The training is structured to be offer 50% - 50% between the theoretical and

practical sessions.More information at http://www.opensips.org/Training

Consulting
If you are interested in consulting in innovative telephpny projects or in house training, please contact
flavio@asteriskguide.com.

https://www.packtpub.com/authors/profiles/flavio-goncalves
http://www.opensips.org/Training

