

Configuration Guide for
Asterisk™ 1.4 and 1.6

A step-by-step guide to building an IP PBX using
the most advanced open source IP telephony
platform.

Flavio E. Gonçalves

ii

Published by V.Office Networks

Configuration Guide for Asterisk
tm

 1.4 and 1.6
Copyright © 2006-2010 V.Office Networks Ltda., All rights reserved

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or

transmitted in any form or by any means without prior written consent of the publisher. Exceptions

are made for brief excerpts used in publish reviews.

Printing History

First Edition: November 2006,

File Date: Sunday, January 01, 2012

ISBN: 978- 14.528893-6-8

Some manufacturers claim trademarks for several designations that distinguish their products.

Wherever those designations appear in this book and we are aware of them, the designation is printed
in CAPS or the initials are capitalized. Although a great degree of care was used in writing this book,

the author assumes no responsibility for errors and omissions, or damages resulting from the use of

the information contained in this book.

We have done the maximum effort to provide trademark informationabout all the companies and

products mentioned in this book by the appropriate use of capitals.

Asterisk, Digium, IAX and DUNDI trademarks are property of Digium Inc.

iii

Preface
This book is for anyone who wants to learn how to install and configure a PBX (Private Branch
eXchange) based on Asterisk PBX 1.6. Asterisk is an open source telephony platform capable to use

VoIP and TDM channels.

This is the forth generation of the book Asterisk Configuration Guide. The material that I present in
this book has helped me to prepare for the dCAP certification from Digium in May 2006 and to pass

it in the first try.

The Asterisk Open Source PBX concept is revolutionary. For many years, telephony has been
dominated by huge companies with proprietary systems. Finally, users can recover their buying

power by having access to an open telephony platform. Thus, things that were not possible before,

because they were not economically viable are likely to start happening. Examples include resources
such as CTI (computer telephony integration, IVR (interactive voice response), ACD (automatic call

distribution), and voicemail, that are now available to everybody.

This book was not designed to teach every single detail of Asterisk. In fact, you will probably not
become a guru simply by reading this book. However, you will be able to build and configure a PBX

with advanced features such as voicemail, IVR an ACD by the end of reading. I hope you enjoy as

much learning about Asterisk as I have enjoyed writing about it.

Notes about this edition
In this edition we had changed all the chapters to reflect the changes for the Asterisk version 1.6. A

new chapter about Asterisk Now was included and all the formatting of the book has changed. For
ecological reasons, we tried to reduce the number of pages as much as possible reducing the

unnecessary white spaces. So even increasing the amount of content in the book we still got an

approximate reduction of 20% in the number of pages compared to the last formatting.

License
This eBook is licensed by the author using the creative commons license type Attribution-

NonCommercial-NoDerivs 3.0 Unported (CC BY-NC-ND 3.0). Read more at,
http://creativecommons.org/licenses/by-nc-nd/3.0/

Twitter
http://www.twitter.com/asteriskguide

Flavio E. Gonçalves

CEO

V.Office Networks

flavio@asteriskguide.com

http://creativecommons.org/licenses/by-nc-nd/3.0/

iv

Audience
This book is intended for those who are new to Asterisk. We assume your are familiar with Linux,

Linux shell commands and Linux text editors. You could test Asterisk using a Linux system with a

graphical interface which may be easier for Linux newbies. Some users will try to execute Asterisk

using VMWare and this is really not a problem, except for poorer voice quality. For production
systems we do not encourage VMware or Linux with a graphical user interface. It is also desirable

that the reader has some knowledge of IP networks, voice over IP (VoIP) and telephony concepts.

Mistakes and errors in the e-Book
We always try to find and eliminate errors and mistakes. Please, if you find something wrong, give us

feedback and we will act on it immediately. E-mail address for feedback: flavio@asteriskguide.com

Use as a training material
We use this book for Asterisk training. If you are interested to use it in your training center, please

send an e-mail to flavio@asteriskguide.com.

Sponsorship
If you want to sponsor this free eBook, please send an email to flavio@asteriskguide.com. I can

allocate a footer to promote your brand or product.

Printed version and Kindle version
You can get a hardcopy of this book at amazon.com:

http://www.amazon.com/Learning-Guide-Asterisk-1-6-Learn/dp/1452889368/.

 The kindle version can be found at

http://www.amazon.com/Configuration-Guide-Asterisk-PBX-ebook/dp/B00403N2VM

Credits
 Cover Work:

 Karla Braga

Reviewers:

Luis F. Goncalves, Guilherme Goes dCAP, Edit Avenue, professional proofreaders

mailto:flavio@asteriskguide.com
mailto:flavio@asteriskguide.com
http://www.amazon.com/Learning-Guide-Asterisk-1-6-Learn/dp/1452889368/
http://www.amazon.com/Configuration-Guide-Asterisk-PBX-ebook/dp/B00403N2VM

v

About the Author
Flavio E. Goncalves was born in 1966 in Brazil. Having always had a strong interest in
computers, he got his first personal computer in 1983 and since then it has been almost an
addiction. He received his degree in Engineering in 1989 with focus in the computer aided
design and computer aided manufacturing.

He is also, CEO of V.Office Networks in Brazil, a consulting company dedicated to the areas
of Networks, Security and Telecomunications and a training center since its foundation in
1996. Since 1993, he has participated in a series of certifications programs having being
certificated as Novell MCNE/MCNI, Microsoft MCSE/MCT, Cisco CCSP/CCNP/CCDP,
Asterisk dCAP and some others.

He started writing about open source software, because, he thinks the way certification
programs were organized in the past, were very good to help learners. Some books today
are written by strictly technical people, who, sometimes, do not have a clear idea on how
people learn. He tried to use his 15 year experience as instructor to help people learn open
source telephony software. His experience with networks, protocol analyzers and IP
telephony, combined with the teaching experience, give him and edge to write this book.
This is the second book he writes; the first one was the Configuration Guide for Asterisk
PBX.

As the CEO of V.Office, Flavio E. Goncalves, balance his time between family, work and
fun. He is a father of two children and lives in Florianopolis, Brazil, one of the most beautiful
places in the world. He dedicates his free time in water sports such as surfing and sailing.

Writing this book has been a process that involved many people. I would like to thank the
staff at V.Office Networks in all the process of reviewing and editing the book. I would like to
thank Guilherme Goes by the countless tips on Asterisk and the book itself. I would also like
to thank several students, who took courses of Asterisk for their feedback, more than a
thousand users have already taken classes using this material in the last five years. Finally,
I would like to thank my family, for all the support they gave me during all these years.

You can contact him at flavio@asteriskguide.com, or visit his website
www.asteriskguide.com.

mailto:flavio@asteriskguide.com
http://www.asteriskguide.com/

vi

Summary

Introduction to Asterisktm PBX 1

Objectives 1

What is Asterisk 1

What is AsteriskNOW 2

Role of Digium™ 2

The Zapata project and its relationship with Asterisk 3
Why Asterisk? 3

Extreme cost reduction 4

Telephony system control and independence 4

Easy and rapid development environment 4

Feature rich 4

Dynamic content on the phone 4

Flexible and powerful dial plan 4

Open-source running on top of Linux 5

Asterisk architecture limitations 5
Main objections to Asterisk PBX 5

Asterisk‘s market share is too small 5

If it is free, how does the manufacturer survive? 5

It is hard to find technical support! 6

Does Asterisk support more than 200 extensions? 6

Only ―geeks‖ are able to install Asterisk 6

What if the server fails? 6

Our company does not use open-source software 6

Using the PC's CPU to process signalling and media is not recommended 6

Asterisk Architecture 7

Channels 7

Codec and codec translation 8

Protocols 9

Applications 9
Overview of an Asterisk system 9

Comparing the old and the new world 10

Telephony using Asterisk 11

vii

Building a test system 12

One FXO, one FXS 12

VoIP Service Provider: ATA 12

Inexpensive FXO card or ATA 12
Asterisk scenarios 13

IP PBX 13

IP-enabling legacy PBXs 13

Toll Bypass 14

Application Server (IVR, Conference, Voicemail) 15

Media Gateway 15

Contact Center Platform 16
Finding information and help 17

Additional references: Non-official websites 17

Mailing lists 17
Summary 18

How to download and install Asterisk 19

Objectives 19

Minimum Hardware Required 19

Hardware configuration 20

IRQ sharing 21
Choosing a Linux distribution 21

Required dependencies 21
Installing Linux for Asterisk 22

Preparing Linux for Asterisk 23

Which version to choose 23

Obtaining and compiling Asterisk 23

Starting and stopping Asterisk 27

Installation directories 29

Log files and log rotation 30

Starting Asterisk with a non-root user 32

Uninstalling Asterisk 33

Asterisk installation notes 33

Summary 34

Quiz 34

Building a simple PBX 36

Objectives 36

Understanding the configuration files 36

viii

Grammars 37

Options to build a LAB for Asterisk 38
Installation Sequence 39

Configuration of the extensions 40

SIP extensions 41
IAX Extensions 42

Configuring the SIP devices 44

Configuring the IAX devices 45

Configuring a PSTN interface 46

Analog lines using DAHDI 47

Connecting to the PSTN using a VoIP provider 48
Dial plan introduction 49

The structure of the file extensions.conf 49

The section [general] 49

The section [globals] 50
Contexts 50

Extensions 51

Special extensions 53
Variables 54

Global variables 55

Channel-specific variables 55

Environment-specific variables 56

Application-specific variables 56
Expressions 56

Operators 57

LAB. Evaluate the following expressions: 58
Functions 59

String concatenation 59
Applications 60

Answer() 60

Dial() 60

Hangup() 63

Goto() 63
Building a dial plan 63

Dialing between extensions 63

Dialing to an external destination 64

Dialing 9 to get a PSTN line 64

ix

Receiving a call in the operator extension 64

Receiving a call using direct inward dialing (DID) 65

Playing several extensions simultaneously 65

Routing by Caller ID 65

Using variables in the dial plan 65

Recording an announcement 66

Receiving the calls in an digital receptionist 66

Summary 68

Quiz 68

Analog channels 70

Objectives 70

Telephony basics 70

PSTN interfaces 71

Analog FXS, FXO, and E&M interfaces 72

Asterisk telephony channels setup 74

Configuration Procedure (valid in both cases) 74

Configuration options 78

Echo cancellation 80

Call progress options 81

DAHDI channel format. 82

Quiz 83

Digital channels 86

Objectives 86

E1/T1 digital lines 86

How is the voice converted to bits? 87

Time Division Multiplexing 88

T1/E1 Line code 89

T1/E1 Signaling 89
ISDN BRI 90

Choosing a telephony card for your Asterisk server 90

Data bus 90
Using hardware echo cancellation 91

Type of signaling 91
Zaptel and DAHDI 92

Asterisk telephony channels setup 92

Automatic detection and configuration 93

Manual configuration 93

x

Loading the kernel drivers 97
Troubleshooting 97

Configuration options in chan_dahdi.conf 103

General options (channel independent) 103

ISDN options 103

CallerID options 104

Audio quality options 105

Billing options 105
MFC/R2 configuration 106

Understanding the problem 106

MFC/R2 sequence 109
How to use the driver libopenr2 110

Debugging OpenR2 113
MFC/R2 Configuration 116

ANI and DNIS 117
DAHDI channel format 117

Questions 118

Designing a VoIP network 120

Objectives 120

VoIP benefits 120

Asterisk VoIP architecture 121

VoIP protocols and the ISO Open Systems Interconnect (OSI) model 122

How to choose a protocol 123

Peers, Users, and Friends 125

Codecs and codec translation 125

How to choose a Codec 126

Overhead caused by protocol headers 127

Traffic Engineering 128

Reducing the bandwidth required for VoIP 132

Summary 134

Quiz 134

The IAX Protocol 137

Objectives 137

IAX design 137

Bandwidth usage 138

Channel naming 139

Outbound channels example: 139

xi

The format of an incoming IAX channel is: 140
Using IAX 140

Connecting a soft-phone using IAX 140

Connecting to a VoIP provider using IAX 143

Connecting to a provider using IAX 144

Connecting two Asterisk servers through an IAX trunk 145
IAX authentication 148

Incoming connections 148

IP address restrictions 150

Outbound connections 151

Connecting two Asterisk servers using RSA keys 151
The iax.conf file configuration 153

[General] Section 153
Jitter buffer 154

Frame tagging 155

IAX2 Encryption 155

IAX2 debug commands 155

Summary 158

Quiz 158

The SIP Protocol 161

Objectives 161

Theory of Operation 161

SIP Register process 162

Proxy operation 163

Redirect operation 164

How Asterisk handles SIP 164

SIP Messages 165

Session description protocol (SDP) 167
SIP advanced scenarios 167

Connecting Asterisk to a SIP provider 167

Connecting two Asterisk servers together using SIP 170

Asterisk domain support 171
Advanced configurations 173

SIP Presence 173

Codec configuration 176

DTMF options 176

Quality of service (QoS) marking configuration 177

xii

SIP authentication 177

RTP options 179
SIP NAT Traversal 179

Full Cone 179

Restricted Cone 180

Port Restricted Cone 180

Symmetric 180

NAT firewall table 181

SIP signaling and RTP over NAT 181

Asterisk behind NAT 182
SIP limitations 184

SIP dial strings 184

SIP CLI commands 184

Quiz 184

Dial Plan advanced features 186

Objectives 186

Simplifying your Dial Plan 186

Dial Plan Security 187

Receiving calls using an IVR menu. 187

The Background() application 187

The Record() application 188

The Playback() application 189

The Read() application 190

The Gotoif() application 191

Lab: Building an IVR menu step-by-step 191

Matching as you dial 192

Lab: Using the Read() application 193
Context inclusion 193

Troubleshooting the message ―number not found‖ 194
Using the switch statement 194

Dial plan processing order 195

The #INCLUDE statement 195

Macros 196

Defining a macro 196

Calling a macro 196
Using Asterisk DB 197

Functions, applications, and CLI commands 197

xiii

Implementing Call Forward, DND, and Blacklists 198
Using a blacklist 199

Time-based contexts 200

Time-based messages using gotoiftime() 201

Using DISA to get a new dial tone 201

Limit simultaneous calls 202

Voicemail 202

Using the Voicemailmain() application 204

Voicemail application syntax 205

New feature in version 1.6.x 206
Sending voicemail to e-mail 206

Voicemail Web interface 207

Voicemail notification 208

Lab: Message Notification in the Phone 208
Using the directory application 208

Lab: Using the directory application 209
Lab: Putting it all together 210

Step 1 – Configuring channels 211

Step 2 – Configure the dial plan 212

Step 3 - Receiving calls using an auto-attendant 212
Summary 214

Quiz 214

Using PBX features 216

Objectives 216

Where features are implemented 216

Features implemented by Asterisk 217

Features usually implemented by the dial plan 217

Features usually implemented by the phone 217

The features configuration file 218
Call Transfer 219

Configuration task list 220
Call parking 220

Call pickup 222

Configuration task list 222
Call Conference (Meetme) 222

The meetme() application 223

Meetme configuration file 225

xiv

Meetme-related applications 226

Meetme configuration task list 226

Examples 226
Call Recording 227

Using the mixmonitor application 227

Music on hold 228

MOH configuration tasks 230
Application Maps 231

Quiz 231

Call Queues 233

Objectives 233

How queues work? 233

ACD architecture 234
Queues 235

Queue configuration file 235

Members 236

Strategies 236
Agents 236

Agent Groups 237

The configuration file for agents 237
ACD-related applications 238

The application queue() 238

The application agentlogin() 239

The application addQueueMember() 239

Support applications and CLI commands 239
Configuration tasks 240

Configure queue recording 242
Queue operation 242

Advanced resources 243

User menu 243

Penalty 243

Priority 243
The application agentcallbacklogin() is deprecated 243

Queue statistics 244

New in 1.6.2 for advanced users 245

Summary 245

Quiz 245

xv

Asterisk Call Detail Records 247

Objectives 247

Asterisk CDR Format 247
Account codes and automated message accounting 248

Changing the CSV and/or CDR format 249

CDR Storage 249

Storage drivers available 249

CSV Storage 250

Storing in MySQL database 250
Applications and functions 251

CDR(accountcode) 251

CDR(amaflags) 251

NoCDR() 251

ResetCDR() 252

Set(CDR(userfield)=Value) 252

AppendCDRUserField(Value) 252
User authentication 252

Using passwords from voicemail 253

Summary 253

Quiz 253

Extending Asterisk with AMI and AGI 255

Objectives 255

Major ways to extend Asterisk 256

Extending Asterisk with console CLI 256

Extending Asterisk using the System() application 256

Example: 256
What is AMI? 257

What language to use for AMI 257

AMI protocol behavior 257

Packet types 257
Configuring users and permissions 258

Logging in to the AMI 258

Action packets 259

Action commands 259

Event packets 261

Events available 261
Asterisk Gateway Interface 262

xvi

Using AGI 264

DeadAGI 267

FASTAGI 267
Changing the source code 267

Summary 267

Quiz 267

Asterisk Real-Time 269

Objectives 269

How does Asterisk Real Time work? 269

Lab: Installing Asterisk Real/Time 270

Configuring Asterisk Real Time 271

Static configuration section 272

Real Time configuration section 273
Database configuration 273

Building a dial plan using Asterisk Real Time 274
Lab: Installing and creating the database tables 274

Lab: Configuring and testing ARA 276

Summary 278

Quiz 278

Objectives 280

AsteriskNOW 280

Introduction to freePBX 281

AsteriskNOW installation 281

Post-installation procedures 281

IP Address configuration 281

Telephony card configuration 282
Installing extensions on freePBX 283

FreePBX codes 288

Dialing external numbers 289

Creating a trunk using an FXO interface 290

Creating a SIP trunk to a VoIP Provider 291

Creating an outbound route 292

Receiving calls 292

Creating an inbound route 294
Using a digital receptionist 296

Recording an announcement 296

xvii

Creating the auto-attendant 297

Creating the IVR itself 297
Creating a conference room 300

Summary 300

1
Introduction to Asterisk PBX

The popularity of ready-to-run distributions such as TrixBox and AsteriskNOW has
recently grown. In this book, we will cover the classic Asterisk, which is the foundation

for understanding these distributions. Asterisk PBX is open-source software capable of

transforming an ordinary PC into a powerful multiprotocol PBX. In this chapter, we will
learn about the possibilities of this new technology and its basic architecture. As it is

much simpler to install Asterisk from a ready-to-run distribution, the last chapter will

cover AsteriskNOW and its graphical interface called FreePBX.

Objectives
By the end of this chapter you should be able to:

 Explain what Asterisk is and what it does;

 Describe the role of Digium™;

 Recognize the basic architecture of Asterisk and its components;

 Point out several usage scenarios; and

 Identify sources of information and help.

What is Asterisk
Asterisk is an open-source PBX software once installed in a PC‘s hardware along with the

correct interfaces—can be used as a full-featured PBX for home users, enterprises, VoIP
service providers, and phone companies. Asterisk is also both an open-source community

and a commercial product from Digium™. You are free to use and modify Asterisk to suit

your needs.

Asterisk allows real-time connectivity between PSTN and VoIP networks. Since Asterisk

is much more than a PBX, you not only have an exceptional upgrade to your existing

PBX, but you can also do new things in telephony, such as:

 Connect employees working from home to an Office PBX over broadband
Internet;

| Chapter 1 - Introduction to Asterisk PBX |

- 2 -

 Connect several offices in different places over an IP network, private
network, or even through the Internet itself;

 Give your employees a voicemail integrated with the web and e-mail;

 Build applications like IVRs that allow connections to your ordering system
or other applications;

 Give traveling users access to the company PBX from anywhere with a
simple broadband or VPN connection; and

 much more....

Asterisk includes several advanced resources previously only found in high-end systems,

such as:

 Music for customers on hold waiting in call queues, supporting media
streaming and MP3 files;

 Call queues, whereby a team of agents can answer calls and monitor queues;

 Integration with text-to-speech and voice recognition;

 Detailed records transferred to both text files and SQL databases; and

 PSTN connectivity through both digital and analog lines.

What is AsteriskNOW
Asterisk in its purest form, also known as ―classic asterisk‖ (Debian package

denomination) is considered more of a development tool than a finished product by itself.

AsteriskNOW is an initiative to transform Asterisk in a soft-appliance. The distribution
includes CentOS as the operating system and the FreePBX, which is the most used

graphical interface. This distribution is licensed according to the GPL and can be freely

downloaded. In 2007, Digium acquired a product called Switchvox targeted to
commercial users in the SMB market, which it has been promoting vigorously. You can

check out this good piece of software at www.digium.com.

Role of Digium™
Digium, a company located in Huntsville, Alabama, is the creator and primary developer

of Asterisk. In addition to being the primary sponsor of Asterisk development, Digium

also produces telephony interface cards and other hardware for Asterisk's PBX.

Digium offers Asterisk under three types of license agreements:

 General Public License (GPL) Asterisk. This is the most used version. It
includes all features and is free to be used and modified according to the

terms of the GPL license.

 | Why Asterisk? |

- 3 -

 Asterisk Business Edition is a more recent version of Asterisk. Some
companies use the business edition because they do not want or cannot use

the GPL license—usually because they don't want to release their source code

together with Asterisk. The GPL license requires that any further code

development of a GPL-licensed code be released to the source code.

 Asterisk OEM. This version is mostly used by PBX manufacturers who do
not want to reveal to the public that their software is based on Asterisk.

The Zapata project and its relationship with Asterisk
The Zapata project was developed by Jim Dixon, who was also responsible for the

development of this revolutionary hardware for use with Asterisk. Note that the hardware
is open-source too; as such, it can be used by any company. Today, several companies

produce cards compatible with this architecture. More details about the project can be

seen at:

<http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10>)

The Zapata project produced an architecture called Zaptel (recently renamed Digium
Asterisk Hardware Drivers Interface [DAHDI]). One of the main benefits of this

architecture is the ability to use the PC CPU to process media streaming, echo

cancellation, and transcoding. In contrast, most existing cards use digital signal processors
(DSP) to perform these tasks. The use of the PC CPU instead of dedicated DSPs reduces

the board's price dramatically. Thus, these cards are significantly cheaper than previously

available interfaces from other manufacturers. On the other hand, these cards require a lot
of CPU; a misuse of the PC CPU can significantly impact voice quality. Recently, Digium

launched a coprocessor card that uses DSPs to encode and decode G.729 and G.723,

allowing better scalability for a large number of channels.

Why Asterisk?
I remember my first contact with Asterisk. Usually, the first reaction to something new—

especially something that competes with what you already know—is to reject it! This is
exactly what happened in 2003. Asterisk was competing with a solution that I was selling

to a customer (4 E1 VoIP Gateway), and it was ten times less expensive than what I was

charging for the solution I already knew. This disproportionate price led me to start

studying Asterisk in order to identify potential pitfalls and drawbacks. For example, I
found that the PC CPU at that time would not support 120 g.729 simultaneous sections,

At the end of the day, I won the proposal with my Gateway solution. However, this

exercise led me to the discovery that Asterisk could solve a variety of very expensive
problems for my customer base. We were in trouble with expensive quotes for IVR,

unified messaging, call recording, and dialers; with appropriate dimensioning, the CPU

problems could be worked around. Indeed, in just three years Asterisk became the

flagship product of my company (I actually decided to open another company just for the

| Chapter 1 - Introduction to Asterisk PBX |

- 4 -

Asterisk business). In my opinion, Asterisk is a revolution in telecommunication that

represents to IP telephony what Apache represents to web services.

Extreme cost reduction
If you compare a traditional PBX with Asterisk in regard to digital interfaces and phones,

Asterisk is slightly cheaper than those PBXs. However, Asterisk really pays off when you
add advanced features such as voicemail, ACD, IVR and CTI. With these advanced

features, Asterisk becomes significantly less expensive than traditional PBXs. In fact,

comparing Asterisk PBXs with low-end analog PBXs is unfair because Asterisk offers so
many features not available in low-end analog systems.

Telephony system control and independence
One of customers‘ most often-quoted benefits of asterisk is the independence that it

provides. Some of today‘s manufacturers do not even give the customer the system‘s

password or the configuration documentation. With Asterisk's ―do-it-yourself‖ approach,

the user achieves total freedom; as a bonus, the user has access to a standard interface.

Easy and rapid development environment
Asterisk can be extended using script languages like PHP and Perl with AMI and AGI

interfaces. Asterisk is open-source, and its source code can be modified by the user. The

source code is written mostly in ANSI C programming language.

Feature rich
Asterisk has several features that are either not found or optional in traditional PBXs (e.g.,

voicemail, CTI, ACD, IVR, built-in music on hold, and recording). The costs of these
features in some platforms exceed the price of the platform itself.

Dynamic content on the phone
Asterisk is programmed using C language and other languages common in today's

development environment. The possibility to provide dynamic content is practically

limitless.

Flexible and powerful dial plan
Another Asterisk breakthrough is its powerful dial plan. In traditional PBXs, even simple
features like least cost routing (LCR) are either not feasible or optional. With Asterisk,

choosing the best route is easy and clean.

 | Main objections to Asterisk PBX |

- 5 -

Open-source running on top of Linux
One of the greatest features of Asterisk is its community. Several resources are available,

including the Asterisk wiki (www.voip-info.org <http://www.voip-info.org>), e-mail
distribution lists, and forums. As Asterisk becomes increasingly adopted, any bugs found

and fixed quickly. Asterisk is probably the most tested PBX software in the world. From

versions 1.0 to 1.2, more than 3,000 changes and bugs in the source code were corrected,
thereby ensuring a code that is both stable and almost error free.

Asterisk architecture limitations
Some limitations in Asterisk stem from the use of the Zapata telephony design. In this

design, Asterisk uses the PC CPU to process voice channels instead of dedicated digital

signal processors (DSPs), which are common in other platforms. Although this allows for
a huge cost reduction in hardware interface, the system becomes dependent on the PC

CPU. My recommendation is to run Asterisk in a dedicated machine and be conservative

about hardware dimensioning. You can also use Asterisk in a separate VLAN to avoid

excessive broadcasts that consume the CPU (broadcast storms caused by loops or
viruses). Some newer interface cards from several vendors are now including DSPs to

process echo cancellation, codecs, and other features, which will make Asterisk even

better.

Main objections to Asterisk PBX
It is common to hear objections to adopting Asterisk, which we will address here.

Asterisk‘s market share is too small
The market share is usually measured by the number of PBXs sold. These statistics are

generally acquired from the biggest distributors. Asterisk is free software that does not
appear in sales statistics. However, independent numbers prove that Asterisk ―rocks the

world‖. According to VoIP-Supply, more than 300,000 systems run Asterisk, and Digium

has sold more than 4 million voice interfaces. Last year, the Eastern Management Group
concluded that open-source PBXs account for 18% of the market share, with the vast

majority of them being Asterisk. In fact, 85% of the open-source PBX market is based on

Asterisk, which now ranks second in terms of lines connected to an IP PBX.

If it is free, how does the manufacturer survive?
Actually, there is no such thing as open-source software manufacturer. Digium is a
software development company, as well as a community, and has been developing

Asterisk since 1999. With more than a hundred employees, it has revenues attached to the

sales of telephony interface cards, PBX systems such as Switchvox, and related software.

The company has made a profit in the last 24 quarters.

| Chapter 1 - Introduction to Asterisk PBX |

- 6 -

It is hard to find technical support!
Digium provides technical support for those who buy the Asterisk Business Edition.

Recently, technical support for open-source Asterisk has become available as well.
Hundreds of professionals have already been certified as Digium Certified Asterisk

Professional (dCAP) and serve as the first line of support and professional services, much

like any IT company.

Does Asterisk support more than 200 extensions?
Yes, absolutely. Asterisk has been used in installations with more than 10,000 users. It is
largely scalable using load balancing and failover systems. It is not uncommon to see

more than a thousand users on a single server.

Only ―geeks‖ are able to install Asterisk
With AsteriskNOW and freePBX, even professionals with limited knowledge about Linux

are able to install and configure a PBX of medium complexity. With the help of a GUI, it
is possible to configure an entire PBX in just a few hours.

What if the server fails?
One of the main advantages of Asterisk is its capability to run in fault-tolerant systems. It

is relatively simple and inexpensive to have two servers running in parallel. I dare you to

try this with a conventional PBX!

Our company does not use open-source software
Your company probably uses open-source software without even realizing it. Several
appliances use Linux as their operating system. Moreover, you can still license Asterisk

commercially using the Asterisk Business Edition.

Using the PC's CPU to process signalling and media is not
recommended
Asterisk uses the server's CPU to process signaling and media for voice channels instead

of having dedicated DSPs. Although this allows a cost reduction of up to five times, it

makes the system dependent on the performance of the main CPU. With the correct
dimensioning, Asterisk is capable of handling large volumes. If you still want to release

the main CPU from these tasks, you can also use hardware echo cancellation and even

transcoder cards, such as the Digium's TC400B based on DSPs.

 | Main objections to Asterisk PBX |

- 7 -

Asterisk Architecture
This section will explain how Asterisk‘s architecture works. The figure below shows the

basic Asterisk architecture. Next, we will explain architecture-related concepts, including
channels, codecs, and applications.

Channels
A channel is the equivalent of a telephone line, but in a digital format. It usually consists

of an analog or digital (TDM) signaling system or a combination of codec and signaling
protocol (e.g., SIP-GSM, IAX-uLaw). Initially, all telephony connections were analog

and susceptible to echo and noise. Later, most systems were converted to digital systems,

with the analogical sound converted into a digital format using pulse code modulation
(PCM) in most cases. This format allows voice transmission in 64 kilobits/second without

compression.

Channels interfacing with the Public Switch Telephony Service (PSTN)

 chan_dahdi: Supports cards from Sangoma, Digium, Xorcom, and others

 chan_mISDN: Supports ISDN cards based in the Linux ISDN drivers

Channels interfacing with Voice-over IP

 chan_sip: Supports voice-over IP using SIP protocol. Dial string: sip/channel

 chan_iax: Supports voice-over IP using IAX2 protocol. Dial string:
iax2/channel

 chan_h323: H.323 is one of the oldest and most implemented voice-over IP
protocols. It's useful for connecting to existing H.323 networks. There are

| Chapter 1 - Introduction to Asterisk PBX |

- 8 -

different flavors of H.323 in Asterisk, including chan_h323, chan_oh323, and

chan_ooH323. The channel chan_h323 can be used in Asterisk as a gateway.

Asterisk can point to a gatekeeper, but cannot work as one. Dial string
h323/hostname if using a gatekeeper or h323/extension@hostname if going

directly to the gateway.

 chan_mgcp: Supports the voice-over IP protocol using MGCP. Currently
Asterisk supports MGCP phones, but it cannot connect to a VoIP provider

using MGCP. Dial string: MGCP/aaln/1@hostname

 chan_skinny: Supports Cisco™ voice-over IP skinny protocol. Dial String:

skinny/channel.

Miscellaneous channels

 chan_agent: Used for automatic call distribution (ACD). It is not related to
specific hardware or protocol. It can also be used for mobility, allowing any
person to use any phone just by logging in to the agent.

 chan_local: Is a pseudo channel that simply loops back into the dial plan in a
different context. This is useful for recursive routing. Dial string:
Local/extension@context

Codec and codec translation
We usually try to put as many voice connections as possible in a data network. Codecs

enable new features in digital voice, including compression, which is one of the most

important features as it allows compression rates larger than 8 to 1. Other features include
voice activity detection, packet loss concealment, and comfort noise generation. Several

codecs are available for Asterisk and can be transparently translated from one to another.

Internally, Asterisk uses slinear as the stream format when it needs to convert from one
codec to another. Some codecs in Asterisk are supported only in pass-through mode; these

codecs cannot be translated. To verify which codecs are installed in your system, you can

use the console command:

CLI>core show translation

The following codecs are supported:

 G.711 ulaw (USA) - (64 Kbps).

 G.711 alaw (Europe) - (64 Kbps).

 G.722 (High Definition) – (64 Kbps)

 G.723.1 - Only pass-through mode

 G.726 - (16/24/32/40kbps)

 G.729 - Needs licensing (8Kbps)

 GSM - (12-13 Kbps)

 iLBC - (15 Kbps)

 | Overview of an Asterisk system |

- 9 -

 LPC10 - (2.5 Kbps)

 Speex - (2.15-44.2 Kbps)

Protocols
Sending data from one phone to another should be easy provided that the data find a path

to the other phone on their own. Unfortunately, it doesn't happen this way, and a signaling

protocol is necessary in order to establish connections between phones, discover end
devices, and implement telephony signaling. It has recently become extremely common to

use SIP as a signaling protocol. IAX is another option becoming popular because it works

well with NAT traversal and some bandwidth can be saved in trunk mode. Asterisk

supports the following protocols.

 SIP

 H323

 IAX2

 MGCP

 SCCP (Cisco Skinny)

 Nortel unistim

Applications
To bridge calls from one phone to another, the application dial() is used. Most Asterisk
features (e.g., voicemail and conferencing) are implemented as applications. You can see

available Asterisk applications by using the core show applications console

command.

CLI>core show applications

You can add applications from Asterisk add-ons, third-party providers, or even those you

develop yourself.

Overview of an Asterisk system
Asterisk is an open-source PBX that acts like a hybrid PBX, integrating technologies such

as TDM and IP telephony. Asterisk is ready to implement functionality such as interactive

voice response (IVR) and automatic call distribution (ACD); moreover, as previously
mentioned, it is open to the development of new applications.

| Chapter 1 - Introduction to Asterisk PBX |

- 10 -

This figure shows how Asterisk connects to the PSTN and existing PBXs using analog

and digital interfaces as well as supports analog and IP phones. It can act as a soft-switch,
media gateway, voicemail, and audio conference and also has built-in music on hold.

Comparing the old and the new world
In the old soft-switch model, all components were sold separately, meaning you had to

purchase each component separately and then integrate to the PBX or soft-switch

environment. The costs and risks were high and most of the equipment proprietary.

 | Comparing the old and the new world |

- 11 -

Telephony using Asterisk

All functions are integrated in the Asterisk platform in the same or in different boxes
according to the dimensioning, and all are GPL licensed. Sometimes it is easier to install

Asterisk than license some of the mainstream IP-PBXs

| Chapter 1 - Introduction to Asterisk PBX |

- 12 -

Building a test system
When implementing an Asterisk solution, our first step is generally to build a test

machine. The easiest test machine is the 1x1 PBX, including at least one phone and one

line. There are several ways to do this.

One FXO, one FXS
The first and simplest way to build a test machine is to purchase a card with one FXO and

one FXS interface. Connect the FXO port to an existing line and connect one FXS to an
analog phone. Thus, you have a 1x1 PBX.

VoIP Service Provider: ATA
This is the VoIP option. In this case, you would sign up with a voice service provider to

have the SIP trunks and will have to purchase a SIP analog telephony adapter. You will

probably spend less than a hundred dollars if you already have the PC.

Inexpensive FXO card or ATA

I started with an inexpensive FXO card. Some inexpensive V.90 fax/modems work with
Asterisk as an FXO card. Some of the first Digium cards were created using these cards
(e.g., X100P and X101P), which are old modems based on Motorola and Intel chipsets

(Motorola 68202-51, Intel 537PU, Intel 537PG, and Intel Ambient MD3200 are known to

work). These modems are often incompatible with new motherboards. Recently some

 | Asterisk scenarios |

- 13 -

manufacturers started to sell these cards as X100P clones. Some of the incompatibilities

can be solved using a patch, more information can be found at:

 http://www.asteriskguide.com/mediawiki/index.php/Asterisk_patch_for_the_X10
0P_card

Asterisk scenarios
Asterisk can be used in several different scenarios. We will list some of them and explain

the advantages and possible limitations of each.

IP PBX
The most common scenario is the installation of a new or the replacement of an existing
PBX. If you compare Asterisk with some other alternatives, you will find it to be cheaper

and richer in features than most PBXs currently available on the market. Several

companies are now changing their specifications to Asterisk instead of other brand-name
PBXs.

IP-enabling legacy PBXs
The following image illustrates one of the most commonly used setups. Large companies

generally do not want to take significant risk when investing in new technologies and
simultaneously wish to preserve their investments in legacy equipment. IP-enabling

legacy PBX can be very expensive; thus, connecting an Asterisk PBX using T1/E1 lines

| Chapter 1 - Introduction to Asterisk PBX |

- 14 -

can be a good alternative for cost-conscious customers. Another benefit is the possibility

of connecting to a VoIP service provider with better telephony rates.

Toll Bypass
A very useful application for VoIP is connecting branch offices over the Internet or a

WAN. Using an existing data connection allows you to bypass toll charges incurred in

telecommunication connections between headquarters and branch offices.

 | Asterisk scenarios |

- 15 -

Application Server (IVR, Conference, Voicemail)
Asterisk can be used as an application server for the existing PBX or be directly

connected to PSTN. Asterisk offers services such as voicemail, fax reception, call
recording, IVR connected to a database, and an audio conferencing server. If you

integrate voicemail and fax into an existing e-mail server, you will have a unified

messaging system, which is usually an expensive solution. Using Asterisk as an
application server provides extreme cost reduction compared to other solutions.

Media Gateway
Most voice-over IP service providers use an SIP proxy to host all registration, location,

and authentication of SIP users. They still have to send calls to the PSTN directly or route

it through a wholesale call termination provider using an SIP or H.323 voice-over IP

connection. Asterisk can act as a back-to-back user agent (B2BUA) or media gateway,
replacing very expensive soft switches or media gateways. Compare the price of a four

E1/T1 gateway from the main market manufacturers with Asterisk. The Asterisk solution

can cost several times less than other solutions and is capable of translating signaling
protocols (H.323, SIP, IAX…) and codecs (G.711, G.729…).

| Chapter 1 - Introduction to Asterisk PBX |

- 16 -

Contact Center Platform
A contact center is a very complex solution that combines several technologies, such as

automatic call distribution (ACD), interactive voice response (IVR), and call supervision.

Basically, three types of contact centers are available: inbound, outbound, and blended.
Inbound contact centers are very sophisticated and usually require ACD, IVR, CTI,

recording, supervision, and reports. Asterisk has a built-in ACD to queue the calls. IVR

can be done using Asterisk Gateway Interface (AGI) or internal mechanisms such as the
application background(). Computer telephony integration (CTI) is achieved using

Asterisk Manager Interface (AMI); recording and reporting are built in to Asterisk. For an

outbound contact center, a predictive or power dialer is one of the main components.
Although several dialers are available for the open-source Asterisk, it is not hard to build

your own for the platform if you so desire. A blended contact center allows simultaneous

inbound and outbound operation, saving money by ensuring better use of the agent's time.

It is possible to use Asterisk and its ACD mechanism to implement a blended solution.

 | Finding information and help |

- 17 -

Finding information and help
This section will provide some of the main sources of information related to Asterisk.

 Asterisk‘s official website: <http://www.asterisk.org> Here you can find information

about:

o Support-> <http://www.asterisk.org/support>

o Knowledge base-> <http://kb.digium.com/>

o Forum-><http://forums.digium.com/>

o Bug tracking-><http://bugs.digium.com/>

Additional references: Non-official websites
These sites are not official, but they provide useful content.

 <http://www.voip-info.org>

 <http://www.asteriskguru.com>

 <http://svn.digium.com/svn> (check the doc directory on each branch)

Mailing lists
Mailing lists are quite handy when you have questions. Usually, you will receive answers

for your questions. Try to gather as much information as possible before posting to the

| Chapter 1 - Introduction to Asterisk PBX |

- 18 -

list. Nobody will help you if you haven't done your homework. In other words, try at least

once to solve the problem by yourself.

 <http://www.asterisk.org/support/mailing-lists>

Summary
The Asterisk is software licensed according to the GPL that enables an ordinary PC to act

as a powerful IP PBX platform. Digium‘s Mark Spencer created Asterisk in the late

1990s. Digium survives by selling hardware related to Asterisk. Hardware is open-
sourced as well and originated in the Zapata project developed by Jim Dixon. The

Asterisk architecture has the following main components:

 CHANNELS: Analog, digital, or voice-over IP.

 PROTOCOLS: Communication protocols, which are responsible for signaling the
calls, can be SIP, H323, MGCP, and IAX.

 CODECS: Translate digital formats of voice allowing compressions, packet loss
concealment, silence suppression, and comfort noise generation. Asterisk does

not support silence suppression.

 APPLICATIONS: Responsible for the Asterisk PBX functionality. Conference,
voicemail, and fax are examples of Asterisk applications.

Asterisk can be used in various scenarios, from a small IP PBX to a sophisticated contact

center. You can easily find help at www.asterisk.org

2

How to download and install
Asterisk

In the first chapter, we learned a bit about how Asterisk is useful in the telephony environment. In this
chapter, we will cover how to download and install Asterisk. Before starting, it is essential to learn

how to compile and install it. The compilation process may seem weird for traditional Microsoft™

Windows™ users, but it is fairly common in the Linux™ environment. One can get an optimized

code for your hardware when compiling Asterisk, which is what we will do here. Asterisk runs in
several operating systems, but we chose to keep things easy and start with only one of them: Linux.

We chose Debian as the Linux™ distribution because the dependencies are easy to install and the

distribution is stable, with a low footprint. If you want to use another distribution, please change the
name of the dependencies accordingly.

Objectives
By the end of this chapter you should be able to:

 Determine the hardware requirements for Asterisk;

 Install Linux with the required dependencies;

 Download a stable version using FTP;

 Compile Asterisk; and

 Learn how to start Asterisk at boot time.

Minimum Hardware Required

Asterisk does not need a lot of hardware to run, however there are some tips to choose the

best hardware for your requirements. You should take into consideration the following main

factors when choosing your hardware:

| Chapter 2 - How to download and install Asterisk |

- 20 -

 Total number of registered users. Define how many registrations per second you need to

support

 Total number of simultaneous calls. Define how many network conversations you need to
process in the network adapter and bridge on the Asterisk server

 Which codecs you need to support. High complexity codecs will require a lot of CPU/FPU

power in your server, a single iLBC session can require as much as 18MIPS

 Echo cancellation. Echo cancellation may take a lot of CPU/FPU, in some cases you should
choose hardware echo cancellation using DSPs in the telephony interface card

 Availability. Use RAID1 or 5 to increase availability. Remember, Asterisk is 24x7

application.
 Redundancy on the telephony interfaces. Xorcom (http://www.xorcom.com) and Red-fone(

http://www.red-fone-com) have very good solutions for this.

The main component for an Asterisk Server is the network adapter. A good server network

adapter is recommended. CPU is important when you need to support high complexity

codecs such as g.729 and iLBC and echo cancellation. You may choose to use dedicated

DSPs, Digium provides a DSP card named TC400B capable to support 120 g729

simultaneous calls.

The best practice is to choose a new, server class, computer from a known manufacturer. To

know exactly how many simultaneous calls or how many registered users an specific

machine can support, you should test this hardware with a stress test tool such as SIPP

(http://sipp.sourceforge.net). Some hardware manufacturers such as Xorcom

(http://www.xorcom.com) publish its results in the website.

Note: Some Asterisk applications, such as meetme and music on hold, requires a clock

source. Usually, the clock source is an telephony interface card. If your system does not use a

telephony interface card, you will have to load dahdi_dummy to provide a clock source.

Hardware configuration
The Asterisk hardware does not need to be sophisticated. You don't need an expensive video card or

numerous peripherals. Some tips about hardware configuration;

 Disable unused USB, serial and parallel ports to avoid the consumption of unnecessary

interrupts.

 A robust network interface card is essential.

 Take particular care if you are using telephony interface cards. Some cards use a 3.3 volts

PCI bus, and it is not easy to find motherboards for them. In these days, PCI express is
more easily found.

 Pay a close attention to the hard disk, PBX used to work in a 24x7 regime while desktops

work 8x5. Do not use desktop hardware for a PBX, usually the hard disk fails before the

http://www.xorcom.com/
http://www.red-fone-com/
http://sipp.sourceforge.net/
http://www.xorcom.com/

 | Choosing a Linux distribution |

- 21 -

first year if used intensively. My recommendation is to use a server machine or an

appliance designed to run 24x7 applications.

IRQ sharing

Telephony interface cards (e.g., X100P) generate large quantities of interruptions. Serving these

interruptions requires processor time. The drivers can't do this processing if you have another device
using the same interruption. In a single CPU system, you should avoid IRQ sharing between devices.

We recommend the use of dedicated hardware to run Asterisk. Don't forget to disable any foreign or

unnecessary hardware. Some hardware can be disabled in the motherboard bios setup. Once you have
started your computer, see your assigned interrupts in /proc/interrupts.

#cat /proc/interrupts

CPU0

0: 41353058 XT-PIC timer

1: 1988 XT-PIC keyboard

2: 0 XT-PIC cascade

3: 413437739 XT-PIC wctdm <-- TDM400

4: 5721494 XT-PIC eth0

7: 413453581 XT-PIC wcfxo <-- X100P

8: 1 XT-PIC rtc

9: 413445182 XT-PIC wcfxo <-- X100P

12: 0 XT-PIC PS/2 Mouse

14: 179578 XT-PIC ide0

15: 3 XT-PIC ide1

NMI: 0

ERR: 0

Here you can see three Digium cards, each in their own IRQ. If this is the case in your system, go

ahead and install the hardware drivers. If this is not the case, go back and try something else to avoid
IRQ sharing.

Choosing a Linux distribution
Asterisk was initially developed to run on Linux. However, it can also run on BSD Unix or Mac OS
X. If you are new to Asterisk, try using Linux first since it is much easier. Several Linux distributions

were successfully tested with Asterisk (e.g., Fedora, Redhat, SuSe, Debian, and Gentoo); choose one

for your system. You can download the Debian distribution from the address below:

http://www.us.debian.org/CD/netinst/#netinst-stable.

Required dependencies

The following dependencies are required to compile Asterisk.

 bison

 libssl-dev

http://www.us.debian.org/CD/netinst/#netinst-stable

| Chapter 2 - How to download and install Asterisk |

- 22 -

 openssl

 libasound2-dev

 libc6-dev

 libnewt-dev

 zlib1g-dev

 gcc

 g++

 make

 libncurses5-dev

 doxigen

 libxml2-dev

Required by DAHDI

 kernel sources

Caution: DAHDI packages are necessary to compile some Asterisk applications like

meetme(). If you have compiled Asterisk before DAHDI, you will have to recompile it
again to include the application meetme() as well as certain others.

Required by Xorcom Astribank

 libusb-dev

 fxload

Installing Linux for Asterisk
Install your Linux as usual, without a graphical user interface. Install and configure the email server

as well. We will need the email server (exim4) to send voicemail notifications later in this book.

Caution: This installation will format your PC. All your disk data will be erased. Please make

sure to back up all data before starting.

Step 1: Put the CD in the CD-ROM drive and boot your PC. Most questions are very simple to
answer.

 | Installing Linux for Asterisk |

- 23 -

Preparing Linux for Asterisk

Immediately after installing Asterisk, we will install the packages required for the subsequent

compilation of Asterisk and DAHDI drivers. First, we will indicate to Debian where the packages will
be downloaded from. This is done by using the apt-setup utility.

Step 1: Login as root.

Step 2: Install the kernel headers.

apt-get install linux-headers-`uname –r`

ln -s /usr/src/kernel-headers-`uname -r` /usr/src/linux

Step 3: Install the required packages.

apt-get install bison openssl libssl-dev libusb-dev fxload libasound2-dev libc6-
dev libnewt-dev libncurses5-dev zlib1g-dev gcc g++ make doxygen libxml2-dev

Which version to choose

As a rule of thumb, you should use the version with the required features. Versions 1.2 and 1.4 are

more stable than the newest 1.6 while the newer versions include the new features, meaning 1.2 and
1.4 are feature frozen. The Asterisk team has changed the version system for 1.6. Now, instead of

having major versions each year, they are releasing major and minor versions. The newest version is

1.6.2; it is undergoing just bug fixes, too. All new development is integrated in the trunk. With 1.6

you will have at least three versions maintained simultaneously, which allows you an extended period
to upgrade from one version to another. Recently they announced the change back to the old

versioning system.

All examples in this book were created or converted to Asterisk 1.6.2, but most should work
in 1.4.

Obtaining and compiling Asterisk

The next step is the installation of Asterisk. To obtain the sources, you should download them from
www.asterisk.org. We will use the wget utility to download them. Create a directory /usr/src to

receive the files. You should consult www.asterisk.org to verify which version is the newest.

For Asterisk 1.4

Download the source files from the Asterisk repository. Please, check for a newer version.

cd /usr/src

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
1.4.29.1.tar.gz

wget http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-
1.4.10.1.tar.gz

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
addons-1.4.10.tar.gz

http://www.asterisk.org/
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-1.4.29.1.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-1.4.29.1.tar.gz
http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-1.4.10.2.tar.gz
http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-1.4.10.2.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.4.10.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.4.10.tar.gz

| Chapter 2 - How to download and install Asterisk |

- 24 -

For Asterisk 1.6

Download the source files from the Asterisk repository. Please, check for a newer version.

cd /usr/src

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
1.6.2.5.tar.gz

wget http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-
1.4.10.2.tar.gz

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
addons-1.6.2.0.tar.gz

DAHDI

The same version of DAHDI is used for both versions.
wget http://downloads.asterisk.org/pub/telephony/dahdi-linux/releases/dahdi-linux-
2.2.1.tar.gz

wget http://downloads.asterisk.org/pub/telephony/dahdi-tools/releases/dahdi-tools-
2.2.1.tar.gz

Uncompress the files using:

tar xzvf file.tar.gz

Compiling DAHDI drivers

You will need to compile the DAHDI modules. The commands ./configure and make menuselect

were added in version 1.4. The latter enables you to select which utilities and modules to build. The
following commands will do this:

cd /usr/src/dahdi-linux-2.2.1

make

make install

cd /usr/src/dahdi-tools-2.2.1

./configure

make menusect #(optional, you may select some options)

make

make install

make config #(optional, it installs the init scripts)

Use make menuselect to install only the necessary modules. This is the make menuselect

screenshot.

http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-1.6.2.5.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-1.6.2.5.tar.gz
http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-1.4.10.2.tar.gz
http://downloads.asterisk.org/pub/telephony/libpri/releases/libpri-1.4.10.2.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.6.2.0.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.6.2.0.tar.gz
http://downloads.asterisk.org/pub/telephony/dahdi-linux/releases/dahdi-linux-2.2.1.tar.gz
http://downloads.asterisk.org/pub/telephony/dahdi-linux/releases/dahdi-linux-2.2.1.tar.gz
http://downloads.asterisk.org/pub/telephony/dahdi-tools/releases/dahdi-tools-2.2.1.tar.gz
http://downloads.asterisk.org/pub/telephony/dahdi-tools/releases/dahdi-tools-2.2.1.tar.gz

 | Installing Linux for Asterisk |

- 25 -

Just after executing make config, the init scripts will be installed, and the following screen will be

shown.

install -D dahdi.init /etc/init.d/dahdi

/usr/bin/install -c -D -m 644 init.conf.sample /etc/dahdi/init.conf

/usr/bin/install -c -D -m 644 modules.sample /etc/dahdi/modules

/usr/bin/install -c -D -m 644 blacklist.sample /etc/modprobe.d/dahdi.blacklist

/usr/sbin/update-rc.d dahdi defaults 15 30

 Adding system startup for /etc/init.d/dahdi ...

 /etc/rc0.d/K30dahdi -> ../init.d/dahdi

 /etc/rc1.d/K30dahdi -> ../init.d/dahdi

 /etc/rc6.d/K30dahdi -> ../init.d/dahdi

 /etc/rc2.d/S15dahdi -> ../init.d/dahdi

 /etc/rc3.d/S15dahdi -> ../init.d/dahdi

 /etc/rc4.d/S15dahdi -> ../init.d/dahdi

 /etc/rc5.d/S15dahdi -> ../init.d/dahdi

DAHDI has been configured.

If you have any DAHDI hardware it is now recommended you

edit /etc/dahdi/modules in order to load support for only

the DAHDI hardware installed in this system. By default

| Chapter 2 - How to download and install Asterisk |

- 26 -

support for all DAHDI hardware is loaded at DAHDI start.

I think that the DAHDI hardware you have on your system is:

usb:004/002 xpp_usb- e4e4:1150 Astribank-multi no-firmware

This screen (above) asks you to change the file /etc/dahdi/modules to load only the required
drivers for your specific configuration and show the detected hardware. Edit the file

/etc/dahdi/modules and load only the required hardware. In my case, I was using a test machine

with a Xorcom Astribank 6FXS and 2FXO. The file is shown below.

Contains the list of modules to be loaded / unloaded by /etc/init.d/dahdi.

NOTE: Please add/edit /etc/modprobe.d/dahdi or /etc/modprobe.conf if you

would like to add any module parameters.

Format of this file: list of modules, each in its own line.

Anything after a '#' is ignore, likewise trailing and leading

whitespaces and empty lines.

Digium TE205P/TE207P/TE210P/TE212P: PCI dual-port T1/E1/J1

Digium TE405P/TE407P/TE410P/TE412P: PCI quad-port T1/E1/J1

Digium TE220: PCI-Express dual-port T1/E1/J1

Digium TE420: PCI-Express quad-port T1/E1/J1

#wct4xxp

Digium TE120P: PCI single-port T1/E1/J1

Digium TE121: PCI-Express single-port T1/E1/J1

Digium TE122: PCI single-port T1/E1/J1

#wcte12xp

Digium T100P: PCI single-port T1

Digium E100P: PCI single-port E1

#wct1xxp

Digium TE110P: PCI single-port T1/E1/J1

#wcte11xp

Digium TDM2400P/AEX2400: up to 24 analog ports

Digium TDM800P/AEX800: up to 8 analog ports

Digium TDM410P/AEX410: up to 4 analog ports

#wctdm24xxp

X100P - Single port FXO interface

X101P - Single port FXO interface

#wcfxo

Digium TDM400P: up to 4 analog ports

#wctdm

 | Installing Linux for Asterisk |

- 27 -

Xorcom Astribank Devices

xpp_usb

Re-initialize your computer and verify the correct loading of the drivers.

Compiling Asterisk

If you have previously compiled software, compiling Asterisk will be an easy task. Run the following

commands to compile and install Asterisk. Remember, you can choose which applications and

modules to build using make menuselect.

cd /usr/src/libpri-1.4.10.2

make

make install

cd /usr/src/asterisk-1.6.2.5

./configure

make menuselect

make

make install

make samples ;use to create sample configuration files

make config ;to start asterisk at boot time

Use make menuselect to install only the necessary modules.

Starting and stopping Asterisk

With this minimal configuration, it‘s possible to start Asterisk successfully.

/usr/sbin/asterisk –vvvgc

Use the CLI command stop now to shutdown Asterisk.

| Chapter 2 - How to download and install Asterisk |

- 28 -

CLI>stop now

Asterisk runtime options

The Asterisk starting process is very simple. If Asterisk is run without any parameters, it is launched

as a daemon.

/sbin/asterisk

You can access the Asterisk console by executing the following command. Please note that more than

one console process can be run at the same time.

/sbin/asterisk -r

Available runtime options for Asterisk

You can show the available runtime options using asterisk –h

sipast:/usr/src/asterisk-1.6# asterisk -h

Asterisk 1.6.1.1, Copyright (C) 1999 - 2008, Digium, Inc. and others.

Usage: asterisk [OPTIONS]

Valid Options:

 -V Display version number and exit

 -C <configfile> Use an alternate configuration file

 -G <group> Run as a group other than the caller

 -U <user> Run as a user other than the caller

 -c Provide console CLI

 -d Enable extra debugging

 -f Do not fork

 -F Always fork

 -g Dump core in case of a crash

 -h This help screen

 -i Initialize crypto keys at startup

 -I Enable internal timing if DAHDI timer is available

 -L <load> Limit the maximum load average before rejecting new calls

 -M <value> Limit the maximum number of calls to the specified value

 -m Mute debugging and console output on the console

 -n Disable console colorization

 -p Run as pseudo-realtime thread

 -q Quiet mode (suppress output)

 -r Connect to Asterisk on this machine

 -R Same as -r, except attempt to reconnect if disconnected

 -t Record soundfiles in /var/tmp and move them where they

 belong after they are done

 -T Display the time in [Mmm dd hh:mm:ss] format for each line

 of output to the CLI

 -v Increase verbosity (multiple v's = more verbose)

 | Installing Linux for Asterisk |

- 29 -

 -x <cmd> Execute command <cmd> (only valid with -r)

 -s <socket> Connect to Asterisk via socket <socket> (only valid with -r)

Installation directories
Asterisk is installed on several directories, which can be modified in the asterisk.conf file.

asterisk.conf
[directories](!) ; remove the (!) to enable this

astetcdir => /etc/asterisk

astmoddir => /usr/lib/asterisk/modules

astvarlibdir => /var/lib/asterisk

astdbdir => /var/lib/asterisk

astkeydir => /var/lib/asterisk

astdatadir => /var/lib/asterisk

astagidir => /var/lib/asterisk/agi-bin

astspooldir => /var/spool/asterisk

astrundir => /var/run/asterisk

astlogdir => /var/log/asterisk

[options]

;verbose = 3

;debug = 3

;alwaysfork = yes ; same as -F at startup

;nofork = yes ; same as -f at startup

;quiet = yes ; same as -q at startup

;timestamp = yes ; same as -T at startup

;execincludes = yes ; support #exec in config files

;console = yes ; Run as console (same as -c at startup)

;highpriority = yes ; Run realtime priority (same as -p at startup)

;initcrypto = yes ; Initialize crypto keys (same as -i at startup)

;nocolor = yes ; Disable console colors

;dontwarn = yes ; Disable some warnings

;dumpcore = yes ; Dump core on crash (same as -g at startup)

;languageprefix = yes ; Use the new sound prefix path syntax

;internal_timing = yes

;systemname = my_system_name ; prefix uniqueid with a system name for global
uniqueness issues

;autosystemname = yes ; automatically set systemname to hostname - uses
'localhost' on failure, or systemname if set

;maxcalls = 10 ; Maximum amount of calls allowed

;maxload = 0.9 ; Asterisk stops accepting new calls if the load average exceed
this limit

;maxfiles = 1000 ; Maximum amount of openfiles

;minmemfree = 1 ; in MBs, Asterisk stops accepting new calls if the amount of
free memory falls below this watermark

;cache_record_files = yes ; Cache recorded sound files to another directory
during recording

| Chapter 2 - How to download and install Asterisk |

- 30 -

;record_cache_dir = /tmp ; Specify cache directory (used in cnjunction with
cache_record_files)

;transmit_silence_during_record = yes ; Transmit SLINEAR silence while a
channel is being recorded

;transmit_silence = yes ; Transmit SLINEAR silence while a channel is being
recorded or DTMF is being generated

;transcode_via_sln = yes ; Build transcode paths via SLINEAR, instead of
directly

;runuser = asterisk ; The user to run as

;rungroup = asterisk ; The group to run as

;lightbackground = yes ; If your terminal is set for a light-colored background

documentation_language = en_US ; Set the Language you want Documentation
displayed in. Value is in the same format as locale names

;hideconnect = yes ; Hide messages displayed when a remote console connects and
disconnects

; Changing the following lines may compromise your security.

;[files]

;astctlpermissions = 0660

;astctlowner = root

;astctlgroup = apache

;astctl = asterisk.ctl

[compat]

pbx_realtime=1.6

res_agi=1.6

app_set=1.6

Log files and log rotation
Asterisk PBX logs its messages on the /var/log/asterisk directory. The file that controls the logs

is the logger.conf.

; Logging Configuration

;

; In this file, you configure logging to files or to

; the syslog system.

;

; "logger reload" at the CLI will reload configuration

; of the logging system.

[general]

; Customize the display of debug message time stamps

; this example is the ISO 8601 date format (yyyy-mm-dd HH:MM:SS)

; see strftime(3) Linux manual for format specifiers

;dateformat=%F %T

;

; This appends the hostname to the name of the log files.

;appendhostname = yes

;

 | Installing Linux for Asterisk |

- 31 -

; This determines whether or not we log queue events to a file

; (defaults to yes).

;queue_log = no

;

; This determines whether or not we log generic events to a file

; (defaults to yes).

;event_log = no

;

;

; For each file, specify what to log.

;

; For console logging, you set options at start of

; Asterisk with -v for verbose and -d for debug

; See 'asterisk -h' for more information.

;

; Directory for log files is configures in asterisk.conf

; option astlogdir

;

[logfiles]

;

; Format is "filename" and then "levels" of debugging to be included:

; debug

; notice

; warning

; error

; verbose

; dtmf

;

; Special filename "console" represents the system console

;

; We highly recommend that you DO NOT turn on debug mode if you are simply

; running a production system. Debug mode turns on a LOT of extra messages,

; most of which you are unlikely to understand without an understanding of

; the underlying code. Do NOT report debug messages as code issues, unless

; you have a specific issue that you are attempting to debug. They are

; messages for just that -- debugging -- and do not rise to the level of

; something that merit your attention as an Asterisk administrator. Debug

; messages are also very verbose and can and do fill up logfiles quickly;

; this is another reason not to have debug mode on a production system unless

; you are in the process of debugging a specific issue.

;

;debug => debug

console => notice,warning,error

;console => notice,warning,error,debug

messages => notice,warning,error

;full => notice,warning,error,debug,verbose

;syslog keyword : This special keyword logs to syslog facility

| Chapter 2 - How to download and install Asterisk |

- 32 -

;

;syslog.local0 => notice,warning,error

;

Some console commands are associated with the logger process.

CLI> logger list channels

Channel Type Status Configuration

------- ---- ------ -------------

/var/log/asterisk/messages File Enabled - Warning Notice Error

 Console Enabled - Warning Notice Error

CLI> logger rotate

 == Parsing '/etc/asterisk/logger.conf': Found

Asterisk Event Logger restarted

Asterisk Queue Logger restarted

You can control the log rotation using the logrotate daemon. Edit the file
/etc/logrotate.d and include the content below to start rotating the log files.

/var/log/asterisk/messages /var/log/asterisk/*log {
 missingok
 rotate 5
 weekly
 create 0640 asterisk asterisk
 postrotate
 /usr/sbin/asterisk -rx 'logger reload'
 endscript
}

More information about logrotate can be obtained using:

#man logrotate

Starting Asterisk with a non-root user

It is safer to execute Asterisk with a non-root user. In case of a security failure or a buffer overflow
attack, running Asterisk within an environment with fewer privileges to the user limits an intruder‘s

possible actions.

To change Asterisk’s running user:

Step 1: Edit the file: vi /etc/init.d/asterisk

Step 2: Uncomment the following lines:

AST_USER="asterisk"

AST_GROUP="asterisk"

Step 3: To change user rights in Asterisk folders, type:

cd /

chown --recursive asterisk:asterisk /etc/asterisk

chmod --recursive u=rwX,g=rX,o= /etc/asterisk

chown --recursive asterisk:asterisk /var/lib/asterisk

chown --recursive asterisk:asterisk /var/log/asterisk

chown --recursive asterisk:asterisk /var/run/asterisk

chown --recursive asterisk:asterisk /var/spool/asterisk

 | Installing Linux for Asterisk |

- 33 -

chown --recursive asterisk:asterisk /dev/dahdi

chmod --recursive u=rwX,g=rX,o= /var/lib/asterisk

chmod --recursive u=rwX,g=rX,o= /var/log/asterisk

chmod --recursive u=rwX,g=rX,o= /var/run/asterisk

chmod --recursive u=rwX,g=rX,o= /var/spool/asterisk

chmod --recursive u=rwX,g=rX,o= /dev/dahdi

Step 4: Test changes using /etc/init.d/asterisk

Uninstalling Asterisk
To uninstall Asterisk, use:

make uninstall

To uninstall Asterisk and all configuration files, use:

make uninstall-all

Asterisk installation notes
This section will provide some advice about issues to address before installing Asterisk.

Production Systems

If Asterisk is installed in a production environment, you should pay attention to the system design. A

server has to be optimized in such a way that telephony systems have priority over other system

processes. Asterisk should not run together with processor-intensive software such as X-Windows. If

you need to run CPU-intensive processes (e.g., a huge database), use a separate server. Generally
speaking, Asterisk is susceptible to hardware performance variations. Thus, try using Asterisk in a

hardware environment that does not require more than 40% of CPU utilization.

Network Tips

If you plan to use IP phones, it is important that you pay attention to your network. Voice protocols

are very good and resistant to latency and even jitters; however, if you use a poorly configured local

area network, voice quality will suffer. It is only possible to guarantee good voice quality using

quality of service (QoS) in switches and routers. Voice in a local area network tends to be good, but
even in a LAN environment, if you have 10 Mbps hubs with too many collisions, you will end up

having a distorted or crappy voice. Follow these recommendations to ensure the best possible voice

quality:

 Use end-to-end QoS if possible or economically feasible. With end-to-end QoS, the voice

quality is perfect. No excuses!

 Avoid using 10/100 Mbps hubs for voice in a production environment. Collisions can impose

jitters on the network. Full duplex 10/100 Mbps are preferred because no collisions occur.

 Use VLANs to separate unnecessary broadcasts of the voice network. You don‘t want a virus

destroying your voice network with ARP broadcasts.

| Chapter 2 - How to download and install Asterisk |

- 34 -

 Educate users about expectations in a voice network. Without QoS, don‘t state that the voice

will be perfect as in most cases it won‘t be. A quality of voice similar to a mobile phone will

most often be achieved. Use quality phones as problems with firmware and hardware design

are common.

Summary

In this chapter, you have learned about the minimum hardware requirements as well as how to
download, install, and compile Asterisk. Asterisk should be executed with a non-root user for security

reasons. You should check your network environment before starting the production environment.

Quiz
1. What‘s the minimal Asterisk hardware configuration?

2. Telephony interface cards for Asterisk usually have some Digital Signal Processors (DSPs) built in

and do not need a lot of CPU resources from the PC.

A. True

B. False

3. If you want perfect voice quality, you need to implement end-to-end quality of service (QoS).

A. True

B. False

4. You should always choose the latest Asterisk version as it is the most stable version.

A. True

B. False

5. List the necessary packages for Asterisk and the DAHDI compilation.

6. If you don‘t have a TDM interface card, you will end up needing a clock source for

synchronization. The dahdi_dummy driver fills this role by using the USB as a clock source (Kernel

2.4). This is necessary because some applications like _______ and ________ require a time
reference.

7. When you install Asterisk, it‘s better to leave desktop interfaces such as GNOME or KDE out.

Graphical user interfaces take up numerous CPU cycles.

A. True

 | Installing Linux for Asterisk |

- 35 -

B. False

8. Asterisk configuration files are located in the ____________________ directory.

9. To install Asterisk sample files, you need to type the following command:

10. Why is it important to start Asterisk with a non-root user?

3
Building a simple PBX

In this chapter, you will learn how to perform a basic Asterisk PBX configuration. The main objective
here is to see the PBX running for the first time, be able to dial between extensions, dial a message

being played, and dial to a single analog or SIP trunk. The idea behind this chapter is to ensure that

your Asterisk is up and running as soon as possible. After completing the work in this chapter, you
will have sufficient background to prepare for subsequent chapters, where we will delve more deeply

into configuration details.

Objectives
By the end of this chapter, you should be able to:

 Understand and edit configuration files;

 Install soft-phones based on SIP;

 Install and configure a SIP trunk;

 Install and configure an analog connection;

 Dial between extensions;

 Dial between phones and external destinations; and

 Configure an auto attendant.

Understanding the configuration files

Asterisk is controlled by text configuration files located in /etc/asterisk. The file format is similar to

the Windows ―.ini‖ files. A semicolon is used as a remark character, the signs ―=‖ and ―=>‖ are
equivalent, and spaces are ignored.

;

; The first line without a comment should be the session title.

;

[Session]

Key = value; Variable designation

[Session 2]

Key => value; Object declaration

 | Installing Linux for Asterisk |

- 37 -

Asterisk interprets ―=‖ and ―=>‖ in the same way. Differences in syntax are used to distinguish

between objects and variables. Use ―=‖ when you want to declare a variable and ―=>‖ to designate an

object. The syntax is the same between all files, but three types of grammar are used, as discussed
below.

Grammars
Grammar Object is created: Conf. File Example

Simple Group All in the same line extensions.conf exten=>4000,1,Dial(SIP/4000)

Option Inheritance Options are defined first, object
inherit the options

chan_dahdi.conf [channels]
context=default
signalling=fxs_ks
group=1

channel => 1

Complex Entity Each entity receives a context sip.conf,
iax.conf

[cisco]
type=friend
secret=mysecret

host=10.1.30.50
context=trusted

[xlite]
type=friend
secret=xlite
host=dynamic

Simple Group

The simple group format used in extensions.conf, meetme.conf, and voicemail.conf is the most

basic grammar. Each object is declared with options in the same line.

Example:

[Session]

Object 1 => op1,op2,op3

Object 2=> op1b,op2b,op3b

In this example, object 1 is created with options op1, op2, and op3 while object 2 is created with

options op1, op2, and op3.

Object options inheritance grammar

This format is used by the files chan_dahdi.conf and agents.conf, where numerous options are

available, and most interfaces and objects share the same options. Typically, one or more sections

have objects and channels declarations. Options to the object are declared above the object and can

be changed to another object. Although this concept is hard to understand, it is very easy to use.

Example:

[Session]

op1 = bas

op2 = adv

object=>1

| Chapter 3 - Building a simple PBX |

- 38 -

op1 = int

object => 2

The first two lines configure the value of the options op1 and op2 to ―bas‖ and ―adv‖, respectively.
When object 1 is instanced, it is created using option 1 as ―bas‖ and option 2 as ―adv‖. After defining

object 1, we change option 1 to ―int‖. Next, we create object 2 with option 1 as ―int‖ and option 2 as

―adv‖.

Complex entity object

This format is used by iax.conf, sip.conf, and other configuration files in which numerous entities

with many options exist. Typically, this format does not share a large volume of common

configurations. Each entity receives a context. Sometimes reserved contexts exist, like [general] for
global configurations. Options are declared in the context declarations.

Example:

[entity1]

op1=value1

op2=value2

[entity2]

op1=value3

op2=value4

The entity [entity1] has values ―value1‖ and ―value2‖ for options op1 and op2, respectively. The
entity [entity2] has values ―value3‖ and ―value4‖ for options op1 and op2.

Options to build a LAB for Asterisk

To configure a PBX, you will need some basic hardware. It is not hard or expensive, but there are

some options to be considered. All you will need are two phones and a connection to the public

network. Some options and combinations are possible when creating your lab, which we will discuss
below.

Option 1: Complete LAB

With the complete LAB, it is possible to test all the scenarios available and compare solutions such as
ATA, IP-phones, and soft-phones. You can also learn about analog and SIP trunks.

Qty. Description

1 SIP Analog Telephone Adapter

2 IP Phone

3 Dedicated Server for the Asterisk Server

4 Workstation with the soft-phone

5 Analog Interface Card with at least two interfaces: 1 FXO and 1 FXS

6 VoIP provider Account

 | Installation Sequence |

- 39 -

Option 2: Economy LAB

With the economy LAB, we simplify it a bit. We use the ATA, which is usually less expensive than
the IP-phone, and a single FXO card, which is really inexpensive. We won‘t be able to use analog

phones connected directly to the server, but this does not commonly occur in practice.

Qty. Description

1 SIP Analog Telephone Adapter

2 Dedicated Server for Asterisk

3 Workstation for the soft-phone

4 Analog Interface Card with 1 FXO

5 Account in a VoIP provider

Option 3: Super economy lab

The third LAB uses a virtualized server in the student‘s own notebook. The problem with this model

is the conflicts generated by the UDP port. Sometimes both the Asterisk server and the soft-phone try

to access the same port, preventing Asterisk from binding the address port. Another issue is the
quality of the calls; virtual environments are not indicated for real-time applications such as Asterisk.

Use a free soft-phone for the server and workstation and a trunk connection to a SIP provider.

Qty. Description

1 Laptop with 1 GB memory and a soft-phone

3 Virtual Machine (VMWare, Xen, or other) to install Asterisk and a soft-phone

4 Account in a VoIP provider

Installation Sequence
To help you understand the installation sequence, we outlined the sequence of steps necessary to

install and configure Asterisk.

| Chapter 3 - Building a simple PBX |

- 40 -

IAX soft-phoneSIP soft-phone

Ethernet

FXO

Asterisk

PSTN

VOIP

Provider

Broadband

ETH0

IP Phone

Analog

Telephony

Adapter

Analog

Phone

Analog

phone

FXS

T
ru

n
k
s

E
x
te

n
s
io

n
s

A
s
te

ri
s
k

1

2

3

1. Extensions configuration

a. SIP extensions (ATA, Soft-phone, IP Phone)

b. IAX extensions

c. FXS extensions

2. Trunk configuration

a. Configuration of a SIP trunk

b. Configuration of a FXO trunk

3. Building a basic dial plan

a. Dialing between extensions

b. Dialing external destinations

c. Receiving a call from in the operator extension

d. Receiving a call in an auto-attendant

Configuration of the extensions
The extensions are SIP, IAX, or analog phones connected to an FXS port. To configure an extension,

you should edit the configuration file related to the channel (sip.conf, iax.conf, chan_dahdi.conf)

 | Configuration of the extensions |

- 41 -

SIP extensions
Let‘s configure the SIP phones. The idea is to configure a simple PBX. (Subsequent chapters will

provide an entire SIP session with all the details.) SIP is configured in the /etc/asterisk/sip.conf
directory and has all the parameters related to SIP phones and VoIP providers. SIP clients have to be

configured before you can make and receive calls.

The section [general] includes some parameters to be configured; it is the first section we will
configure. The main options are:

 allow/disallow: Defines which codecs are going to be used.

 bindaddr: Address to be bound to the Asterisk SIP listener. If you set it up as 0.0.0.0

(default), it will bind to all interfaces.

 context: Sets the default context for all clients unless it is changed in the client section.

We used dummy for security reasons. Unauthenticated users get into this context when

the option allowguest is set to yes.

 bindport: SIP UDP port to listen.

 maxexpirey: Maximum time to register (seconds).

 defaultexpirey: Default time to register (seconds).

 register: Registers Asterisk to another host.

 allowguest: Usually set to no to avoid non-authenticated users in the context of the

[general] section.

 alwaysauthreject: When an incoming INVITE or REGISTER is received, always reject

with an identical response (valid username, invalid password). This avoids username
guessing.

Example:

[general]

bindport = 5060

bindaddr = 10.1.30.45

context = dummy

disallow = all

allow = ulaw

maxexpirey = 120

defaultexpirey = 80

allowguest=no

alwaysauthreject=yes

SIP clients

After completing the general sections, it is time to set up the SIP clients. I would once again like to

remind the reader that we will have an entire SIP chapter later in the book. For now, let‘s concentrate
on the basics and leave the details for later.

| Chapter 3 - Building a simple PBX |

- 42 -

 [name]: When a SIP device connects to Asterisk, it uses the username part of the SIP

URI to find the peer/user.

 type: Configures the connection class. Options are peer, user, and friend.

o peer: Asterisk sends calls to a peer.

o user: Asterisk receives calls from a user.

o friend: Both occur at the same time.

 host: IP address or host name. The most common option is ―dynamic‖, which is used

when the host registers to Asterisk.

 secret: Password to authenticate peers and users.

Warning: Use strong passwords, with at least 8 characters, alphanumeric and numeric

characters, and at least one symbol. Reports of hacked servers have appeared in the mailing

lists, and brute force password crackers for SIP are easily available for script kiddies. Toll

fraud costs thousands of dollars for consumers and providers.

Example:

[6000]

type=friend

secret=#MySecret1#7

host=10.1.30.50

context=from-internal

[6001]

type=friend

secret=Mys3cr3t#

host=dynamic

context=from-internal

defaultip=10.1.30.17

IAX Extensions
You may also create IAX extensions. This protocol is native to the Asterisk, and we will have an

entire section devoted to it later in this book. For now, let‘s create a few extensions using the
protocol.

The file is very similar to sip.conf. As the first section to be configured, the section [general] has

certain parameters to be configured. The main options are:

 allow/disallow: Defines which codecs are going to be used.

 bindaddr: Address to be bound to Asterisk SIP listener. If you set it up as 0.0.0.0

(default), it will bind to all interfaces.

 | IAX Extensions |

- 43 -

 context: Sets the default context for all clients unless changed in the client section. We

used dummy for security reasons. Unauthenticated users get into this context when the

option allowguest is set to yes.

 bindport: SIP UDP port to listen.

 delayrejects: When set to yes, delays sending the authentication rejects, which improves

the security against brute force password attacks.

 bandwidth: When set to high, it allows the selection of high bandwidth codecs, such as

the g711 in their variants ulaw and alaw.

The following is a sample of the [general] section of the file iax.conf.

[general]

bindport = 4569

bindaddr = 10.1.30.45 ;(use your IP)

context = dummy

delayreject=yes

bandwidth=high

disallow = all

allow = ulaw

IAX Clients

After finishing the general sections, it is time to set up the IAX clients.

 [name]: When a SIP device connects to Asterisk, it uses the username part of the SIP

URI to find the peer/user.

 type: Configures the connection class. Options are peer, user, and friend.

o peer: Asterisk sends calls to a peer.

o user: Asterisk receives calls from a user.

o friend: Both occur at the same time.

 host: IP address or host name. The most common option is dynamic, which is used when

the host registers to Asterisk.

 secret: Password to authenticate peers and users.

Warning: Use strong passwords with at least 8 characters, alphanumeric and numeric

characters, and at least one symbol. Reports of hacked servers have appeared in the mailing

lists, and brute force password crackers for SIP md5 hashes are available for script kiddies.
Toll fraud costs thousands of dollars for consumers and providers.

Example:

[guest]

type=user

context=dummy

callerid=”Guest IAX User”

| Chapter 3 - Building a simple PBX |

- 44 -

[6003]

context=from-internal

type=friend

secret=#sup3rs3cr3t#

host=dynamic

context=from-internal

[6004]

context=from-internal

type=friend

secret=#s3cr3ts3cr3t#

host=dynamic

context=from-internal

Configuring the SIP devices
After defining the phones in the Asterisk configuration file, it is time to configure the phone itself. In

this example, we will show how to configure a free soft-phone—in this case, xlite from Counterpath

(http://www.counterpath.com). Check your device‘s manual to understand the parameters of your
phone.

Step 1: Configure the phone to use the extension 6000

Execute the installation program.

After the execution, click the mouse‘s right button and choose SIP Account Settings.

Select the button Add...

Fill in the required information.

 | Configuring the IAX devices |

- 45 -

Display Name: 6000
User Name: 6000
Password: =#MySecret1#7
Authorization User Name: 6000
Domain: ip_of your_server

Confirm that your phone is registered using the console command sip show peers.

Repeat the configuration for the phone 6001.

Configuring the IAX devices
In this example, we are going to use the free soft-phone Zoiper, which you can download from

www.zoiper.com.

1. Download and install the Zoiper Free.

2. Click with the right button to access options.

http://www.zoiper.com/

| Chapter 3 - Building a simple PBX |

- 46 -

3. Select new IAX account.

4. Insert the related options for the 6003 phone and optionally for the 6004.

5. Save the configuration and check if the phone is registered using iax2 show peers.

Important: Use one account for SIP and another one for IAX. If you want to configure the

system to ring both IAX and SIP at the same time, we will show you how to do so in the dial
plan section.

Configuring a PSTN interface

To connect to the PSTN, you will need an interface foreign exchange office (FXO) and a telephone
line. You can use an existing PBX extension too. You can obtain a telephony interface card with an

FXO interface from several manufacturers. In this example, we will show you how to install a

DAHDI interface card.

 | Configuring the IAX devices |

- 47 -

Analog lines using DAHDI

You can buy an analog card compatible with the DAHDI from several manufacturers. X100P was one
of the first Digium cards and had already been discontinued. Some manufacturers still produce similar

clones. In addition to the price of the X100P, we have found several issues between these cards and

new motherboards, so use it with care. X100P, in my opinion, is not a good choice for a production
environment. Any card compatible with DAHDI should work.

Thanks to the team of DAHDI developers, we now have a tool for detecting and configuring the

interface cards almost automatically. If you have just installed the DAHDI drivers, please don‘t forget
to run make config and reboot the machine to load it automatically. You can use the commands

below to detect and configure your card.

Step 1: To detect your hardware, use:

dahdi_hardware.

Step 2: To configure use:

dahdi_genconf.

The command above will generate two files /etc/system/dahdi.conf and /etc/asterisk/dahdi-
channels.conf. The default parameters for dahdi_genconf are usually fine, but you can change

them in the file /etc/dahdi/genconf_parameters. By default, it will insert the lines (FXO) in the

context from-pstn and the phones (FXS) in the context from-internal.

Step 3: After running dahdi_genconf, in the last line of the file /etc/asterisk/chan_dahdi.conf

insert the following line:

#include dahdi-channels.conf

| Chapter 3 - Building a simple PBX |

- 48 -

Step 4: Edit the file /etc/dahdi/modules and comment for all the unused drivers. Reboot before

proceeding and check if the channels are being recognized using:

CLI>dahdi show channels

Connecting to the PSTN using a VoIP provider
If your budget is really limited, you can configure a SIP trunk to connect to the PSTN. It is certainly

the most affordable way to connect to the PSTN. Thousands of VoIP providers exist worldwide. To
connect to one of them, you will need some parameters.

Parameters provided by the SIP provider.

 username: login

 password: secret

 Provider‘s domain: domain

 UDP port: 5060

 Allowed codecs:g729, ilbc, alaw

Two parameters should be determined by you.

 Extension to receive calls—in this case: 9999

 context: from-sip

Configure the file sip.conf using the following parameters:

 [general]

srvlookup=yes

register => login:secret@domain:port/9999

[siptrunk]

username=login

type=peer

secret=secret

port=5060

insecure=invite

host=dominio

fromuser=login

fromdomain=domain

dtmfmode=rfc2833

context=from-sip

disallow=all

allow=ilbc

allow=alaw

allow=g729

To access this trunk, we will use the channel name SIP/siptrunk

 | Dial plan introduction |

- 49 -

Dial plan introduction
Dial plan is like Asterisk‘s heart. It defines how Asterisk handles every single call to the PBX. It

consists of extensions that make an instruction list for Asterisk to follow. Instructions are fired by

digits received from the channel or application. In order to configure Asterisk successfully, it is

crucial to understand the dial plan. Most of the dial plan is contained in the extensions.conf file in
the /etc/asterisk directory. This file uses the simple group grammar and has four major concepts:

 Extensions

 Priorities

 Applications

 Contexts

Let‘s create a basic dial plan. In subsequent sections of this book, I will devote a chapter exclusively

to the dial plan. If you installed the sample files (make samples), the extensions.conf already

exists. Save it with another name and start with a blank file.

The structure of the file extensions.conf
The extensions.conf file is separated into sections. The first is the [general] section followed by

the [globals] section. The beginning of each section starts with its name definition (i.e.,
[default]) and finishes when another section is created.

The section [general]

The general section sits at the top of the file. Before starting to configure the dial plan, it is helpful to

know the general options that control certain dial plan behaviors. These options are:

 static and write protect: If static=yes and writeprotect=no, you can use the CLI

command save dialplan.

Warning: If you issue a save dialplan command from the CLI, you will end up losing any

remarks and comments in the file.

 autofallthrough: If autofallthrough is set, then if an extension runs out of things to

do, it will terminate the call with BUSY, CONGESTION, or HANGUP depending on

Asterisk's best guess. This is the default. If autofallthrough is not set, then if an

extension runs out of things to do, Asterisk will wait for a new extension to be dialed. In
version 1.4, the default is yes.

 clearglobalvars: If clearglobalvars is set, global variables will be cleared and reparsed

into an dialplan reload or Asterisk reload. If clearglobalvars is not set, then global
variables will persist through reloads and—even if deleted from the extensions.conf or

one of its included files—they will remain set to the previous value.

| Chapter 3 - Building a simple PBX |

- 50 -

 extenpatternmatchnew (new in the 1.6 version): This uses a new algorithm to match the

extension from 1.5 to 300 times faster than the existing one, particularly if you have a

large number of extensions. It is a new feature and should be used with care; it defaults to

no.

 userscontext: This is the context where the entries from the users.conf are registered.

The section [globals]

In the [globals] section you will define global variables and their initial values. You can access the

variable in the dial plan using ${GLOBAL(variable)}. You can even access variables defined in the

linux/unix environment using ${ENV(variable)}.

Global variables are not case sensitive. A few examples could be:

INCOMING>DAHDI/8&DAHDI/9

RINGTIME=>3

In the following example, you can set and test a global variable in the dial plan.

exten=9000,1,set(GLOBAL(RINGTIME)=4)

exten=9000,n,Noop(${GLOBAL(RINGTIME)})

exten=9000,n,hangup()

Contexts
Context is the named partition of the dial plan. After the [general] and [globals] sections, the dial

plan is a set of contexts in which each context has several extensions, each extension has several

priorities, and each priority calls an application with several arguments.

 | Extensions |

- 51 -

You can build a simple dial plan to reach other phones and the PSTN. However, Asterisk is much
more powerful than that. Our objective is to teach you more details of what is possible in the dial

plan.

Extensions
Unlike the traditional PBX, where extensions are associated with phones, interfaces, menus, and so
on, in Asterisk an extension is a list of commands to be processed when a specific extension number

or name is triggered. The commands are processed in priority order.

| Chapter 3 - Building a simple PBX |

- 52 -

An extension can be literal, standard, or special. A standard extension includes only numbers or

names and the characters * and #; 12#89* is a valid literal extension. Names can be used for extension
matching as well. Extensions are case sensitive. However, you cannot create two extensions with the

same name but different cases.

When an extension is dialed, the command with the first priority is executed followed by the
command with priority 2 and so on. This happens until the call is disconnected or some command

returns the number one, indicating failure. What Asterisk does when the last priority is executed is

regulated by the parameter autofallthrough. See the [general] section in this chapter.

Example:

exten=>123,1,Answer

exten=>123,n,Playback(tt-weasels)

exten=>123,n,Hangup

Above you find the list of instructions to be processed when the extension 123 is dialed. The first

priority is to answer the channel (necessary when the channel is in the ringing state: i.e., FXO
channels). The second priority is to play back an audio file called tt-weasels. The third priority

hangs up the channel.

Another option is to handle the call according to the caller ID. You can use the / character to specify
the caller ID to be processed.

Examples:

exten=>123/100,1,Answer()

exten=>123/100,n,Playback(tt-weasels)

exten=>123/100,n,Hangup()

 | Extensions |

- 53 -

This example will trigger extension 123 and execute the following options only if the caller ID is 100.
This can also be done by using the pattern described below:

exten=>1234/_256NXXXXXX,1,Answer()

hint: maps an extension to a channel. It is used to monitor the channel state. It is used in conjunction

with presence. The phone has to support it.

Patterns

You can use patterns and literals in the dial plan. Patterns are very useful for reducing the dial plan
size. All patterns start with the ―_‖ character. The following characters may be used to define a

pattern. The figure identifies the patterns available for use with Asterisk.

Special extensions
Asterisk uses some extension names as standard extensions.

| Chapter 3 - Building a simple PBX |

- 54 -

Description:

s: Start. It is used to handle a call when there is no dialed number. It is useful for FXO trunks and in-
menu processing.

t: Timeout. It is used when calls remain inactive after a prompt has been played. It is also used to

hang up an inactive line.

T: AbsoluteTimeout. If you establish a call limit using the absolutetimeout() function, once the

call exceeds the limit defined, it will be sent to the T extension.

h: Hangup. It is called after the user disconnects the call.

i: Invalid. It is triggered when you call an non-existent extension in the context. Using these

extensions can affect the content of CDR records—specifically, the dst that does not contain the
number dialed.

o: Operator. It is used to go to operator when the user presses ―0‖ during the voicemail.

The use of these extensions can change the content of the billing records (CDR)—in particular, the

field dst will not have the number dialed. To work around this problem, you should use the option g

in the dial() application and consider the functions resetcdr(w) and/or nocdr()

Variables
In the Asterisk PBX, variables can be global, channel-specific, and environment-specific. You can

use the NoOP() application to see the content of a variable in the console.

It can use a global variable or a channel-specific variable as applications arguments. A variable can be

referenced as in the following example, where varname is the name of the variable.

${varname}

 | Variables |

- 55 -

A variable name can be an alphanumeric string starting with a letter. Global variable names are not
case sensitive. However, system variables (Asterisk-defined are channel-defined) are case sensitive.

Thus, the variable ${EXTEN} is different from ${exten}.

Global variables
Global variables can be configured in the [global] section in the extensions.conf file or using the

application:

set(Global(variable)=content)

Channel-specific variables
Channel-specific variables are configured using the application set(). Each channel receives its own

variable space. There is no chance of collisions between variables from different channels. A channel-
specific variable is destroyed when the channel hangs up. Some of the most commonly used variables

are:

 ${EXTEN} Extension dialed

 ${CONTEXT} Current context

 ${CALLERID(name)}

 ${CALLERID(num)}

 ${CALLERID(all)} Current caller ID

 ${PRIORITY} Current priority

Other channel-specific variables are all uppercase. You can see the content of several variables using

the dumpchan() application. Below is a simple excerpt of dump-channel variables.

exten=9001,1,dumnpchan()

exten=9001,n,echo()

exten=9001,n,hangup()

Dumpchan output:

Dumping Info For Channel: SIP/4400-08191828:

==

Info:

Name= SIP/4400-08191828

Type= SIP

UniqueID= 1161186526.0

CallerID= 4400

CallerIDName= laptop

DNIDDigits= 9001

RDNIS= (N/A)

State= Ring (4)

Rings= 0

NativeFormat= 0x4 (ulaw)

WriteFormat= 0x4 (ulaw)

ReadFormat= 0x4 (ulaw)

1stFileDescriptor= 16

Framesin= 0

Framesout= 0

| Chapter 3 - Building a simple PBX |

- 56 -

-TimetoHangup= 0

ElapsedTime= 0h0m0s

Context= default

Extension= 9001

Priority= 1

CallGroup=

PickupGroup=

Application= DumpChan

Data= (Empty)

Blocking_in= (Not Blocking)

Variables:

SIPCALLID=500CEBC0-9483-4CED-B1E4-16D953655CFC@192.168.1.116

SIPUSERAGENT=SJphone/1.61.312b (SJ Labs)

SIPDOMAIN=192.168.1.133

SIPURI=sip:4400@192.168.1.116

Environment-specific variables

Environment-specific variables can be used to access variables defined in the operating system. You
can set environment-specific variables using the function ENV(). For example:

${ENV(LANG)}

Set(ENV(LANG))=en_US

Application-specific variables

Some applications use variables for data input and output. You can set variables before calling the
application or retrieve the variable after the application execution. For example:

The Dial application returns the following variables:

 ${DIALEDTIME} ->This is the time from dialing a channel until it is disconnected.

 ${ANSWEREDTIME} -> This is the amount of time for the actual call.

 ${DIALSTATUS} This is the status of the call:

o CHANUNAVAIL

o CONGESTION

o NOANSWER

o BUSY

o ANSWER

o CANCEL

o DONTCALL

o TORTURE

 ${CAUSECODE} -> Error message for the call.

Expressions
Expressions can be very useful in the dial plan. They are used to manipulate strings and perform math

and logical operations.

 | Expressions |

- 57 -

The expression syntax is defined as follows:

$[expression1 operator expression2]

Let‘s suppose that we have a variable called ―I‖ and we want to add 100 to the variable:

$[${I}+100]

When Asterisk finds an expression in the dial plan, it changes the entire expression by the resulting
value.

Operators
The following operators can be used to build expressions. It is important to observe operator

precedence.

1. Parentheses ―()‖

2. Unary operators ―! -―

3. Regular expression ―: =~

4. Multiplicative operators ―* / %‖

5. Additive operators ―+ -―

6. Comparison operators

7. Logical operators

8. Conditional operators

Math Operators

 Addition (+)

 Subtraction (-)

| Chapter 3 - Building a simple PBX |

- 58 -

 Multiplication(*)

 Division (/)

 Modulus (%)

Logical Operators

 Logical ―AND‖ (&)

 Logical ―OR‖ (|)

 Logical Unary Complement (!)

Regular expression operators

 Regular expression matching (:)

 Regular expression exact matching (=~)

A regular expression is a special text string used to describe a search pattern. You can think of regular

expressions as wildcards. Regular expressions are used to match a string to a pattern to check the

matching. If the match succeeds and the regular expression contains at least one match, the first
match is returned; otherwise, the result is the number of characters matched.

Comparison operators

The result of a comparison is 1 if the relation is true or 0 if it is false.

 = equal

 != not equal

 < less than

 > greater than

 <= less than or equal to

 >= greater than or equal to

LAB. Evaluate the following expressions:
Put these expressions in your dial plan and use the NoOP() application to evaluate the expressions.

Dial 9002 and examine the results in the Asterisk console. Use verbose 15 to show the results.

exten=9002,1,set(NAME="FLAVIO") ;Set NAME=FLAVIO

exten=9002,n,set(I=4)

exten=9002,n,set(URI="40001@asteriskguide.com")

exten=9002,n,NoOP(${NAME})

exten=9002,n,NoOP(${I})

exten=9002,n,NoOP($[${I}+${I}])

exten=9002,n,NoOP($[${I}=4])

exten=9002,n,NoOP($[${I}=4 & ${NAME}=FLAVIO])

exten=9002,n,NoOP($[${URI} =~ "4[0-9][0-9][0-9][0-9]@."])

 | Functions |

- 59 -

exten=9002,n,NoOP($[${I}=4?"MATCH"::"DO NOT MATCH"])

exten=9002,n,hangup

Functions
After version 1.2, some applications were replaced by functions to allow the processing of certain
variables in a more advanced way than only expressions. You can see the full list of functions by

issuing the following console command:

CLI>core show functions

String length: ${LEN(string)} returns the string length

Example:

exten=>100,1,Set(Fruit=pear)
exten=>100,2,NoOp(${LEN(Fruit)})
exten=>100,3,NoOp(${LEN(${Fruit})})

In the first operation, the system shows 5 as the result (the number of letters in the word ―fruit‖). The

second returns the number 4 (the number of letters in the word ―pear‖).

Substrings: Returns the substring, starting from the positing defined by the ―offset‖ parameter, with

the string length defined in the ―length‖ parameter. If the offset is negative, it starts from right to left,

beginning at the end of the string. If the length is omitted or negative, it takes the whole string starting
with the offset.

${string:offset:length }

Example #1: Several substrings

${123456789:1}-returns 23456789

${123456789:-4}-returns 6789

${123456789:0:3}-returns 123

${123456789:2:3}-returns 345

${123456789:-4:3}-returns 678

Example #2: Take the area code from the first three digits.

exten=>_NXX.,1,Set(areacode=${EXTEN:0:3})

Example #3: Takes all digits from the variable ${EXTEN}, except for the area code.

exten=>_516XXXXXXX,1,Dial(${EXTEN:3})

String concatenation
To concatenate two strings, simply write them together.

${foo}${bar}

555${number}

${longdistanceprefix}555${number}

| Chapter 3 - Building a simple PBX |

- 60 -

Applications
To build a dial plan, we need to understand the concept of applications. You will use applications to

handle the channel in the dial plan. Applications are implemented in several modules. Available

applications depend on modules. You can show all Asterisk applications using the console command:

CLI>core show applications

Alternatively, you can show details of a specific application using the following example:

CLI>core show application dial

To build a simple dial plan, you need to know a few applications. We will discuss more advanced

examples later in the book.

Simple applications to build a dialplan

 Answer – Answer a channel

 Dial – Dial other channel

 Hangup – Hang up a channel

 Playback – Play back an audio file

 Goto – Jump to a particular priority,

extension or context

We will use these applications (above) to create a simple dial plan for two basic PBXs.

Answer()
[Synopsis]

Answers a channel if ringing

[Description]

Answer([delay]): If the call has not been answered, the application will answer it. Otherwise, it has no
effect on the call. If a delay is specified, Asterisk will wait the number of milliseconds specified in

‗delay‘ before answering the call.

Dial()

The following description can be obtained by issuing the show application dial in the dial plan. For

easy searching, it is reproduced below. The syntax for the Dial application is also shown below:

;dial to a single channel

Dial(type/identifier,timeout,options, URL)

;Dialing to multiple channels

Dial(Technology/resource[&Tech2/resource2...][|timeout][|options][|URL]):

 | Applications |

- 61 -

This application will place calls to one or more specified channels. As soon as one of the requested
channels answers, the originating channel will be answered—if it has not already been answered.

These two channels will then be active in a bridged call. All other requested channels will then be

hung up.

Unless a timeout is specified, the Dial application will wait indefinitely until one of the called

channels answers, the user hangs up, or all of the called channels are busy or unavailable. The

execution of the dial plan will continue if no requested channels can be called or if the timeout
expires. This application sets the following channel variables upon completion:

 DIALEDTIME - This is the time from dialing a channel until the time that it is

disconnected.

 ANSWEREDTIME - This is the amount of time for an actual call.

 DIALSTATUS - This is the status of the call:

o CHANUNAVAIL

o CONGESTION

o NOANSWER

o BUSY

o ANSWER

o CANCEL

o DONTCALL

o TORTURE

For the Privacy and Screening Modes, the DIALSTATUS variable will be set to DONTCALL if the called

party chooses to send the calling party to the 'Go Away' script. The DIALSTATUS variable will be set to

TORTURE if the called party wants to send the caller to the 'torture' script.

This application will report normal termination if the originating channel hangs up or if the call is

bridged and either of the parties in the bridge ends the call.

The optional URL will be sent to the called party if the channel supports it. If the OUTBOUND_GROUP
variable is set, all peer channels created by this application will be included in that group (as in

Set(GROUP()=...).

The following table summarizes some of the most frequently used options for the application dial. For
the complete list, use the console command core show application dial.

A(x) Plays an announcement to the called party, using 'x' as the file.

C Resets the CDR for this call.

D Allows the calling user to dial a 1-digit extension while waiting for
a call to be answered. Exits to that extension if it exists in the
current context or to the context defined in the EXITCONTEXT
variable, if it exists.

D([called][:calling]) Sends the specified DTMF strings after the called party has
answered, but before the call gets bridged. The 'called' DTMF

| Chapter 3 - Building a simple PBX |

- 62 -

string is sent to the called party, and the 'calling' DTMF string is
sent to the calling party. Both parameters can be used alone.

f Forces the caller ID of the calling channel to be set as the
extension associated with the channel using a dial plan 'hint‘. For
example, some PSTNs do not allow caller ID to be set to anything
other than the number assigned to the caller.

g Proceeds with dial plan execution at the current extension if the
destination channel hangs up.

G(context^exten^pri) If the call is answered, transfers the calling party to the specified
priority and the called party to the specified priority+1.Optionally,
an extension—or extension and context—can be specified.
Otherwise, the current extension is used.

h Allows the called party to hang up by sending the '*' DTMF digit

H Allows the calling party to hang up by hitting the '*' DTMF digit.

L(x[:y][:z]) Limits the call to 'x' ms. Plays a warning when 'y' ms are left.
Repeats the warning every 'z' ms. The following special variables
can be used with this option:

LIMIT_PLAYAUDIO_CALLER yes|no (default yes) Plays sounds
for the caller.

LIMIT_PLAYAUDIO_CALLEE yes|no Plays sounds for the person
called.

LIMIT_TIMEOUT_FILE File to be played when time is up.

LIMIT_CONNECT_FILE ->File to be played when the call begins.

LIMIT_WARNING_FILE ->File to be played as a warning if 'y' is
defined. The default is to say the time remaining.

m([class]) Provides hold music to the calling party until a requested channel
answers. A specific MusicOnHold class can be specified.

r Indicates ringing to the calling party. Passes no audio to the
calling party until the called channel has answered.

S(x) Hangs up the call 'x' seconds after the called party has answered
the call.

t Allows the called party to transfer the calling party by sending the
DTMF sequence defined in features.conf.

T Allows the calling party to transfer the called party by sending the
DTMF sequence defined in features.conf.

w Allows the called party to enable recording of the call by sending
the DTMF sequence defined for one-touch recording in
features.conf.

W Allows the calling party to enable recording of the call by sending

 | Building a dial plan |

- 63 -

the DTMF sequence defined for one-touch recording in
features.conf.

K Allows the called party to enable parking of the call by sending the
DTMF sequence defined for call parking in features.conf.

K Allows the calling party to enable parking of the call by sending
the DTMF sequence defined for call parking in features.conf.

Example:

exten=_4XXX,1,Dial(SIP/${EXTEN},20,tTm)

In the example above, the application will dial to the corresponding SIP channel. Both caller and
called could transfer the call (Tt). Music on hold will be heard instead of ring back. If nobody

answers within 20 seconds, the extension will go to the next priority.

Hangup()
Hangs up the calling channel

[Description]

Hangup([causecode]): This application will hang up the calling channel. If a cause code is given,

the channel's hang-up cause will be set to the given value.

Goto()

Jump to a particular priority, extension, or context

[Description]

Goto([[context|]extension|]priority): This application will cause the calling channel to
continue the dial plan execution at the specified priority. If no specific extension (or extension and

context) are specified, this application will jump to the specified priority of the current extension. If

the attempt to jump to another location in the dial plan is not successful, the channel will continue at

the next priority of the current extension.

Building a dial plan
To build a simple dial plan, you need to treat all incoming and outgoing calls by creating contexts and

extensions. In this section, we will show you how to build the most common extensions.

Dialing between extensions
To enable dialing between extension, we could use the channel variable ${EXTEN}, which refers to

the dialed extension. For example, if the extension range is between 4000 and 4999 and all extensions

use SIP, we could adopt the following command:

[from-internal]

exten=_4XXX,1,Dial(SIP/${EXTEN})

| Chapter 3 - Building a simple PBX |

- 64 -

Dialing to an external destination
To dial an external destination you could precede the number dialed with a route. In North America, it

is common to use 9 followed by the number to be dialed externally. If you are using an analog or
digital channel to the PSTN, the command should look like the following:

If you want to use the SIP trunk instead of the DAHDI, use SIP/trunk as the channel

[from-internal]

exten=_9NXXXXXX,1,Dial(DAHDI/1/${EXTEN:1},20,tT)

or

exten=_9NXXXXXX,1,Dial(SIP/trunk/${EXTEN:1},20,tT)

The above line will permit you to dial 9 and the desired number. In the example given, you will use

the first DAHDI channel (DAHDI/1). If you have several lines and this one is busy, the call will not

be completed. However, you could use the following line to automatically choose the first available
DAHDI channel. Optionally, you can use the SIP trunk instead of DAHDI.

[from-internal]

exten=_9NXXXXXX,1,Dial(DAHDI/g1/${EXTEN:1},20,tT)

The ―g1‖ parameter will search for the first available channel in the group, allowing the use of all
channels. Using the line below, you could dial a long distance number.

[from-internal]

exten=_91NXXNXXXXXX,1,Dial(DAHDI/g1/${EXTEN:1},20,tT)

Dialing 9 to get a PSTN line
If you do not have any restrictions to external dialing, you could simplify and use the following:

[from-internal]

exten=9,1,Dial(DAHDI/g1,20,tT)

Receiving a call in the operator extension
In the following example, the operator extension is 4000. The PSTN line is connected to an FXO

interface. In the chan_dahdi.conf file, the context specified is from-pstn. Any call coming from the
PSTN will be routed to the context from-pstn in the dial plan. This line does not have direct inward

dialing (DID); as such, we will have to receive the call via the ―s‖ extension. If receiving from the SIP

trunk, use the context [from-sip].

[globals]

OPERATOR=SIP/6000

[from-pstn]

exten = s,1,Dial(${OPERATOR},40,tT)

 | Building a dial plan |

- 65 -

exten = s,n,Hangup()

[from-sip]

exten = s,1,Dial(${OPERATOR},40,tT)

exten = s,n,Hangup()

Receiving a call using direct inward dialing (DID)

If you have a digital line, you will receive the dialed extension. When this is the case, you don‘t need
to forward the call to the operator; rather, you can forward the call directly to the destination. Suppose

your DID range is from 3028550 to 3028599 and the last four numbers are passed in the DID. The

configuration would look like the following example:

[from-pstn]

exten => _85[5-9]X,1,Answer()

exten => _85[5-9]X,n,Dial(SIP/${EXTEN},15,tT)

exten => _85[5-9]X,n,Hangup()

Playing several extensions simultaneously
You can set Asterisk to dial an extension and, if it is not answered, to dial several other extension

simultaneously, as indicated in the following example:

exten => 0,1,Dial(DAHDI/1,15,tT)

exten => 0,n,Dial(DAHDI/1&DAHDI/2&DAHDI/3,15)

exten => 0,n,Hangup()

In this example, when someone dials the operator, the channel DAHDI/1 is initially tried. If nobody

answers after 15 seconds (timeout), the channels DAHDI/1, DAHDI/2 and DAHDI/3 will ring

simultaneously for another 15 seconds.

Routing by Caller ID

In this example, you could give different treatments based on the caller ID, which could be useful for
call spammers. For example:

exten => 8590/4832518888,1,Playback(I-have-moved-to-china)

exten => 8590,1,Dial(DAHDI/1,20)

In this example, we have added a special rule that, if the caller ID is 4832518888, you play back a

message from the previously recorded file ―I-have-moved-to-china‖. Other calls are accepted as
usual.

Using variables in the dial plan
Asterisk can use global and channel variables in the dial plan as arguments for certain applications.

Look at the following examples:

[globals]

Flavio => DAHDI/1

Daniel => DAHDI/2&SIP/pingtel

| Chapter 3 - Building a simple PBX |

- 66 -

Anna => DAHDI/3

Christian => DAHDI/4

[mainmenu]

exten => 1,1,Dial(${Daniel}&${Flavio})

exten => 2,1,Dial(${Anna}&${Christian})

exten => 3,1,Dial(${Anna}&${Flavio})

Using variables makes future changes easier. If you change the variable, all references are changed

immediately.

Recording an announcement
In some of the options discussed later in this section, we will use recorded prompts. Here we show

you an easy way to record them. We will use the application Record() to save the announcement
using one‘s own phone.

[from-internal]

exten => _record.,1,Record(${EXTEN:6}:gsm)

exten => _record.,n,wait(1)

exten => _record.,n,Playback(${EXTEN:6})

exten => _record.,n,Hangup()

These instructions allow you to record any message from a soft-phone.

Example: dialing recordmenu from the softphone

The instructions will call the recording with the variable ${EXTEN:6} without the first six letters. In

other words, the instruction is equivalent to record(menu:gsm). All you have to do is dial record +

name_of_the_file_to_be_recorded, press # to finish the recording, and wait to hear the recording.

Receiving the calls in an digital receptionist
Now that we have some simple examples, let‘s expand our learning about the applications

background() and goto(). The key for interactive systems in Asterisk is the application

background(), which allows you to execute an audio file that, when the caller presses a key, is

interrupted in order to send the call to the extension dialed.

Syntax of the background() application:

exten=>extension, priority, background(filename)

Another application very useful is goto(). As the name implies, it jumps to the context, extension,

and priority indicated.

Syntax of the application goto():

exten=>extension, priority,goto(context, extension, priority)

Valid formats for the goto() command:

goto(context,extension,priority)

goto(extension,priority)

 | Building a dial plan |

- 67 -

goto(priority)

In the following example, we will create a digital receptionist. It is very simple to edit the file

extensions.conf and configure the following extensions:

[globals]

OPERATOR=SIP/6000

[from-pstn]

include=aapstn

[from-sip]

include=aasip

[aapstn]

exten=>s,1,answer()

exten=>s,n,set(TIMEOUT(response)=10)

exten=>s,n,background(menu1)

exten=>s,n,WaitExten(30)

exten=>s,n,Dial(${OPERATOR})

exten=>6000,1,Dial(SIP/6000)

exten=>6001,1,Dial(SIP/6001)

exten=>6003,1,Dial(IAX2/6003)

exten=>6004,1,Dial(IAX2/6004)

[aasip]

exten=>9999,1,answer()

exten=>9999,n,set(TIMEOUT(response)=10)

exten=>9999,n,background(menu1)

exten=>s,n,WaitExten(30)

exten=>9999,n,Dial(${OPERATOR})

exten=>6000,1,Dial(SIP/6000)

exten=>6001,1,Dial(SIP/6001)

exten=>6003,1,Dial(IAX2/6003)

exten=>6004,1,Dial(IAX2/6004)

In the file menu1.gsm, record the message ―press the extension or wait for the operator‖. When the
user dials the number 6000, he will be sent to extension 6000.

At this point, you should have a clear understanding of the use of several applications, including

answer(), background(), goto(), hangup(), and playback(). If you do not have a clear
understanding, please read this chapter again until you feel comfortable with the content. You will use

the background application very often.

Once you understand the basics of extensions, priorities, and applications, it will be easy to create a
simple dial plan. These concepts will be explored in greater depth later in the book, and you will see

that the dial plan will become more powerful.

| Chapter 3 - Building a simple PBX |

- 68 -

Summary

In this chapter, you‘ve learned that configuration files are stored in the /etc/asterisk directory.

To use Asterisk, it is first necessary to configure the channels (e.g., sip, dahdi, iax). Three different
grammars exist for configuration files: simple group, object inheritance, and complex entity. The dial

plan is created in the file extensions.conf and is a set of contexts and extensions. In the dial plan,

each extension triggers an application. You‘ve learned to use playback, background, dial, goto,
hangup, and answer applications.

Quiz
1. The channel configuration files are:

A. /etc/dahdi/system.conf

B. /etc/asterisk/chan_dahdi.conf

C. sip.conf

D. iax.conf

2. It is important to define a context in the channel configuration file as this will define the incoming

context for a call. In the extensions configuration file extensions.conf, a call from this channel will

be processed in the matching incoming context.

A. True

B. False

3. The main differences between the playback() and background() applications are (choose two):

A. Playback simply plays a prompt, but does not wait for digits.

B. Background simply plays a prompt, but does not wait for digits.

C. Background plays a message and waits for digits to be pressed.

D. Playback plays message and waits for digits to be pressed.

4. When a call gets into Asterisk using a telephony interface card (FXO), this call is handled in the

special extension:

A. ‗0‘

B. ‗9‘

C. ‗s‘

D. ‗i‘

5. Valid formats for the goto() application are (choose three):

A. Goto(context,extension, priority)

B. Goto(priority, context, extension)

C. Goto(extension,priority)

 | Building a dial plan |

- 69 -

D. Goto(priority)

6. An extension cannot be defined as (choose all correct answers):

A. An alphanumeric literal

B. A numeric literal

C. A pattern beginning with a ―.‖ (dot) character

D. A pattern starting with a ―_‖ (underscore) character

7. The pattern _7[1-5]XX matches (choose all correct answers):

A. 7100

B. 7600

C. 7630

D. 7230

8. An incoming context for a DAHDI-compatible telephony interface is defined in the _________

configuration file:

A. /etc/dahdi/system.conf

B. /etc/asterisk/chan_dahdi.conf

C. /etc/asterisk/asterisk.conf

D. /etc/asterisk/modules.conf

9. In the Options Inheritance grammar used by chan_dahdi.conf, you:

A. Define the object in a single line.

B. Define options first and declare the objects below the defined options.

C. Define a context for each object.

10. Priorities must be consecutive!

A. False

B. True

4
Analog channels

There are several ways to connect the public switched telephone network (PSTN). The best way
depends on how the telephone company makes this connection available in your area. The simplest

way is to use an analog line, similar to the line you use at home. In this section, we will show you

how to configure analog cards from Digium™ and Xorcom™.

Objectives

By the end of this chapter you should be able to:

 Recognize the main telephony terms and acronyms;

 Understand when to use digital and analog circuits;

 Recognize the difference between FXS and FXO; and

 Configure Asterisk for FXS and FXO.

Telephony basics

Most analog implementations use a pair of cooper lines named tip and ring. When a loop is closed,
the phone receives the dial tone from the telecom switch (or the private PBX). The most frequently

used signaling is loop-start; other, less common kinds of signaling including ground start, which is

used in several countries. The three categories of signaling are:

 Supervision signaling

 Address signaling

 Information signaling

Supervision signaling

The main supervision signalings are on-hook, off-hook, and ringing.

On-Hook – When a user puts the phone on the hook, the PBX interrupts and does not allow the
electric current to pass. In this state, the circuit is named on-hook. In this position, only the ringer is

active.

 | Building a dial plan |

- 71 -

Off-Hook – Before starting a phone call, the phone needs to pass to the off-hook state. Removing the

handset from the hook closes the loop and indicates to the PBX that the user intends to make a call.

Upon receiving this indication, the PBX generates a dial tone, indicating to the user that it is ready to
accept the destination address (i.e., phone number).

Ringing – When a user calls another phone, it generates a voltage to the ringer that warns the other

user about a call being received.

Signaling varies by country, with different tones for different countries. You can personalize Asterisk

tones to your country by modifying the indications.conf file. For example:

[br]

description=Brazil

ringcadance=1000,4000

dial=425

busy=425/250,0/250

ring=425/1000,0/4000

congestion=425/250,0/250,425/750,0/250

callwaiting=425/50,0/1000

Address Signaling

You can use two kinds of signaling for dialing. The first and most common is dual tone multi-

frequency (dtmf) while the other is pulse dialing (used in old rotary dial phones). Phones have a

keypad for dialing, and each button is associated with two frequencies: one high and one low. In the
case of dtmf signaling, the combination of these tones indicates what digit is being pressed. MFC/R2

uses a multi-frequency tone different from dtmf.

Information signaling

Information signaling shows the call‘s progress and different events.

 Dial tone

 Busy Tone

 Ringback

 Congestion

 Invalid number

 Confirmation tone

PSTN interfaces

As in the case of old PBXs, it is often required to connect the Asterisk PBX to the PSTN. Here we‘ll
show you how to do it. Usually you have three options for telephone lines.

 Analog: The most common form for home and small business, usually delivered with a

metallic pair of cooper lines.

| Chapter 4 - Analog channels |

- 72 -

 Digital: Used when many lines are necessary. A digital line is usually delivered by a

CSU/DSU or a Fiber multiplexer. The end user connector is usually a RJ45. In some

countries, E1 lines are delivered using two coaxial BNC connectors; in this case you will

need a balloon to connect to the RJ45 jack to the telephony board.

 SIP: This option has been recently developed. The telephone line is delivered using a data

connection with SIP signaling (VoIP). This is a good option to use with Asterisk since you

will not need to buy a telephony card. Phone calls will be delivered directly to the Ethernet

port. Another advantage is that you may be able to free resources from your CPU by avoiding
codec transcoding.

Analog FXS, FXO, and E&M interfaces
Several types of analog interfaces are available. It is fundamental to understand the differences

between these interfaces to learn how to connect to the phone network as well as to other PBXs. Here,

we will show you the E&M interface. Although it is not currently available for Asterisk and has been

discontinued by several vendors, you may find routers and PBXs with this kind of interface, so it is
better to know what you are dealing with.

Foreign eXchange (FX) Interfaces

FX interfaces are analog. The term ―Foreign eXchange‖ is applied to access trunks to a PSTN central
office (CO).

 | Building a dial plan |

- 73 -

Foreign eXchange Office (FXO)

The FXO interface is used to connect to a central office (CO) or another PBX‘s extension. It

communicates directly with a telephone line coming from the PSTN. Another option is to connect the
FXO interface to an existing PBX, allowing communication between Asterisk and the legacy PBX.

Connecting Asterisk to a PBX port and delivering a remote extension using VoIP is often referred to

as an off-promises extension (OPX). An FXO interface receives a dial tone.

Foreign eXchange Station (FXS)

The FXS interface feeds an analog phone, modem, or fax. The FXS provides the dial tone and power
for a phone.

Trunk signaling

 Loop-Start

 Ground-Start

 Kewlstart

The use of kewlstart signaling in Asterisk is almost default. Kewlstart is not signaling itself, but adds

intelligence to the circuit by monitoring what is happening on the other side. Kewlstart is based in

loop-start. Most switches do not support this feature, which is used to get the hang-up notification.

 Loopstart: Used in most analog lines, it allows the telephone to indicate ―on-hook‖ and

―off-hook‖ and the switch to indicate ―ring‖ and ―no-ring‖. This is probably what most

people have at home. The name comes from the fact that the line is always open. When

you close the loop, the switch provides you with a dial tone. An incoming call is signaled

by a 100V ringing voltage over the open pair.

| Chapter 4 - Analog channels |

- 74 -

 Groundstart: Similar to Loopstart. When you want to make a call, one side of the line is

short-circuited. When the switch identifies this state, it reverses the voltage through the

open pair, and then the loop is closed. Consequently, the line first becomes occupied

before being offered to the caller.

 Kewlstart: Adds intelligence to the circuits, allowing monitoring of the other side.

Kewlstart incorporates many advantages from loop-start.

Asterisk telephony channels setup

To configure a telephony interface card, several steps are necessary. In this chapter, we will show

three of the most common scenarios:

 Analog connection using FXS

 Analog connection using FXO

 Connection of an Astribank™ with FXS and FXO interfaces

Configuration Procedure (valid in both cases)
Before choosing hardware for Asterisk, you should consider the number of simultaneous calls,

services, and codecs that are going to be installed and enabled. Asterisk is a CPU-intensive

application, which is why we recommend a dedicated machine for Asterisk.

The number of interface cards installed within the computer is limited by the number of slots and

interruptions available. It is preferable to install a single card with eight voice interfaces than two

cards with four. Another option is to use a USB channel bank, such as the Xorcom Astribank.
Recently, some manufacturers (e.g., CIANET) have started producing TDMoE channel banks,

making it even easier to connect dozens of analog interfaces.

Astribank 19” with 32 FXS/FXO ports

Example 1: One FXO, one FXS installation

Several devices (e.g., Digium cards, Astribanks) use a set of kernel modules formerly known as

Zaptel. Because of trademark disputes, the Zaptel drivers were renamed Digium Asterisk Hardware

Device Interface (DAHDI) in 2008. The Zaptel drivers are still available, but they will likely be

discontinued, which is why I have chosen to use the new DAHDI drivers in this book. In this
example, we will use a Digium TDM400 telephony interface card with one FXS and one FXO

module. The required steps are listed below:

1. Install the analog card FXS, FXO, or both.

2. Configure the file /etc/dahdi/system.conf (formerly /etc/zaptel.conf).

3. Generation of the configuration files using dahdi_genconf.

4. Load the driver for the DAHDI interface.

 | Building a dial plan |

- 75 -

5. Execute dahdi_test to verify interrupt misses.

6. Execute dahdi_cfg to configure the driver.

7. Configure the channel DAHDI in chan_dahdi.conf file.
Load Asterisk.

Step 1: Install the TDM400 Board.

The TDM404P card contains FXS and FXO modules. Connect the FXS (S110M, green) and FXO
(X100M, red) modules. If you are using FXS modules, connect the card directly to the power source

using a molex connector. Please wear electrostatic protection before handling interface cards to avoid

damage to the hardware. Digium analog cards also support a hardware echo cancellation module
VPMADT032.

12
 V

 F
X
S
 o

r F
X
O

1

2

3

4
1
2

3

4

TDM404P

ec
ho

 c
an

ce
lla

tio
n

da
ug

ht
er

 c
ar

d

Step 2: The good news about the configuration is the new utility dahdi_genconf, which
automatically detects and generates the configuration for DAHDI interfaces. The utility generates two

files:

 /etc/dahdi/system.conf

 /etc/asterisk/dahdi-channels.conf

 /etc/asterisk/users.conf (option: users)

 All these files use the option chan_dahdi full

Before you can execute the dahdi_genconf, it is important to configure the file
gen_parameters.conf

/etc/dahdi/genconf_parameters

This file contains parameters that affect the

dahdi_genconf configurator generator.

| Chapter 4 - Analog channels |

- 76 -

#base_exten 4000

#fxs_immediate no

#fxs_default_start ks

#lc_country il

#context_lines from-pstn

#context_phones from-internal

#context_input astbank-input

#context_output astbank-output

#group_phones 0

#group_lines 5

#brint_overlap

#bri_sig_style bri_ptmp

The echo canceller to use. If you have a hardware echo canceller, just

leave it be, as this one won't be used anyway.

The default is mg2, but it may change in the future. E.g: a packager

that bundles a better echo canceller may set it as the default, or

dahdi_genconf will scan for the "best" echo canceller.

#echo_can hpec

#echo_can oslec

#echo_can none # to aboid echo cancellers altogether

bri_hardhdlc: If this parameter is set to 'yes', in the entries for

BRI cards 'hardhdlc' will be used instead of 'dchan' (an alias for

'fcshdlc').

#bri_hardhdlc yes

For MFC/R2 Support

#pri_connection_type R2

#r2_idle_bits 1101

pri_types contains a list of settings:

Currently the only setting is for TE or NT (the default is TE)

#pri_termtype

SPAN/2 NT

 # SPAN/4 NT

O arquivo gen_parameters.conf permite a personalização da sua configuração. Os
parâmetros mais importantes para linhas analógicas são:

base_exten 4000

#fxs_immediate no

fxs_default_start ks

lc_country br

context_lines from-pstn

 | Building a dial plan |

- 77 -

context_phones from-internal

context_input astbank-input

context_output astbank-output

group_phones 0

group_lines 5

#echo_can hpec

#echo_can oslec

echo_can MG2

Warning: It is required that you configure at least the echo cancellation algorithm for the

channels.

The base_exten parameter defines the basic dial plan for FXS extensions. In this case, the first FXS

channel will receive the extension number 4000, the second 4001, and so on. The context in which

the lines (context_phones) and trunks (context_lines) are created is very important. After
generating the files, you should include the file /etc/asterisk/dahdi-channels.conf in the file

/etc/asterisk/chan_dahdi.conf.

#include dahdi-channels.conf

Note: Analog signaling is a bit confusing; it is always the inverse of the card. FXS cards are signaled

with FXO whereas FXO cards are signaled with FXS. Asterisk talks to these devices as if it was on

the opposite side.

Step 3: Load kernel drivers.

Now you have to load the chan_dahdi module and the related card kernel driver. Use
dahdi_hardware to detect your card and the driver name. For example:

Commands to load the drivers:

modprobe dahdi

modprobe wctdm

Step 4: Use the dahdi_test utility.

An important utility is dahdi_test, which is used to verify interrupt misses in the DAHDI card.
Audio quality problems are often related to interrupt conflicts.

To verify that your DAHDI card is not sharing an interrupt with other cards, use the following

command:

Card Driver Description

TE410P wct4xxp 4xE1/T1-3.3V PCI

TE405P wct4xxp 4xE1/T1-5V PCI

TDM400P wctdm 4 FXS/FXO

T100P wct1xxp 1 T1

E100P wctlxxp 1 E1

X100P wcfxo 1 FXO

| Chapter 4 - Analog channels |

- 78 -

#cat /proc/interrupts

You can verify the number of interrupt misses using the dahdi_test utility compiled with the

DAHDI cards. A number below 99.987% indicates possible problems.

Step 5: Use the dahdi_cfg utility to configure the driver.

DAHDI has an unusual system for loading the drivers. First configure the /etc/system/dahdi.conf,

and then apply those configurations to the DAHDI driver using dahdi_cfg.

In this case, dahdi_cfg is used to configure the signaling for the FX interfaces. To see the results, you

can append ―-vvvvv‖ to the command for verbose.

/sbin/dahdi_cfg -vv

Dahdi Configuration

======================

Channel map:

Channel 01: FXS Kewlstart (Default) (Slaves: 01)

Channel 02: FXO Kewlstart (Default) (Slaves: 02)

2 channels configured.

If the channels were loaded successfully, you will see an output similar to the one shown above.

Users often incorrectly configure chan_dahdi.conf with inverted signaling between channels. If this

happens, you will see a message like the one shown below:

DAHDI_CHANCONFIG failed on channel 1: Invalid argument (22)

Did you forget that FXS interfaces are configured with FXO signalling

and that FXO interfaces use FXS signalling?

After successfully configuring the hardware, you can proceed to Asterisk configuration.

Step 6: /etc/dahdi/system.conf configuration file.

It sounds strange, but after configuring the /etc/dahdi/system.conf, you configured the card itself.

DAHDI can be used for other purposes, like routing and SS7. To use it with Asterisk, you must

configure the Asterisk DAHDI channels. Every channel in Asterisk has to be defined; SIP channels
are defined in sip.conf while TDM channels are defined in chan_dahdi.conf. This creates the

logical TDM channels to be used in your dial plan.

signalling=fxs_ks;

group=1; channel group
context=incoming ; context

channel => 1; channel number
signalling=fxo_ks; FXO signaling for FXS interfaces
group=2; channel group
context=extensions; context
channel=> 2 channel number

Configuration options

Several options are available in the chan_dahdi.conf file. A description of all options would be
boring and counterproductive; instead, we will focus on the main option groups available for easy

understanding.

 | Building a dial plan |

- 79 -

General options (channel independent)

These options work for any channel:

context: Defines the incoming context.

context=default

channel: Defines channel or channel range. Each channel definition will inherit options defined

before the declaration. Channels can be identified individually or in the same line by comma
separation. Ranges can be defined using ―-‖.

Channel=>1-15

Channel=>16

Channel=>17,18

group: Allows channels to be handled as a group. If you dial a group number instead of a channel

number, the first channel available is used. If channels are phones, when you call a group, all phones

will ring simultaneously. With commas, you can specify more than one group for the same channel.

group=1

group=3,5

language: Turns on the internationalization and configures a language. This feature will configure

system messages for a specific language. English is the only language with complete prompts

available through standard installation.

musiconhold: Selects music on hold class.

Caller ID options

There are many callerid options. Some can be disabled, although most are enabled by default.

usecallerid: Enables or disables the callerid transmission for the subsequent channels (Yes/No).

Note: If your system gets two rings before answering, try disabling this feature. It should
answer immediately.

hidecallerid: Defines whether or not to hide the outgoing callerid (Yes/No).

callerid: Configures a callerid string for a specific channel. The caller can be configured with

asreceived. This is mostly used in trunk interfaces to indicate the incoming callerid.

callerid = "Flavio Eduardo Gonçalves" <48 30258500>

callwaitingcallerid: Supports callerid during call waiting.

useincomingcalleridondahditransfer: Uses the incoming callerid in a transfer.

Call Waiting

Asterisk supports call waiting in FXS channels. The user will receive a waiting tone if someone tries
the extension. To enable call waiting:

| Chapter 4 - Analog channels |

- 80 -

callwaiting=yes

To support callerid in call waiting:

callwaitingcallerid=yes

Audio quality options

Adjusting the echo cancellation is half technical, half art. These options adjust certain Asterisk
parameters that affect audio quality in the DAHDI channels. They can help improve audio quality in

analog interfaces.

The fxotune utility

The fxotune is a utility used to fine-tune certain parameters for FXO modules. This fine-tuning is
required to adjust impedance mismatch caused by the hybrid. The utility has three operation modes:

 Detection (-i): detects and fixes the existing FXO channels and saves the configuration to
fxotune.conf

 Dump mode (-d): generates the waveform files to fxotune_dump.vals

 Startup mode (-s): reads the file fxotune.conf and applies it to the FXO modules

It is important to understand that you will have to insert the instruction fxotune –s in the system

load before starting Asterisk:

#modprobe dahdi

#modprobe wctdm

#fxotune-s

Echo cancellation
Most echo cancellation algorithms operate by generating multiple copies of the received signal, in

which each one is delayed by a specific amount of time. The number of taps of the filter determines

the size of the echo delay that needs to be cancelled. These delayed copies are then adjusted and
subtracted from the received signal. The trick is to adjust only the delayed signal to remove the echo

without using too many CPU cycles.

From the users‘ perspective, it is important to choose an appropriate echo cancellation algorithm. The
default is MG2; however, recently two new possibilities have emerged. The commercially licensed

High Performance Echo Cancellation (HPEC) from Digium and the open-source echo cancellation

(OSLEC) developed by David Rowe. OSLEC has received significant attention lately. Check the
official page for more information http://www.rowetel.com/ucasterisk/oslec.html. To change the echo

cancellation algorithm, change the parameter echo_can to /etc/dahdi/system.conf.

For example:

echo_can=oslec

The echo cancellation in Asterisk is controlled by three parameters in the file /etc/asterisk/chan-
dahdi.conf.

http://www.rowetel.com/ucasterisk/oslec.html

 | Building a dial plan |

- 81 -

echocancel: Disables or enables echo cancellation. You should keep this feature enabled. It accepts

―yes‖ or the number of taps.

Explanation: How does echo canceling work?

Most echo canceling algorithms operate by generating multiple copies of a received signal, with each

being delayed by a small interval. This little flow is called a ―tap‖. The number of taps determines the
echo delay that can be cancelled. These copies are delayed, adjusted, and subtracted from the original

signal. The trick is to adjust the delayed signal exactly to what is necessary to remove the echo.

echocancelwhenbridged: Enables or disables the echo canceller during a pure TDM call. This is
usually not necessary.

rxgain: Adjusts the audio reception gain to either increase or decrease reception volume (-100% to

100%).

txgain: Adjusts audio transmission gain to either increase or decrease the transmission volume (-

100% to 100%).

For example:

echocancel=yes

echocancelwhenbridged=yes

txgain=-10%

rxgain=10%

Billing options

These options change how call information is recorded in the call detail records (CDR) database.

amaflags: Configures the AMA flags affecting the CDR categorization. It accepts the following
values:

 billing

 documentation

 omit

 default

accountcode: Configures an account code for a specific channel. It can contain any alphanumeric

value—usually the department or user name.

accountcode=finance

amaflags=billing

Call progress options

These items are used to acquire information about the progress of the call. In public interfaces, it may

be useful to detect the call progress and determine if it was answered or busy. The busy detection is

highly experimental and regulated by specific parameters.

busydetect=yes

busycount=4

| Chapter 4 - Analog channels |

- 82 -

busypattern=500,500

callprogress=yes

progzone=br

These parameters (above) specify whether the interface will try to detect the busy tone, how many
tones will be used for successful detection, and what is the busy pattern. The busy detection is largely

experimental, and some additional parameters can be changed in the Makefile.

To detect the answer of a call, which is essential for precise billing, it is possible to use the polarity
reversal to signal the exact answer time. This is important if you plan to charge for the call or just

wish to have precise billing for comparison. Usually you have to contact the phone company to

request this service.

answeronpolarityswitch=yes

In some countries, it is possible to detect the hang up of the call using polarity reversal as well.

hanguponpolarityswitch=yes

Options for phones

These options are used for phones connected to the FXS interfaces. All the functionalities delivered to
analog phones connected directly to the DAHDI interfaces are controlled by Asterisk.

Adsi (Analog Display Services Interface): This is a set of telecom standards used by some telcos to

offer services such as ticket buying.

cancallforward: Enables or disables call forwarding (*72 to enable and *73 to disable).

calleridcallwaiting: Enables callerid received during a call waiting indication (Yes/No).

immediate: In immediate mode, instead of providing a dial tone, the channel jumps immediately to

the ―s‖ extension in the defined context. This is used to create hotlines.

threewaycalling: Enables or disables three-way conferencing.

mailbox: Warns the user about available voicemail messages. It can be an audible sign or a visual

indicator (if the telephone supports this feature). The argument is the mailbox number.

callgroup: Group phones to dial or to pick up.

pickupgroup: Group of phones for call pickup.

DAHDI channel format.

DAHDI channels use the following format in the dial plan:

DAHDI/[g]<identifier>[c][r<cadence>]

<identifier>- Physical channel numeric identifier

[g] – Group identifier

[c] – Answer confirmation. A number is not considered until the callee press
“#”

[r] – customized ringing

[cadence] Integer from 1 to 4

 | Building a dial plan |

- 83 -

For example:

DAHDI/2 - channel 2

DAHDI/g1 - First available channel in group 1

Quiz
1. Supervision signaling includes:

A. On-hook

B. Off-hook

C. Ringing

D. Dtmf

2. Information signaling includes:

A. Dtmf

B. Dial tone

C. Invalid number

D. Ringback

E. Congestion

F. Busy

G. Pulse

3. There are two types of analog interfaces available for Asterisk: FXS and FXO. Mark the correct

answers.

A. FXS: Foreign Exchange Station can be connected directly to the company‘s PBX extension
port.

B. FXO: Foreign Exchange Office can be connected to the public switched telephony network.

C. FXS: Foreign Exchange Station provides a dial tone and can be connected to a standard

analog phone.

4. To configure DAHDI hardware, you should first edit the ______ file.

A. /etc/dahdi/system.conf

B. /etc/asterisk/chan_dahdi.conf

C. /etc/asterisk/unicall.conf

D. serial.conf

5. The DAHDI hardware is independent of Asterisk. In the chan_dahdi.conf, you configure Asterisk

channels, not the hardware itself.

A. True

| Chapter 4 - Analog channels |

- 84 -

B. False

6. When using a TDM400 with an ___ port, is necessary to connect the PC power source to the card

using a specific connector (similar to the one used to power the hard disk).

A. FXO

B. FXS

C. E+M

D. ISDN

7. Echo, pops, and noise in a DAHDI card are often related to the:

A. Asterisk compilation

B. Cable problems

C. PCI Interrupt conflicts

D. Electromagnetic interference

8. When a card presents problems with echo, what you can do? (check all that apply)

A. Change tx and rx gains

B. Change the echo cancellation algorithm (oslec, mg2)

C. Use hardware echo cancellation

D. Activate call progress detection

E. Invert the tip and ring

9. In some cases, when you want a precise billing using analog channels, it is important to activate a

feature that allows the precise detection of the moment when the call answer occurred. To do this, you

should activate _________ on Asterisk and at the phone company.

A. Answer reversal

B. Billing reversal

C. Charge reversal

D. Polarity reversal

E. Dial tone generation

10. Caller ID identification on analog lines is country dependent. The most frequently used standard
for North America is:

A. v.23

B. dtmf

C. polarity reversal

D. battery reversal

 | Building a dial plan |

- 85 -

5
Digital channels

Digital channels are extremely common, so you will need to learn how to implement these channels if
you want to focus on large customers. When the number of channels is high—usually more than 8—it

is fairly common to use digital interfaces such as T1/E1/J1. T1 is very common in the US, whereas

E1 is common in Europe and J1 in Japan. These types of channels allow for a good density of
circuits—24 per T1 channel and 30 for E1 channels. In Latin America, China, and Africa, it is

common to use a type of channel associated signaling (CAS) known as MFC/R2. This chapter will

examine how to implement MFC/R2 using the library OpenR2. In the US and Europe, Integrated

Services Digital Networks (ISDN) PRI is the most common signaling. The chapter will also discuss
ISDN Basic Rate Interface (BRI), which is very common in Europe in mid-range applications. All

examples in the book concentrate on DAHDI channels. Some cards are implemented using

proprietary channels, so please check with your manufacturer for further details on how to configure
your specific card.

Objectives
By the end of this chapter you will be able to:

 Recognize the main terms used in digital telephony

 Differentiate CAS and CCS signaling

 Differentiate R2 and ISDN signaling

 Configure interfaces with ISDN signaling

 Configure interfaces with R2 signaling

E1/T1 digital lines
Digital lines E1/T1 are an option whenever you need to implement a large number of channels. A

single E1 circuit is capable of 30 simultaneous calls, and you may have features such as direct inward
dial (DID), Caller ID (caller identification), and advanced signaling. The E1/T1 line may arrive at

your company in several ways using twisted pair, fiber, and microwaves, depending on your country.

 | E1/T1 digital lines |

- 87 -

TELCO

UTP

HDSL modem (E1)

Direct connection to the card (T1)

Optical Fiber

Optical Mux

n x T1/E1

Microwave Link

How E1/T1s are provisioned

Radio Mux

n x T1/E1

Digital lines are delivered to your company using UTP, fiber, or microwaves. Modems and

multiplexors (MUX) are used to deliver the physical line. The connection to a T1 line is always based
in an RJ45 connector. However, E1 lines may be provisioned as well using BNC. It is very important

to know the type of connector you are going to receive in advance, mainly in E1 lines. Usually all the

equipment up to the RJ45 is provided by the TELCO.

3

1 2

UTP or BNC ?

How is the voice converted to bits?
The analog signal is sampled 8,000 times per second to create a digital version of the analog voice.

This encoding is known as pulse code modulation (PCM). In the US and Japan, the signal is encoded

using law (in Asterisk, referred to as ulaw). In the rest of the world, the encoding is alaw.

| Chapter 5 - Digital channels |

- 88 -

Time Division Multiplexing
Analog lines make sense when you need just a few channels. When using time division multiplexing

(TDM), it is possible to stuff multiple channels into a single data connection. When you want a large

number of circuits, the phone company will usually provide you with a digital trunk, which is a data
circuit in which the voice is transported in a digital format using PCM. Each timeslot uses 64 Kbps of

bandwidth to transport a single voice channel.

 | E1/T1 digital lines |

- 89 -

In the US, the most common digital trunk is T1, which has 24 available lines; in Europe and Latin

America, E1 trunks have 30 lines. Some companies provide a fractional T1/E1 with fewer channels.

Robbed bit signaling

Sometimes a T1 trunk uses a robbed bit scheme where one bit is borrowed for signaling. On T1

trunks, the data/voice channel is transmitted with 56 Kbps on each timeslot. As you may observe,
when you use the robbed bit, the T1 circuit does not lose two slots for synchronization and signaling.

T1/E1 Line code
T1s and E1s are actually data circuits and have a data coding that determines the way in which the

bits are interpreted. For E1s, the most common line code is HDB3 for layer 1 and CCS for layer 2.

The easiest way to know how your digital trunk is configured is to ask the TELCO about this

information. You will need this information to configure the file /etc/dahdi/system.conf.

T1/E1 Signaling
It is important to understand that T1/E1 lines may be delivered using different kinds of signaling,

such as:

 T1 with robbed bit signaling

 T1 with ISDN signaling

 E1 with MFC/R2 (CAS - Channel Associated Signaling)

 E1 with ISDN signaling

ISDN is often used in Europe and the US. It is a digital voice network, standardized by the

International Telecommunications Union (ITU) in 1984. ISDN provides two kinds of channels:

 Bearer channels

o Voice

o Data

 Data channels

o Out of band signaling

o LAPD signaling

o Q.931

Usually, an ISDN line is provided using two physical means:

 Basic rate interface (BRI)

o Known as 2B+D
o Two bearer (64K) channels and a data (16K) channel

o Uses a pair of copper wires with 148Kbps.

 Primary rate interface (PRI)

o Delivered using a T1/E1 trunk
o 23B+D for T1s

| Chapter 5 - Digital channels |

- 90 -

o 30B+D for E1s

Sometimes, E1 circuits use a CAS signaling scheme called MFC/R2, which was defined by the ITU
as a standard known as Q.421/Q441. This is frequently found in Latin America and Asia. Several

telephony companies in these countries use customized variants of MFC/R2. Hence, you will need to

know the correct country variation in order to make it work.

ISDN BRI
Channels using ISDN BRI signalling are very popular in Europe. Most ISDN BRI cards for Asterisk

supports an S/T interface with NT and TE capabilities. The TE (terminal) connection is the one used
to connect to the TELCO or to other PBXs configured as network termination (NT). The NT is used

to connect phones and PBXs configured as TE. ISDN BRI provides two data/voice channels and one

signalling channel. ISDN BRI cards are available from several vendors of interface cards for Asterisk.

Choosing a telephony card for your Asterisk server
There are several manufacturers for digital cards compatible with Asterisk. The choice of a card

depends on some of the following factors:

Data bus

There are several types of bus on your PC. It is very important that you have the right card for your
server. The following overview outlines the most frequently used cards:

 32 Bits PCI 5V found in most computers, including desktops

o Digium TE405, TE407, TE205, TE207, TE120, TE122, B410, TDM2400,

TDM800, TDM410, and TC400

o Sangoma A101, A102, and A104

 32/64 bits PCI 3.3V, basically found in servers

o Digium TE410, TE412, TE210, TE212, TE120, TE122, B410, TDM2400,

TDM800, TDM410, and TC400

 PCI Express found on desktops and servers

o Digium TE420, TE220, TE121, AEX2400, and AEX800

o Sangoma A101, A102, and A104

 MiniPCI found on embedded systems

o OpenVOX A100M(FXO), B100M(ISDN BRI), B200M(ISDN BRI), and

B400M(ISDN BRI)

 USB 2.0 found in most modern PCs. Solutions based on USB allow a great density of

analog and digital channels. This bus supports 480 Mbps, and each voice channel

occupies 64 Kbps. When using USB hubs, it is possible to get densities up to a thousand
analog ports in a single port.

 | Using hardware echo cancellation |

- 91 -

o Xorcom Astribank (FXS, FXO, E1-ISDN, E1-R2)

 Etherne t. The biggest advantage of Ethernet is to allow the card to be connected by more

than one server. High availability solutions are usually the core application for these

devices. The strength of this solution is the use of servers without free PCI slots or blade

servers.

o Redfone FoneBridge (up to four E1 circuits)

Using hardware echo cancellation
Hardware echo cancellation reduces the load in the host CPU. For cards with more than a single E1

interface, hardware echo cancellation can help alleviate your processor. New enhanced software echo
cancellers such as the OSLEC are reducing the need for a hardware echo canceller. To choose

between hardware and software echo cancellers, you should consider the amount of processing power

available in your server and the number of E1 circuits. An echo cancellation process may use up to
nine MIPS (millions of instructions per second) per voice channel with 128 taps of amplitude using

OSLEC (Reference: Xorcom Ltd.). If you consider 1 CPU cycle per each instruction (which is not

always correct based on the processor and software implementation itself), we are speaking of 1.080

Ghz for four E1s.

Type of signaling

Selecting the type of signaling (e.g., T1 CAS, T1 PRI, E1 CAS R2, or E1 CAS ISDN) is not an easy
task. It really depends on what you have available in your area and at what price. Common Channel

Signaling (CCS) is often better than channel associated signaling (CAS). However, it is often not

available. In the US, you can usually choose, as most TELCOS offer T1 CAS for regular users and T1
PRI for advanced users (e.g., call centers). In Latin America, E1 CAS R2 is prevalent, but ISDN PRI

is available in some cities.

| Chapter 5 - Digital channels |

- 92 -

Asterisktm

Asterisk chan_dahdi

/dev/dahdi

dahdi kernel driver

Interface kernel driver

Libpri LibopenR2 Libss7

DAHDI Architecture

Implementing R2 is necessary for installing a library known as OpenR2 (www.libopenr2.org),
developed by Moises Silva, and to patch Asterisk before the installation—a simple procedure shown

later in this chapter. The library has passed several tests and is in production in several of our

customers. ISDN is, in my opinion, always the best choice, if available. Some providers can have
access to signaling system 7 (SS7), which is a CCS signaling available between phone companies.

Proprietary and open source solutions are available for SS7. Library libss7 is used to support SS7 on

Asterisk.

Zaptel and DAHDI
Recently, because of a dispute over the trademark Zaptel™, Digium has changed the name of its

drivers. In this version of the book, we use the new DAHDI drivers because the old ZAPTEL drivers
will no longer be maintained. The file UPGRADE.txt in the source code details the differences.

Asterisk telephony channels setup
Configuring a telephony interface card involves several necessary steps. In this chapter, we will show
three of the most common scenarios:

 Digital connection using ISDN PRI

 Digital connection using ISDN BRI

 Digital connection using MFC/R2

There are two ways to configure DAHDI channels. The first one is to configure it manually with full

control of all parameters. The second way is to use the utility dahdi_genconf to detect and configure
the cards.

http://www.libopenr2.org/

 | Asterisk telephony channels setup |

- 93 -

Automatic detection and configuration
Thanks to the DAHDI development team, we now have automatic detection and configuration of the

cards.

Step 1: To generate the configuration automatically, use the utility dahdi_genconf, which will

detect the card and generate the files /etc/dahdi/system.conf and dahdi-channels.conf.

dahdi_genconf

Step 2: In the last line of the file chan_dahdi.conf, include the file dahdi-channels.conf

#include dahdi_channels.conf

Step 3: Comment on all the unused modules in the file modules or simply use:

dahdi_genconf modules

Manual configuration

Another option is to configure the interfaces manually. Below are some examples of the configuration
for DAHDI channels.

Example #1 – Two T1/ E1 channels using ISDN

Required steps:

TE205P or TE210P installation

/etc/dahdi/system.conf file configuration

dahdi driver loading

dahdi_test utility

dahdi_cfg utility

chan_dahdi.conf file configuration

Asterisk load and testing

Step 1: TE205P installation

Before installing TE205P, it is important to understand the differences between the TE205P and

TE210P cards. The TE210P card uses a 64-bit bus powered by 3.3 volts found almost only in the
server‘s motherboards. Be careful if you specify this interface card; make sure your hardware

supports a 64-bit, 3.3V bus. The TE205P card uses a 5V PCI, which is often found in desktop

computers.

| Chapter 5 - Digital channels |

- 94 -

We have chosen the TE205P interface card with two spans for this example because it is easier to
reduce it to one-span card or to expand it to the four-span card.

Step 2: /etc/dahdi/system.conf configuration file

The configuration of TDM digital cards is a bit different from the configuration of their analog

counterparts. First, we will need to configure the board spans and then the channels. Spans are

numbered sequentially depending on the recognizing order of the cards. In other words, if you have

more than one interface card, it is hard to know what span belongs to each one.

Use dahdi_hardware to check which hardware is installed on each span.

Example #1 (2xT1 PRI)

span=1,1,0,esf,b8zs

span=2,0,0,esf,b8zs

bchan=1-23

dchan=24

bchan=25-47

dchan=48

defaultzone=us

loadzone=us

Example #2 (2xE1 PRI)

span=1,1,0,ccs,hdb3,crc4 # not always necessary, consult Telco.

span=2,0,0,ccs,hdb3,crc4

bchan=1-15, 17-31

dchan=16

bchan=33-47, 49-63

dchan=48

defaultzone=br

 | Asterisk telephony channels setup |

- 95 -

loadzone=br

Example #3 (4xBRI)

loadzone=de

defaultzone=de

span=1,1,0,ccs,ami

bchan=1,2

hardhdlc=3

span=2,0,0,ccs,ami

bchan=4,5

hardhdlc=6

span=3,0,0.ccs.ami

bchan=7,8

hardhdlc=9

span=4,0,0,ccs,ami

bchan=10,11

hardhdlc=12

Step 3: Loading kernel drivers

Check which driver you need to install using dahdi_hardware.

dahdi_hardware

pci:0000:04:02.0 wcte2xxp e159:0001 Digium Wildcard TE205P T1/E1 Board

To load use:

modprobe dahdi

modprobe wct2xxp

Step 4: Using dahdi_test, check the missing interrupts

You may verify the number of interrupt misses using the dahdi_test utility compiled with the

DAHDI cards. A number below 99.987% indicates possible problems. You will find dahdi_test in
/usr/sbin.

#./dahdi_test

Opened pseudo zap interface, measuring accuracy...

99.987793% 100.000000% 100.000000% 100.000000% 100.000000% 100.000000%
100.000000%

100.000000% 100.000000% 100.000000% 100.000000% 100.000000% 100.000000%
100.000000% 100.000000%

100.000000% 100.000000% 100.000000% 100.000000% 99.987793% 100.000000%
100.000000% 100.000000%

100.000000% 100.000000% 100.000000%

--- Results after 26 passes ---

Best: 100.000000 -- Worst: 99.987793 -- Average: 99.999061

Step 5: Using the dahdi_cfg utility

This is the correct output for dahdi_cfg for one fractional E1 (15 ports) span and two FXO ports.

#./dahdi_cfg –vvvv

Dahdi configuration

| Chapter 5 - Digital channels |

- 96 -

======================

SPAN 1: CCS/HDB3 Build-out: 0 db (CSU)/0-133 feet (DSX-1)

Channel map:

Channel 01: Clear channel (Default) (Slaves: 01)

Channel 02: Clear channel (Default) (Slaves: 02)

Channel 03: Clear channel (Default) (Slaves: 03)

Channel 04: Clear channel (Default) (Slaves: 04)

Channel 05: Clear channel (Default) (Slaves: 05)

Channel 06: Clear channel (Default) (Slaves: 06)

Channel 07: Clear channel (Default) (Slaves: 07)

Channel 08: Clear channel (Default) (Slaves: 08)

Channel 09: Clear channel (Default) (Slaves: 09)

Channel 10: Clear channel (Default) (Slaves: 10)

Channel 11: Clear channel (Default) (Slaves: 11)

Channel 12: Clear channel (Default) (Slaves: 12)

Channel 13: Clear channel (Default) (Slaves: 13)

Channel 14: Clear channel (Default) (Slaves: 14)

Channel 15: Clear channel (Default) (Slaves: 15)

Channel 16: D-channel (Default) (Slaves: 16)

16 channels configured.

Step 6: Configuration of DAHDI into the file /etc/asterisk/chan_dahdi.conf

Example #1 (2xT1)

callerid=”John Doe”<(555)555-1111>

switchtype=national

signalling =pri_cpe

context=from-pstn

group = 1

channel => 1-23

group =2

channel => 25-47

Example #2 (2xE1)

callerid=”Flavio Eduardo” <4830258580>

switchtype=euroisdn

signalling = pri_cpe

group = 1

channel => 1-15;17-31

group =2

channel => 32-46;48-62

Example #3 (4xBRI)

signaling=bri_cpe

switchtype=euroisdn

group=1

context=from-pstn

channel=>1,2,4,5,7,8,10,11

 | Troubleshooting |

- 97 -

Use signaling=bri_cpe_ptmp for point to multipoint BRI. Currently, BRI point to
multipoint is not supported in NT mode.

Loading the kernel drivers
After configuring the drivers, you may simply restart the server. If you have installed DAHDI with

make config, you won‘t need to do anything extra. The kernel driver will be automatically loaded
and configured. However, sometimes it is useful to load and unload the drivers manually.

Example:

modprobe wct11xp

dahdi_cfg –vvvvv

The first command loads the driver and the second, dahdi_cfg, applies the configuration to the

kernel driver.

Troubleshooting
Sometimes things don‘t work the first time. Let‘s check some resources for troubleshooting DAHDI.

Step 1: Check if the card is being recognized by the operation system. Digium cards are usually
recognized as the ISDN modem.

lspci –v

00:00.0 Host bridge: Intel Corporation E7230/3000/3010 Memory Controller Hub

00:01.0 PCI bridge: Intel Corporation E7230/3000/3010 PCI Express Root Port

00:1c.0 PCI bridge: Intel Corporation 82801G (ICH7 Family) PCI Express Port 1 (rev 01)

00:1c.4 PCI bridge: Intel Corporation 82801GR/GH/GHM (ICH7 Family) PCI Express Port 5 (rev

01)

00:1c.5 PCI bridge: Intel Corporation 82801GR/GH/GHM (ICH7 Family) PCI Express Port 6 (rev

01)

00:1d.0 USB Controller: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #1 (rev

01)

00:1d.1 USB Controller: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #2 (rev

01)

00:1d.2 USB Controller: Intel Corporation 82801G (ICH7 Family) USB UHCI Controller #3 (rev

01)

00:1d.7 USB Controller: Intel Corporation 82801G (ICH7 Family) USB2 EHCI Controller (rev 01)

00:1e.0 PCI bridge: Intel Corporation 82801 PCI Bridge (rev e1)

00:1f.0 ISA bridge: Intel Corporation 82801GB/GR (ICH7 Family) LPC Interface Bridge (rev 01)

00:1f.1 IDE interface: Intel Corporation 82801G (ICH7 Family) IDE Controller (rev 01)

00:1f.2 IDE interface: Intel Corporation 82801GB/GR/GH (ICH7 Family) SATA IDE Controller (rev

01)

00:1f.3 SMBus: Intel Corporation 82801G (ICH7 Family) SMBus Controller (rev 01)

01:00.0 PCI bridge: Intel Corporation 6702PXH PCI Express-to-PCI Bridge A (rev 09)

01:00.1 PIC: Intel Corporation 6700/6702PXH I/OxAPIC Interrupt Controller A (rev 09)

02:08.0 SCSI storage controller: LSI Logic / Symbios Logic SAS1068 PCI-X Fusion-MPT SAS (rev

01)

03:00.0 PCI bridge: Intel Corporation 6702PXH PCI Express-to-PCI Bridge A (rev 09)

04:02.0 Network controller: Tiger Jet Network Inc. Tiger3XX Modem/ISDN interface
05:00.0 Ethernet controller: Broadcom Corporation NetXtreme BCM5721 Gig. Eth.PCI Express (rev

11)

07:00.0 Ethernet controller: Realtek Semiconductor Co., Ltd. RTL-8139/8139C/8139C+ (rev 10)

| Chapter 5 - Digital channels |

- 98 -

07:05.0 VGA compatible controller: ATI Technologies Inc ES1000 (rev 02)

Step 2: Check if the kernel driver is loading correctly using:

modprobe wct11xp

dmesg

TE110P: Setting up global serial parameters for E1 FALC V1.2

TE110P: Successfully initialized serial bus for card

TE110P: Span configured for CAS/HDB3

Calling startup (flags is 4099)

Found a Wildcard: Digium Wildcard TE110P T1/E1

TE110P: Span configured for CCS/HDB3/CRC4

Calling startup (flags is 4099)

dahdi: Registered tone zone 0 (United States / North America)

wcte1xxp: Setting yellow alarm

Step 3: Verify the status of alarms related to the physical layer of the connection.

To verify the physical layer of the E1 connection, you may use the following console command.

dahdi show status

The alarms indicate problems with the port:

Red Alarm: Cannot maintain synchronization with the remote switch. This is usually a physical

problem, such as line code or framing mismatch.

Yellow alarm: Signals that the remote switch is in the red alarm. This indicates that the remote

switch is not receiving your transmissions.

Blue Alarm: Receives all unframed 1s on all timeslots; dahdi_tool currently does not detect a blue

alarm.

Loopback: The port is either in local or remote loopback

vtsvoffice*CLI> dahdi show status

Description Alarms IRQ bpviol CRC4

Digium Wildcard E100P E1/PRA Card 0 OK 0 0 0

Wildcard X100P Board 1 OK 0 0 0

Wildcard X100P Board 2 RED 0 0 0

Step 4: To detect problems with DAHDI on the Asterisk server, first check if the channels are being
recognized using:

CLI dahdi show channels

pabxip01*CLI> dahdi show channels

 Chan Extension Context Language MOH Interpret

 pseudo default default

 1 from-pstn default

 2 from-pstn default

 3 from-pstn default

 4 from-pstn default

 5 from-pstn default

 6 from-pstn default

 7 from-pstn default

 8 from-pstn default

 9 from-pstn default

 10 from-pstn default

 | Troubleshooting |

- 99 -

 11 from-pstn default

 12 from-pstn default

 13 from-pstn default

 14 from-pstn default

 15 from-pstn default

 17 from-pstn default

 18 from-pstn default

 19 from-pstn default

 20 from-pstn default

 21 from-pstn default

 22 from-pstn default

 23 from-pstn default

 24 from-pstn default

 25 from-pstn default

 26 from-pstn default

 27 from-pstn default

 28 from-pstn default

 29 from-pstn default

 30 2171 from-pstn default

 31 2171 from-pstn default

Step 5: Check the status of the ISDN layer 3, also known as q.931.

You can check if the ISDN layer 3 is up using:

pri show span:

vtsvoffice*CLI> pri show span 1

Primary D-channel: 16

Status: Provisioned, Up, Active

Switchtype: EuroISDN

Type: CPE

Window Length: 0/7

Sentrej: 0

SolicitFbit: 0

Retrans: 0

Busy: 0

Overlap Dial: 0

T200 Timer: 1000

T203 Timer: 10000

T305 Timer: 30000

T308 Timer: 4000

T313 Timer: 4000

N200 Counter: 3

Check a specific channel.

dahdi show channel x:

vtsvoffice*CLI> dahdi show channel 1

Channel: 1*CLI>

File Descriptor: 21

Span: 1

Extension:

Dialing: no

Context: entrada

Caller ID: 4832341689

Calling TON: 33

Caller ID name:

Destroy: 0

InAlarm: 0

| Chapter 5 - Digital channels |

- 100 -

Signalling Type: PRI Signalling

Radio: 0

Owner: <None>

Real: <None>

Callwait: <None>

Threeway: <None>

Confno: -1

Propagated Conference: -1

Real in conference: 0

DSP: no

Relax DTMF: no

Dialing/CallwaitCAS: 0/0

Default law: alaw

debug pri span x: If after everything you still have problems, start debugging the pri span. This
command enables a detailed debugging of ISDN calls. It is an important command when you think

that something is not correct. You can detect digits being misdialed and other problems. Below we

present the example of a debugging output for a successful call. Refer to this example if you need to
compare an unsuccessful call to one without problems. One tip is using core set verbose=0 to

receive just the ISDN q.931 messages.

-- Making new call for cr 32833

> Protocol Discriminator: Q.931 (8) len=57

> Call Ref: len= 2 (reference 65/0x41) (Originator)

> Message type: SETUP (5)

> [04 03 80 90 a3]

> Bearer Capability (len= 5) [Ext: 1 Q.931 Std: 0 Info transfer capability: Speech (0)

> Ext: 1 Trans mode/rate: 64kbps, circuit-mode (16)

> Ext: 1 User information layer 1: A-Law (35)

> [18 03 a9 83 81]

> Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Exclusive Dchan: 0

> ChanSel: Reserved

> Ext: 1 Coding: 0 Number Specified Channel Type: 3

> Ext: 1 Channel: 1]

> [28 0e 46 6c 61 76 69 6f 20 45 64 75 61 72 64 6f]

> Display (len=14) @h@>[Flavio Eduardo]

> [6c 0c 21 80 34 38 33 30 32 35 38 35 39 30]

> Calling Number (len=14) [Ext: 0 TON: National Number (2) NPI: ISDN/Telephony Numbering

Plan (E.164/E.163) (1)

> Presentation: Presentation permitted, user number not screened

(0) '4830258590']

> [70 09 a1 33 32 32 34 38 35 38 30]

> Called Number (len=11) [Ext: 1 TON: National Number (2) NPI: ISDN/Telephony Numbering

Plan (E.164/E.163) (1) '32248580']

> [a1]fice*CLI>

> Sending Complete (len= 1)

< Protocol Discriminator: Q.931 (8) len=10

< Call Ref: len= 2 (reference 65/0x41) (Terminator)

< Message type: CALL PROCEEDING (2)

< [18 03 a9 83 81]

< Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Exclusive Dchan: 0

< ChanSel: Reserved

< Ext: 1 Coding: 0 Number Specified Channel Type: 3

< Ext: 1 Channel: 1]

-- Processing IE 24 (cs0, Channel Identification)

< Protocol Discriminator: Q.931 (8) len=9

< Call Ref: len= 2 (reference 65/0x41) (Terminator)

< Message type: ALERTING (1)

< [1e 02 84 88]

 | Troubleshooting |

- 101 -

< Progress Indicator (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location:

Public network serving the remote user (4)

< Ext: 1 Progress Description: Inband information or

appropriate pattern now available. (8)]

-- Processing IE 30 (cs0, Progress Indicator)

< Protocol Discriminator: Q.931 (8) len=64

< Call Ref: len= 2 (reference 5720/0x1658) (Originator)

< Message type: SETUP (5)

< [04 03 80 90 a3]

< Bearer Capability (len= 5) [Ext: 1 Q.931 Std: 0 Info transfer capability: Speech (0)

< Ext: 1 Trans mode/rate: 64kbps, circuit-mode (16)

< Ext: 1 User information layer 1: A-Law (35)

< [18 03 a1 83 82]

< Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Preferred Dchan: 0

< ChanSel: Reserved

< Ext: 1 Coding: 0 Number Specified Channel Type: 3

< Ext: 1 Channel: 2]

< [1c 15 91 a1 12 02 01 bc 02 01 0f 30 0a 02 01 01 0a 01 00 a1 02 82 00]

< Facility (len=23, codeset=0) [0x91, 0xa1, 0x12, 0x02, 0x01, 0xbc, 0x02, 0x01, 0x0f, '0',

0x0a, 0x02, 0x01, 0x01, 0x0a, 0x01, 0x00, 0xa1, 0x02, 0x82, 0x00]

< [1e 02 82 83]

< Progress Indicator (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location:

Public network serving the local user (2)

< Ext: 1 Progress Description: Calling equipment is non-ISDN.

(3)]

< [6c 0c 21 83 34 38 33 32 32 34 38 35 38 30]

< Calling Number (len=14) [Ext: 0 TON: National Number (2) NPI: ISDN/Telephony Numbering

Plan (E.164/E.163) (1)

< Presentation: Presentation allowed of network provided number (3)

'4832248580']

< [70 05 c1 38 35 38 30]

< Called Number (len= 7) [Ext: 1 TON: Subscriber Number (4) NPI: ISDN/Telephony Numbering

Plan (E.164/E.163) (1) '8580']

< [a1]

< Sending Complete (len= 1)

-- Making new call for cr 5720

-- Processing Q.931 Call Setup

-- Processing IE 4 (cs0, Bearer Capability)

-- Processing IE 24 (cs0, Channel Identification)

-- Processing IE 28 (cs0, Facility)

Handle Q.932 ROSE Invoke component

-- Processing IE 30 (cs0, Progress Indicator)

-- Processing IE 108 (cs0, Calling Party Number)

-- Processing IE 112 (cs0, Called Party Number)

-- Processing IE 161 (cs0, Sending Complete)

> Protocol Discriminator: Q.931 (8) len=10

> Call Ref: len= 2 (reference 5720/0x1658) (Terminator)

> Message type: CALL PROCEEDING (2)

> [18 03 a9 83 82]

> Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Exclusive Dchan: 0

> ChanSel: Reserved

> Ext: 1 Coding: 0 Number Specified Channel Type: 3

> Ext: 1 Channel: 2]

> Protocol Discriminator: Q.931 (8) len=14

> Call Ref: len= 2 (reference 5720/0x1658) (Terminator)

> Message type: CONNECT (7)

> [18 03 a9 83 82]

> Channel ID (len= 5) [Ext: 1 IntID: Implicit, PRI Spare: 0, Exclusive Dchan: 0

> ChanSel: Reserved

> Ext: 1 Coding: 0 Number Specified Channel Type: 3

> Ext: 1 Channel: 2]

| Chapter 5 - Digital channels |

- 102 -

> [1e 02 81 82]

> Progress Indicator (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location:

Private network serving the local user (1)

> Ext: 1 Progress Description: Called equipment is non-ISDN.

(2)]

< Protocol Discriminator: Q.931 (8) len=5

< Call Ref: len= 2 (reference 5720/0x1658) (Originator)

< Message type: CONNECT ACKNOWLEDGE (15)

< Protocol Discriminator: Q.931 (8) len=9

< Call Ref: len= 2 (reference 65/0x41) (Terminator)

< Message type: PROGRESS (3)

< [1e 02 84 82]

< Progress Indicator (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location:

Public network serving the remote user (4)

< Ext: 1 Progress Description: Called equipment is non-ISDN.

(2)]

-- Processing IE 30 (cs0, Progress Indicator)

< Protocol Discriminator: Q.931 (8) len=5

< Call Ref: len= 2 (reference 65/0x41) (Terminator)

< Message type: CONNECT (7)

> Protocol Discriminator: Q.931 (8) len=5

> Call Ref: len= 2 (reference 65/0x41) (Originator)

> Message type: CONNECT ACKNOWLEDGE (15)

NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Active, peerstate Connect Request

> Protocol Discriminator: Q.931 (8) len=9

> Call Ref: len= 2 (reference 65/0x41) (Originator)

> Message type: DISCONNECT (69)

> [08 02 81 90]

> Cause (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location: Private network

serving the local user (1)

> Ext: 1 Cause: Unknown (16), class = Normal Event (1)]

< Protocol Discriminator: Q.931 (8) len=5

< Call Ref: len= 2 (reference 65/0x41) (Terminator)

< Message type: RELEASE (77)

NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Null, peerstate Release Request

> Protocol Discriminator: Q.931 (8) len=9

> Call Ref: len= 2 (reference 65/0x41) (Originator)

> Message type: RELEASE COMPLETE (90)

> [08 02 81 90]

> Cause (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location: Private network

serving the local user (1)

> Ext: 1 Cause: Unknown (16), class = Normal Event (1)]

NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Null, peerstate Null

NEW_HANGUP DEBUG: Destroying the call, ourstate Null, peerstate Null

< Protocol Discriminator: Q.931 (8) len=9

< Call Ref: len= 2 (reference 5720/0x1658) (Originator)

< Message type: DISCONNECT (69)

< [08 02 82 90]

< Cause (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location: Public network

serving the local user (2)

< Ext: 1 Cause: Unknown (16), class = Normal Event (1)]

-- Processing IE 8 (cs0, Cause)

NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Disconnect Indication, peerstate Disconnect

Request

> Protocol Discriminator: Q.931 (8) len=9

> Call Ref: len= 2 (reference 5720/0x1658) (Terminator)

> Message type: RELEASE (77)

> [08 02 81 90]

> Cause (len= 4) [Ext: 1 Coding: CCITT (ITU) standard (0) 0: 0 Location: Private network

serving the local user (1)

 | Configuration options in chan_dahdi.conf |

- 103 -

> Ext: 1 Cause: Unknown (16), class = Normal Event (1)]

< Protocol Discriminator: Q.931 (8) len=5

< Call Ref: len= 2 (reference 5720/0x1658) (Originator)

< Message type: RELEASE COMPLETE (90)

NEW_HANGUP DEBUG: Calling q931_hangup, ourstate Null, peerstate Null

NEW_HANGUP DEBUG: Destroying the call, ourstate Null, peerstate Null

Configuration options in chan_dahdi.conf
Several options are available in the file chan_dahdi.conf. A description of all options would be

boring and counterproductive. Here, we will detail the main option groups available to provide a
better understanding.

General options (channel independent)

context: Defines the incoming context.

context=default

channel: Defines channel or channel range. Each channel definition will inherit options defined

before the declaration. Channels can be identified individually or in the same line with comma

separation. Ranges can be defined using ―-‖.

Channel=>1-15

Channel=>16

Channel=>17,18

group: Allows channels to be treated as a group. If you dial a group number instead of a channel
number, the first channel available is used. If channels are phones, when you call a group, all phones

will ring simultaneously. Using commas, you can specify more than one group for the same channel.

group=1

group=3,5

language: Turns on the internationalization and configures a language. This feature will configure

system messages for a specific language. English is the only language with complete prompts
available from the standard installation.

musiconhold: Select music on hold class.

ISDN options

switchtype: Is dependent on the PBX or switch used. In Europe and Latin America, EuroISDN is
common.

 5ess: Lucent 5ESS

 euroisdn: EuroISDN

 national: National ISDN

 dms100: Nortel DMS100

 4ess: AT&T 4ESS

| Chapter 5 - Digital channels |

- 104 -

 Qsig: Q.SIG

switchtype = EuroISDN

pridialplan: Required for some switches that need a dial plan specification. This option is ignored by
many switches. The valid options are private, national, international, and unknown.

pridialplan = unknown

prilocaldialplan: Necessary for some switches, usually unknown.

prilocaldialplan = unknown

overlapdial: Overlap dialing is used when you pass digits after the connection is established. You
can use block mode numbering (overlapdial=no) or digit mode (overlapdial=yes). Block mode is

often used by operators.

signaling: Configures the signaling type for the subsequent channels. These parameters should
correspond to those in the chan_dahdi.conf file. Correct choices are based on the available channel.

For ISDN you might choose five options:

 pri_cpe: Used when the device is a CPE, sometimes referred to as client, user, or slave. This

is the simplest and most used form of signaling. Sometimes, when you try to connect to a

private PBX, the PBX has commonly been configured as a CPE as well. In this case, use

pri_net signaling in Asterisk.

 pri_net: Used when Asterisk is connected to a private PBX configured as a CPE. The

signaling is often referred to as host, master, or network.

 bri_cpe: Used when Asterisk is connected as a CPE to a ISDN BRI trunk

 bri_net: Used when Asterisk is connected to an ISDN phone or PBX configured as a

terminal (TE).

 bri_cpe_ptmp: Sames as bri_cpe, but in a point-to-multipoint architecture.

CallerID options
Many Caller ID options are available. Some can be disabled, although most are enabled by default.

usecallerid: Enables or disables the Caller ID transmission for the subsequent channels (Yes/No).

Note: If your system requires two rings before answering, try disabling this feature so that it

will answer immediately.

hidecallerid: Hides the Caller ID (Yes/No).

calleridcallwaiting: Enables receiving Caller ID during a call waiting indication (Yes/No).

callerid: Configures a Caller ID string for a specific channel. The caller can be configured with

―asreceived‖ in trunk interfaces to pass the Caller ID forward.

callerid = "Flavio Eduardo Gonçalves" <48 30258500>

 | Configuration options in chan_dahdi.conf |

- 105 -

Note: Most TELCOs mandate that you configure your correct caller ID. If you do not pass the
right caller ID, you shouldn‘t be able to dial out over the TELCO. On the other hand, you will

be able to receive calls even without configuring the caller ID.

Audio quality options
These options adjust certain Asterisk parameters that affect audio quality in DAHDI channels.

echocancel: Disable or enable echo cancellation. You should keep this feature enabled. It accepts

―yes‖ or the number of taps.

Explanation: How does echo canceling work?

Most echo canceling algorithms operate by generating multiple copies of a received signal, with each
being delayed by a small interval. This little flow is named ―tap‖. The number of taps determines the

echo delay that can be cancelled. These copies are delayed, adjusted, and subtracted from the original

signal. The trick is to adjust the delayed signal exactly to what is necessary to remove the echo.

echocancelwhenbridged: Enables or disables the echo canceller during a pure TDM call. This is

usually not required.

rxgain: Adjusts the audio reception gain to either increase or decrease reception volume (-100% to
100%).

txgain: Adjusts audio transmission gain to either increase or decrease the transmission volume (-

100% to 100%).

Example:

echocancel=yes

echocancelwhenbridged=yes

txgain=-10%

rxgain=10%

Billing options
These options change the way in which call information is recorded in the call detail records (CDR)

database.

amaflags: Affects the categorization of CDR. It accepts these values:

 billing

 documentation

 omit

 default

accountcode: It configures an account code for a specific channel. It can contain any alphanumeric

value, usually the department or user name.

accountcode=finance

| Chapter 5 - Digital channels |

- 106 -

amaflags=billing

MFC/R2 configuration
MFC/R2 is used in several countries in Latin America, China, and Africa as well as some European

countries. ISDN is superior and preferred if available in your area.

Understanding the problem

The card used to signal MFC/R2 is the same used to signal ISDN. It‘s possible to use MFC/R2 on

DAHDI channels using the library called libopenR2 (www.libopenr2.com). This library was not part
of versions of Asterisk prior to 1.6.2; to install it, patch the Asterisk code before compiling—an easy

procedure shown in this section.

Understanding the MFC/R2 protocol

The MFC/R2 protocol combines in-band and out-of-band signaling. Address signaling is forwarded
in-band using a set of tones while channel information is transmitted over timeslot 16 as out-of-band

signaling.

Line Signaling (ITU-T Q.421)

In timeslot 16, each voice channel uses four ABCD bits to signal its states and call control. Bits C and

D are rarely used. In some countries, they can be used for metering (pulse metering for billing). In a
normal conversation, we have both sides working: the caller and the called side. Signaling from the

caller side is referred to as forward signaling while the called side uses backward signaling. We will

designate Af and Bf for forwarding signaling and Ab and Bb for backward signaling.

State ABCD forward ABCD backward

Idle/Released 1001 1001

Seized 0001 1001

Seize Ack 0001 1101

Answered 0001 0101

ClearBack 0001 1101

ClearFwd (Before clear-back) 1001 0101

ClearFwd (disconnection confirmation) 1001 1001

Blocked 1001 1101

MFC/R2 was defined by the ITU. Unfortunately, several countries customized the standard to their

own needs. As a result, variations emerged in standards between countries.

Inter-register signals (ITU-T Q.441)

MFC/R2 signaling uses a combination of two tones. The table below shows the ITU standard.

http://www.libopenr2.com/

 | MFC/R2 configuration |

- 107 -

Signal group I (Forward)

Signal Description Forward signal

1 Digit 1 I-1

2 Digit 2 I-2

3 Digit 3 I-3

4 Digit 4 I-4

5 Digit 5 I-5

6 Digit 6 I-6

7 Digit 7 I-7

8 Digit 8 I-8

9 Digit 9 I-9

10 Digit 0 I-10

11 Country code indicator, outgoing half-echo suppressor required I-11

12 Country code indicator, no echo suppressor required I-12

13 Test call indicator I-13

14 Country code indicator, outgoing half-echo suppressor inserted I-14

15 Not used I-15

Signal group II (Forward)

Signal Description Forward signal

1 Subscriber without priority II-1

2 Subscriber with priority II-2

3 Maintenance equipment II-3

4 Spare II-4

5 Operator II-5

6 Data Transmission II-6

7 Subscriber or operator without forward transfer facility II-7

8 Data transmission II-8

9 Subscriber with priority II-9

10 Operator with forward transfer facility II-10

11 Spare II-11

| Chapter 5 - Digital channels |

- 108 -

12 Spare II-12

13 Spare II-13

14 Spare II-14

15 Spare II-15

Signal group A (backwards)

Signal Description Backward signal

1 Send next digit (n+1) A-1

2 Send last but one digit (n-1) A-2

3 Address complete, changeover to reception of Group B signals A-3

4 Congestion in the national network A4

5 Send calling party‘s category A5

6 Address complete, charge, set-up speech conditions A6

7 Send last but two digit (n-2) A7

8 Send last but three digit (n-3) A8

9 Spare A9

10 Spare A10

11 Send country code indicator A11

12 Send language or discrimination digit A12

13 Send nature of circuit A13

14 Request information on use of echo suppressor A14

15 Congestion in an international exchange or at its output A15

Signal group B (backwards)

Signal Description Backward signal

1 Spare B1

2 Send special information tone B2

3 Subscriber‘s line busy B3

4 Congestion (after changeover group A to B) B4

5 Unallocated number B5

6 Subscriber‘s line free, charge B6

7 Subscriber‘s line free, no charge B7

 | MFC/R2 configuration |

- 109 -

8 Subscriber‘s line out of order B8

9 Spare B9

10 Spare B10

11 Spare B11

12 Spare B12

13 Spare B13

14 Spare B14

15 Spare B15

MFC/R2 sequence

The following sequence illustrates a call originating from an Asterisk‘s extension to a terminal in the
PSTN. The PSTN drops the call and ends the communication.

| Chapter 5 - Digital channels |

- 110 -

How to use the driver libopenr2
The project initiated by Moises Silva was inspired on the Unicall channel driver written by Steve

Underwood. The OpenR2 library is currently the most stable software solution for Asterisk. With this
solution, we may use any digital card compatible with DAHDI. Previously, only proprietary solutions

were available for MFC/R2, one of the best I have used is the one made available by Khomp,

www.khomp.com.br. In the previous installation of Asterisk 1.6.2, we installed the OpenR2, so you

http://www.khomp.com.br/

 | How to use the driver libopenr2 |

- 111 -

should have it installed and may go directly to the step four. If you want to install OpenR2 for

Asterisk 1.4, follow the instructions below:

Step 1: Check the patches for the version of Asterisk you want to install.

apt-get install subversion

Step2: Download the modified Asterisk code with the patch installed.

cd /usr/src

svn checkout http://svn.digium.com/svn/asterisk/team/moy/mfcr2/asterisk-1.4-openr2

Step 3: Compile and install

Please, BACK UP your server before proceeding.

cd asterisk-1.4-openr2

./configure && make && make install

Note: Do not execute ―make samples‖ to avoid overwriting your configuration files.

Step 4: Changing the file /etc/dahdi/system.conf:

vim /etc/dahdi/system.conf

Let‘s suppose you have a card with one E1 interface.

span=1,1,0,cas,hdb3

cas=1-15:1101

cas=17-31:1101

dchan=16

loadzone=br

defaultzone=br

Step 5: Run the command dahdi_cfg to apply the changes to the driver:

dahdi_cfg –vvvvvvvv

Dahdi Version:SVN-branch-1.4-r4348

Echo Canceller: MG2

Configuration

======================

SPAN 1: CAS/HDB3 Build-out: 0 db (CSU)/0-133 feet (DSX-1)

Channel map:

Channel 01: CAS / User (Default) (Slaves: 01)

Channel 02: CAS / User (Default) (Slaves: 02)

Channel 03: CAS / User (Default) (Slaves: 03)

Channel 04: CAS / User (Default) (Slaves: 04)

Channel 05: CAS / User (Default) (Slaves: 05)

Channel 06: CAS / User (Default) (Slaves: 06)

Channel 07: CAS / User (Default) (Slaves: 07)

Channel 08: CAS / User (Default) (Slaves: 08)

Channel 09: CAS / User (Default) (Slaves: 09)

Channel 10: CAS / User (Default) (Slaves: 10)

Channel 11: CAS / User (Default) (Slaves: 11)

http://svn.digium.com/svn/asterisk/team/moy/mfcr2-1.4/asterisk-1.4-openr2

| Chapter 5 - Digital channels |

- 112 -

Channel 12: CAS / User (Default) (Slaves: 12)

Channel 13: CAS / User (Default) (Slaves: 13)

Channel 14: CAS / User (Default) (Slaves: 14)

Channel 15: CAS / User (Default) (Slaves: 15)

Channel 16: D-channel (Default) (Slaves: 16)

Channel 17: CAS / User (Default) (Slaves: 17)

Channel 18: CAS / User (Default) (Slaves: 18)

Channel 19: CAS / User (Default) (Slaves: 19)

Channel 20: CAS / User (Default) (Slaves: 20)

Channel 21: CAS / User (Default) (Slaves: 21)

Channel 22: CAS / User (Default) (Slaves: 22)

Channel 23: CAS / User (Default) (Slaves: 23)

Channel 24: CAS / User (Default) (Slaves: 24)

Channel 25: CAS / User (Default) (Slaves: 25)

Channel 26: CAS / User (Default) (Slaves: 26)

Channel 27: CAS / User (Default) (Slaves: 27)

Channel 28: CAS / User (Default) (Slaves: 28)

Channel 29: CAS / User (Default) (Slaves: 29)

Channel 30: CAS / User (Default) (Slaves: 30)

Channel 31: CAS / User (Default) (Slaves: 31)

31 channels to configure.

Step 5: Change the file chan_dahdi.conf

vim /etc/asterisk/chan_dahdi.conf

[channels]
usecallerid=yes
callwaiting=yes
usecallingpres=yes
callwaitingcallerid=yes
threewaycalling=yes
transfer=yes
canpark=yes
cancallforward=yes
callreturn=yes
echocancel=yes
echotrainning=yes
echocancelwhenbridged=yes

signalling=mfcr2
mfcr2_variant=br
mfcr2_get_ani_first=no
mfcr2_max_ani=20
mfcr2_max_dnis=4
mfcr2_category=national_subscriber
mfcr2_logdir=span1
mfcr2_logging=all

group=1
callgroup=1
pickupgroup=1
callerid=asreceived
context=from-mfcr2
channel => 1-15,17-31

Step 6: Change the dial plan in the file extensions .conf

vim /etc/asterisk/extensions.conf

 | How to use the driver libopenr2 |

- 113 -

[default]

exten => _XXXXXXXX,1,Set(CALLERID(num)=1145678990)

exten => _XXXXXXXX,n,Dial(ZAP/g1/${EXTEN},60,tT)

Note: Some TELCOS do not accept calls without the caller ID. Please set the caller ID to one of the
DID numbers assigned by the operator. In some countries, this step is not required.

Step 7: Test the solution:

Now, with an extension in the context from-internal, call any number and observe the console.

Check to see if any errors are occurring.

-- Executing Set("SIP/8564-081ca5d8", "CALLERID(num)=1145678990") in new stack
-- Executing Dial("SIP/8564-081ca5d8", "ZAP/g1/35678899|60|tT") in new stack

Debugging OpenR2

To detect errors in the calls, you can activate the debug. To do this, follow the steps below.

Step 1: Edit the file chan_dahdi.conf and add the following three lines to the configuration:

mfcr2_logdir=span1

mfcr2_logging=all

mfcr2_call_files=yes

Step 2: Restart the Asterisk server

Step 3: Test the call and check the call files at /var/log/asterisk/mfcr2/span1

Below is a trace for a normal call. Compare it to what you receive in your call.

[15:05:47:710] [Thread: 3078019984] [Chan 1] - Call started at Mon Jul 6 15:05:47 2009 on

chan 1

[15:05:47:710] [Thread: 3078019984] [Chan 1] - CAS Tx >> [SEIZE] 0x00

[15:05:47:710] [Thread: 3078019984] [Chan 1] - CAS Raw Tx >> 0x01

[15:05:47:951] [Thread: 3078019984] [Chan 1] - Bits changed from 0x08 to 0x0C

[15:05:47:951] [Thread: 3078019984] [Chan 1] - CAS Rx << [SEIZE ACK] 0x0C

[15:05:47:951] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 2

[15:05:47:951] [Thread: 3078019984] [Chan 1] - timer id 2 found, cancelling it now

[15:05:47:951] [Thread: 3078019984] [Chan 1] - Sending DNIS digit 3

[15:05:47:951] [Thread: 3078019984] [Chan 1] - MF Tx >> 3 [ON]

[15:05:48:070] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [ON]

[15:05:48:070] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:48:070] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:48:070] [Thread: 3078019984] [Chan 1] - MF Tx >> 3 [OFF]

[15:05:48:150] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [OFF]

[15:05:48:150] [Thread: 3078019984] [Chan 1] - Sending DNIS digit 0

[15:05:48:150] [Thread: 3078019984] [Chan 1] - MF Tx >> 0 [ON]

[15:05:48:150] [Thread: 3078019984] [Chan 1] - Group A DNIS request handled

[15:05:48:250] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [ON]

[15:05:48:250] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:48:250] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:48:250] [Thread: 3078019984] [Chan 1] - MF Tx >> 0 [OFF]

[15:05:48:350] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [OFF]

[15:05:48:350] [Thread: 3078019984] [Chan 1] - Sending DNIS digit 2

[15:05:48:350] [Thread: 3078019984] [Chan 1] - MF Tx >> 2 [ON]

[15:05:48:350] [Thread: 3078019984] [Chan 1] - Group A DNIS request handled

[15:05:48:450] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [ON]

| Chapter 5 - Digital channels |

- 114 -

[15:05:48:450] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:48:450] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:48:450] [Thread: 3078019984] [Chan 1] - MF Tx >> 2 [OFF]

[15:05:48:550] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [OFF]

[15:05:48:550] [Thread: 3078019984] [Chan 1] - Sending DNIS digit 5

[15:05:48:550] [Thread: 3078019984] [Chan 1] - MF Tx >> 5 [ON]

[15:05:48:550] [Thread: 3078019984] [Chan 1] - Group A DNIS request handled

[15:05:48:650] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [ON]

[15:05:48:650] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:48:650] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:48:650] [Thread: 3078019984] [Chan 1] - MF Tx >> 5 [OFF]

[15:05:48:750] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [OFF]

[15:05:48:750] [Thread: 3078019984] [Chan 1] - Sending DNIS digit 8

[15:05:48:750] [Thread: 3078019984] [Chan 1] - MF Tx >> 8 [ON]

[15:05:48:750] [Thread: 3078019984] [Chan 1] - Group A DNIS request handled

[15:05:48:850] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [ON]

[15:05:48:850] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:48:850] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:48:850] [Thread: 3078019984] [Chan 1] - MF Tx >> 8 [OFF]

[15:05:48:950] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [OFF]

[15:05:48:950] [Thread: 3078019984] [Chan 1] - Sending DNIS digit 5

[15:05:48:950] [Thread: 3078019984] [Chan 1] - MF Tx >> 5 [ON]

[15:05:48:950] [Thread: 3078019984] [Chan 1] - Group A DNIS request handled

[15:05:49:050] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [ON]

[15:05:49:050] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:49:050] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:49:050] [Thread: 3078019984] [Chan 1] - MF Tx >> 5 [OFF]

[15:05:49:150] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [OFF]

[15:05:49:150] [Thread: 3078019984] [Chan 1] - Sending DNIS digit 8

[15:05:49:150] [Thread: 3078019984] [Chan 1] - MF Tx >> 8 [ON]

[15:05:49:150] [Thread: 3078019984] [Chan 1] - Group A DNIS request handled

[15:05:49:250] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [ON]

[15:05:49:250] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:49:250] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:49:250] [Thread: 3078019984] [Chan 1] - MF Tx >> 8 [OFF]

[15:05:49:330] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [OFF]

[15:05:49:330] [Thread: 3078019984] [Chan 1] - Sending DNIS digit 4

[15:05:49:330] [Thread: 3078019984] [Chan 1] - MF Tx >> 4 [ON]

[15:05:49:330] [Thread: 3078019984] [Chan 1] - Group A DNIS request handled

[15:05:49:590] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:49:590] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:49:590] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:49:590] [Thread: 3078019984] [Chan 1] - MF Tx >> 4 [OFF]

[15:05:49:670] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:49:670] [Thread: 3078019984] [Chan 1] - Sending category National Subscriber

[15:05:49:670] [Thread: 3078019984] [Chan 1] - MF Tx >> 1 [ON]

[15:05:49:770] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:49:770] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:49:770] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:49:770] [Thread: 3078019984] [Chan 1] - MF Tx >> 1 [OFF]

[15:05:49:850] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:49:850] [Thread: 3078019984] [Chan 1] - Sending ANI digit 4

[15:05:49:850] [Thread: 3078019984] [Chan 1] - MF Tx >> 4 [ON]

[15:05:49:930] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:49:930] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:49:930] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:49:930] [Thread: 3078019984] [Chan 1] - MF Tx >> 4 [OFF]

[15:05:50:030] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:50:030] [Thread: 3078019984] [Chan 1] - Sending ANI digit 8

[15:05:50:030] [Thread: 3078019984] [Chan 1] - MF Tx >> 8 [ON]

 | How to use the driver libopenr2 |

- 115 -

[15:05:50:130] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:50:130] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:50:130] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:50:130] [Thread: 3078019984] [Chan 1] - MF Tx >> 8 [OFF]

[15:05:50:230] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:50:230] [Thread: 3078019984] [Chan 1] - Sending ANI digit 3

[15:05:50:230] [Thread: 3078019984] [Chan 1] - MF Tx >> 3 [ON]

[15:05:50:330] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:50:330] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:50:330] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:50:330] [Thread: 3078019984] [Chan 1] - MF Tx >> 3 [OFF]

[15:05:50:430] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:50:430] [Thread: 3078019984] [Chan 1] - Sending ANI digit 0

[15:05:50:430] [Thread: 3078019984] [Chan 1] - MF Tx >> 0 [ON]

[15:05:50:530] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:50:530] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:50:530] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:50:530] [Thread: 3078019984] [Chan 1] - MF Tx >> 0 [OFF]

[15:05:50:610] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:50:610] [Thread: 3078019984] [Chan 1] - Sending ANI digit 2

[15:05:50:610] [Thread: 3078019984] [Chan 1] - MF Tx >> 2 [ON]

[15:05:50:710] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:50:710] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:50:710] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:50:710] [Thread: 3078019984] [Chan 1] - MF Tx >> 2 [OFF]

[15:05:50:810] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:50:810] [Thread: 3078019984] [Chan 1] - Sending ANI digit 7

[15:05:50:810] [Thread: 3078019984] [Chan 1] - MF Tx >> 7 [ON]

[15:05:50:910] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:50:910] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:50:910] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:50:910] [Thread: 3078019984] [Chan 1] - MF Tx >> 7 [OFF]

[15:05:51:010] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:51:010] [Thread: 3078019984] [Chan 1] - Sending ANI digit 2

[15:05:51:010] [Thread: 3078019984] [Chan 1] - MF Tx >> 2 [ON]

[15:05:51:110] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:51:110] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:51:110] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:51:110] [Thread: 3078019984] [Chan 1] - MF Tx >> 2 [OFF]

[15:05:51:210] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:51:210] [Thread: 3078019984] [Chan 1] - Sending ANI digit 1

[15:05:51:210] [Thread: 3078019984] [Chan 1] - MF Tx >> 1 [ON]

[15:05:51:310] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:51:310] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:51:310] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:51:310] [Thread: 3078019984] [Chan 1] - MF Tx >> 1 [OFF]

[15:05:51:410] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:51:410] [Thread: 3078019984] [Chan 1] - Sending ANI digit 7

[15:05:51:410] [Thread: 3078019984] [Chan 1] - MF Tx >> 7 [ON]

[15:05:51:510] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:51:510] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:51:510] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:51:510] [Thread: 3078019984] [Chan 1] - MF Tx >> 7 [OFF]

[15:05:51:610] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

[15:05:51:610] [Thread: 3078019984] [Chan 1] - Sending ANI digit 1

[15:05:51:610] [Thread: 3078019984] [Chan 1] - MF Tx >> 1 [ON]

[15:05:51:710] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [ON]

[15:05:51:710] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:51:710] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:51:710] [Thread: 3078019984] [Chan 1] - MF Tx >> 1 [OFF]

[15:05:51:810] [Thread: 3078019984] [Chan 1] - MF Rx << 5 [OFF]

| Chapter 5 - Digital channels |

- 116 -

[15:05:51:810] [Thread: 3078019984] [Chan 1] - Sending more ANI unavailable

[15:05:51:810] [Thread: 3078019984] [Chan 1] - MF Tx >> F [ON]

[15:05:51:990] [Thread: 3078019984] [Chan 1] - MF Rx << 3 [ON]

[15:05:51:990] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:51:990] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:51:990] [Thread: 3078019984] [Chan 1] - MF Tx >> F [OFF]

[15:05:52:090] [Thread: 3078019984] [Chan 1] - MF Rx << 3 [OFF]

[15:05:52:090] [Thread: 3078019984] [Chan 1] - Sending category National Subscriber

[15:05:52:090] [Thread: 3078019984] [Chan 1] - MF Tx >> 1 [ON]

[15:05:53:350] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [ON]

[15:05:53:350] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:05:53:350] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:05:53:350] [Thread: 3078019984] [Chan 1] - MF Tx >> 1 [OFF]

[15:05:53:430] [Thread: 3078019984] [Chan 1] - MF Rx << 1 [OFF]

[15:06:03:322] [Thread: 3078019984] [Chan 1] - Attempting to cancel timer timer 0

[15:06:03:322] [Thread: 3078019984] [Chan 1] - Cannot cancel timer 0

[15:06:03:322] [Thread: 3078019984] [Chan 1] - CAS Tx >> [CLEAR FORWARD] 0x08

[15:06:03:322] [Thread: 3078019984] [Chan 1] - CAS Raw Tx >> 0x09

[15:06:03:569] [Thread: 3085228944] [Chan 1] - Bits changed from 0x0C to 0x08

[15:06:03:569] [Thread: 3085228944] [Chan 1] - CAS Rx << [IDLE] 0x08

[15:06:03:569] [Thread: 3085228944] [Chan 1] - Call ended

[15:06:03:569] [Thread: 3085228944] [Chan 1] - Attempting to cancel timer timer 0

[15:06:03:569] [Thread: 3085228944] [Chan 1] - Cannot cancel timer 0

MFC/R2 Configuration
The options are documented within the file chan_dahdi.conf. Some of the most important options
are detailed here.

Mandatory parameters: mfcr2_variant, mfcr2_max_ani and mfcr2_max_dnis.

mfcr2_variant: Country variant.

r2test -l

Variant Code Country

AR Argentina

BR Brazil

CN China

CZ Czech Republic

CO Colombia

EC Ecuador

ITU International Telecommunication Union

MX Mexico

PH Philippines

VE Venezuela

mfcr2_max_ani: Max amount of ANI digits to ask for

mfcr2_max_dnis: Max amount of DNIS digits to ask for

mfcr2_get_ani_first: Whether or not to get ANI before DNIS (required by some TELCOS)

mfcr2_category: Caller category. You can set the variable MFCR2_CATEGORY before starting the call

 | DAHDI channel format |

- 117 -

mfcr2_logdir: Directory to log the call files. (/var/log/asterisk/mfcr2/directory)

mfcr2_call_files: Whether or not to log the calls

 mfcr2_logging: logging values

 cas – ABCD bits for tx and rx

 mf – Multifrequency tones

 stack – verbose output of the channel and context stack

 all – all activities

 nothing – do not log anything

mfcr2_mfback_timeout: This value deserves to be mentioned. Sometimes if you are calling a cell
phone or any call that takes a long time to complete, this parameter can time out, so it is often

changed for fine tuning. If some of your calls are not being completed, this is the parameter you

should change first.

mfcr2_metering_pulse_timeout: Pulses are used by some R2 variants to indicate costs

mfcr2_allow_collect_calls: In Brazil, the tone II-8 is used to indicate a collect call; this parameter

allows you to block collect calls.

mfcr2_double_answer: Also used to avoid collect calls when a double answer is required. With

double_answer=yes you actually block the collect calls.

mfcr2_immediate_accept: Allows you to skip the use of group B/II signals and go directly to the

accepted state.

mfcr2_forced_release: Allows you to speed up the release of the call; works for the Brazilian

variant.

ANI and DNIS
Automatic Number Identification (ANI) is the caller‘s number. Dialed Number Identification Service

(DNIS) is the number called or, in other words, the number dialed.

When a call is received, usually the last four numbers are passed to the PBX in a process referred to

as direct inward dial (DID). The ANI number is actually the Caller ID. ANI will have the caller‘s

extension when dialing while DNIS will contain the call destination. It is important that these
parameters be configured correctly. Some switches send just the last four digits while others send the

complete number.

DAHDI channel format
DAHDI channels use the following format in the dial plan:

DAHDI/[g]<identifier>[c][r<cadence>]

<identifier>- Physical channel numeric identifier

| Chapter 5 - Digital channels |

- 118 -

[g] – Group identifier

[c] – Answer confirmation. A number is not considered until the callee press
“#”

[r] – customized ringing

[cadence] Integer from 1 to 4

Examples:

DAHDI/2 - channel 2

DAHDI/g1 - First available channel in group 1

[g] – Group identifier

[c] – Answer confirmation; A number is not considered until the callee press
“#”

[r] – customized ringing

[cadence] Integer from 1 to 4

Questions
1 – In regard to T1 and E1 signaling, mark the correct affirmations.

A. E1 is digital signaling that uses 1.544 Mbits/s bandwidth.

B. T1 is often used in Latin America and Europe.

C. It is possible to use 30 channels for an E1 trunk and 23 channels for a T1 trunk in an ISDN

PRI configuration.

D. ISDN is an example of CCS signaling while MFC/R2 is an example of CAS signaling.

2 – To configure the hardware with a DAHDI interface, you should first edit the ______ file.

A. system.conf

B. chan_dahdi.conf

C. unicall.conf

D. serial.conf

3 – The DAHDI hardware is independent of Asterisk. In chan_dahdi.conf, you configure Asterisk
channels and not the hardware itself.

A. False

B. True

4 – R2 signaling defined by ITU is standardized throughout the world, and no variations to the

standard exist based on the country.

A. True

B. False

5 – The utility to detect and configure the DAHDI channel automatically is:

A. dahdi_generator

 | Questions |

- 119 -

B. dahdi_genconf

C. dahdigenconf

D. generate_dahdi

6 – ISDN BRI is common on Europe. An ISDN BRI line supports ___ voice/data channels and ___

signaling channel(s).

A. 15, 2

B. 30,2

C. 23,1

D. 2,1

7 – If you have a server with a PCI interface type of 64 bits 3.3V and you need 4E1s, what card
should you use?

A. TE410P

B. TE405P

C. TE110P

D. TE205P

8 – When using a USB 2.0 connection, you can support only 32 channels.

A. True

B. False

9 – The support for OpenR2 was included in Asterisk version ___; all other versions need to be
patched if you want to use this signaling.

A. 1.6.0

B. 1.4.25

C. 1.2.1

D. 1.6.2

10 – You can improve Asterisk‘s echo cancellation by installing OSLEC.

A. True

B. False

6
Designing a VoIP network

Voice over IP is quickly growing in the telephony market. The convergence paradigm is changing the
way in which we communicate, reducing costs and enhancing the way in which we trade information.

Voice is just the beginning of a full multimedia communication era, including voice, video, and

presence. In the future, we are not going to transport people to work, but work to people because it is
cleaner, faster, and cheaper. VoIP is just part of this revolution. Our challenge in this chapter is to

design a VoIP network. To do this, we will have to understand concepts such as session protocols and

codecs as well as how to dimension the number of circuits and bandwidth.

Objectives

By the end of this chapter, you should be able to:

 Understand the benefits of VoIP

 Describe how Asterisk handles VoIP

 Describe the concepts of the SIP, IAX, and H323 channels

 Choose the most adequate protocol for a specific data channel

 Choose the most adequate codec for a specific data channel

 Dimension the required number of channels

 Calculate the required bandwidth

VoIP benefits

Why would you care about VoIP? VoIP provides benefits to both companies and individuals. Cost
reduction is certainly one of them, but in some environments VoIP simplifies the integration of

computer systems. Several of the benefits are detailed here:

Convergence

The primary benefit of VoIP is the combination of data and voice networks to reduce costs
(convergence). However, analyzing just voice minute costs may not be enough to justify the adoption

of VoIP. The price of the minutes sold by phone companies is quickly becoming cheaper and is

something to be considered before adopting VoIP.

 | Questions |

- 121 -

Infrastructure costs

The use of a single network infrastructure reduces the costs associated with additions, removals, and

changes. As IP has become pervasive, it has brought VoIP-related technology to several new devices,

such as cell phones, PDAs, embedded systems, and laptops.

Open Standards

Finally, the open standards upon which VoIP is built provide the freedom to choose from different

vendors. This single benefit makes the customer king instead of a subordinate to TELCOS and PBX

manufacturers.

Computer Telephony Integration

Telephony is far older than computing. Telephony PBXs are circuit-switch based, and you usually do

not have more than a computer for supervision. With VoIP, telephony is from the ground up created

based in computer standards. This makes the use of Computer Telephony applications cheaper and
easier than in the old model. You can quickly create a long list of telephony applications based on

Asterisk. You can develop IVRs, ACDs, CTI, dialers, screen popups, and other applications in a

fraction of the time required for traditional PBXs.

Asterisk VoIP architecture

Asterisk‘s architecture is shown below. Asterisk treats all VoIP protocols as channels. You can use
any codec or any protocol. The concept to be learned here is that Asterisk bridges any type of channel

to any other. Thus, you can translate signaling protocols such as H.323, SIP, and IAX to one another

and even with different codecs. For example, you can translate a call from a SIP phone in the local

area network using the G.711 codec to a H323 connection to your VoIP provider using the G.729
codec.

| Chapter 6 - Designing a VoIP network |

- 122 -

In the next chapters, we will explain the details of the SIP and IAX architecture. As H.323 is not part

of Asterisk (although available as an add-on), we will not cover it in this book.

VoIP protocols and the ISO Open Systems Interconnect (OSI)
model

As you can see below, VoIP uses a set of different protocols working together. Different OSI layers
are present in VoIP communication. The figure below will help you understand the role of each

protocol and their relationships.

 | Questions |

- 123 -

The first four layers represent a data network, just like the Internet you have in your business or

home. You can use some QoS protocols like ―diffserv‖ or ―cbwfq‖ to prioritize voice packets and

enhance voice quality. Most VoIP protocols use real-time protocol (RTP) as the transport protocol of
choice.

In the session layer, protocols are responsible for setting up and closing the calls. H.323 is one of the

oldest and mature protocols in this area. SIP is now pervasive in the VoIP provider market, putting
aside H.323. Signaling protocols use TCP or UDP to transport the packets.

In the presentation layer, the codecs transform the multimedia stream from one format to another

based on different characteristics. For example:

SIP: SIP uses UDP or TCP in port 5060 to transport signaling. RTP transports the audio stream using

ports 1000 to 2000 in Asterisk (as defined in rtp.conf). For example, a call can be coded in g.711. A

soft-phone in the application layer will use the lower layers to communicate.

H.323: H.323 uses TCP in ports 1720 and 1719 to transport signaling. RTP usually transports audio

in UDP ports 16383 to 32768.

How to choose a protocol

Given the many protocols, how can you choose the best one for your network? In this section, we will
highlight the advantages and drawbacks of each protocol.

SIP - Session Initiated Protocol

SIP is an Internet Engineering Task Force (IETF) open standard, largely defined in RFC 3261. Most

modern VoIP providers use SIP; indeed, it is becoming the most popular VoIP standard. The strength
of SIP is that it is an IETF-based standard. SIP is light when compared to the older H.323. SIP‘s main

| Chapter 6 - Designing a VoIP network |

- 124 -

weakness is the NAT traversal—a challenge to most SIP VoIP providers. IETF did not create SIP

with billing in mind, but for open communications between peers. Billing is usually a concern for

VoIP providers.

IAX – Inter Asterisk eXchange

IAX is an open protocol defined by Digium and is currently in a draft form. You can download it

from www.ietf.org/internet-drafts/drafts-guy-iax00.txt. IAX is an all-in-one protocol as it transports

signaling and media through the same UDP port (4569). Mark Spencer developed IAX as a binary
protocol for reduced bandwidth. The main strength of IAX is its reduced bandwidth usage (it does not

use RTP); it is also very easy for NAT and firewall traversal since it uses only one UDP port (4569).

If a traditional PBX manufacturer were to have created IAX, it would probably have marketed the
protocol as the ―best thing since ice cream‖; in some situations, IAX in trunk mode can reduce voice

bandwidth use by one third. As the time of this writing, this protocol was in version 2.

MGCP – Media Gateway Control Protocol

MGCP is a protocol used in conjunction with H.323, SIP, and IAX. Its greatest advantage is
scalability. It is configured in the call agent instead of the gateways. This simplifies the configuration

process and permits centralized management. However, Asterisk implementation is not complete, and

it seems that not many people use it.

H.323

H.323 is largely being used in VoIP. It is one of the first VoIP protocols and is essential for

connecting older VoIP infrastructures based in gateways. H.323 is still the standard in the gateway

market, although the market is slowly migrating to SIP. H.323‘s strengths include the large market
adoption and maturity. H.323‘s weaknesses are related to the complexity of implementation and

standard bodies‘ associated costs.

Protocol comparison table

The following table summarizes the differences among the session protocols.

Protocol Standard body Is used for:
IAX2 IETF draft Asterisk trunks

IAX2 phones

Connection to IAX service providers

SIP IETF standard SIP phones

Connection to SIP service providers

MGCP IETF/ITU standard MGCP phones

Currently does not support connecting to a MGCP gateway or service

provider

H.323 ITU standard H.323 phones

H.323 gateways
Currently does not support being a gatekeeper, but can connect to an

external gatekeeper.

http://www.ietf.org/internet-drafts/drafts-guy-iax00.txt

 | Questions |

- 125 -

SCCP Cisco Proprietary Cisco phones

Peers, Users, and Friends

Three kinds of SIP and IAX clients exist. The first one is ―user‖. Users can make calls to an Asterisk

server, but they cannot connect to receive calls from this server. The second one is a ―peer‖. You can
make calls to a peer, but you will not receive calls from them. Usually a server or a device will

require both concepts at the same time. A ―friend‖ is a shortcut to a ―user‖ + ―peer‖. A phone would

probably fall into this category as it is needed to make and receive calls.

Codecs and codec translation

You will use a codec to convert the voice from an analog wave to a digital signal. Codecs differ from

one another in aspects such as sound quality, compression rate, bandwidth, and computing
requirements. Services, phones, and gateways usually support several of these aspects. The codec

g729 is very popular and requires licensing.

| Chapter 6 - Designing a VoIP network |

- 126 -

Asterisk supports the following codecs:

 GSM: 13 Kbps

 iLBC: 13.3 Kbps

 ITU G.711: 64 Kbps

 ITU G.723.1: 5.3/6.3 Kbps

 ITU G.726: 16/24/32/40 Kbps

 ITU G.729: 8 Kbps

 Speex - 2.15 to 44.2 Kbps

 LPC10 - 2.5 Kbps

In addition, Asterisk permits translation among codecs. In some cases, this is not possible, such as the

case of g723, which is supported only in pass-thru mode. Translating from one codec to another
consumes many resources from the CPU. Thus, avoid this altogether whenever possible.

How to choose a Codec
Codec selection depends on several options, such as:

 Sound quality

 Licensing costs

 CPU-processing consumption

 Bandwidth requirements

 Packet-loss concealment

 | Questions |

- 127 -

 Availability for Asterisk and phone devices

The following table compares the most popular codecs. The quality of these codecs is considered
―toll‖—in other words, similar to PSTN.

Codec g.711 g.729A

(20 ms)

iLBC

(30 ms)

GSM 06.10

RTE/LTP

Bandwidth

(Kbps)

64 8 13.33 13

Costs Free ~ USD10.00

(per channel)

Free Free

Resistance to
Frame Erasure

1

No
mechanism

3% 5% 3%

Complexity

MIPS
2

~0.35 ~13 ~18 ~5

1
Resistance to packet loss refers to the rate when MOS is next to 0.5 worst from peak quality for the specific codec.

2
 Complexity refers to quantities in millions of instructions per second spent to code and decode the codec using a reference

design in a Texas Instruments DSP (TMS320C54x). A direct relationship exists between processor frequency and MIPS, but
it is not possible to draw a precise relationship among such diverse hardware platforms. Use this table just for comparison.

Overhead caused by protocol headers

Despite the fact that codecs make little use of bandwidth, we have to consider the overhead caused by
protocol headers like Ethernet, IP, UDP, and RTP.As such, we could say that bandwidth depends

upon the headers used. If we are in an Ethernet network, the bandwidth requirement is higher than in

a PPP network because the PPP header is shorter than the Ethernet one. Let‘s look through some
examples:

| Chapter 6 - Designing a VoIP network |

- 128 -

E
th

e
rn

e
t
D

e
s
ti
n

a
ti
o

n

A
d

d
re

s
s
 (

6
)

E
th

e
rn

e
t
S

o
u

rc
e

A
d

d
re

s
s
 (

6
)

E
th

e
rn

e
t
T

y
p

e
 (

2
)

IP
 H

e
a

d
e

r
(2

0
)

U
D

P
 H

e
a

d
e

r
(8

)

R
T

P
 H

e
a

d
e

r
(1

2
)

V
o

ic
e

 P
a

y
lo

a
d

G
.7

2
9

 c
o

d
e

d
 (

2
0
)

E
th

e
rn

e
t

C
h

e
c
k
s
u

m
 (

4
)

Example: Voice packet coded in g.729 20 ms sampling rate.

20 Bytes Payload/58 Bytes headers

Using simple proportion, if 20 bytes is 8 Kbps, 98 Bytes is 31.2 Kbps

A g.729 conversation in an Ethernet Network consumes 31.2 Kbps

Codec g.711 (64 Kbps)

 Ethernet (Ethernet+IP+UDP+RTP+G.711) = 95.2 Kbps

 PPP (PPP+IP+UDP+RTP+G.711) = 82.4 Kbps

 Frame-Relay (FR+IP+UDP+RTP+G.711) = 82.8 Kbps

Codec G.729 (8 Kbps)

 Ethernet (Ethernet+IP+UDP+RTP+G.729) = 31.2 Kbps

 PPP (PPP+IP+UDP+RTP+G.729) = 26.4 Kbps

 Frame-Relay (FR+IP+UDP+RTP+G.729) = 26.8 Kbps

You can easily calculate other bandwidth requirements using the calculator at the following website:

http://www.asteriskguide.com/bandcalc/bandcalc.php.

Traffic Engineering

A main issue in the design of VoIP networks is dimensioning the number of lines and the required

bandwidth to a specific destination, like a remote office or a service provider. It is also important to

dimension the number of Asterisk‘s simultaneous calls (main parameter for Asterisk‘s dimensioning).

Simplifications

The primary and most widely used simplification is to estimate the number of calls by user type. For

example:

 Business PBXs (one simultaneous call for every five extensions)

 Residential users (one simultaneous call for every sixteen users)

Example #1

http://www.asteriskguide.com/bandcalc/bandcalc.php

 | Questions |

- 129 -

The company‘s headquarters have 120 extensions and two branches—the first with 30 extensions and

the second with 15 extensions. Our objective is to dimension the number of E1 trunks in the
headquarters and the bandwidth required for the Frame-Relay network.

1a Number of T1 lines

 Total number of extensions using T1 lines: 120+30+15=165 lines

 Using one trunk for each five extensions for business use

 Total number of lines = 33 or approximately 2xT1 lines

1b Bandwidth requirements

We choose the g.729 codec because of bandwidth requirements, sound quality, and medium CPU

consumption.

| Chapter 6 - Designing a VoIP network |

- 130 -

With one trunk for every five extensions:

 Required bandwidth for branch #1 (Frame-relay): 26.8*6=160.8 Kbps

 Required bandwidth for branch #2 (Frame-relay): 26.8*3= 80.4 Kbps

Erlang B method

1.a Number of VoIP simultaneous calls
Sometimes, simplification is not the best approach. When you have previous data, you can adopt a

more scientific approach. We will use the work of Agner Karup Erlang (Copenhagen Telephone

Company, 1909), who developed a formula to calculate lines in a trunk group between two cities.

Erlang is a traffic measurement unit usually found in telecom. It is used to describe the volume of
traffic for one hour.

For example: 20 calls occur in an hour, averaging 5 minutes of conversation each.

You can calculate the number of Erlangs as shown below:

Traffic minutes in the hour: 20 x 5 = 100 minutes

Hour of traffic inside one hour: 100/60 = 1.66 Erlangs

You can determine these measures from a call logger and use it to design your network to calculate

the number of lines required. Once the number of lines is known, it is possible to calculate the
bandwidth requirements.

Erlang B is the most commonly used method for calculating the number of lines in a trunk group. It

assumes that calls arrive randomly (Poisson distribution) while blocked calls are immediately cleared.
This method requires that you know the Busy Hour Traffic (BHT), which you can obtain from a call

logger or by the following simplification:

BHT=17% of the call minutes of one day.

 | Questions |

- 131 -

Another important variable is Grade of Service (GoS), which defines the probability of blocking calls
by line shortage. You can arbitrate this parameter, which is usually 0.05 (5% calls lost) or 0.01 (1%

calls lost).

Example #1:

Using the same example from 5.10.1, we will give you some data about traffic patterns. From the call

logger, we discovered these data:

Data from call logger (Call minutes and BHT):

 Headquarters to Branch #1 = 2,000 minutes, BHT = 300 minutes

 Headquarters to Branch #2 = 1,000 minutes, BHT = 170 minutes

 Branch #1 to Branch #2 = 0, BHT=0

Let‘s arbitrate GoS=0.01

 Headquarters to Branch #1 - BHT=300 minutes/60 = 5 Erlangs

 Headquarters to Branch #2 – BHT=170 minutes/60 = 2.83 Erlangs

Using an Erlang Calculator (www.erlang.com)

 For the Headquarters to Branch #1, 11 lines are required.

 For the Headquarters to Branch #2, 8 lines are required

1.b Bandwidth Required
We are using a WAN where packet loss is rare. We will choose the g729 codec because of its good

sound quality and data compression (8 Kbps).

http://www.erlang.com/

| Chapter 6 - Designing a VoIP network |

- 132 -

Selected codec: g729

Datalink layer: Frame-Relay

 Estimated voice bandwidth for Branch #1: 26.8x11 = 294.8 Kbps

 Estimated voice bandwidth for Branch #2: 26.8x8 = 214.40 Kbps

Reducing the bandwidth required for VoIP

Three methods can be used to reduce the bandwidth required for VoIP calls:

 RTP header compression

 IAX Trunked

 VoIP payload

RTP Header Compression

In Frame-Relay and PPP networks, you can use RTP header compression. RTP header compression

was defined in RFC 2508. It is an IETF standard available in several routers. However, be cautious,

as some routers require a different feature set in order for this resource to be available.

The impact of using RTP header compression is fabulous as it reduces the bandwidth required in our

example from 26.8 Kbps per voice conversation to 11.2 Kbps—a 58.2% reduction!

 | Questions |

- 133 -

IAX2 trunk mode

If you are connecting two Asterisk servers, you can use the IAX2 protocol in the trunk mode. This

revolutionary technology does not need any special routers and can be applied to any kind of data

link.

The IAX2 trunk mode reuses the same headers from the second call and over. Using g729 in a PPP
link, the first call will consume 30 Kbps of bandwidth, whereas the second call will use the same

header as the first and reduce the necessary bandwidth for the additional call to 9.6 Kbps. We can

calculate the required bandwidth in trunk mode as follows:

Branch #1 (11 calls)

Bandwidth = 31.2 + (11-1)* 9.6 Kbps = 127.2 Kbps

Branch #2 (8 calls)

Bandwidth = 31.2 + (8-1)* 9.6 Kbps = 98.4 Kbps

The first call uses 31.2 Kbps, the next 9.6, and so on.

Increasing the Voice Payload

This method is very common when using VoIP gateways over the Internet. When using a bigger

payload, you will sacrifice latency in favor of reduced bandwidth. You can change the RTP
packetization by appending the frame size to the codec in the allow instruction.

| Chapter 6 - Designing a VoIP network |

- 134 -

E
th

e
rn

e
t
D

e
s
ti
n

a
ti
o

n

A
d

d
re

s
s
 (

6
)

E
th

e
rn

e
t
S

o
u

rc
e

A
d

d
re

s
s
 (

6
)

E
th

e
rn

e
t
T

y
p

e
 (

2
)

IP
 H

e
a

d
e

r
(2

0
)

U
D

P
 H

e
a

d
e

r
(8

)

R
T

P
 H

e
a

d
e

r
(1

2
)

V
o

ic
e

 P
a

y
lo

a
d

G
.7

2
9

 c
o

d
e

d
 (

6
0

)

E
th

e
rn

e
t

C
h

e
c
k
s
u

m
 (

4
)

Example: Voice packet coded in g.729 20 ms sampling rate.

60 Bytes Payload/58 Bytes headers

Using simple proportion, if 60 bytes is 8 Kbps, 138 Bytes is 16.05 Kbps

A g.729 conversation in na Ethernet Network consumes 16.05 Kbps

Example:

allow=ulaw:30

The permitted values are:

Name Min Max Default Increment

g723 30 300 30 30

gsm 20 300 20 20

ulaw 10 150 20 10

alaw 10 150 20 10

g726 10 300 20 10

ADPCM 10 300 20 10

SLIN 10 70 20 10

lpc10 20 20 20 20

g729 10 230 20 10

speex 10 60 20 10

ilbc 30 30 30 30

Summary
In this chapter, you have learned that Asterisk treats VoIP using channels. It supports SIP, IAX,

H.323, MGCP, and Skinny protocols. You compared and learned how to choose a signaling protocol

and a codec for VoIP channels. The IAX2 is more bandwidth efficient and can traverse NAT easily.
SIP is the most supported protocol by third-party phone and gateways vendors. The H.323 protocol is

the oldest one and should be used to connect to legacy VoIP infrastructures. In section 5.11, we

learned how to design and dimension a VoIP network.

Quiz

1. Please, list at least four benefits of VoIP.

 | Questions |

- 135 -

2. Convergence is the integration of voice, data, and video in a single network; its primary benefit is

the cost reduction in the implementation and maintenance of separate networks.

A. False

B. True

3. Asterisk cannot use resources from PSTN and VoIP simultaneously because the codecs are not

compatible.

A. False

B. True

4. Asterisk is a SIP proxy with integration to other protocols

A. False

B. True

5. Using the OSI reference model, SIP, H.323, and IAX2 are in the ____________ layer.

A. Presentation

B. Application

C. Physical

D. Session

E. Datalink

6. SIP is the most adopted protocol for IP phones and is an open standard ratified by IETF.

A. False

B. True

7. H.323 is an inexpressive protocol with very few applications, abandoned by the market, which is
moving to SIP.

A. False

B. True

8. IAX is a proprietary Digium™ protocol. Despite its limited adoption by phone vendors, IAX is

excellent when you need: (check all that apply)

A. To reduce bandwidth usage

B. Video media format

C. NAT traversal

D. Protocols standardized by IETF or ITU.

9. ―Users‖ can receive calls from Asterisk.

| Chapter 6 - Designing a VoIP network |

- 136 -

A. False

B. True

10. Regarding codecs: (check all the true affirmations)

A. G711 is the equivalent to PCM and uses 64 Kbps of bandwidth.

B. G.729 is free for commercial use and uses 8 Kbps of bandwidth.

C. GSM is growing because it uses approximately 13 Kbps and does not need a license.

D. G711 u-law is common in the US whereas a-law is common in Europe and Latin America.

E. G.729 is light and uses very few CPU resources in their coding/decoding process.

7
The IAX Protocol

In this chapter, we will learn about the Inter-Asterisk eXchange (IAX) protocol, including its
strengths and weaknesses. Details such as trunk mode and the interconnection of two Asterisk servers

will also be covered. All references in this document correspond to IAX version 2. The IAX protocol

provides media transport and signaling for voice and video. IAX is very innovative; it saves
bandwidth in trunk mode and is much simpler than SIP when you need to traverse NAT. The primary

use for IAX nowadays is to interconnect Asterisk servers. IAX was created primarily for voice, but it

can also accommodate video and other multimedia streams. IAX was inspired from other VoIP

protocols, such as SIP and MGCP. Instead of using two separate protocols for signaling and media,
IAX unified them to make a unique protocol. IAX does not use RTP for media transport; instead, it

embeds the media in the same UDP connection.

Objectives
By the end of this chapter, you should be able to:

 Indentify strengths and weakness of IAX protocol

 Describe usage scenarios for the IAX protocol

 Describe the advantages of IAX trunk mode

 Configure iax.conf for phones

 Configure iax.conf for connection to a VoIP provider

 Configure iax.conf for Asterisk interconnection

 Understand IAX authentication

IAX design
The main objectives for IAX design are:

 To reduce the bandwidth required for media transport and signaling

 To provide NAT transparency

 To be able to transmit the dial plan information

| Chapter 7 - The IAX Protocol |

- 138 -

 To support the efficient use of paging and intercom

IAX is a peer-to-peer signaling and media protocol that is similar to SIP without using RTP. The

basic approach is to multiplex the multimedia streams over a single UDP connection between two

hosts. The greatest benefit of this approach is its simplicity when traversing connections over NAT,
regularly found in xDSL modems. IAX uses a single port, UDP 4569 by default, and then uses a call

number with 15 bits to multiplex all streams.

Rede IP

UDP port

4569

UDP port

4569 Call #1

Call #2

Call #n

Call #1

Call #2

Call #n

IAX protocol

The IAX protocol uses registration and authentication processes similar to the SIP protocol. A

description of the protocol can be found at http://www.ietf.org/internet-drafts/draft-guy-iax-05.txt

Bandwidth usage
The bandwidth used in VoIP networks is affected by several factors; codecs and protocol headers are

the most important. The IAX protocol has a surprising feature called trunk mode, whereby it
multiplexes several calls using a single header. By playing with the Asterisk bandwidth calculator,

you will see how IAX trunks can save you up to 80% of the traffic with multiple calls.

http://www.ietf.org/internet-drafts/draft-guy-iax-05.txt

 | Channel naming |

- 139 -

Channel naming
It is important to understand channel-naming conventions as you will use these names when
specifying a channel in the dial plan. The format of an IAX channel name used for outbound channels

is:

IAX/[<user>[:<secret>]@]<peer>[:<portno>][/<exten>[@<context>][/<options>]

<user> UserID on remote peer, or name of client configured in iax.conf

<secret> The password. Alternatively it can be the filename for an RSA key without the
trailing extension (.key or .pub) and enclosed in square brackets

<peer> Name of server to connect to

<portno> Port number for connection

<exten> Extension in the remote Asterisk server

<context> Context in the remote Asterisk server

<options> The only option available is ‗a‘ meaning ‗request autoanswer‘

Outbound channels example:

Outbound channels are seen in the Asterisk console.

IAX2/8590:secret@myserver/8590@default Call the 8590 extension in myserver. It uses
8590:secret as the name/password pair

| Chapter 7 - The IAX Protocol |

- 140 -

IAX2/iaxphone Call "iaxphone"

IAX2/judy:[judyrsa]@somewhere.com Call somewhere.com using judy as the username and a
RSA key for authentication

The format of an incoming IAX channel is:

Inbound channels are seen in the Asterisk console.

IAX2/[<username>@]<host>]-<callno>

<username> Username if known

<host> Host connecting

<callno> Local call number

Incoming channel example:

IAX2[flavio@8.8.30.34]/10 Call number 10 from IP address 8.8.30.34 using flavio as the user.

IAX2[8.8.30.50]/11 Call number 11 from IP address 8.8.30.50.

Using IAX
You may use IAX in several ways. In this section, we will show you how to configure IAX for

several scenarios, including:

 Connecting a soft-phone using IAX

 Connecting IAX to a VoIP provider using IAX

 Connecting two servers using IAX

 Connecting two servers using IAX in trunk mode

 Debugging an IAX connection

 Using RSA pair keys for authentication

Connecting a soft-phone using IAX
Asterisk supports IP phones based on IAX such as the ATCOM and the old ATA from Digium

(called IAXy) as well as soft-phones such as Zoiper. The process for soft-phones, ATAs, and hard-
phones is similar. To configure an IAX device, you need to edit the iax.conf file in /etc/asterisk

directory.

We will use the Zoiper (www.zoiper.com) as an example. It is a full-featured and free soft-phone.

Step 1: Make a backup of the original iax.conf file using:

#cd /etc/asterisk

#mv iax.conf iax.conf.backup

http://www.zoiper.com/

 | Using IAX |

- 141 -

Step 2: Start editing a new iax.conf file:

[general]

bindport=4569

bindaddr=8.8.1.4

bandwidth=high ; Very important parameter, it changes the codecs available

disallow=all

allow=ulaw

jitterbuffer=no

forcejitterbuffer=no

tos=lowdelay

autokill=yes

[guest]

type=user

context=guest

callerid="Guest IAX User"

; Trust Caller*ID Coming from iaxtel.com

;

[iaxtel]

type=user

context=default

auth=rsa

inkeys=iaxtel

;

; Trust Caller*ID Coming from iax.fwdnet.net

;

[iaxfwd]

type=user

context=default

auth=rsa

inkeys=freeworlddialup

;

; Trust callerid delivered over DUNDi/e164

;

;

;[dundi]

;type=user

;dbsecret=dundi/secret

;context=dundi-e164-local

[2003]

type=friend

context=default

secret=senha

| Chapter 7 - The IAX Protocol |

- 142 -

host=dynamic

I‘ve tried to preserved the default (non-commented) lines of the sample file. The following
parameters were modified:

bandwidth=high

This line affects the codec selection. Using the high setting allows for the selection of a high
bandwidth and a high quality codec such as g.711 defined by the ulaw keyword. If you keep the

default parameter, you will not be able to choose ulaw. In this case, Asterisk will give you the

message ―no codec available‖ for the configuration below.

disallow=all

allow=ulaw

In the commands described above, we disabled all codecs and enabled just ulaw. In LANs, most
people prefer to use ulaw because it is not processor-intensive and saves CPU cycles. Even using

more bandwidth, this codec is preferable because in LANs you usually have a 100-megabits Ethernet

or even a Gigabit. A voice call using ulaw uses almost 100 kilobits per second of bandwidth from
your network, which is a very light use for today‘s high-speed LANs. In WAN or Internet networks,

you will usually disable ulaw, trading some available CPU cycles by voice compression for better

bandwidth use. The codecs gsm , g729, and ilbc provide a good compression factor as well.

[2003]

type=friend

context=default

secret=senha

host=dynamic

In the above commands, we have defined a friend named [2003]. The context is the default (in the
first labs we always use the default context to avoid confusion; this context will be fully explained in

chapter 9). The line ―host=dynamic‖ provides a dynamic registration of the phone‘s IP address.

Step 3: Download and install Zoiper™ from the following URL:

http://www.zoiper.com/

Note: URLs frequently change. Please resort to ―googling‖ if you cannot find the file at this
specific URL. You can choose other soft-phones for the lab as well.

Step 4: Configure an Asterisk account by clicking the right button over the Zoiper. You should see a

screen similar to the one below:

 | Using IAX |

- 143 -

Step 5: Configure the extensions.conf file to test your IAX device.

[default]

exten=>2000,1,Dial(SIP/2000)

exten=>2001,1,Dial(SIP/2001)

exten=>2003,1,Dial(IAX2/2003)

Now you can dial between the SIP phones created in Chapter 3 and the IAX phone created in the lab.

Connecting to a VoIP provider using IAX
A few VoIP providers support IAX. You can easily find an IAX provider by ―googling‖ the words

―IAX providers‖. Using an IAX provider makes a lot of sense as IAX can save a lot of bandwidth,

easily traverses NAT, and can authenticate using RSA key pairs.

| Chapter 7 - The IAX Protocol |

- 144 -

Connecting to a provider using IAX

Step 1: Open an account in your favorite provider. Your provider will provide you three things.

 Name

 Secret

 IP address or Host name

 RSA public key

Step 2: Configure the iax.conf file to register your Asterisk with your provider. Add the following

lines to the [general] section of the file.

[general]

register=>name:secret@hostname/2003

In the instructions described above, you registered with your provider using your account and
password. The moment you receive a call, it will be forwarded to the 2003 extension.

[name] ; Your account name or number

type=peer

secret=secret ; Your password

host=hostname

In the instructions described above, we have created a peer corresponding to the provider for dialing
purposes.

[nameiax]

type=user

context=default

auth=rsa

inkeys=hostname

 | Using IAX |

- 145 -

This is required for RSA authentication. Using the public key from your provider allows you to be

sure that the call being received is really from the true provider. If anyone else tries to use the same

path, they will not be able to authenticate it because they do not have the corresponding private key.

Step 4: Try the connection.

To test the connection, call any number. Some vendors provide an echo test. To accomplish this,
please edit the file extensions.conf.

[default]

exten=>*98,1,Dial(IAX2/name:secret@hostname/*98,20,r)

Go to the Asterisk CLI and issue a reload. To verify if Asterisk is registered with the provider, use the

next command.

CLI>reload

CLI>iax2 show register

Now simply dial *98 on the soft-phone connected to the Asterisk server.

Connecting two Asterisk servers through an IAX trunk
It is very easy to connect one server to another. You won‘t need to register them because the IP

addresses are already known.

You will have to create the peers and users in the iax.conf file. All extensions in the HQ site start
with 20 followed by two digits (e.g., 2000). In the Branch, all extensions start with 22 followed by

two digits (e.g., 2200). We will use the trunk. You will need a DAHDI timing source to enable this

feature.

Step 1: Edit the iax.conf file in the Branch server.

| Chapter 7 - The IAX Protocol |

- 146 -

[general]

bindport=4569 ; bindport and bindaddr may be specified

bindaddr=0.0.0.0 ; more than once to bind to multiple

disallow=all

allow=ulaw

;allow=gsm

[Branch]

type=user

context=default

secret=password

host=192.168.2.10

trunk=yes

notransfer=yes

[HQ]

type=peer

context=default

username=HQ

secret=password

host=192.168.2.10

callerID='HQ'

trunk=yes

notransfer=yes

[2200]

type=friend

auth=md5

context=default

secret=password

host=dynamic

callerid='2000'

[2201]

type=friend

auth=md5

context=default

secret=password

host=dynamic

callerid='2001'

Step 2: Configure the file extensions.conf in the Branch server

[general]

static=yes

writeprotect=no

autofallthrough=yes

clearglobalvars=no

priorityjumping=no

 | Using IAX |

- 147 -

[default]

exten=>_20XX,1,dial(IAX2/HQ/${EXTEN},20)

exten=>_20XX,2,hangup

exten=>_22XX,1,dial(IAX2/${EXTEN},20)

exten=>_22XX,2,hangup

Step 3: Configure the iax.conf file in the HQ server

[general]

bindaddr=0.0.0.0

bindport=4569

disallow=all

allow=ulaw

allow=gsm

[Branch]

type=peer

context=default

username=Branch

secret=password

host=192.168.2.9

callerid="Branch"

trunk=yes

notransfer=yes

[HQ]

type=user

secret=password

context=default

host=192.168.2.9

callerid="HQ"

trunk=yes

notransfer=yes

[2000]

type=friend

auth=md5

context=default

secret=password

callerid="2200"

host=dynamic

[2001]

type=friend

auth=md5

context=default

secret=password

| Chapter 7 - The IAX Protocol |

- 148 -

callerid="2201"

host=dynamic

Step 4: Configure the extensions.conf file in the HQ server.

[general]

static=yes

writeprotect=no

autofallthrough=yes

clearglobalvars=no

priorityjumping=no

[default]

exten=>_22XX,1,Dial(IAX2/Branch/${EXTEN})

exten=>_22XX,2,hangup

exten=>_20XX,1,Dial(IAX2/${EXTEN})

exten=>_20XX,2,hangup

Step 5: Test a call from the phone 2000 in the HQ server to the phone 2200 in the Branch server.

IAX authentication
Now let‘s analyze the IAX authentication process from the practical standpoint to help you choose the

best method for each specific requirement.

Incoming connections

When Asterisk receives an incoming connection, the initial information can include a user name
(from the field ―username=‖) or not. The incoming connection has an IP address too, which Asterisk

uses for authentication as well.

 | IAX authentication |

- 149 -

IAX CALL
MATCH

ANY SECTION?
IP ALLOWED?

SECRET

MATCHES?

YES

NO NO

YES

CALL ACCEPTED.

USE CONTEXT FROM

THE SECTION

MATCHED.

USE PEER OPTIONS.

YES
USERNAME

PROVIDED?

YES

DENY

 CALL

SECRET

PROVIDED?

NO

ANY USER WITH

THIS SECRET?

YES

NODENY

CALL

NOYES

USER WITH THIS

PASSWORD?

DENY

CALL

NO

NO

CALL ACCEPTED.

USE CONTEXT FROM

THE SECTION

MATCHED.

USE PEER OPTIONS

YES

GUEST

USER EXISTS

NO

YES
ALLOW THE

USER AS GUEST

IAX authentication process

If a user is provided, Asterisk:

1. Searches iax.conf for an entry with type=user (or type=friend with a section name

matching the username). If it did not find it, Asterisk refuses the connection.

2. If the entry found has deny/allow configurations, it compares the IP address from the

caller to determine whether to accept the call or not depending on the deny/allow clauses.

3. It checks the password (secret) using plaintext, md5, or RSA.

4. It accepts the connection and sends the call to the context specified in the line ―context=‖

from the iax.conf file.

If a username is not provided, Asterisk:

1. Searches for an entry containing type=user (or type=friend) in the iax.conf file

without a specified secret. It checks deny/allow clauses as well. If an entry is found, the
connection is accepted and the section name is used as the user‘s name.

2. Searches for an entry containing type=user (or type=friend) in the iax.conf file with
a secret or RSA key specified. It checks deny/allow clauses. If an entry is found, it tries

to authenticate the caller using the specified secret; if it matches, it accepts the

connection. Section name is the user‘s name.

Let‘s suppose your iax.conf file has the following entries:

[guest]
type=user
context=guest

[iaxtel]
type=user
context=incoming
auth=rsa

| Chapter 7 - The IAX Protocol |

- 150 -

inkeys=iaxtel

[iax-gateway]
type=friend
allow=192.168.0.1
context=incoming
host=192.168.0.1

[iax-friend]
type=user
secret=this_is_secret
auth=md5
context=incoming

If a call has a specified username, such as:

 guest

 iaxtel

 iax-gateway

 iax-friend

Asterisk will try to authenticate the call using only the corresponding entry in the iax.conf file. If

any other names are specified, the call would be rejected.

If no user is specified, Asterisk will try to authenticate the connection as guest. However, if guest

does not exist, it will try any other connections with a matching secret. In other words, if you don‘t

have a guest section in your iax.conf file, a malicious user could try to guess any matching secret by

not specifying the user name. IP addresses‘ deny/allow restrictions apply too.

A good way to avoid secret guessing is to use RSA authentication. Another method is to restrict the

IP addresses allowed to call in.

IP address restrictions

permit = <ipaddr>/<netmask>

deny = <ipaddr>/<netmask>

Rules are interpreted in sequence, and all are
evaluated (this concept is different from ACLs
usually found in routers and firewalls).

Example #1

permit=0.0.0.0/0.0.0.0

deny=192.168.0.0/255.255.255.0

Will deny any packet from 192.168.0.0/24 network

Example #2

deny=192.168.0.0/255.255.255.0

permit=0.0.0.0/0.0.0.0

It will permit any packet. The last instruction
supersedes the first.

 | IAX authentication |

- 151 -

Outbound connections
Outbound connections acquire authentication information using the following methods:

 The IAX2 channel description passed by the dial() application.

 An entry with type=peer or type=friend in the iax.conf file.

 A combination of both methods.

Connecting two Asterisk servers using RSA keys

It is possible to use IAX with strong authentication using asymmetric RSA keys. According to the
source code (res_krypto.c), Asterisk uses RSA keys with an SHA-1 algorithm for message digests

instead of the weaker MD5. Below is a step-by-step guide for setting up two servers using RSA keys.

Configuring the server for the branch

Step 1: Generate the RSA keys in the branch server

astkeygen –n

When asked, use the key name branch. We have used the parameter –n to avoid passing a
passphrase whenever Asterisk reinitializes. If you want to improve the security, don‘t use the

–n and start Asterisk with asterisk -i

Step 2: Copy the keys to the directory /var/lib/asterisk/keys

cp branch.* /var/lib/asterisk/keys

Step 3: Copy the public key to the HQ server

scp branch.pub root@hq_ip_address:/var/lib/asterisk/keys

Step 4: Edit the iax.conf file in the Branch server.

[general]

bindport=4569 ; bindport and bindaddr may be specified

bindaddr=0.0.0.0 ; more than once to bind to multiple

disallow=all

allow=ulaw

;Create an entry for the HQ server

[hq]

type=user

context=default

host=192.168.2.10

trunk=yes

notransfer=yes

auth=rsa

inkeys=hq

| Chapter 7 - The IAX Protocol |

- 152 -

[2200]

type=friend

auth=md5

context=default

secret=password

host=dynamic

callerid='2200'

[2201]

type=friend

auth=md5

context=default

secret=password

host=dynamic

callerid='2201'

Step 8: Configure the extensions.conf file in the Branch server

 [default]

exten=>_20XX,1,dial(IAX2/branch:[branch]@192.168.2.10/${EXTEN},20)

exten=>_20XX,2,hangup

exten=>_22XX,1,dial(IAX2/${EXTEN},20)

exten=>_22XX,2,hangup

Configuring the server for the headquarters

Step 1: Generate the RSA keys in the HQ server

astkeygen –n

When asked use the key name hq.

Step 2: Copy the keys to the directory /var/lib/asterisk/keys

cp hq.* /var/lib/asterisk/keys

Step 3: Copy the public key to the BRANCH server

scp hq.pub root@branch_ip_address:/var/lib/asterisk/keys

Step 4: Configure the iax.conf file in the HQ server

[general]

bindaddr=0.0.0.0

bindport=4569

disallow=all

allow=ulaw

allow=gsm

;Configure an entry for the branch server

[branch]

type=user

 | The iax.conf file configuration |

- 153 -

context=default

host=192.168.2.9

trunk=yes

notransfer=yes

auth=rsa

inkeys=branch

[2000]

type=friend

auth=md5

context=default

secret=password

callerid="2000"

host=dynamic

[2001]

type=friend

auth=md5

context=default

secret=password

callerid="2001"

host=dynamic

Step 10: Configure the extensions.conf file in the HQ server.

[default]

exten=>_22XX,1,Dial(IAX2/hq:[hq]@192.168.2.9/${EXTEN})

exten=>_22XX,2,hangup

exten=>_20XX,1,Dial(IAX2/${EXTEN})

exten=>_20XX,2,hangup

Step 11: Test a call from the 2000 phone in the HQ server to the 2200 phone in the Branch server.

The iax.conf file configuration
The file iax.conf has several parameters; discussing each parameter one by one would be boring and

counterproductive. All parameters, along with a description, can be found in the sample file. In the
wiki www.voip-info.org you will find detailed information about each one. Here we will show some

of the most important parameters for the configuration of the general section, peers, and users.

[General] Section

Server addresses

bindport = <portnum> Configures the IAX UDP port. Default is
4569.

bindaddr = <ipaddr> Use 0.0.0.0 to bind Asterisk to all
interfaces or specify the IP address of a

http://www.voip-info.org/

| Chapter 7 - The IAX Protocol |

- 154 -

specific interface.

Codec selection

bandwidth = [low|medium|high] High = all codecs

Medium = all codecs except ulaw and
alaw

Low = low bandwidth codecs

allow/disallow =

[alaw|ulaw|gsm|g.729| etc.]

Codec selection fine tuning

Jitter buffer
Jitter is the delay variation between packets. It is the most important factor affecting voice quality. A

Jitter buffer is used to compensate for the delay variation. It sacrifices latency in favor of lower jitter.

You can make an analogy between the jitter buffer and a water tank. Both can receive packets or

water at irregular intervals, but will ultimately deliver a regular flow.

A small jitter (i.e., below 20 ms) is usually imperceptible. However, jitter above this level is

annoying. The latency or delay should be kept to below 150ms. Creating a jitter buffer will sacrifice

some delay for a lower jitter—a concept known as ―delay-budget‖.

 | Frame tagging |

- 155 -

You can affect the jitter buffer using these parameters:

 Jitterbuffer=<yes/no> – Enables or disables

 Dropcount=<number> - Maximum amount of frames that should be delayed in the last

two seconds. The recommended setting is 3 (1.5% of dropped frames)

 Maxjitterbuffer=<ms> - Usually below 100 ms

 Maxexcessbuffer=<ms> - If the network delay improves, the jitter buffer could be

oversized. Consequently, Asterisk will try to reduce it.

 Minexcessbuffer=<ms> - Once the excess buffer drops to this value, Asterisk starts to

increase the buffer size.

Frame tagging
The parameter below marks the IP packet in the type of service field. Routers can read this tag,

thereby prioritizing traffic. In version 1.4, Asterisk uses DSCP codes for this field (RFC2474).

Allowed values are CS0, CS1, CS2, CS3, CS4, CS5, CS6, CS7, AF11, AF12, AF13,AF21, AF22,

AF23, AF31, AF32, AF33, AF41, AF42, AF43, and ef (i.e., expedited forwarding).

tos=ef

IAX2 Encryption
According to Spencer, Guy, Capouch, Muller, and Shumard (2008), IAX supports call encryption

using a symmetric key, 128-bit block cipher called AES-Advanced Encryption Standard. It is very
simple to activate the encryption between IAX trunks. In the file iax.conf use:

encryption=yes

To force the encryption:

forceencryption=yes

To guarantee compatibility with old versions, you may need to impede key rotation using:

keyrotate=no

IAX2 debug commands
Below are some of the most important troubleshooting console commands for Asterisk.

iax2 show netstats

vtsvoffice*CLI> iax2 show netstats

 -------- LOCAL --------------------- -------- REMOTE ---------------

Channel RTT Jit Del Lost % Drop OOO Kpkts Jit Del Lost % Drop OOO

Kpkts

IAX2/8590-1 16 -1 0 -1 -1 0 -1 1 60 110 3 0 0 0

0

| Chapter 7 - The IAX Protocol |

- 156 -

iax2 show channels

vtsvoffice*CLI> iax2 show channels

Channel Peer Username ID (Lo/Rem) Seq (Tx/Rx) Lag Jitter JitBuf

Format

IAX2/8590-2 8.8.30.43 8590 00002/26968 00004/00003 00000ms -0001ms 0000ms

unknow

iax2 show peers

vtsvoffice*CLI> iax2 show peers

Name/Username Host Mask Port Status

8584 (Unspecified) (D) 255.255.255.255 0 UNKNOWN

8564 (Unspecified) (D) 255.255.255.255 0 UNKNOWN

8576 (Unspecified) (D) 255.255.255.255 0 UNKNOWN

8572 (Unspecified) (D) 255.255.255.255 0 UNKNOWN

8571 (Unspecified) (D) 255.255.255.255 0 UNKNOWN

8585 (Unspecified) (D) 255.255.255.255 0 UNKNOWN

8589 (Unspecified) (D) 255.255.255.255 0 UNKNOWN

8590 8.8.30.43 (D) 255.255.255.255 4569 OK (16 ms)

3232 (Unspecified) (D) 255.255.255.255 0 UNKNOWN

9 iax2 peers [1 online, 8 offline, 0 unmonitored]

iax2 debug

Looking at this output, identify the beginning and end of the call. Observe the delay and jitter
information obtained using poke and pong packets. These packets help create the output of the ―iax2

show netstats‖ command.

vtsvoffice*CLI> iax2 debug

IAX2 Debugging Enabled

Rx-Frame Retry[No] -- OSeqno: 000 ISeqno: 000 Type: IAX Subclass: REGREQ

 Timestamp: 00003ms SCall: 26975 DCall: 00000 [8.8.30.43:4569]

 USERNAME : 8590

 REFRESH : 60

Tx-Frame Retry[000] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: REGAUTH

 Timestamp: 00009ms SCall: 00003 DCall: 26975 [8.8.30.43:4569]

 AUTHMETHODS : 2

 CHALLENGE : 137472844

 USERNAME : 8590

Rx-Frame Retry[No] -- OSeqno: 001 ISeqno: 001 Type: IAX Subclass: REGREQ

 Timestamp: 00016ms SCall: 26975 DCall: 00003 [8.8.30.43:4569]

 USERNAME : 8590

 REFRESH : 60

 MD5 RESULT : f772b6512e77fa4a44c2f74ef709e873

Tx-Frame Retry[000] -- OSeqno: 001 ISeqno: 002 Type: IAX Subclass: REGACK

 Timestamp: 00025ms SCall: 00003 DCall: 26975 [8.8.30.43:4569]

 USERNAME : 8590

 DATE TIME : 2006-04-17 16:03:00

 REFRESH : 60

 APPARENT ADDRES : IPV4 8.8.30.43:4569

 CALLING NUMBER : 4830258590

 CALLING NAME : Flavio

Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 002 Type: IAX Subclass: ACK

 Timestamp: 00025ms SCall: 26975 DCall: 00003 [8.8.30.43:4569]

 | IAX2 debug commands |

- 157 -

Tx-Frame Retry[000] -- OSeqno: 000 ISeqno: 000 Type: IAX Subclass: POKE

 Timestamp: 00003ms SCall: 00006 DCall: 00000 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: ACK

 Timestamp: 00003ms SCall: 26976 DCall: 00006 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: PONG

 Timestamp: 00003ms SCall: 26976 DCall: 00006 [8.8.30.43:4569]

 RR_JITTER : 0

 RR_LOSS : 0

 RR_PKTS : 1

 RR_DELAY : 40

 RR_DROPPED : 0

 RR_OUTOFORDER : 0

Tx-Frame Retry[-01] -- OSeqno: 001 ISeqno: 001 Type: IAX Subclass: ACK

 Timestamp: 00003ms SCall: 00006 DCall: 26976 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 000 ISeqno: 000 Type: IAX Subclass: NEW

 Timestamp: 00003ms SCall: 26977 DCall: 00000 [8.8.30.43:4569]

 VERSION : 2

 CALLING NUMBER : 8590

 CALLING NAME : 4830258590

 FORMAT : 2

 CAPABILITY : 1550

 USERNAME : 8590

 CALLED NUMBER : 8580

 DNID : 8580

Tx-Frame Retry[000] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: AUTHREQ

 Timestamp: 00007ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]

 AUTHMETHODS : 2

 CHALLENGE : 190271661

 USERNAME : 8590

Rx-Frame Retry[Yes] -- OSeqno: 000 ISeqno: 000 Type: IAX Subclass: NEW

 Timestamp: 00003ms SCall: 26977 DCall: 00000 [8.8.30.43:4569]

 VERSION : 2

 CALLING NUMBER : 8590

 CALLING NAME : 4830258590

 FORMAT : 2

 CAPABILITY : 1550

 USERNAME : 8590

 CALLED NUMBER : 8580

 DNID : 8580

Tx-Frame Retry[-01] -- OSeqno: 000 ISeqno: 001 Type: IAX Subclass: ACK

 Timestamp: 00003ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 001 ISeqno: 001 Type: IAX Subclass: AUTHREP

 Timestamp: 00063ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]

 MD5 RESULT : 57cc5c48affba14106c29439944413a1

Tx-Frame Retry[000] -- OSeqno: 001 ISeqno: 002 Type: IAX Subclass: ACCEPT

 Timestamp: 00054ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]

 FORMAT : 1024

Tx-Frame Retry[000] -- OSeqno: 002 ISeqno: 002 Type: CONTROL Subclass: ANSWER

 Timestamp: 00057ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]

Tx-Frame Retry[000] -- OSeqno: 003 ISeqno: 002 Type: VOICE Subclass: 138

 Timestamp: 00090ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 002 Type: IAX Subclass: ACK

 Timestamp: 00054ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 003 Type: IAX Subclass: ACK

 Timestamp: 00057ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]

| Chapter 7 - The IAX Protocol |

- 158 -

Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 004 Type: IAX Subclass: ACK

 Timestamp: 00090ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 002 ISeqno: 004 Type: VOICE Subclass: 138

 Timestamp: 00210ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]

Tx-Frame Retry[-01] -- OSeqno: 004 ISeqno: 003 Type: IAX Subclass: ACK

 Timestamp: 00210ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 003 ISeqno: 004 Type: IAX Subclass: PING

 Timestamp: 02083ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]

Tx-Frame Retry[000] -- OSeqno: 004 ISeqno: 004 Type: IAX Subclass: PONG

 Timestamp: 02083ms SCall: 00004 DCall: 26977 [8.8.30.43:4569]

 RR_JITTER : 0

 RR_LOSS : 0

 RR_PKTS : 1

 RR_DELAY : 40

 RR_DROPPED : 0

 RR_OUTOFORDER : 0

Rx-Frame Retry[No] -- OSeqno: 004 ISeqno: 005 Type: IAX Subclass: ACK

 Timestamp: 02083ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]

Rx-Frame Retry[No] -- OSeqno: 004 ISeqno: 005 Type: IAX Subclass: HANGUP

 Timestamp: 08693ms SCall: 26977 DCall: 00004 [8.8.30.43:4569]

 CAUSE : Dumped Call

To turn off debugging, use:

vtsvoffice*CLI>iax2 no debug

Summary
This chapter has reviewed the strengths and weaknesses of the IAX protocol. It has demonstrated how

IAX works in several scenarios, such as soft-phones and a trunk between two Asterisk servers. Trunk
mode allows you to save bandwidth by carrying more than one call in a single packet. Finally, you

learned console commands that you can use to check the status and debug the protocol.

Quiz
1. Two of the main benefits of IAX are bandwidth savings and easier NAT traversal.

A. False

B. True

2. IAX protocols use different UDP ports for signaling and media.

A. False

B. True

3. The bandwidth used by the IAX protocol is the voice payload plus the following headers (mark all

that apply):

A. IP

B. UDP

 | Quiz |

- 159 -

C. IAX

D. RTP

E. cRTP

4. It is important to match the codec payload (20 to 30 ms) with frame synchronization (20ms default)

when using trunk mode.

A. False

B. True

5. When IAX is used in trunk mode, just one header is used for multiple calls.

A. False

B. True

6. IAX is the most used protocol to connect to service providers because it is easier for NAT

traversal.

A. False

B. True

7. In an IAX channel as shown below, the option <secret> can be a password or a
____________________.

IAX/[<user>[:<secret>]@]<peer>[:<portno>][/<exten>[@<context>][/<options>]]

8. The IAX2 show registry provides information about:

A. Registered users

B. Providers to which Asterisk is connected

9. Jitter buffer sacrifices latency to have a steady flow of voice.

A. False

B. True

10. RSA keys might be used for IAX authentication. You have to keep the ___________ key secret
and give your customers the matching ___________ key.

A. public, private

B. private, public

C. shared, private

D. public, shared

| Chapter - The IAX Protocol |

- 160 -

8
The SIP Protocol

Session Initiated Protocol (SIP) is a text-based protocol similar to HTTP and SMTP that was
designed to initialize, keep, and terminate interactive communication sessions between users. These

sessions may include voice, video, chat, interactive games, and others. SIP was defined by the IETF

and is becoming the de facto standard for voice communications. It is very important to understand
how SIP works and how it is configured. If you are going to work with Asterisk, the file sip.conf

will probably be the second most changed file (just after the file extension.conf).

Objectives
By the end of this chapter, you will be able to:

 Understand SIP theory of operation

 Understand the strengths and weaknesses of SIP

 Configure Asterisk to connect to a SIP provider

 Integrate two Asterisk servers using SIP

 Configure Asterisk in a NAT scenario

 Configure a client behind NAT

Theory of Operation
SIP is a signaling protocol with the following components: User Agent Client, User Agent Servers,

SIP Proxies, and SIP Gateways. The following figure depicts the relationships among these
components.

| Chapter 8 - The SIP Protocol |

- 162 -

 UAC (user agent client) – The client or terminal that initializes SIP signaling.

 UAS (user agent server) – The server that responds to a SIP signaling coming from a

UAC.

 UA (user agent) – The SIP terminal (phones or gateways that contain both UAC and

UAS).

 Proxy Server – Receives requests from a UA and transfers to other SIP Proxies if the

particular station is not under their administration.

 Redirect Server – Receives requests and sends them back to the UA, including

destination data, instead of directly forwarding them to the destination.

 Location Server – Receives requests from a UA and updates the location database with

this information.

Usually, the proxy, redirect, and location servers are hosted within the same hardware and use the

same piece of software, which we call the SIP proxy. The SIP proxy is responsible for location

database maintenance, connection establishment, and session termination.

SIP Register process

Before a phone can receive calls, it needs to be registered to a location database. In the location
database, the IP address will be bonded to the name. In the following example, extension 8500 will be

bound to IP address 200.180.1.1. You do not necessarily need to use phone numbers. In the SIP

architecture, the registered extension could be flavio@asteriskguide.com as well.

mailto:flavio@asteriskguide.com

 | Theory of Operation |

- 163 -

Proxy operation
When operating as a SIP proxy, the SIP server stays in the middle of the signaling and is capable of

advanced routing and billing. The media flow, based on the real time protocol (RTP) still goes

directly between the endpoints.

| Chapter 8 - The SIP Protocol |

- 164 -

Redirect operation
When redirecting, the SIP server simply sends a message (e.g., 302 moved temporarily) to the user

agent and stays out of the path of new messages. It is very light in terms of resource usage, but you
have no control at all. Redirection is sometimes used in load balance designs.

How Asterisk handles SIP
It is important to understand that Asterisk is neither a SIP proxy nor a SIP redirector. Asterisk can

perform the role of the registrar and location server; however, it only connects two UACs to itself.

Therefore, Asterisk is considered a back-to-back user agent (B2BUA). In other words, it connects two
SIP channels, bridging them together. Asterisk has a re-invite mechanism that can make the SIP

channels talk to each other directly instead of passing through Asterisk. This mechanism is controlled

by the parameter canreinvite in the sip.conf file. When using canreinvite=yes the RTP flow

goes directly from one endpoint to another, freeing server resources.

 | Theory of Operation |

- 165 -

However, if you need to transfer or record the call using Asterisk, you may use the parameter

canreinvite=no to force the RTP flow through the Asterisk server.

SIP Messages

The basic SIP messages are:

 INVITE – connection establishment

| Chapter 8 - The SIP Protocol |

- 166 -

 ACK – acknowledge

 BYE – connection termination

 CANCEL – connection termination for a non-established call

 REGISTER – register a UAC to a SIP proxy

 OPTIONS – can be used to check availability

 REFER – transfer a SIP call to someone else

 SUBSCRIBE – subscribe to notification events

 NOTIFY – send out channel information

 INFO – send various messages (e.g., DTMF)

 MESSAGE – send instant messages

The SIP responses are in text format and are easily readable (similar to HTTP messages). The most
important responses are:

 1XX – Information messages (100–trying, 180–ringing, 183–progress)

 2XX – Successful request complete (200 – OK)

 3XX – Call redirect, request has to be directed to another place (302 – moved

temporarily, 305 – use proxy)

 4XX – Error (403 – Forbidden)

 5XX – Server Error (500 – Internal Server Error; 501 – Not implemented)

 6XX – Global Failure (606 – Not acceptable)

For example:

INVITE sip:2000@192.168.1.133 SIP/2.0

Via: SIP/2.0/UDP
192.168.1.116;rport;branch=z9hG4bKc0a8017400000063452fafbb00006967000000d2

From: "unknown"<sip:2001@192.168.1.133>;tag=1556140623845

To: <sip:2000@192.168.1.133>

Contact: <sip:2001@192.168.1.116>

Call-ID: 64B4C8EC-FCFC-49E9-98B1-90982EEEBED3@192.168.1.116

CSeq: 2 INVITE

Max-Forwards: 70

User-Agent: SJphone/1.61.312b (SJ Labs)

Content-Length: 335

Content-Type: application/sdp

Proxy-Authorization: Digest
username="2001",realm="asterisk",nonce="6c55905e",uri="sip:2000@192.168.1.133",
response="983c0099eea125d8cdfe93b0ec99f3ec",algorithm=MD5

 | SIP advanced scenarios |

- 167 -

Session description protocol (SDP)

SDP is defined in IETF RFC2327. It is intended for describing multimedia sessions for the purposes

of session announcement, session invitation, and other forms of multimedia session initiation. SDP
includes:

 Transport protocol (RTP/UDP/IP)

 Type of media (text, audio, video)

 Media format or codec (H.261 video, g.711 audio, etc.)

 Information needed to receive these media (addresses, ports, etc.)

The following example is a transcription of a SDP describing a call between two phones.

v=0

o=- 3369741883 3369741883 IN IP4 192.168.1.116

s=SJphone

c=IN IP4 192.168.1.116

t=0 0

a=setup:active

m=audio 49160 RTP/AVP 3 97 98 8 0 101

a=rtpmap:3 GSM/8000

a=rtpmap:97 iLBC/8000

a=rtpmap:98 iLBC/8000

a=fmtp:98 mode=20

a=rtpmap:8 PCMA/8000

a=rtpmap:0 PCMU/8000

a=rtpmap:101 telephone-event/8000

a=fmtp:101 0-11,16

SIP advanced scenarios
Chapter 3 reviewed the basic options to connect a SIP phone to Asterisk. Now let‘s move on to more
advanced configurations. In the next sections, you will learn how to configure Asterisk to connect to a

SIP provider, how to connect two Asterisks together using SIP, and how to place a call to a SIP

provider. All SIP configurations are done in the file /etc/asterisk/sip.conf

Connecting Asterisk to a SIP provider

Asterisk is often used to connect to a SIP VoIP provider. VoIP providers usually have better rates for
phone calls than traditional providers. Another interesting and attractive point of VoIP providers is

the possibility to buy DID numbers in other cities—even in foreign countries. These are good reasons

to use VoIP for telecommunications. In this section, you will learn how to connect Asterisk to a VoIP

provider.

| Chapter 8 - The SIP Protocol |

- 168 -

Three steps are required to connect Asterisk to a SIP provider. Tests can be conducted by establishing

an account with your favorite provider.

Step 1: Registering with a SIP provider in sip.conf

To connect to a SIP provider, you will need the following information from the provider:

 username

 secret

 hostname

 domain

 codecs allowed

This configuration will allow your provider to locate Asterisk‘s IP address. In the following

statement, we are telling Asterisk to register to a SIP provider defined by the hostname and inform the

provider of Asterisk‘s IP address. The statement says that you want to receive calls at extension 4100.

In the [general] section of the sip.conf file, enter the following line:

register=>name:secret@hostname/4100

Step 2: Configure the [peer] on sip.conf

Create an entry of peer type to the desired provider to simplify Asterisk‘s dialing.

[provider]

context=incoming

type=friend

dtmfmode=rfc2833

canreinvite=no

username=username

 | SIP advanced scenarios |

- 169 -

secret=secret
host=hostname
fromuser=username
fromdomain=domain
insecure=invite

disallow=all

allow=ulaw ; or any other codec available from your provider

Step 3: Create a route to the provider in the dial plan

We will choose the digits 010 as the destination route to the provider. To dial #610000 inside the

provider, simply dial 010610000.

exten=>_010.,1,Set(CALLERID(num)=username)
exten=>_010.,n,Set(CALLERID(Name)=”Flavio Gonçalves”)

exten=>_010.,n,Dial(SIP/${EXTEN:3}@provider)
exten=>_010.,n,Hangup

SIP options specific to the provider scenario

The following discussion examines the details of the options set in the sip.conf file for connection

to a VoIP provider.

register=>username:password@hostname/4100

The instruction registered in the sip.conf file is used to register with a provider. The register

transaction is authenticated with the name and secret. You can use a slash (―/‖) to provide an
extension for incoming calls. Technically speaking, the extension will be placed in the ―Contact‖

header field of the SIP request.

The registering behavior can be controlled by certain parameters:

registertimeout=20

registerattempts=10

To check if registration was successful, use the following console command:

CLI>sip show registry

The parameter ―username‖ is used in the authentication digest. The digest is computed using

username, secret, and realm:

username=username

Host defines the VoIP provider address or name:

host=hostname

The parameters Fromuser and Fromdomain are sometimes required for authentication. These

parameters are used in the SIP From header field:

fromuser=username
fromdomain=hostname

When you connect to a VoIP provider, credentials are required. After the initial invite, the provider

sends you a message called ―407 Proxy Authentication Required‖; you provide the credentials in the
subsequent INVITE message. For incoming calls, your Asterisk server will ask for credentials for the

| Chapter 8 - The SIP Protocol |

- 170 -

provider. Obviously, the provider does not have a valid credential for your Asterisk server. When you

use insecure=invite, you are telling Asterisk not to send the ―407 Proxy Authentication Required‖

to the provider and to accept incoming calls. You can also use insecure=port, invite to match the
peer based on the IP address without matching the port number.

insecure=invite, port

Connecting two Asterisk servers together using SIP

You can use SIP to interconnect two Asterisk boxes. It is important to pay attention to the dial plan
before moving on with this configuration. Users generally want to connect other PBXs with minimal

effort. The idea here is to use an extension number only to connect to the other PBX.

Step 1: Edit the sip.conf file in server A:

[B]

type=user

secret=B

host=A

disallow=all

allow=ulaw

canreinvite=no

[B-out]

type=peer

fromuser=A

username=A

secret=A

host=B

 | SIP advanced scenarios |

- 171 -

disallow=all

allow=ulaw

canreinvite=no

Step 2: Edit the sip.conf file in server B:

[A]

type=user

host=B

secret=A

disallow=all

allow=ulaw

canreinvite=no

[A-out]

type=peer

host=A

fromuser=B

username=B

secret=B

disallow=all

allow=ulaw

canreinvite=no

Step 3: Edit the extensions.conf file in server A:

[default]

exten=_44XX,1,dial(SIP/${EXTEN},20)

exten=_44XX,2,hangup()

exten=_45XX,1,dial(SIP/B-out/${EXTEN})

exten=_45XX,2,hangup()

Step 4: Edit the extensions.conf file in server B:

[default]

exten=_44XX,1,dial(SIP/A-out/${EXTEN})

exten=_44XX,2,hangup()

exten=_45XX,1,dial(SIP/${EXTEN})

exten=_45XX,2,hangup()

Asterisk domain support

The SIP protocol follows the Internet architecture. The first thing to do before configuring SIP is to

correctly set the DNS servers. In a SIP environment, you can call a user located in any SIP proxy, and
other users can call you as well using your SIP Uniform Resource Identifier (URI). To set a DNS

server for SIP, you have to add SRV records to your DNS server.

| Chapter 8 - The SIP Protocol |

- 172 -

; SIP server/proxy and its backup server/proxy

sip1.yourdomain.com 21600 IN A 200.180.4.169

sip2.yourdomain.com 21600 IN A 200.175.61.150

;

; DNS SRV records for SIP

_sip._udp.yourdomain.com 21600 IN SRV 10 0 5060 sip1.asteriskguide.com.

_sip._udp.yourdomain.com 21600 IN SRV 20 0 5060 sip2.asteriskguide.com.

After configuring the DNS, you can use the URI, which points to a SIP user, SIP phone, or telephone

extension. A SIP URI looks similar to an email address (e.g., sip:chuck@yourpartnerdomain.com).

Using SIP URIs, no telephone number is needed to make a call from one SIP phone to another. To
dial an external user, simply use a statement as the one shown below.

exten=4000,1,dial(SIP/chuck@yourpartnerdomain.com)

Certain parameters can control domain behavior.

srvlookup=yes

This parameter enables DNS SRV lookups on outbound calls. Using this parameter, it is not possible

to dial calls using SIP names based on domain.

allowguest=yes

This parameter allows an external invite to be processed without authentication. It processes the call

within the context defined in the general section or in the domain statement.

Warning: If you define a context in the general section with access to PSTN, an external user

can dial the PSTN over your PBX. In this case, you will incur any charges. Allow only your

own extensions in the context defined in the general section.

 | Advanced configurations |

- 173 -

domain=acme.com,default

The domain command allows you to handle more than one domain within Asterisk. If a call comes
from one specific domain, it is directed to a specific context.

;autodomain=yes

This parameter includes the local IP and hostname in the allowed domains.

;allowexternaldomains=no

The default is yes. Uncomment the line to disallow calls to outside domains.

Advanced configurations
This section will explain some advanced parameters of the SIP channel, such as presence, codec
selection, DTMF options, and QOS packet marking.

SIP Presence
SIP presence is partially implemented in Asterisk. Asterisk supports requests such as SUBSCRIBE

and NOTIFY users depending on the state of a channel. Asterisk does not support the SIP method

PUBLISH. In other words, you can subscribe to the states (busy, idle, and ringing) of a channel, but

cannot publish information such as ―away‖ or ―do not disturb‖.

The most common scenario for presence is busy lamp field (BLF), in which you simulate the

behavior of a KS system with lamps for each extension and trunk.

SIP parameters for presence:

 allowsubscribe=yes: Allow SIP subscription methods

 subscribecontext=sip_subscribers: Context where to look for hints

 notifyring=yes: Send SIP NOTIFY on ring

 notifyhold=yes: Send SIP NOTIFY on hole

 counteronpeer (renamed from limitonpeer for Asterisk 1.4.x): Apply the counter only on

the peer side

 callcounter=yes: Enable call counters in the device.

 busylevel=1: Threshold for the number of calls for considering the device as busy.

For example:

Step 1: Testing SIP presence with Asterisk is not that hard. First, let‘s configure the files sip.conf
and extensions.conf.

In the file sip.conf

[general]

bindaddr=0.0.0.0

| Chapter 8 - The SIP Protocol |

- 174 -

bindport=5060

disallow=all

allow=ulaw

allowsubscribe=yes

notifyringing=yes

notifyhold=yes

limitonpeer=yes

counteronpeer=yes

subscribecontext=default

[2000]

type=friend

host=dynamic

context=default

dtmfmode=rfc2833

secret=senha

callcounter=yes

busylevel=1

[2001]

type=friend

host=dynamic

context=default

dtmfmode=rfc2833

secret=senha

callcounter=yes

busylevel=1

In the file extensions.conf

[default]

exten=2000,hint,SIP/2000

exten=2001,hint,SIP/2001

exten=_20XX,1,dial(SIP/${EXTEN})

exten=_20XX,n,Hangup()

Step 2: Now configure the soft-phone to use presence. We will show you how to configure X-Lite.

 Sequence: right-click->SIP Account Settings->Properties->Presence

 Change the presence model from peer-to-peer to presence agent, which will make the

soft-phone subscribe Asterisk for SIP events.

 | Advanced configurations |

- 175 -

Step 3: Add the contact to other soft-phones. In this example, the Xlite is account 2000, so we

will add a contact for account 2001.

Sequence: Open the right panel (presence panel in Xlite)->Click in Contacts->Add a contact.

Fill the name 2001. Display as 2001 and don‘t forget to check the box Show this contact‟s
availability

Step 4: Now call extension 2001 and check the status of the phone in the right panel of the soft-
phone.

Use the console commands core show hints to see the presence status changing in the server and

sip show inuse to show how many calls you have on each line.

| Chapter 8 - The SIP Protocol |

- 176 -

Codec configuration
Codec configuration is simple and straightforward. You can set the words allow and disallow in the

[general] section or peer/user section. The best practice is to standardize the codec to avoid
transcoding, which is processor intensive. Please use the same codec for messages and prompts.

[general]

disallow=all

allow=g729

DTMF options

On certain occasions, you will pass digits to an application such as voicemail or interactive voice
response (IVR). It is important to pass DTMF correctly.

The simplest method for passing DTMF is called inband. It is set in the [general] or peer/user
section of the sip.conf file. When you set dtmfmode=inband, DTMF tones are generated as sounds

in the audio channel. The main issue with this method is that, when you compress the audio channel

using a codec such as g729, sounds are distorted and DTMF tones are not properly recognized. If you

are planning to use dtmfmode=inband, use the g.711 codec (ulaw and alaw).

dtmfmode=inband

Another approach is to use RFC2833, which allows you to pass DTMF tones as named events in the
RTP packets. A table of events corresponding to tones is provided below.

Event Codification

 | SIP authentication |

- 177 -

0—-9 0—9

* 10

11

A—D 15

Flash 16

dtmfmode=rfc2833

Finally, you can pass DTMF digits inside SIP packets, instead of RTP packets. This method is

defined in the RFC3265 (signaling events) and RFC2976.

dtmfmode=info

Following the release of version 1.2, it is now possible to use:

dtmfmode=auto

This tries to use the RFC2833; if it is not possible, use band tones.

Quality of service (QoS) marking configuration

QoS is a set of techniques responsible for voice quality. QoS is implemented in such a way as to
reduce bandwidth, latency, and jitter. The main QoS functions are packet scheduling, fragmentation,

and header compression. QoS is implemented in switches and routers, not by Asterisk itself.

However, Asterisk can help routers and switches by marking packets for express delivery. Marking is
done using differentiated services code points (DSCP) defined in RFCs 2474 and RFC2475.

tos_sip=cs3

tos_audio=ef

tos_video=af41

Starting from version 1.4, you can specify different codes for signaling (SIP), audio (RTP), and video

(RTP).

SIP authentication
When Asterisk receives a SIP call, it follows the rules described in the following diagram.

| Chapter 8 - The SIP Protocol |

- 178 -

Three parameters play an important role in SIP authentication:

allowguest=yes/no

This parameter controls whether a user without a corresponding peer can authenticate without a

name and secret. We discussed this parameter in the domain support section.

insecure=invite,port

When we use insecure=invite, Asterisk does not generate the message ―407 Proxy Authentication
Required‖. Without this message, the user can make a call without authentication. This is often used

to connect to VoIP service providers. The calls coming from the VoIP service provider are usually not

authenticated.

autocreatepeer=yes/no

This command is used when Asterisk is connected to a SIP proxy. It dynamically creates a peer to

each call. When this option is enabled, any UAC can connect to the Asterisk server. It is important to
limit the IP connection to the SIP proxy. The SIP proxy, in turn, takes care of access control. Peer

configuration is based on the general options as well as the ―Contact‖ header field of the SIP packet.

Warning: Use this with extreme caution as it completely opens Asterisk.

secret=senha

This parameter configures the secret for authentication. If you do not want to present the secrets in
text files, you can use md5secret to include a hash instead of the secret. To generate the MD5 secret,

you can use:

echo –n “username:realm:secret” |md5sum

 | SIP NAT Traversal |

- 179 -

Then use the following statement:

md5secret=0b0e5d467890....

Warning: Do not forget to use the –n parameter; the carriage return will be used in the md5

computation.

deny=0.0.0.0/0.0.0.0

permit=192.168.1.0/255.255.255.0

The statements above will deny all IP addresses and allow UAC only from the local network

(192.168.1.0/24).

RTP options

It is possible to control some RTP parameters.

rtptimeout=60

This terminates calls without RTP activity for more the 60 seconds when not in hold.

rtpholdtimeout=120

This terminates calls without RTP activity even on hold (should be bigger than rtptimeout).

SIP NAT Traversal
Network Address Translation (NAT) is a feature used by most networks to save Internet IP addresses.

Usually, a company receives a small block of IP addresses, and end users receive one IP address
dynamically when connected to the Internet. NAT solves the addressing problem by mapping internal

addresses to external addresses. It stores a mapping of internal to external addresses in its memory.

This mapping is valid for a specific length of time, after which the mapping is discarded. The
mapping uses IP:port pairs for the internal and external addresses.

Four kinds of NAT exist:

 Full Cone

 Restricted Cone

 Port Restricted Cone

 Symmetric

Full Cone
The first NAT, full cone, represents a static mapping from an external IP:port pair to an internal

IP:port pair. Any external computer can connect to it using the external IP:port pair. This is the case

in non-stateful firewalls implemented with the use of filters.

| Chapter 8 - The SIP Protocol |

- 180 -

Restricted Cone

In the restricted cone scenario, the external IP:port pair is opened only when the internal computer
sends data to an outside address. However, the restricted cone NAT blocks any incoming packets

from a different address. In other words, the internal computer has to send data to an external

computer before it can send data back.

Port Restricted Cone

The port restricted cone firewall is almost identical to the restricted cone. The only difference is that,
now, the incoming packet has to come from exactly the same IP and port of the sent packet.

Symmetric
The last type of NAT is called symmetric. It is different from the first three in that a specific mapping

is done to each external address. Only specific external addresses are allowed to come back by the

NAT mapping. It is not possible to predict the external IP:port pair that will be used by the NAT

device. The other three types of NAT allow the use of an external server to discover the external IP
address for communication. With symmetric NAT, even if you can connect to an external server, the

discovered address cannot be used for any other device except for this server.

 | SIP NAT Traversal |

- 181 -

NAT firewall table

The following table summarizes the three types of NAT.

 Need to send
data before
receiving

It is possible to
determine the IP:port
pair for returning
packets

It restricts the
incoming packets to
the destination IP:port

Full Cone No Yes No

Restricted Cone Yes Yes Only IP

Port Restricted Cone Yes Yes Yes

Symmetric Yes No Yes

SIP signaling and RTP over NAT
Some of the biggest issues in NAT traversal are that you have to solve two problems: SIP signaling

and audio (RTP). Most problems of one-way audio are NAT related.

An interesting thing about SIP is that, when a UAC sends a packet, it embeds the IP address in the
SIP ―Contact‖ header field. Usually this is an internal (RFC1918) address; responses to this packet

cannot be routed over the Internet back to the UAC. When you put the statement ―nat=yes‖ in the

sip.conf file, you are telling Asterisk to ignore the address contained in the ―Contact‖ header field of

the SIP header and use the source IP address and port in the packet‘s IP header.

nat=yes

| Chapter 8 - The SIP Protocol |

- 182 -

It is necessary to keep the NAT mapping open. If NAT times out, Asterisk cannot send an invite to

the UAC. The UAC is able to send calls, but not receive any. The following statement can be used to

keep NAT open.

qualify=yes

Qualify will send a SIP packet using the OPTIONS method regularly, which will help keep NAT
open.

Even with SIP signaling resolved, we now have the challenge of passing RTP from one phone to

another. If the user‘s NAT is of the symmetric type, it is not possible to send packets from one UAC
to another directly. In this case, we have to force the RTP through Asterisk using: [something

missing?]

Qualify sends an OPTION each 60 seconds and every 10
th
 second when the host is not reachable. You

can use ―sip show peers‖ to see the latency for the peers.

canreinvite=no

These configurations are appropriate for most cases. However, it is possible to optimize the traffic

using advanced techniques like Simple Traversal of UDP over NAT (STUN), which is useful with

full cone, restricted cone, port restricted cone, and Application Layer Gateway (ALG). Using these
techniques, you do not need to do anything in Asterisk for NAT traversal. Unfortunately, most

firewalls today—even home DSL/cable routers—are symmetric, making STUN unusable. ALG could

solve the problem, but it is not supported, not implemented, or buggy in most cases.

Asterisk behind NAT

All the previous scenarios assume that the Asterisk server has an external (valid) Internet address.

Sometimes the Asterisk server is implemented behind a firewall with NAT. In this case, it is
necessary to do some extra configurations.

 | SIP NAT Traversal |

- 183 -

Step 1: Configure the firewall to redirect the UDP port 5060 statically to the Asterisk server.

Step 2: Configure the firewall to redirect the UDP ports from 10000 to 20000 statically. If you want
to restrict the number of opened ports, you can edit the rtp.conf file to change the RTP port range.

Another way is to use an intelligent firewall that supports the SIP protocol to open the RTP ports

dynamically.

; RTP Configuration

;

[general]

;

; RTP start and RTP end configure start and end addresses

;

rtpstart=10000

rtpend=20000

Step 3: Configure Asterisk to include the external address in the header fields of the SIP packets

including Session Description Protocol (SDP). You can accomplish this by adding the following two

statements to the sip.conf file:

externip=200.180.4.168 ;External IP address

localnet=192.168.1.0/255.255.255.0 ;Internal Network Address

nat=yes

The first parameter externip tells Asterisk to include the external IP address inside the SIP headers

for external destinations. The second parameter localnet allows Asterisk to differentiate between
external and internal addresses. Optionally, you can use externhost if you use a Dynamic DNS with

a DHCP address on the server.

| Chapter 8 - The SIP Protocol |

- 184 -

SIP limitations
Asterisk uses the incoming RTP flow to synchronize the outgoing flow. If the incoming flow is

interrupted (silence suppression), music-on-hold will be cut. In other words, you cannot use silence

suppression in phones or providers with Asterisk.

SIP dial strings
You can call a SIP destination using different dial strings:

SIP/peer ; Need to have a defined peer in sip.conf

SIP/flavio@voffice.com.br ; By the URI

SIP/[exten@]peer[:portno]

SIP/[user:password@domain/extension

Examples include:

exten=>s,1,Dial(SIP/ipphone)

exten=>s,1,Dial(SIP/info@voffice.com.br)

exten=>s,1,Dial(SIP/192.168.1.8:5060,20)

exten=>s,1,Dial(SIP/8500@sip.com:9876)

SIP CLI commands
You can show all available SIP console commands using:

CLI>help sip

Quiz
1. SIP is a protocol similar to ______ and _______.

A. IAX

B. HTTP

C. H.323

D. SMTP

2. SIP can have which types of sessions? (mark all that apply)

A. Voice

B. E-mail

C. Video

D. Chat

E. Games

3. SIP components include: (mark all that apply)

mailto:SIP/flavio@voffice.com.br

 | Quiz |

- 185 -

A. User Agent

B. Media Gateway

C. PSTN Server

D. Proxy Server

E. Registrar Server

4. Before a phone can receive calls, it needs to ___________.

5. A SIP server can operate in the PROXY or REDIRECT mode. The difference between the two is

that, in the PROXY mode, all signaling passes by the SIP proxy. In the REDIRECT mode, after
discovering the location, the clients signal between themselves.

A. True

B. False

6. In proxy mode, the media flow goes through the SIP proxy.

A. True

B. False

7. Asterisk is a SIP proxy.

A. True

B. False

8. The canreinvite=yes/no option is fundamental. It will define whether the medium passes within

Asterisk or goes directly from one client to another. It has a major impact on Asterisk‘s scalability.

A. True

B. False

9. Asterisk supports silence suppression in the SIP channels.

A. True

B. False

10. The hardest NAT type to traverse is:

A. Full Cone

B. Restricted Cone

C. Port Restricted Cone

D. Symmetric

9
Dial Plan advanced features

Chapter 3 discussed the basics of a dial plan. For didactical reasons, we didn‘t explain all the features,
but only some of the most important ones. This chapter will delve more deeply into the dial plan,

describing advanced techniques, new applications, and concepts.

Objectives
By the end of this chapter, you should be able to:

 Simplify your extension entries

 Address dial plan security and filtering extensions

 Receive calls using an IVR menu

 Use macros to avoid unnecessary rewrites

 Implement some dial plan security using ―Include‖

 Implement follow-me using AsteriskDB

 Implement after-hours behavior in your PBX

 Use the switch command to transfer to another PBX

 Implement the privacy manager

 Implement voicemail

 Implement a corporate directory

Simplifying your Dial Plan
This is a new feature available on Asterisk 1.6.2. You can now simplify your dial plan using the

keyword ―same‖ to define an extension. It should reduce the number of typos in the dial plan. Check

the example below:

exten => 4000,1,NoOp()
same => n,Dial(SIP/005C2B313E22)

 | Dial Plan Security |

- 187 -

Dial Plan Security
A flaw was recently discovered in the Asterisk dial plan.

1
 This vulnerability allows a user to inject a

new channel and dial number into your dial plan. Let‘s suppose that you have the following line in

your server exten=>_X.,1,dial(SIP/${EXTEN}) and some malicious user dialed the number

3000&DAHDI/1/011551123456789 in the softphone. The SIP protocol, by default, accepts any
alphanumeric characters, so the extension dialed will actually trigger two calls: one for the channel

SIP/3000 and the other for the channel DAHDI/011551123456789, which is an international number.

Thus, any user with access to an extension can actually dial anywhere in the world.

The easiest way to avoid this behavior is to filter the numbers before calling the dial application. The

function FILTER() is very handy for this.

Example:

exten=>_X.,1,DIAL(SIP/${FILTER(0-9,${EXTEN})})

The application filter will allow you to filter all characters from the dialed number except for the

numbers 0 to 9. More information can be found in the file README-SERIOUSLY.bestpractices.txt
available from Asterisk.

Receiving calls using an IVR menu.
In the last section, you received all calls using DID or forwarding to the operator. Now you will learn

how to implement an IVR menu as well as create an auto-attendant service. Before getting into the

specifics, , let‘s examine some new applications.

Applications used in this section

 Background()

 Gotoif()

 Record()

 Playback()

 Read()

We put the output of the command show application below simply to make it easier for readers. You
can obtain these descriptions using show application applicationname.

The Background() application

This application will play the given list of files while waiting for an extension to be dialed by the

calling channel.

1 http://downloads.asterisk.org/pub/security/AST-2010-002.pdf

| Chapter 9 - Dial Plan advanced features |

- 188 -

To continue waiting for digits after this application has finished playing files, the WaitExten
application should be used. The langoverride option explicitly specifies which language to attempt

to use for the requested sound files. Any context that is specified will be the dial plan context that

this application uses when exiting to a dialed extension. If one of the requested sound files does not

exist, call processing will be terminated.

Options:

 s - Causes the playback of the message to be skipped if the channel is not in the 'up' state (i.e.,

it hasn't been answered yet). If this happens, the application will return immediately.

 n - Don't answer the channel before playing the files.

 m - Only break if a digit hit matches a one-digit extension in the destination context.

The Record() application

This application records from the channel into a given filename. If the file exists, it will be
overwritten.

 | Receiving calls using an IVR menu. |

- 189 -

 'format' is the format of the file type to be recorded (wav, gsm, etc).

 'silence' is the number of seconds of silence allowed before returning.

 'maxduration' is the maximum recording duration in seconds; if it is missing or zero, there

is no maximum.

 'options' may contain any of the following letters:

o 'a': appends to an existing recording rather than replacing it

o 'n': do not answer, but record anyway if line is not yet answered

o 'q': quiet (do not play a beep tone)

o 's': skips recording if the line is not yet answered

o 't': use alternate '*' terminator key (DTMF) instead of default '#'

o 'x': ignore all terminator keys (DTMF) and keep recording until hang-up

If filename contains %d, these characters will be replaced with a number incremented by one each

time the file is recorded. Use core show file formats to see the available formats on your system.
The user can press # to terminate the recording and continue to the next priority. If the user hangs up

during a recording, all data will be lost and the application will terminate.

The Playback() application

This application plays back given filenames (do not include extension). Options may also be included

following a pipe symbol. The 'skip' option causes the playback of the message to be skipped if the
channel is not in the 'up' state (i.e., hasn't been answered yet).

| Chapter 9 - Dial Plan advanced features |

- 190 -

Play a file

[Description]

Playback(filename[&filename2...][|option]):

Playback()

If 'skip' is specified, the application will return immediately should the channel not be off the hook.

Otherwise, unless 'noanswer' is specified, the channel will be answered before the sound is played.

Not all channels support playing messages while still on the hook. If 'j' is specified, the application
will jump to priority n+101 when the file does not exist, if present. This application sets the following

channel variable upon completion:

 PLAYBACKSTATUS - The status of the playback attempt as a text string, one of:

o SUCCESS

o FAILED

The Read() application

This application reads a predetermined number of string digits, a certain number of times, from the

user into the given variable.

 filename -- file to play before reading digits or tone with option i

 maxdigits -- maximum acceptable number of digits. Stops reading after maxdigits have

been entered (without requiring the user to press the # key). Defaults to 0 - no limit - to

 | Receiving calls using an IVR menu. |

- 191 -

wait for the user to press the # key. Any value below 0 means the same. The maximum

accepted value is 255.

 option -- options are s, i, n

o s to return immediately if the line is not up

o i to play filename as an indication tone from your indications.conf

o n to read digits even if the line is not up

 attempts -- if greater than 1, the number of attempts that will be made in case no data

are entered

 timeout -- An integer number of seconds to wait for a digit response. If greater than 0,

that value will override the default timeout.

The read() application should disconnect if the function fails or errors out.

The Gotoif() application
This application will cause the calling channel to jump to the specified location in the dial plan based

on the evaluation of the given condition. The channel will continue at labeliftrue if the condition is

true, or 'labeliffalse' if the condition is false. The labels are specified with the same syntax as
that used within the Goto application. If the label chosen by the condition is omitted, no jump is

performed; rather, the execution continues with the next priority in the dial plan.

Conditional goto

[Description]

GotoIf(condition?[labeliftrue]:[labeliffalse])

Gotoif()

Lab: Building an IVR menu step-by-step
Let‘s create an IVR menu with the following functionality:

When dialed, the IVR will play back an audio file with the message ―Welcome to the XYZ
Corporation; press 1 for sales, 2 for tech support, 3 for training, or wait to speak to a representative.‖

When 1 is pressed, the call is transferred to sales (SIP/4001); if 2 is pressed, the call is transferred to

tech support (SIP/4002); if 3 is pressed, the call is transferred to training (SIP/4003). If no digits are
pressed, the call is transferred to the operator (SIP/4000).

Step 1 – Record the prompts

Let‘s create an extension to record the prompts. To record a prompt, dial from a soft phone to

9003filename. When you hear the beep, start recording; press # to stop recording. You will hear a

beep and the system will play back the recorded prompt.

| Chapter 9 - Dial Plan advanced features |

- 192 -

Recording a prompt

exten=_9003.,1,answer()
exten=_9003.,n,Record(${EXTEN:4}.wav||5|t)
exten=_9003.,n,Playback(${EXTEN:4})
exten=_9003.,n,Hangup()

Step 2 – Creating the menu logic

When dialing the 9004 extension, processing will jump to the menu in the ‗s‘ extension, priority 1.

Creating the menu logic

exten=>9004,1,goto(menu,s,1)
[menu]
exten=>s,1,Background(mainmenu)
exten=>s,n,WaitExten(30)
exten=>1,1,goto(sales,s,1)
exten=>2,1,goto(techsupport,s,1)
exten=>3,1,goto(training,s,1)
;handling an invalid digit
exten=>i,1,Dial(${OPERATOR})
;handling timeout
exten=>t,1,Dial(${OPERATOR})
[sales]
exten=>s,1,Dial(SIP/4001,20,t)
[techsupport]
exten=s,1,Dial(SIP/4002,20,t)
[training]
exten=s,1,Dial(SIP/4002,20,t)

Matching as you dial

This is a company setup menu for receiving calls. The background application reads the current

context and defines the maximum length for each number for any possible combination.

[incoming]

exten=>s,1,Background(welcome)

exten=>1,1,Dial(DAHDI/1)

exten=>2,1,Dial(DAHDI/2)

exten=>21,1,Dial(DAHDI/3)

exten=>22,1,Dial(DAHDI/4)

exten=>31,1,Dial(DAHDI/5)

exten=>32,1,Dial(DAHDI/6)

When you dial this company, the welcome message is played first. After that, Asterisk waits for a

digit to be dialed.

 | Context inclusion |

- 193 -

Dialed number Asterisk Action

1 Immediately calls Dial(DAHDI/1)

2 Waits for the timeout, then goes to Dial(DAHDI/2)

21 Immediately calls (DAHDI/3)

22 Immediately calls (DAHDI/4)

3 Waits for the timeout, then disconnects

31 Immediately calls Dial(DAHDI/5)

32 Immediately calls Dial(DAHDI/6)

4 Immediately disconnects

It is important to avoid ambiguity in the menus. Everybody wants to be answered quickly. For this

reason, you should not use numbers 2, 21, or 22.

Lab: Using the Read() application
Please try the lab with the read() application. Read accept digits from the user and inserts them into

the specified variable; you can then use the gotoif application to redirect the call.

exten=9005,1,Read(test||1)
exten=9005,n,Gotoif($[${test}=1]?one:other)
exten=9005,n,hangup()
exten=9005,n(one),playback(tt-weasels)
exten=9005,n,hangup()
exten=9005,n(other),playback(tt-monkeys)

Using the Read() application

Context inclusion
A context can include the contents of another context.

| Chapter 9 - Dial Plan advanced features |

- 194 -

In the example above, any channel can dial any extension in the internal context, but only the 4003

channel can dial international extensions. You can use context inclusion to make dial plan creation
easier. Using context inclusion, you can control who has access to what extensions.

Troubleshooting the message “number not found”
It is very common to receive the message ―number not found‖. Most people confuse the concept of

included contexts because it is really not intuitive. As a rule of thumb, first go to the incoming

channel configuration file, such as sip.conf, chan_dahdi.conf, and iax.conf, and determine the
current context. Then, go to the dial plan in the file extensions.conf and check if the number dialed

can be found in that context. If not, something is wrong with your dial plan. The golden rules of

contexts are:

1. A channel can only dial numbers within the same context as the channel.

2. The context where the call is processed is defined in the incoming channel
(chan_dahdi.conf, iax.conf, sip.conf).

Using the switch statement
You can send the dial plan processing to another server using the switch command. You will need the
name and key of the other server. The context is the destination context.

 | Dial plan processing order |

- 195 -

Switch

The SWITCH statement permits a server to share the dial

plan with another server.

;Switch to another server using IAX2

[iaxprovider]

;switch => IAX2/user:[key]@myserver/mycontext

;Switch to the same server using local channel

[subroutine]

switch => Loopback/1234@othercontext

Dial plan processing order
When Asterisk receives an incoming call, it looks in the context defined by the channel. In some

cases, if more than one pattern matches the dialed number, Asterisk cannot process the call in the
exact way you think it should. You can see the matching order using the dialplan show CLI

command.

Dial plan processing order

1. An exact match using dialed number and callerID

2. An exact match using only dialed number

3. A pattern that matches the dialed number

4. A context included in the switch statement

5. An included context

Example:

Let‘s say that you want to dial 912 to route to an analog trunk (DAHDI/1) and all other numbers

starting with 9 to another analog trunk (DAHDI/2). You would write something like:

[example]

exten=>_912.,1,Dial(DAHDI/1/${EXTEN})

exten=>_9.,1,Dial(DAHDI/2/${EXTEN})

If two patterns match an extension, you can control what extension is processed first using the
included contexts. An included context is processed later than a pattern in the same context.

The #INCLUDE statement
Should we use a big file or several files? You can use the #include <filename> statement to include
other files in your extensions.conf. For example, we could create a users.conf for local users and

| Chapter 9 - Dial Plan advanced features |

- 196 -

services.conf for special services. Be careful to not confuse #include <filename> with the

include=>context statement.

Macros
A macro is an instruction set that executes sequentially. Macros are used to avoid the rewriting lines

of code, thereby allowing the reutilization of pieces of code within the dial plan.

Defining a macro

You can define a macro using [macro-macroname]. Within the macro, you may use the specific
variables listed below:

 ${ARG1}: First macro argument

 ${ARG2}: Second macro argument (etc.)

 ${MACRO_CONTEXT}: Context where macro was called

 ${MACRO_EXTEN}: Extension that triggers the macro

 ${MACRO_OFFSET}: Set by a macro to influence priority after exiting

 ${MACRO_PRIORITY}: Priority where the macro was triggered

Calling a macro

To call a macro you need to use the application:

Macro(macroname,arg1,arg2...)

To call the macro defined above, you should use:

 | Using Asterisk DB |

- 197 -

exten =>_4XXX,2,Macro(stdexten,sip/${EXTEN})

Please check the macros defined in extensions.conf (sample file) for additional examples.

Using Asterisk DB
To implement call forward and black lists, we need some way to store and restore data. Fortunately,

Asterisk provides a mechanism for storing and retrieving data from a Berkley DB database (version
1) called AstDB. This is similar to the Windows registry database using the family and keys

hierarchical concept. The data persist between Asterisk restarts.

Functions, applications, and CLI commands

There are some functions, applications, and CLI commands that work with AstDB:

 variable=${DB(<family/key>)}

 DB(<family/key>)=value

 DB_EXISTS(<family/key>)

Examples:

exten=_*21*XXXX,1,set(DB(CFBS/${CALLERID(num)}=${EXTEN:4}))

exten=s,1,set(temp=${DB(CFBS/${EXTEN})})

Some applications can be used to manipulate AstDB:

 dbdel(<family/key>)

 dbdeltree(<family>)

It is possible to use CLI commands to set and delete keys as well:

| Chapter 9 - Dial Plan advanced features |

- 198 -

 database del

 database put

 database show <family[/key]>

 database showkey

 database deltree

 database get

Implementing Call Forward, DND, and Blacklists
In this example, you will learn how to implement call forward immediate and call forward on busy.

We will use *21* to program call forward immediate and *61* to program call forward on busy
status. To cancel the programming, use #21# and #61#, respectively. Use the above example to

populate the database.

Families used:

 CFIM – Call Forward Immediate

 CFBS – Call Forward on Busy status

 DND – Do Not Disturb

Try populating the database dialing:

 21 (Destination extension for call forwarding immediate)

 61 (Destination extension for call forwarding on busy status)

 41 (Extension to put on do not disturb)

Use the CLI command database show to see the families, keys, and values added.

 | Using a blacklist |

- 199 -

The above macro verifies if the database contains the key:value pairs corresponding to CFIM, CFBS,
or DND, and then handles them appropriately. The follow macro calls the dialing routine:

exten=_4XXX,1,Macro(stdexten,${EXTEN})

Using a blacklist
To create a blacklist, we use the LookupBlacklist() application. The application checks the

name/number in the caller ID. If the number is not found, the application sets the variable
$LOOKUPBLSTATUS to NOTFOUND. If the number is found, the application sets the variable to FOUND.

You can use the ―j‖ option in the application to use the old (1.0) behavior, jumping 101 positions if

the number/name is found.

Example:

[incoming]

exten => s,1,LookupBlacklist(j)

exten => s,2,Dial(SIP/4000,20,tTj)

exten => s,3,Hangup()

exten => s,102,Goto(blocked,s,1)

[blocked]

exten => s,1,Answer()

exten => s,2,Playback(blockedcall)

exten => s,3,Hangup()

To insert a number in the blacklist, we can use the same resource as before, using *31* followed by

the extensions to be blacklisted. To remove a number from the blacklist, you should use #31#

followed by the number to be removed.

| Chapter 9 - Dial Plan advanced features |

- 200 -

[apps]

exten=>_*31*X.,1,Set(DB(blacklist/${EXTEN}=1})

exten=>_*31*X.,2,Hangup()

exten=>_#31#X.,1,dbdel(blacklist/${EXTEN}:4)

exten=>_#31#X.,2,Hangup()

You can also insert the numbers in the blacklist using the console CLI:

CLI>database put blacklist <name/number> 1

Note: Any value can be associated with the key. The blacklist application will search for the key, not

the value. To erase the number from the blacklist, you can use:

CLI>database del blacklist <name/number>

Time-based contexts
In the following figure, we have a dial plan with three contexts. The [incoming] context is where the

calls are usually received. We have included four lines that change behavior depending on the system

time, as exemplified below:

include => context|<times>|<weekdays>|<mdays>|<months>

During regular working hours, processing will be redirected to the mainmenu, where it will probably

call an IVR to handle the incoming call. If the call takes place after hours, it will call the security

extension defined in the ${SECURITY} variable. If the security extension does not answer the call, it
will be sent to the operator‘s voicemail.

 | Time-based messages using gotoiftime() |

- 201 -

Time-based messages using gotoiftime()
The gotoiftime() syntax is shown below.

GotoIfTime(<timerange>|<daysofweek>|<daysofmonth>|<months>?[[context|]extension
|]pri)

This application can replace the time-based context and seems easier to understand and read. You can

specify the time as follows:

 <timerange>=<hour>':'<minute>'-'<hour>':'<minute> |"*"

 <daysofweek>=<dayname>|<dayname>'-'<dayname>|"*"

 <dayname>="sun"|"mon"|"tue"|"wed"|"thu"|"fri"|"sat"

 <daysofmonth>=<daynum>|<daynum>'-'<daynum> |"*"

 <daynum>=number from 1 to31

 <hour>=number from 0 to 23

 <minute>=number from 0 to 59

 <months>=<monthname>|<monthname>'-'<monthname>|"*"

 <monthname>="jan"|"feb"|"mar"|"apr"|"may"|"jun"|"jul"|"aug"|"sep"|"oct"|"nov"|"dec"

Names for days and months are not case sensitive.

exten=>s,1,GotoIfTime(8:00-18:00|mon-fri|*|*?normalhours,s,1)

The previous statement transfers the processing to the extension s in the normalhours context if the

call is between 08:00AM and 06:00PM from Monday to Friday.

Using DISA to get a new dial tone
DISA, or ―direct inward system access,‖ is a system that allows users to receive a second dial tone. It

permits users to dial again to another destination. It is often used by technicians when dialing long

distance calls for technical support on weekends; instead of dialing from their homes directly to the
destination, they call the office‘s DISA number, receive a dial tone, and then call the destination.

Long-distance charges incur at the company instead of the home phone.

DISA(passcode[|context])

DISA(password file)

Example:

exten => s,1,DISA(no-password|default)

Using the previous statement, the user dials the PBX and—without requiring any password—receives

a dial tone. Any call using DISA will be processed using the default context.

The arguments for this application include a global password or individual password within a file. If

no context is specified, DISA will be assumed. If you use a password file, the complete path has to be

specified. A caller ID can be specified for the DISA external dialing too.

| Chapter 9 - Dial Plan advanced features |

- 202 -

Example:

numeric-passcode|context|"Flavio” <4830258590>

Limit simultaneous calls
Since version 1.2, new functions Have been added. The GROUP() function allows you to count how

many active channels you have in one group at the same time.

Example:

You have a branch in Rio de Janeiro, where phones follow the pattern ―_214X‖. This location is
served by a leased line, with 64K reserved for voice bandwidth. In this case, the maximum number of

allowed calls is 2 (G.729, 30r.2K per call). To limit calls to Rio by two:

exten=>_214X,1,set(GROUP()=Rio)

exten=>_214X,n,Gotoif($[${GROUP_COUNT()} > 1]?outoflimit)

exten=>_214X,n,Dial(SIP/${EXTEN})

exten=>_214X,n,hangup

exten=>_214X,n(outoflimit),playback(callsexceedcapacity)

exten=>_214X,n,hangup

Voicemail
Voicemail is a computerized telephone answering system that records incoming voice messages,

saving them on disk or sending them via e-mail. Sometimes it has a directory where you can look up

voicemail boxes by name. In the past, voicemail systems were very expensive. Now, with IP
telephony, voicemail is becoming a standard feature. To configure voicemail, you should go through

the following steps:

Step 1: Edit the file voicemail.conf and set general parameters.

format Codec used to read the message (e.g., wav49, wav, gsm)

serveremail Who the email notification should appear to come from

maxmsg Maximum number of messages in the mailbox; after this threshold, messages are discarded

maxsecs Maximum number of seconds for the voicemail message

minsecs Minimum number of seconds for the message; below this threshold, no message is recorded

maxsilence What to consider silence in seconds

Step 2: Edit the file voicemail.conf and create the users‘ mailboxes

 | Voicemail |

- 203 -

Voicemail.conf

Mailbox ID=pincode, fullname,email address,pager e-

mail,option=value, option=value

 MailboxID => usually the extension number

 Pincode=>password to access e-mail system

 Full name => used for the directory application

 E-mail => for voicemail notification

 Pager e-mail=>For notification via SMS gateway or pager

 Options=> The same options but applied to the MaiboxID

Voicemail has several options that control voicemail behavior. For now, we will stick to the default

options and concentrate on mailbox definition. After the [general] section in the file, you will start

configuring the mailbox ID in its own context.

Example:

[general]

[default]

1234=>1234,SomeUser,email@address.com,pager@address.com,saycid=yes|dialout=from
vm|callback=fromvm|review=yes|operator=yes

Please check for advanced options in the file voicemail.conf.

Step 3: Configuring the file extensions.conf

Below, you have the instructions to create the macro and the macro-call to implement voicemail in

the file extensions.conf. We use the results of the channel variable ${DIALSTATUS} to redirect

the call flow to the proper voicemail menu.

| Chapter 9 - Dial Plan advanced features |

- 204 -

;We will, usually use a macro to process the voicemail
[macro-stdexten]
exten=>s,1,Dial(${ARG1},20,t)
exten=>s,n,Goto(${DIALSTATUS})
exten=>s,n,hangup()
exten=>s,n(BUSY),voicemail(${MACRO_EXTEN},b)
exten=>s,n,hangup()
exten=>s,n(NOANSWER),voicemail(${MACRO_EXTEN},u)
exten=>s,n,hangup()
exten=>s,n(CANCEL),hangup
exten=>s,n(CHANUNAVAIL),hangup
exten=>s,n(CONGESTION),hangup

[local]
exten=>6601,1,Macro(stdexten,SIP/6601)
exten=>6602,1,Macro(stdexten,SIP/6602)

Voicemail Macro

Using the Voicemailmain() application
The application voicemailmain() is used to configure the voicemail mailbox. Users can dial the

application, record their greeting, and listen to their voicemail. To call the application in the dial plan,
use:

exten=>9000,1,VoiceMailMain()

Below you will find a list of the options available for the application.

 | Using the Voicemailmain() application |

- 205 -

Voicemail application syntax
This application allows the calling party to leave a message for a specified list of mailboxes. When

multiple mailboxes are specified, the greeting will be taken from the first specified mailbox. The dial
plan execution will stop if the specified mailbox does not exist. The syntax is shown below:

 [Synopsis]

Leave a Voicemail message.

[Description]

This application allows the calling party to leave a message for the specified

list of mailboxes. When multiple mailboxes are specified, the greeting will

be taken from the first mailbox specified. Dialplan execution will stop if

the specified mailbox does not exist.

The Voicemail application will exit if any of the following DTMF digits are

received:

 0 - Jump to the 'o' extension in the current dialplan context.

 * - Jump to the 'a' extension in the current dialplan context.

This application will set the following channel variable upon completion:

${VMSTATUS}: This indicates the status of the execution of the VoiceMail

application.

 SUCCESS

 USEREXIT

 FAILED

[Syntax]

VoiceMail(mailbox[@context][&mailbox[@context][&...]][,options])

[Arguments]

options

 b: Play the 'busy' greeting to the calling party.

 d([c]): Accept digits for a new extension in context <c>, if played

 during the greeting. Context defaults to the current context.

 g(#): Use the specified amount of gain when recording the voicemail

 message. The units are whole-number decibels (dB). Only works on supported

 technologies, which is DAHDI only.

 s: Skip the playback of instructions for leaving a message to the

 calling party.

 u: Play the 'unavailable' greeting.

 U: Mark message as 'URGENT'.

 P: Mark message as 'PRIORITY'.

In all cases, the beep.gsm file will be played before the recording begins. Voicemail messages will be

stored in the inbox directory.

/var/spool/asterisk/voicemail/context/boxnumber/INBOX/

If a caller presses 0 (zero) during the announcement, it will be moved to the ‗o‘ (out) extension in the
voicemail current context. This can be used to exit to the operator.

| Chapter 9 - Dial Plan advanced features |

- 206 -

If during the recording the caller presses # or the silence limit times out, recording is stopped and the

call goes to the next priority. Make sure that you handle the call after the voicemail is played, as

shown below.

exten=>somewhere,5,Playback(Goodbye)

exten=>somewhere,6,Hangup

New feature in version 1.6.x

You may now tag some messages as ―urgent.‖ Two methods are available for this:

 Pass the option „U‟ in the application voicemail()

 Specify review=yes in the file voicemail.conf. If using this option, the user will be

able to tag the message as urgent after recording the voice instructions.

Sending voicemail to e-mail
In some cases (like mine), we simply do not use the voicemailmain() application to read e-mail. It is

simpler and more practical to send all messages to e-mail with the audio attached. Using the

parameters ‗attach‘ and ‗delete‘, you can send all mails to e-mail and delete them from the mailbox.

attach=yes

delete=yes

To send voicemail to e-mail, the voicemail application uses the message transfer agent (MTA), a

component of your operating system. Debian uses Exim as the MTA. The application that sends the

e-mail is defined in the ‗mailcmd‘ parameter.

mailcmd =/usr/sbin/sendmail -t

In the Debian distribution of Linux, the MTA is Exim. To configure Exim in Debian, use:

dpkg-reconfigure exim4-config

You can choose to make your MTA send an e-mail directly through SMTP or a smarthost (usually

your company‘s mail server). Verify with your e-mail administrator the best way to send e-mail from
the Asterisk server to your e-mail server.

Customizing the e-mail message
You can control how messages are sent by setting up the following variables:

Variables for e-mail subject and e-mail body:

 VM_NAME

 VM_DUR

 VM_MSGNUM

 VM_MAILBOX

 VM_CIDNUM

 | Voicemail Web interface |

- 207 -

 VM_CIDNAME

 VM_CALLERID

 VM_DATE

The e-mail body and e-mail subject will be created as described below. You can modify the e-mail

body and subject, but the size limit of the message is 512 bytes.

emailsubject=[PBX]: New message ${VM_MSGNUM} in mailbox ${VM_MAILBOX}. The
following definition is very close to the default, but the default shows just the CIDNAME, if it is not

null, otherwise just the CIDNUM, or "an unknown caller", if they are both null.

emailbody=Dear ${VM_NAME}:\n\n\tjust wanted to let you know you were just left a

${VM_DUR} long message (number ${VM_MSGNUM})\nin mailbox ${VM_MAILBOX} from

${VM_CALLERID}, on ${VM_DATE}, so you might\nwant to check it when you get a chance.

Thanks!\n\n\t\t\t\t--Asterisk\n

Voicemail Web interface

There is a Perl script in the source distribution called vmail.cgi located in /usr/src/asterisk/vmail.cgi.

The command ―make install‖ does not install this interface unless you run make webvmail. This

script requires the Perl command interpreter and Apache to be installed on the server.

make webvmail

| Chapter 9 - Dial Plan advanced features |

- 208 -

You might need to edit this script before installing. Copy the source files to the html directory.

cp /usr/asterisk/images/*.gif /var/html/asterisk

Use the following command to make the cgi executable.

chmod +x vmail.cgi

Voicemail notification
You can configure voicemail to send a notify message to your phone when you have new voicemail.

Voicemail notification works with SIP phones, ZAP phones, and some IAX2 phones. To indicate an

unheard voicemail, an indicator light may blink or the phone may play a shutter tone. You need to
configure the mailbox in the corresponding channel configuration file.

Example: sip.conf

mailbox=8590

Lab: Message Notification in the Phone

This lab was tested using Xlite for windows 3.0.

1. Edit the sip.conf and add ‗mailbox=4401‘ in the SIP channel named 4401.

2. Edit the extensions.conf and create an extension to record a voicemail to 4401 extensions.

exten=9008,n,voicemail(b4401)

3. Go to the CLI > console and reload.

4. Go to the X-Lite > Mouse Right Button > SIP Account Settings > Properties > Voicemail and

check the box ‗check voicemail‘.

5. Dial 9008 and leave a message.

6. Observe the message icon on the phone.

Using the directory application
This application allows you to quickly find a user to dial. The list of names and corresponding

extensions are retrieved from the voicemail configuration file voicemail.conf. Syntax for the
application can be shown using core show application directory:

-= Info about application 'Directory' =-

[Synopsis]

Provide directory of voicemail extensions.

[Description]

This application will present the calling channel with a directory of

extensions from which they can search by name. The list of names and

corresponding extensions is retrieved from the voicemail configuration file,

 | Using the directory application |

- 209 -

"voicemail.conf".

This application will immediately exit if one of the following DTMF digits

are received and the extension to jump to exists:

'0' - Jump to the 'o' extension, if it exists.

'*' - Jump to the 'a' extension, if it exists.

[Syntax]

Directory([vm-context][,dial-context[,options]])

[Arguments]

vm-context

 This is the context within voicemail.conf to use for the Directory.

 If not specified and 'searchcontexts=no' in "voicemail.conf", then

 'default' will be assumed.

dial-context

 This is the dialplan context to use when looking for an extension

 that the user has selected, or when jumping to the 'o' or 'a' extension.

options

 e: In addition to the name, also read the extension number to the

 caller before presenting dialing options.

 f(n): Allow the caller to enter the first name of a user in the

 directory instead of using the last name. If specified, the optional

 number argument will be used for the number of characters the user should

 enter.

 l(n): Allow the caller to enter the last name of a user in the

 directory. This is the default. If specified, the optional number

 argument will be used for the number of characters the user should enter.

 b(n): Allow the caller to enter either the first or the last name

 of a user in the directory. If specified, the optional number argument

 will be used for the number of characters the user should enter.

 m: Instead of reading each name sequentially and asking for

 confirmation, create a menu of up to 8 names.

 p(n): Pause for n milliseconds after the digits are typed. This

 is helpful for people with cellphones, who are not holding the receiver

 to their ear while entering DTMF.

 NOTE: Only one of the <f>, <l>, or options may be specified.

 If more than one is specified, then Directory will act as if was

 specified. The number of characters for the user to type defaults to

 '3'.

Lab: Using the directory application

1. Edit the voicemail.conf file to add two extensions in the dial plan

[default]

; Define maximum number of messages per folder for a particular context.

;maxmsg=50

4400=>4400,Clint Eastwood,ceastwood@asteriskguide.com

4401=>4401,John Wayne,jwayne@asteriskguide.com

| Chapter 9 - Dial Plan advanced features |

- 210 -

2. Create these extensions in your dial plan

exten=9006,1,VoiceMailMain()

exten=9006,n,Hangup()

exten=9007,1,Directory(default|default)

exten=9007,n,Hangup()

3. Go to the console and reload

4. Dial 9006 and record a name for each extension (4400, 4401)

5. Dial 9007 and select the three letters of the last name for one extension (Eas=327). If this is the

correct option, press ‗1‘ to transfer to the name.

Lab: Putting it all together
Thus far, you have learned several dial plan concepts. Let‘s put all the applications, functions, and

concepts in a dial plan example so you can understand how they are used together.

Let‘s guide you through the whole PBX configuration for the scenario below.

 4 analog trunks

 16 SIP-based extensions

 3 service classes

o restrict (Internal, local and 1-800)

o ld (long distance)

o ldi (international)

 | Lab: Putting it all together |

- 211 -

 After-hours message

 Auto attendant

Step 1 – Configuring channels

Analog trunks (chan_dahdi.conf)

First, we will configure the analog trunks in the DAHDI channel configuration file
chan_dahdi.conf. In this case, we will use a T400P Digium card with 4 FXO interfaces. Let‘s

assume that the driver is already loaded and the driver configuration file (/etc/dahdi/system.conf)

is correctly configured.

signalling=fxs_ks
language=en
context=incoming
group=1

channel => 1-4

SIP channels (sip.conf)

We have chosen the dial plan numbering from 2000 to 2099. Two codecs will be used: G.729 and
G.711 ulaw. The first one will be used for phones using Asterisk over the Internet or WAN while the

second one will be used for phones using the local network. In the sip.conf, we will arbitrate which

devices will belong to each class of service (restrict, ld, ldi). To reduce the vulnerability to
brute force attacks, we will use the phone‘s MAC addresses as device names.

I strongly advise that you use strong passwords to avoid brute force attacks!

[general]

disallow=all

allow=gsm

allow=ulaw

bindport = 5060

bindaddr = 0.0.0.0

context = restrict

[00001A000002]

type=friend

username=20

secret=#s2cr2t#

host=dynamic

mailbox=20

context=restrict

canreinvite=yes

[00001A000003]

type=friend

username=20

| Chapter 9 - Dial Plan advanced features |

- 212 -

secret=#s3cr3t#

host=dynamic

mailbox=20

context=ld

canreinvite=yes

dtmfmode=rfc2833

[00001A000004]

type=friend

username=20

secret=#s3cr3t#

host=dynamic

mailbox=20

context=ldi

canreinvite=yes

dtmfmode=rfc2833

Step 2 – Configure the dial plan
Now let‘s start to configure the extensions.conf.

Define internal extensions and local dialing

[restrict]

exten=>_2000,1,Dial(SIP/00001A000002,20,t)

exten=>_2030,1,Dial(SIP/00001A000003,20,t)

exten=>_2040,1,Dial(SIP/00001A000004,20,t)

exten=>_9XXXXXXX,1,Dial(DAHDI/g1/${EXTEN:1},20) ; local calls

exten=>_91800.,1,Dial(DAHDI/g1/${EXTEN:1},20); 1-800

Define LD (long distance)

[ld]

Include=>restrict

exten=>_9NXXNXXXXXX,1,Dial(DAHDI/g1/${EXTEN:1},20)

Define international calls

[ldi)

include=> ld

exten=>_901X.,1,Dial(DAHDI/g1/${EXTEN:1},20)

Step 3 - Receiving calls using an auto-attendant
To receive calls, use two contexts. The first one is for normal-hours operation, where the call will be

received by an auto-attendant. The second one is for after hours, where the caller will receive a
message such as ―you have called company XYZ, our normal hours are from 08:00 AM to 06:00 PM;

if you know the destination extension number you can try dialing it now or hang up.‖

Menus: Normal-hours, After-hours

 | Lab: Putting it all together |

- 213 -

In the menus below, the system will play a message warning the caller that the company was reached

after regular working hours, allowing the caller to dial the destination extension number (someone

may be working after regular working hours).

[incoming]

include=>normalhours|08:00-18:00|mon-fri|*|*

include=>afterhours|18:00-23:59|*|*|*

include=>afterhours|00:00-07:59|*|*|*

include=>afterhours|*|sat-sun|*|*

[normalhours]

exten=>s,1,Goto(mainmenu,s,1)

[afterhours]

exten=>s,1,Background(afterhours)

exten=>s,2,hangup()

exten=>i,1,hangup()

exten=>t,1,hangup()

include=>restrict

Menus: Main and Sales

During normal working hours, the call is answered by an auto-attendant menu, receiving a message

such as ―welcome to XYZ Company; dial 1 for sales, 2 for tech support, 3 for training, or the desired
extension number‖.

[globals]

OPERATOR=SIP/2060

SALES=SIP/2035

TECHSUPPORT=SIP/2004

TRAINING=SIP/2036

[mainmenu]

exten=> s,1,Background(welcome)

exten=>1,1,Goto(sales,s,1)

exten=>2,1,Goto(techsupport,s,1)

exten=>3,1,Goto(training,s,1)

exten=>i,1,Playback(Invalid)

exten=>i,2,hangup()

exten=>t,1,Dial(${OPERATOR},20,Tt)

include=>restrict

[sales]

exten=>s,1,Dial(${SALES},20,Tt)

[techsupport]

exten=>s,1,Dial(${TECHSUPPORT},20,Tt)

[training]

| Chapter 9 - Dial Plan advanced features |

- 214 -

exten=>s,1,Dial(${TRAINING},20,Tt)

With all these statements, the functionality of your dialing plan is now ready. In the next section, we
will demonstrate how to operate the PBX.

Summary
In this chapter, you have learned how to receive calls using an IVR or an auto-attendant. You have
studied the concept of context inclusion and implemented a few examples. Macros were used to avoid

repetitive typing, and the Asterisk database based on the Berkley DB engine was used for functions

that require data storage (e.g., call forward, do not disturb, blacklists). Finally, you have learned how

to implement after-hours behavior and implemented a complete dial plan using these concepts.

Quiz
1. To include a time-dependent context, you can use:

include=> context|<times>|<weekdays>|<mdays>|<months>

What does the following statement do?

include=>normalhours|08:00-18:00|mon-fri|*|*

A. Execute extensions from Monday to Friday from 08:00 to 18:00

B. Execute options every day in all months

C. Nothing; its format is invalid.

2. When a user dials ―0‖ to get an external line, Asterisk automatically cuts the audio. This can be bad

because the user is used to hearing an external dialing tone before dialing the other numbers. You can

simulate the old dialing behavior with the _______________ statement.

3. The following statements make the user who called the 8590 extension (mark all that apply):

exten => 8590/482518888,1,Congestion

exten => 8590,2,Dial(DAHDI/1,20,j)

exten => 8590,3,Voicemail(u8590)

exten => 8590,103,Voicemail(b8590)

A. Receive a busy tone if the CallerID=482518888

B. Receive a busy tone, independent from the number dialed.

C. Dial the DAHDI/1 channel

D. Go to to the voicemail if DAHDI/1 is busy or is not answered, except when

CallerID=482518888.

4. To concatenate several extensions, you can separate them using the ____ character.

5. A voice menu is usually created using the__________ application.

6. You can include files inside the configuration files using the ____________ statement.

 | Quiz |

- 215 -

7. The Asterisk database is based in __________.

A. Oracle

B. MySQL

C. Berkley DB

D. PostgreSQL

8. When you use Dial(type1/identifier1&type2/identifier2), Asterisk dials to each one in

sequence, waiting 20 seconds between them.

A. False

B. True

9. Using the Background application, you need to wait until the message is played before you can
choose an option to send a DTMF digit.

A. False

B. True

10. The valid formats for the goto application are:

A. Goto (context,extension)

B. Goto (context,extension,priority)

C. Goto (extension,priority)

D. Goto(priority)

11. Switches are used to direct the dial plan processing to another server.

A. False

B. True

12. A macro can be used to automate the processing of an extension. The first macro argument is:

A. ${ARG1}

B. ${ENV1}

C. ${V1}

D. ${X}

10
Using PBX features

In SIP systems, most of the phone features are implemented in the endpoint. A variety of SIP phones
and manufacturers exist, and the interoperability is not guaranteed. The Asterisk development team

has done an amazing job of implementing most of the features in the PBX itself, making Asterisk

almost endpoint independent. However, sometimes you will find the same function being done by
both the phone and Asterisk itself. The integration of the phone and the PBX is the next frontier on

usability and where proprietary systems are focusing right now. In this chapter, you will learn how to

use most of these features.

Objectives

By the end of this chapter, you will be able to understand and use:

 Call Parking

 Call Pickup

 Call Transfer

 Call Conference

 Call Recording

 Meetme

 Music on hold

Where features are implemented

First and foremost, it is important to understand when the PBX features are being executed versus
when the phone is doing all the work. For example, you may transfer a call using the TRANSFER

button on the phone or by dialing # (unconditional transfer executed by the PBX itself).

 | Quiz |

- 217 -

Features implemented by Asterisk

These features are implemented in the PBX by the Asterisk code:

 Music on hold

 Call parking

 Call pickup

 Call recording

 Meetme conference room

 Call transfer (blind and consultative)

Features usually implemented by the dial plan

These features need to be programmed in the Asterisk dial plan (extensions.conf):

 Call forward on busy

 Call forward immediate

 Call forward on unanswered

 Call filtering (blacklist)

 Do not disturb

 Redial

Features usually implemented by the phone

These features are implemented by the phone‘s firmware:

| Chapter 10 - Using PBX features |

- 218 -

 Call on hold

 Blind transfer

 Consultative transfer

 Three-way conference

 Message waiting indicator

The features configuration file

Some of the features presented in this chapter are configured in features.conf configuration file. It

is possible to change the behavior of some features by modifying this file. We have included the

entire sample file below. In the next sections of this chapter, we will describe each feature.

PBX features support

[featuremap]
;blindxfer => #1 ;Blind transfer (default is #)
;disconnect => *0 ;Disconnect (default is *)
;automon => *1 ; One Touch Record
;atxfer => *2 ; Attended transfer
;parkcall => #72 ; Park call (one step parking)

Excerpt from the sample file (Asterisk 1.6.1)

[general]

parkext => 700 ; What extension to dial to park (all parking lots)

parkpos => 701-720 ; What extensions to park calls on. (defafult parking lot)

 ; These needs to be numeric, as Asterisk starts from the start
position

 ; and increments with one for the next parked call.

context => parkedcalls ; Which context parked calls are in (default parking lot)

;parkinghints = no ; Add hints priorities automatically for parking slots (default is
no).

;parkingtime => 45 ; Number of seconds a call can be parked for

 ; (default is 45 seconds)

;comebacktoorigin = yes ; Whether to return to the original calling extension upon parking

 ; timeout or to send the call to context 'parkedcallstimeout' at

 ; extension 's', priority '1' (default is yes).

;courtesytone = beep ; Sound file to play to the parked caller

 ; when someone dials a parked call

 ; or the Touch Monitor is activated/deactivated.

;parkedplay = caller ; Who to play the courtesy tone to when picking up a parked call

 ; one of: parked, caller, both (default is caller)

;parkedcalltransfers = caller ; Enables or disables DTMF based transfers when picking up a parked
call.

 ; one of: callee, caller, both, no (default is no)

;parkedcallreparking = caller ; Enables or disables DTMF based parking when picking up a parked
call.

 ; one of: callee, caller, both, no (default is no)

;parkedcallhangup = caller ; Enables or disables DTMF based hangups when picking up a parked
call.

 ; one of: callee, caller, both, no (default is no)

 | Call Transfer |

- 219 -

;parkedcallrecording = caller ; Enables or disables DTMF based one-touch recording when picking up a
parked call.

 ; one of: callee, caller, both, no (default is no)

;adsipark = yes ; if you want ADSI parking announcements

;findslot => next ; Continue to the 'next' free parking space.

 ; Defaults to 'first' available

;parkedmusicclass=default ; This is the MOH class to use for the parked channel

 ; as long as the class is not set on the channel directly

 ; using Set(CHANNEL(musicclass)=whatever) in the dialplan

;transferdigittimeout => 3 ; Number of seconds to wait between digits when transferring a call

 ; (default is 3 seconds)

;xfersound = beep ; to indicate an attended transfer is complete

;xferfailsound = beeperr ; to indicate a failed transfer

;pickupexten = *8 ; Configure the pickup extension. (default is *8)

;featuredigittimeout = 1000 ; Max time (ms) between digits for

 ; feature activation (default is 1000 ms)

;atxfernoanswertimeout = 15 ; Timeout for answer on attended transfer default is 15 seconds.

;atxferdropcall = no ; If someone does an attended transfer, then hangs up before the
transferred

 ; caller is connected, then by default, the system will try to call back
the

 ; person that did the transfer. If this is set to "yes", the callback
will

 ; not be attempted and the transfer will just fail.

;atxferloopdelay = 10 ; Number of seconds to sleep between retries (if atxferdropcall = no)

;atxfercallbackretries = 2 ; Number of times to attempt to send the call back to the transferer.

 ; By default, this is 2.

; Note that the DTMF features listed below only work when two channels have answered and are bridged
;together. They can not be used while the remote party is ringing or in progress. If you require this
feature you can use

; chan_local in combination with Answer to accomplish it.

[featuremap]

;blindxfer => #1 ; Blind transfer (default is #) -- Make sure to set the T and/or t
option in the Dial() or Queue() app call!

;disconnect => *0 ; Disconnect (default is *) -- Make sure to set the H and/or h option
in the Dial() or Queue() app call!

;automon => *1 ; One Touch Record a.k.a. Touch Monitor -- Make sure to set the W
and/or w option in the Dial() or Queue() app call!

;atxfer => *2 ; Attended transfer -- Make sure to set the T and/or t option in the
Dial() or Queue() app call!

;parkcall => #72 ; Park call (one step parking) -- Make sure to set the K and/or k option in
the Dial() app call!

;automixmon => *3 ; One Touch Record a.k.a. Touch MixMonitor -- Make sure to set the X
and/or x option in the Dial() or Queue() app call!

Call Transfer
Call transfer can be implemented by the phone, by ATA, or by Asterisk itself. Refer to your phone

manual to understand how calls are transferred. If your phone does not support call transfer, you can
use Asterisk to accomplish this task.

| Chapter 10 - Using PBX features |

- 220 -

Call transfer is implemented in two different ways. The first way is to use the blind transfer feature:

dial # followed by the number to be transferred. Sometimes you will use the transfer feature of your
IP phone or IP soft phone. You can change the transfer character by editing the blindxfer parameter

in the features.conf file.

You can enable assisted transfer in Asterisk by removing the ; before the atxfer parameter in the
features.conf file. During a conversation, you would press *2. Asterisk will say ―transfer‖ and will

give you a dial tone. The caller is sent to music on hold. After you speak to the destination person and

hang up the phone, the system bridges the caller to the destination.

Configuration task list

1. If the phone is SIP based, make sure that the option canreinvite is equal to no or use a t
or T option in the dial() application

Call parking
This feature is used to park a call. This helps, for example, when you are answering a phone call
outside of your room and you want to transfer the call back to your desk. You may accomplish this by

parking the call in an extension. Once you reach your desk, simply dial the number of the parking

extension to recover the call.

 | Call pickup |

- 221 -

By default, the 700 extension is used to park a call. In the middle of a conversation, press # to transfer

the call to the 700 extension. Now the Asterisk will announce your parking extension, such as 701 or

702. Hang up the phone, and the caller will be placed on hold. Go to your desk phone and dial the
announced parking extension to recover the call. If the caller is parked for a long time, the timeout

feature will trigger and the original dialed extension will ring again.

Configuration task list

Follow the steps below to enable call parking.

Step 1: Enable call parking: (required)

In the extensions.conf file, type the following statement.

include=>parkedcalls

Step 2: Test the call parking feature by dialing #700.

Notes:

 The parking extension won‘t be shown in the dialplan show CLI command.

 It is necessary to restart Asterisk after changing the features.conf file. A simple reload

won‘t work.

 To park a call, you need to transfer to #700. Verify the options t and T in the dial()

application.

| Chapter 10 - Using PBX features |

- 222 -

Call pickup
Call pickup allows you to capture a call from a colleague in the same call group. This would help

avoid, for example, having to wake up to take a call that is ringing to another person in your room,

but who is not present.

By dialing *8, you can capture a call within your call group. This number can be modified in the

features.conf file.

Configuration task list
Follow the steps below to configure the call pickup feature.

Step 1: Configure a call group for your extensions. This is done in the channel configuration file
(sip.conf, iax.conf, chan_dahdi.conf). This task is required.

[4x00]

callgroup=1

pickupgroup=1,2

Step 2: Change the call-pickup feature number (optional).

pickupexten=*8; Configures the call pickup extension

Call Conference (Meetme)
Some SIP phones implement three-way conferencing in the phone itself. If this is the case, you may
choose to use the phone feature. Refer to the phone manual for instructions on conference calling.

 | Call Conference (Meetme) |

- 223 -

Alternatively, you may choose to use the meetme() application. Meetme is a conference bridge that is

very simple to use. It works with any type of channel and is the standard method for conference in the

Asterisk platform. Let‘s look at this feature in more depth.

The meetme() application

Using the meetme show CLI command, you can obtain the description above. To use meetme, you
need to compile the DAHDI drivers and have at least one DAHDI kernel module loaded. If you don‘t

have at least one DAHDI card installed, load the dahdi_dummy kernel module to provide a timing

source.

| Chapter 10 - Using PBX features |

- 224 -

Description:

The meetme() application gets the user into a specified meetme conference. If the conference number
is omitted, the user will be prompted to enter one. The user can leave the conference by hanging up

or—if the p option is specified—by pressing #.

Please note: The DAHDI kernel modules and at least one hardware driver (or dahdi_dummy) must be

present for conferencing to operate properly. In addition, the chan_dahdi channel driver must be

loaded for the i and r options to operate at all.

The option string may contain zero or one or more of the following characters:

 'a' -- sets admin mode

 'A' -- sets marked mode

 'b' – runs the AGI script specified in ${MEETME_AGI_BACKGROUND}Default: conf-

background.agi (Note: This does not work with non-Zap channels in the same conference)

 'c' -- announces user(s) count upon joining a conference

 'd' -- dynamically adds conference

 'D' -- dynamically adds conference, prompting for a PIN

 'e' -- selects an empty conference

 'E' -- selects an empty pinless conference

 'i' -- announces a user joining/leaving with review

 'I' -- announces a user joining/leaving without review

 'l' -- sets listen only mode (Listen only, no talking)

 'm' -- sets initially muted

 'M' -- enables music on hold when the conference has a single caller

 | Call Conference (Meetme) |

- 225 -

 'o' -- sets talker optimization, which treats talkers who aren't speaking as being muted,

meaning (a) no encode is done on transmission and (b) received audio that is not registered as

talking is omitted, causing no buildup in background noise

 'p' -- allows users to exit the conference by pressing '#'

 'P' -- always prompts for the pin even if it is specified

 'q' -- quiet mode (don't play enter/leave sounds)

 'r' -- Records conference (records as ${MEETME_RECORDINGFILE}using format

${MEETME_RECORDINGFORMAT}). Default filename is meetme-conf-rec-
${CONFNO}-${UNIQUEID} and the default format is wav.

 's' -- Presents menu (user or admin) when '*' is received ('send' to menu)

 't' -- sets talk only mode. (Talk only, no listening)

 'T' -- sets talker detection (sent to manager interface and meetme list)

 'w[(<secs>)]' -- waits until the marked user enters the conference

 'x' -- closes the conference when the last marked user exits

 'X' -- allows the user to exit the conference by entering a valid single digit extension

${MEETME_EXIT_CONTEXT} or the current context if that variable is not defined.

 '1' -- does not play message when the first person enters

Meetme configuration file
This file is used to configure the application meetme. For example:

;

; Configuration file for MeetMe simple conference rooms for Asterisk of course.

;

; This configuration file is read every time you call app meetme()

[general]

;audiobuffers=32 ; The number of 20ms audio buffers to be used

 ; when feeding audio frames from non-Zap channels

 ; into the conference; larger numbers will allow

 ; for the conference to 'de-jitter' audio that arrives

 ; at different timing than the conference's timing

 ; source, but can also allow for latency in hearing

 ; the audio from the speaker. Minimum value is 2,

 ; maximum value is 32.

;

[rooms]

;

; Usage is conf => confno[,pin][,adminpin]

;

conf=>9000

conf=>9001,123456

It is not necessary to use either reload or restart to make Asterisk see the changes in the meetme.conf

file.

| Chapter 10 - Using PBX features |

- 226 -

Meetme-related applications

The meetme() application has two other support applications.

MeetMeCount(confno[|var])

This plays the number of users in the conference. If a variable is specified, it does not play the

message but sets the number of users to it.

MeetMeAdmin(confno,command,[user]):

Run the admin command for a conference:

 'e' -- Ejects the last user that joined

 'k' -- Kicks one user out of the conference

 'K' -- Kicks all users out of the conference

 'l' -- Unlocks the conference

 'L' -- Locks the conference

 'm' -- Unmutes one user

 'M' -- Mutes one user

 'n' -- Unmutes all users in the conference

 'N' -- Mutes all non-admin users in the conference

 'r' -- Resets one user's volume settings

 'R' -- Resets all users‘ volume settings

 's' -- Lowers entire conference speaking volume

 'S' -- Increases entire conference speaking volume

 't' -- Lowers one user's talk volume

 'T' -- Lowers all users‘ talk volume

 'u' -- Lowers one user's listen volume

 'U' -- Lowers all users‘ listen volume

 'v' -- Lowers entire conference listening volume

 'V' -- Increases entire conference listening volume

Meetme configuration task list
Follow the steps below to configure the meetme conferencing application.

Step 1: Choose the extension for the Meetme room (required)

Step 2: Edit the meetme.conf file to configure the passwords (optional)

Examples
Example #1: Simple meetme room

1. In the extensions.conf file, create the conference room 101

exten=>500,1,MeetMe(101,,123456)

2. In the meetme.conf file, establish the password for room 101.

http://www.voip-info.org/,user

 | Call Recording |

- 227 -

Important Note: The meetme() application needs a timer to work. If you don‘t have digium
hardware installed and configured, use dahdi_dummy as a timing source.

Call Recording
There are several ways to record a call in Asterisk. You can use the mixmonitor() application to

easily record calls.

Using the mixmonitor application

The mixmonitor application records the audio in the current channel to the specified file. If the
filename is an absolute path, it uses that path. Otherwise, it creates the file in the configured

monitoring directory from asterisk.conf.

Record a call and mix the audio during the recording

[Description]
MixMonitor(<file>.<ext>[|<options>[|<command>]])

Records the audio on the current channel to the specified
file.

options:

 a- Append to the file instead of overwriting it.

 b-Only save audio to the file while the channel is bridged.

 Note: does not include conferences.

 v(<x>) - Adjust the heard volume by a factor of <x>

 V(<x>) - Adjust the spoken volume by a factor of <x>

 W(<x>) - Adjust both heard and spoken volumes

Mixmonitor()

Valid options:

 a - Appends to the file instead of overwriting it.

 b - Only saves audio to the file while the channel is bridged.

 Note: does not include conferences.

 v(<x>) - Adjusts the audible volume by a factor of <x> (ranging from -4 to 4)

 V(<x>) - Adjusts the spoken volume by a factor of <x> (ranging from -4 to 4)

| Chapter 10 - Using PBX features |

- 228 -

 W(<x>) - Adjusts both audible and spoken volumes by a factor of <x> (ranging from -4

to 4)

 <command> will be executed when the recording is over. Any strings matching ^{X}

will be unescaped to ${X} and all variables will be evaluated at that time. The variable

MIXMONITOR_FILENAME will contain the filename used to record.

An interesting resource is automon, which allows you to simply dial *1 to immediately start

recording.

Example:

exten=>_4XXX,1,Set(DYNAMIC_FEATURES=automon)

exten=>_4XXX,2,Dial(SIP/${EXTEN},20,jtTwW);wW enables the recording.

The audio channels are incoming (IN) and outgoing (OUT) and are separated into two distinct files in

the directory /var/spool/asterisk/monitor. Both files can be mixed using the sox application.

debian#soxmix *in.wav *out.wav output.wav

If you don‘t want to use Set() before the Dial() application, you can set this in the globals section:

[globals]

DYNAMIC_FEATURES=>automon

Music on hold
Music on hold (MOH) has changed several times among versions 1.0, 1.2, and 1.4. In the latest

version, MOH defaults to ―FILE-BASED‖. In other words, Asterisk will supply the MOH files in
formats such as g729, alaw, ulaw, and gsm. Thus, it is not necessary to transcode the music before

sending it to the channel. This saves processor time, which is a welcomed modification for those

working with production systems. In older versions, MOH was usually provided by MP3 (it still can

be configured that way). Providing MOH using MP3 obligates Asterisk to transcode, spending
valuable CPU power in the process.

 | Call Recording |

- 229 -

The new configuration file is shown below. Note that the default class now uses the native file format

mode=files. All other modes are commented.

Each section is a class. The only uncommented class at this point is default. If you want to have

different classes for different files, you will need to create new sections (classes).

; Music on Hold -- Sample Configuration

;[samplemp3]

;mode=quietmp3

;directory=/var/lib/asterisk/mohmp3

;

; valid mode options:

; quietmp3 -- default

; mp3 -- loud

; mp3nb -- unbuffered

; quietmp3nb -- quiet unbuffered

; custom -- run a custom application (See examples below)

; files -- read files from a directory in any Asterisk supported

; media format. (See examples below)

;[manual]

;mode=custom

; Note that with mode=custom, a directory is not required, such as when reading

; from a stream.

;directory=/var/lib/asterisk/mohmp3

;application=/usr/bin/mpg123 -q -r 8000 -f 8192 -b 2048 --mono -s

;[ulawstream]

;mode=custom

| Chapter 10 - Using PBX features |

- 230 -

;application=/usr/bin/streamplayer 192.168.100.52 888

;format=ulaw

; mpg123 on Solaris does not always exit properly; madplay may be a better

; choice

;[solaris]

;mode=custom

;directory=/var/lib/asterisk/mohmp3

;application=/site/sw/bin/madplay -Q -o raw:- --mono -R 8000 -a -12

;

;

; File-based (native) music on hold

;

; This plays files directly from the specified directory, no external

; processes are required. Files are played in normal sorting order

; (same as a sorted directory listing), and no volume or other

; sound adjustments are available. If the file is available in

; the same format as the channel's codec, then it will be played

; without transcoding (same as Playback would do in the dialplan).

; Files can be present in as many formats as you wish, and the

; 'best' format will be chosen at playback time.

;

; NOTE:

; If you are not using "autoload" in modules.conf, then you

; must ensure that the format modules for any formats you wish

; to use are loaded _before_ res_musiconhold. If you do not do

; this, res_musiconhold will skip the files it is not able to

; understand when it loads.

;

[default]

mode=files

directory=/var/lib/asterisk/moh

;

;[native-random]

;mode=files

;directory=/var/lib/asterisk/moh

;random=yes ; Play the files in a random order

MOH configuration tasks
Now, to use music on hold, set the MOH class in the channel configuration files (chan_dahdi.conf,

sip.conf, iax.conf, and so on). The freeplay tunes installed are now in wav format. At the time of
installation, you can select (using make menuselect) the MOH file formats available. If you want to

add new MOH files, you will have to supply them in the required formats. For example:

In /etc/asterisk/chan_dahdi.conf, add the line:

 | Application Maps |

- 231 -

[channels]

musiconhold=default

Edit the file /etc/asterisk/musiconhold.conf

[default]
mode=files
directory=/var/lib/asterisk/moh

In the dial plan, you can hear the MOH using the following example:

Exten=>100,1,SetMusicOnHold(default)

Exten=>100,2,Dial(Zap/2)

To configure the file extensions.conf to test the MOH:

[local]

exten => 6601,1,WaitMusicOnHold(30)

Application Maps
In version 1.2, it became possible to add new features by using the application maps section of the

features.conf file. Suppose you need to identify the type of customer you are answering to a call

center. You could create an application map for each customer type, which could count the number of
answered customers per type.

[applicationmap]
; Note that the DYNAMIC_FEATURES channel variable must be set to use the features
; defined here. The value of DYNAMIC_FEATURES should be the names of the features
; to allow the channel to use separated by '#'. For example:
;
; Set(DYNAMIC_FEATURES=myfeature1#myfeature2#myfeature3)
; Example Usage:
; costumer=>#8, self, Set,DB(costumer/counter)=$[${DB(costumer/counter)}+1]
; partner=>#9, self, Set,DB(partner/counter)=$[${DB(partner/counter)}+1]

Application MAP

Using this application an attendant can press, during

the call, #8 to identify the caller as a costumer or #9 to

identify the costumer as a partner

Quiz
1. Which of the following statement(s) is true about Call Parking?

A. By default, extension 800 is used for Call Parking

B. When you are not at your desk and receive a call, you can park a call. The system will

announce to you the parking extension. When you return to your desk, dial the announced

extension to retrieve the call.

C. By default, extension 700 is used for Call Parking. Calls are parked in extensions 701 to 720.

| Chapter 10 - Using PBX features |

- 232 -

D. You need to dial 700 to retrieve a parked call.

2. To use the Call Pickup feature, all extensions are required to be in the same _____________. For

ZAP channels, this is configured in the _____________ file.

3. When transferring a call, you may choose between _________________, where the destination

extension is not consulted before the transfer, and _____________, where you first talk to the
destination extension before the transfer.

4. To make a consultative transfer, use the ___ character; for a blind transfer, use ___.

A. #1, *2

B. *2, #1

C. #2, #1

D. #1, #2

5. To enable conference calls in the Asterisk server, it is necessary to use the __________ application.

6. If you have to supervise a conference, you can use the _______________ application.

A. MeetMe()

B. MeetMeConsole()

C. MeetMeAdministrator()

D. MeetmeAdmin()

7. The best format for music on hold is MP3 because it uses very little processing power from the

Asterisk server.

A. True

B. False

8. To capture a call from a specific call group, you need to be in their respective ________ group.

9. You can record a call using the mixmonitor() utility or the automon feature. By default, the
automon feature uses the ___ character sequence.

A. *1

B. *2
C. #3

D. #1

10. In the meetme application, if you want to have users in the listening only mode, you should:

A. Merge different conference rooms with different options.

B. This is not possible using Asterisk.

C. Enable an extension that calls the meetme application with the l option and instruct the
listening users to call that extension.

D. Enable an extension that calls the meetme application with the t option and instruct the

listening users to call that extension.

11
Call Queues

Call queues are becoming increasingly important for answering customer calls efficiently. An
automatic call distributor can help reduce costs, increase service, and improve sales as call

distributors affect how your business works—not for a few days, but for many years. In a call center

environment, the number one factor is people; they are the most expensive resource. It takes time,
money, and patience to hire, train, and motivate agents. With an ACD, you can maximize agents‘

productivity by precisely dimensioning the number of agents required, controlling good and bad

attendants, and analyzing the call flow.

Objectives
By the end of this chapter, you should be able to:

 Understand why and how to use call queues

 Understand the basic theory of call queues

 Install and configure the queue system

How queues work?
Call queues are not exactly a novelty. When you have a high inbound call flow, it is hard to distribute

calls appropriately. Using a group strategy where the phone simultaneously rings on all agents does
not seem to work, unless you have only a few agents. However, a call queue will only deliver calls to

a single available agent each time and put the customer on hold with music when there are no agents

available. The queue works by retaining the call while finding an unoccupied agent to answer the call.

One of the biggest benefits of the queue is to avoid losing calls while providing the possibility to
generate statistics.

| Chapter 11 - Call Queues |

- 234 -

Usually, a call queue works like this:

 Calls are queued.

 Logged-in agents answer the queue.

 A queuing strategy to distribute the calls is used.

 Music on hold is played while the caller waits.

 Announcements can be made to callers, notifying them of waiting time.

The main application for queues is customer service. When using queues, you avoid losing calls when

your agents are busy. You can add new agents to the queue if you find that the number of callers in

the queue is growing. Another advantage is that, with queues you can now have statistics like call
abandon rate, average call duration, and call answering target. These statistics will help you determine

how many agents to use to provide better service to your customer.

ACD architecture
The ACD architecture is formed by queues and agents. One agent can be in two queues at the same

time. A queue can have agents, channels, and agent groups.

 | Queues |

- 235 -

Queues
Queues are defined in the queues.conf configuration file. Agents are attendants who log in and are
members of queues. Agents are defined in the agents.conf file. In version 1.4, the queue system was

largely evolved, making the configuration file huge. We will explain some of the major parameters.

General parameters

autofill=yes

The old behavior for the queue was serial type. The queue waited for a call to be dispatched before
sending the succeeding call to the next agent. If an agent takes 15 seconds to answer a call, the other

calls in the queue had to wait until that call was answered. For high-volume queues, this behavior was

inefficient. The new behavior autofill=yes does not wait until a call is answered, but rather works

in parallel.

Queue configuration file

Queues are configured in the queues.conf file. In the figure, you will find a working example of a
queue.

| Chapter 11 - Call Queues |

- 236 -

Members

Members are active channels responding to the queue. Members can be direct channels (sip, dahdi,
mgcp) or agents who log in before receiving calls.

Strategies
Calls are distributed among members according to one of these strategies:

 ringall: Plays all channels available until someone answers.

 roundrobin: Distributes equally between members.

 leastrecent: Distributes to the least recent member.

 fewestcalls: Distributes to the member with fewest calls.

 random: Ring random interface.

 wrandom: Ring random interface, but use the member‘s penalty as a weight when

calculating their metric.

 rrmemory: Uses round robin with memory; it remembers where it let off with the call in

the last pass.

Agents
Agents are implemented as proxy channels. They can be used inside the queues. Another use for the
agent channels is extension mobility. The user can log in using any phone and receive its calls. This

allows a user to go to any room to make it an office. You can dial an agent in the dial plan using

dial(agent/<name>). You define agents in the agents.conf file.

 | Agents |

- 237 -

Agent 300

 The user picks up the

phone and dials an

extension to login. It passes

the login number and

password

 After running the agentlogin()

application sucessfully, the

agent is ready to take calls

 You can check the agent

status using the CLI command

show agents

Agents

Agent Groups
You may choose to use agent groups. This function does not take ACD strategies into consideration.

You will probably prefer to list all agents individually. If you want to transfer to an agent group, you

can use queues.conf:

member=>agent/@1 ;any agent in group 1

member=>agent/:1,1 ;any agent in group 1, wait for first available, ;do not
use agent groups.

The configuration file for agents
Agents are defined in the file agents.conf. Below is a working example of the file.

| Chapter 11 - Call Queues |

- 238 -

ACD-related applications
The Asterisk queue system makes several applications available to implement the queues in the dial

plan. Below, we show some of them.

The application queue()
This applications queues incoming calls into a particular call queue as defined in queues.conf. The

option string may contain zero or more of the following characters:

The queue() application

Queue a call for a call queue

[Description]

Queue(queuename[|options[|URL][|announceoverride][|ti
meout][|AGI]):

Options:

 'd' -- data-quality (modem) call (minimum delay).

 'h' -- allow callee to hang up by hitting *.

 'H' -- allow caller to hang up by hitting *.

 'n' -- no retries on the timeout; will exit this application.

 'i' -- ignore call forward requests from queue members and do nothing

 'r' -- ring instead of playing MOH

 't' -- allow the called user transfer the calling user

 'T' -- allow the calling user to transfer the call.

 'w' -- allow the called user to write the conversation to disk via Monitor

 'W' -- allow the calling user to write the conversation to disk via Monitor

In addition to transferring the call, a call may be parked and then picked up by another user. The

optional URL will be sent to the called party if the channel supports it. The optional AGI parameter

will set up an AGI script to be executed on the calling party's channel once they are connected to a
queue member. The timeout will cause the queue to fail out after a specified number of seconds,

checked between each timeout and retry cycle. This application sets the QUEUE status variable upon

completion:

 TIMEOUT

 FULL

 JOINEMPTY

 LEAVEEMPTY

 JOINUNAVAIL

 LEAVEUNAVAIL

 | ACD-related applications |

- 239 -

The application agentlogin()
This application asks the agent to log in to the system. It always returns -1. While logged in, the agent

receiving calls will hear a beep when a new call comes in. The agent can dump the call by pressing
the * key.

Call agent login

[Description]
 AgentLogin([AgentNo][|options]):

The agentlogin() application

Options:
's' silent login - do not announce the login ok

The application addQueueMember()
This application dynamically adds a device (e.g., SIP/3000) to a queue. If the device already exists, it

will return an error.

AddQueueMember(queuename[|interface][|penalty]):

The application removeQueueMember()

This application dynamically removes a device from the queue. If the device does not belong to the
queue, it will return an error.

RemoveQueueMember(queuename[|interface])

Support applications and CLI commands

Some applications and console commands are capable of helping the work with queues. The
following outlines what each application does:

Support Applications

 AddQueueMember: Dynamically add a queue member

 RemoveQueueMember: Dinamically remove a queue member

CLI commands

 show agents: Show all agents.

 show queues: List all queues

 show queue <name>: Show na specific queue data

Support applications and CLI commands

| Chapter 11 - Call Queues |

- 240 -

Configuration tasks
The figure below summarizes the major tasks to create a working queue system.

ACD configuration tasks

1. Create the call queue (required)
2. Define agent parameters (optional)
3. Create agents (optional).
4. Put the queue in the dial plan (required)
5. Configure agent recording (optional)
6. Verify using show agents e show queues(optional)

Step 1: Create the call queue

In the file queues.conf:

[telemarketing]

music = default

;announce = queue-telemarketing

;context = qoutcon

timeout = 2

retry = 2

maxlen = 0

member => Agent/300

member => Agent/301

[auditing]

music = default

;announce = queue-auditing

;context = qoutcon

timeout = 15

retry = 5

maxlen = 0

member => Agent/600

member => Agent/601

Step 2: Define agent parameters

In the file agents.conf:

debian:/etc/asterisk# cat agents.conf

;

; Agent configuration

;

[agents]

; Define maxlogintries to allow agent to try max logins before

; failed.

; default to 3

maxlogintries=5

; Define autologoff times if appropriate. This is how long

; the phone has to ring with no answer before the agent is

 | Configuration tasks |

- 241 -

; automatically logged off (in seconds)

autologoff=15

; Define autologoffunavail to have agents automatically logged

; out when the extension that they are at returns a CHANUNAVAIL

; status when a call is attempted to be sent there.

; Default is "no".

;autologoffunavail=yes

; Define ackcall to require an acknowledgement by '#' when

; an agent logs in using agentcallbacklogin. Default is "no".

;ackcall=no

; Define endcall to allow an agent to hangup a call by '*'.

; Default is "yes". Set this to "no" to ignore '*'.

;endcall=yes

; Define wrapuptime. This is the minimum amount of time when

; after disconnecting before the caller can receive a new call

; note this is in milliseconds.

;wrapuptime=5000

; Define the default musiconhold for agents

; musiconhold => music_class

;musiconhold => default

;

; Define the default good bye sound file for agents

; default to vm-goodbye

;agentgoodbye => goodbye_file

; Define updatecdr. This is whether or not to change the source

; channel in the CDR record for this call to agent/agent_id so

; that we know which agent generates the call

;updatecdr=no

;

; Group memberships for agents (may change in mid-file)

;

;group=3

;group=1,2

;group=

Step 3: Create the agents

In the file agents.conf:

;agent => agentid,agentpassword,name

[agents]

agent => 300,300,Test Rep - 300

agent => 301,301,Test Rep . 301

agent => 600,600,Test Ver - 600

agent => 601,601,Test Ver . 601

Step 4: Insert the queue in the dial plan

In the file extensions.conf:

; Telemarketing queue.

| Chapter 11 - Call Queues |

- 242 -

exten=>_0800XXXXXXX,1,Answer

exten=>_0800XXXXXXX,2,SetMusicOnHold(default)

exten=>_0800XXXXXXX,3,Set(TIMEOUT(digit)=5)

exten=>_0800XXXXXXX,4,Set(TIMEOUT(response)=10)

exten=>_0800XXXXXXX,5,Background(welcome)

exten=>_0800XXXXXXX,6,Queue(telemarketing)

; Transfer to the queue auditing

exten => 8000,1,Queue,(auditing)

exten => 8000,2,Playback(demo-echotest); No auditor available

exten => 8000,3,Goto(8000,1) ; Verify auditor again

; Agent login for the telemarketing and auditing queues

exten => 9000,1,Wait(1)

exten => 9000,2,AgentLogin()

Configure queue recording
Calls may be recorded using Asterisk's monitor or mixmonitor application. Recording can be
enabled from within the queue application, beginning when the call is actually picked up. Only

successful calls are recorded, and no recordings are performed while people are listening to MOH. To

enable monitoring, simply specify monitor-format. This feature is otherwise disabled.

You can set the filename for the recording using Set (MONITOR_FILENAME=<filename>); otherwise

it will use MONITOR_FILENAME=${UNIQUEID}.

In the file queues.conf:

monitor-format = wav

monitor-type = MixMonitor

monitor-join = yes

Queue operation
The following examples explains how to use the queue.

Step 1: Agent login

Example: An agent in the telemarketing queue picks up the phone and dials #9000. The agent hears

an invalid login message and is asked for his/her name and password. The auditing queue follows the

same procedure.

Step 2: Queue

Once in the queue, the agent will hear MOH, if defined. When a call comes in to the telemarketing
queue, the agent will hear a beep and will be connected to that call.

Step 3: Call ending

When the agent finishes the call, he/she can:

 | Advanced resources |

- 243 -

 Press ‗*‘ to disconnect and stay in the queue.

 Disconnect the phone, thereby disconnecting from the queue.

 Press #8000 to transfer the call for auditing.

Advanced resources
The Asterisk queue system has some advanced features to prioritize certain customers and agents as
well as enable a user menu.

User menu
You can define a menu for a user while waiting in the queue using one-digit extensions. To enable

this option, define a context in the queue configuration queues.conf.

Penalty
Agents can be configured with a penalty. A queue will send the calls first to users with lower penalty

values. For example, since we know that our customers love Susan and her soft voice, we may choose
to assign priority 0 to her. Alternatively, the agent named Uber, who has less experience, is less

preferred for customer service; therefore, we assign a priority 10 to this agent.

In the file queues.conf:

[customerservice]

member=300,0,Susan the excelent agent

member=300,10,Uber the new guy

Priority
Queues operate in the FIFO (first in first out) mode. If you want to give priority for special customers

(platinum, gold) you can set up differentiated priorities.

For platinum or gold customers:

exten=>111,1,Playback(welcome)

exten=>111,2,Set(QUEUE_PRIO=10)

exten=>111,3,Queue(customerservice)

Blue customers:

exten=>112,1,Playback(welcome)

exten=>112,2,Set(QUEUE_PRIO=5)

exten=>112,3,Queue(customerservice)

The application agentcallbacklogin() is deprecated
The application agentcallbacklogin() has been deprecated in version 1.2 and is not available in

versions 1.4 and 1.6. A document called queues-with-callback-members.txt is included in the

| Chapter 11 - Call Queues |

- 244 -

/doc directory of the Asterisk distribution. In this document, you will find detailed instructions on

how to recreate the features of this application.

Queue statistics
All events from queues are logged to /var/log/asterisk/queue_log. The format of the queue log

is published in the document queuelog.txt in the /doc directory of the Asterisk documentation. Below

are some of the most important events logged.

 ABANDON(position|origposition|waittime)

 AGENTDUMP

 AGENTLOGIN(channel)

 AGENTCALLBACKLOGIN(exten@context)

 AGENTLOGOFF(channel|logintime)

 AGENTCALLBACKLOGOFF(exten@context|logintime|reason)

 COMPLETEAGENT(holdtime|calltime|origposition)

 COMPLETECALLER(holdtime|calltime|origposition)

 CONFIGRELOAD

 CONNECT(holdtime|bridgedchanneluniqueid)

 ENTERQUEUE(url|callerid)

 EXITEMPTY(position|origposition|waittime)

 EXITWITHKEY(key|position)

 EXITWITHTIMEOUT(position)

 QUEUESTART

 RINGNOANSWER(ringtime)

 SYSCOMPAT

 TRANSFER(extension|context|holdtime|calltime)

You can build your own utility to process these events or use a ready-to-run statistics package. We

have tested two utilities on the asteriskguide:

 Qlog analyzer (http://www.micpc.com/qloganalyzer/) – Excellent open source package

 Queue metrics (http://queuemetrics.com/) – One of the most complete packages for queue

stats

http://www.micpc.com/qloganalyzer/
http://queuemetrics.com/

 | New in 1.6.2 for advanced users |

- 245 -

New in 1.6.2 for advanced users
In version 1.6.2, it is now possible to integrate the SIP presence with the queues. I see a lot of

potential to double or even triple the number of users supported in incoming queues. These advanced

features are beyond the scope of introductory material like this text. More information can be found at

the Asterisk source at /doc/building_queues.txt. This excellent text, written by Leif Madsen, will
teach you how to use hints to avoid sending calls to devices in use.

Summary
In this chapter you have learned how to use an ACD, its architecture, and how to configure it. Some

advanced features such as priorities and penalties were also presented.

Quiz
1. Cite four strategies for routing a call in a queue.

2. It is possible to record a conversation between an agent and a customer using the statement
_________________ in the queues.conf file.

3. To log in an agent, you will use the application agentlogin([agentnumber]).When the agent

finishes the call, he/she can:

A. disconnect and stay in the queue

B. hang up the phone and disconnect from the queue

C. press #8000 to transfer to call audit

D. press # to hang up

4. The required tasks to configure a call queue are:

A. Create the queue

B. Create the agents

C. Configure the agents

D. Configure the recording

E. Put the queue in the dial plan

5. What‘s the difference between the applications AgentLogin() and AgentCallBackLogin().

| Chapter 11 - Call Queues |

- 246 -

6. When in a call queue, you can define a certain number of options that the user can dial. This is

done by including a(n) ____________ in the file queues.conf.

A. Agent

B. Menu

C. Context

Application

7. The support applications AddQueueMember(), AgentLogin(), AgentCallBackLogin, and
RemoveQueueMember() should be included in the __________.

A. Dial plan

B. Command line interface

C. queues.conf

D. agents.conf

8. It is possible to record the agents, but doing so requires an external recorder.

A. True

B. False

9. The parameter wrapuptime is the time the user needs after ending the call to complete business
process related to that call.

A. True

B. False

10. A call can be prioritized depending on the caller ID inside the same queue.

A. True

B. False

12
Asterisk Call Detail Records

Asterisk, like other telephony platforms, allows the billing of phone calls. Several programs on the
market can import the records generated by PBXs. Those records are used to verify the correct

amount of the bill and statistics, among other things.

Objectives
By the end of this chapter, the reader should be able to:

 Describe where and in what format the records are generated

 Generate records in MySQL database

 Implement an authentication scheme integrated with billing

Asterisk CDR Format

Asterisk generates a call detail record (CDR) for each call. These records are stored, by default, in a
text file in a comma separated value (CSV) in the /var/log/asterisk/cdr-csv. The file is

organized in the following fields:

CDR Description Type Size

Accountcode Account Number to use String 20

Src Caller ID Number String 80

Dst Destination Extension String 80

Dcontext Destination Context String 80

Clid Caller ID with Text String 80

Channel Channel Used String 80

Dstchannel Destination channel String 80

Lastapp Last application String 80

Lastdata Last application data String 80

Start Start of call Date/Time

| Chapter 12 - Asterisk Call Detail Records |

- 248 -

Answer Answer of call Date/Time

End End of Call Date/Time

Duration Time, from dial to hang up (seconds) Integer

Billsec Time, from answer to hang up (seconds) Integer

Disposition What Happened to the call (ANSWERED, NO ANSWER,
BUSY, FAILED)

String 20

Amaflags Flags (DOCUMENTATION, BILLING, IGNORE) String 20

User field User defined field String 255

Sample of csv file imported into a table.

AccountCode CallerID No. Extension Context CallerID text Src Dst

1234 4830258576 *72*1234*8584 admin "Joana D‘Arc" <4830258576> SIP/8576-5f30 SIP/8584-9153

1234 4830258576 *72*1234*8584 admin "Joana D‘Arc" <4830258576> SIP/8576-96f5 SIP/8584-3312

1234 4830258576 *72*1234*8584 admin "Joana D‘Arc" <4830258576> SIP/8576-74ac SIP/8584-297b

1234 4830258576 2012348584 admin "Joana D‘Arc" <4830258576> SIP/8576-2c5d SIP/8584-9870

1234 4830258584 2012348576 default "Luis Sample" <4830258584> SIP/8584-03fd SIP/8576-645c

Application Appdata Start Answer End Dur Bil Disposition Amaflags

Dial SIP/8584|30|tT 27/3/2006 16:05 27/3/2006 16:05 27/3/2006 16:05 5 3 ANSWERED DOCUMENTATION

Dial SIP/8584|30|tT 27/3/2006 16:16 27/3/2006 16:16 27/3/2006 16:16 6 4 ANSWERED BILLING

Dial SIP/8584|30|tT 27/3/2006 16:22 27/3/2006 16:22 27/3/2006 16:22 9 5 ANSWERED BILLING

Dial SIP/8584|30|tT 27/3/2006 16:37 27/3/2006 16:37 27/3/2006 16:37 5 2 ANSWERED BILLING

Dial SIP/8576|30|tT 27/3/2006 16:37 27/3/2006 16:37 27/3/2006 16:37 9 5 ANSWERED BILLING

Account codes and automated message accounting
You can specify account codes and ama flags on each channel. Usually this is done in the channel

configuration file (e.g., chan_dahdi.conf, sip.conf, iax.conf). The parameter amaflags defines

what to do with the CDR record. The possible amaflag values are:

 Default

 Omit

 Billing

 Documentation

Similar to the way in which a record can be flagged for billing or documentation, an account code can

be set to each record. The account is a 20-character string usually used to assign a record to a
department or business unit.

Example: sip.conf file

[8576]
amaflags=default

 | Changing the CSV and/or CDR format |

- 249 -

accountcode=Support
type=friend
username=8576

Changing the CSV and/or CDR format
You can change the CSV format by changing the cdr_custom.conf file.

;

; Mappings for custom config file

;

[mappings]

Master.csv =>
"${CDR(clid)}","${CDR(src)}","${CDR(dst)}","${CDR(dcontext)}","${CDR(channel)}"
,"${CDR(dstchannel)}","${CDR(lastapp)}","${CDR(lastdata)}","${CDR(start)}","${C
DR(answer)}","${CDR(end)}","${CDR(duration)}","${CDR(billsec)}","${CDR(disposit
ion)}","${CDR(amaflags)}","${CDR(accountcode)}","${CDR(uniqueid)}","${CDR(userf
ield)}"

You can change the CDR format in the cdr_custom.conf file.

CDR Storage
CDR storage can be achieved in several ways. The most important way is CSV text files that can be
easily imported into spreadsheets. For small businesses, this is usually okay. Some billing software

accepts, by default, CSV files. However, storing CDR in a database is a lot better and safer, and

Asterisk supports several database flavors. There are some graphical interfaces for billing in the
market. At our company, we have tested the open source versions of A2billing and AsteriskStats from

Areski (www.areski.net). In my opinion, they are very good.

Storage drivers available

 cdr_csv – Comma Separated Value text files

 cdr_sqlite – SQLite databases

 cdr_pgsql – Postgres databases

 cdr_odbc – unixODBC supported databases

 cdr_mysql – MySQL databases

 cdr_freetds – Sybase and MSSQL databases

 cdr_yada – yada databases

 cdr_manager – CDR to Manager Interface

 cdr_radius – CDR radius interface

CDR recording is done to all active modules loaded in the file /etc/asterisk/modules.conf. If the

parameter autoload=yes is set, all modules are loaded.

http://www.areski.net/

| Chapter 12 - Asterisk Call Detail Records |

- 250 -

CSV Storage

As we said before, by default, Asterisk sends all CDR to a CSV text file using the cdr_csv.so

module. If you can‘t see the files in the /var/log/asterisk/cdr-csv, check to see if the module is
being loaded using the CLI command module show. If it‘s not loaded, check modules.conf.

Storing in MySQL database
Due to licensing restrictions of MySQL, Digium cannot bundle the database with Asterisk.

Consequently, MySQL support for CDR is in the package asterisk-addons. You will have to

download, uncompress, and compile the module separately. Follow the instructions below to install
MySQL Support.

Step 1: Install MySQL and MYSQL-devel packages.

apt-get install mysql-server-4.1

apt-get install libmysqlclient12-dev

cd /usr/src

wget http://ftp.digium.com/pub/asterisk/releases/asterisk-addons-1.4.1.tar.gz

tar –xzvf asterisk-addons-1.4.1

cd asterisk-addons-1.4.1

make clean

make

make install

Step 2: Make the necessary adjustments on cdr_mysql.conf file. This configuration has to point to

where the database will be located.

In the file cdr_mysql.conf:

[global]

hostname=localhost

dbname=asteriskdb

password=asterisk

user=asterisk

port=3306

sock=/var/run/mysqld/mysqld.sock

;userfield=1

Use vi (or your preferred editor) to edit modules.conf to include the module cdr_addon_mysql.so
for loading. In most cases, you don‘t need to do this as the option autoload=yes is default.

Step 3: Create a database for cdr_addon_mysql

mysql –p

or

mysql –u root –p (if you have a password for the root user)

Type the following commands to create the database.

CREATE DATABASE asteriskdb;

GRANT INSERT
 ON asterisk.*

http://ftp.digium.com/pub/asterisk/releases/asterisk-addons-1.4.1.tar.gz

 | Applications and functions |

- 251 -

 TO asterisk@localhost
 IDENTIFIED BY 'asterisk';

USE asteriskdb;

CREATE TABLE `cdr` (
`calldate` datetime NOT NULL default '0000-00-00 00:00:00',
`clid` varchar(80) NOT NULL default '',
`src` varchar(80) NOT NULL default '',
`dst` varchar(80) NOT NULL default '',
`dcontext` varchar(80) NOT NULL default '',
`channel` varchar(80) NOT NULL default '',
`dstchannel` varchar(80) NOT NULL default '',
`lastapp` varchar(80) NOT NULL default '',
`lastdata` varchar(80) NOT NULL default '',
`duration` int(11) NOT NULL default '0',
`billsec` int(11) NOT NULL default '0',
`disposition` varchar(45) NOT NULL default '',
`amaflags` int(11) NOT NULL default '0',
`accountcode` varchar(20) NOT NULL default '',
`userfield` varchar(255) NOT NULL default ''
);

ALTER TABLE `cdr` ADD INDEX (`calldate`);
ALTER TABLE `cdr` ADD INDEX (`dst`);
ALTER TABLE `cdr` ADD INDEX (`accountcode`);

One tip is to copy and paste these commands into a text file named ―cdr.sql‖ and execute the

following command:

mysql --user=username --password=password asteriskdb <cdr.sql

Applications and functions
Several applications are related to billing.

CDR(accountcode)

Sets an account code before calling another application dial(); for example:

Format:

Set(CDR(accountcode)=account)

The account code can be verified using the channel variable ${CDR(accountcode)}

CDR(amaflags)
Set a flag for billing purposes. Options are default, omit, documentation, and billing.

Set(CDR(amaflags)=amaflags)

NoCDR()
No CDRs recorded to the file or database.

| Chapter 12 - Asterisk Call Detail Records |

- 252 -

ResetCDR()

Resets the CDR to zero. If the w option is set, it saves the original CDR record.

Set(CDR(userfield)=Value)

This command sets a user field in the CDR. If you were using cdr_addon_mysql, check to see if you

have the option userfield=1 in the cdr_mysql.conf. For CSV text files, you have to edit the source
code (cdr_csv.c) and recompile Asterisk if you want to use user fields. This command is useless if

user fields are not enabled in the source code or in the MySQL configuration file, cdr_mysql.conf.

AppendCDRUserField(Value)

Append data to the user field on the CDR.

User authentication
Some companies bill the calls to their employees. In Asterisk you can set an authentication scheme

that enables you to bill the authenticated user on the CDR. This authentication can be done using a
password passed as a parameter to the Authenticate application—a password file, indicated by a /

(slash) before the parameter or a Asterisk database (dbput/dbget).

Format:

Authenticate(password[|options])
Authenticate(/passwdfile|[|options])
Authenticate(</db-keyfamily|d>options)

Options:

 a – Sets the account code as the password.

 d – Interprets the parameter as a Asterisk DB key

 r – Removes the key after successful authentication (only with ´d´ option)

 j – Jumps to priority n+101 for invalid authentication

Example: (International Calls)

exten=_9011.,1,Authenticate(/password|daj)

exten=_9011.,2,Dial(Zap/g1/${EXTEN:1},20,tT)

exten=_9011.,3,Hangup()

exten=_9011.,102,Playback(unauthorized)

exten=_9011.,103,Hangup()

To insert the password in a DB key from the console:

CLI> database put senha 123456 1

 | Using passwords from voicemail |

- 253 -

Using passwords from voicemail
This application does the same as authenticate, but uses the voicemail configuration file for the

password.

VMAuthenticate([mailbox][@context][|options])

If a mailbox is specified, only the mailbox password will be considered valid. If the mailbox is not
specified, a channel variable AUTH_MAILBOX will be set with the authenticated mailbox. If the

option ´s ́(silent) is set, no prompt will be executed.

Example: (International Calls)

exten=_9011.,1,VMAuthenticate(${CALLERID(num)}@local|ajs)

exten=_9011.,2,Dial(Zap/g1/${EXTEN:1},20,tT)

exten=_9011.,3,Hangup()

exten=_9011.,102,Playback(unauthorized)

exten=_9011.,103,Hangup()

Summary
In this chapter we have learned how to implement CDR recording in text files and in a MySQL
database as well as how to set amaflags and account codes. At the end of the chapter, we learned

how to use an authentication scheme integrated with CDR and billing.

Quiz
1. By default, Asterisk records the CDR in /var/log/asterisk/cdr-csv directory.

A. False

B. True

2. Asterisk allows only these databases:

A. MySQL

B. Native Oracle

C. Microsoft SQL

D. CSV Text files

E. unix_ODBC supported databases

3. Asterisk generates a CDR only to a single kind of storage.

A. False

B. True

4. Which Asterisk amaflags are available?

A. Default

B. Omit

| Chapter 12 - Asterisk Call Detail Records |

- 254 -

C. Tax

D. Rate

E. Billing

F. Documentation

5. If you intend to associate a department to a CDR, you should use the command ____________.

The account code can be verified using the channel variable _______________.

6. The difference between the applications NOCDR() and ResetCDR() is that NoCDR() does not
generate any record and ResetCDR() zeroes the current record.

A. False

B. True

7. To use a user-defined field with the cdr_csv.so module, it is necessary to edit the source code and

recompile the Asterisk.

A. False

B. True

8. The three authentication methods available to the Authenticate() application are:

A. Password

B. Password file

C. Asterisk DB (dbput and dbget)

D. Voicemail

9. Voicemail passwords are specified in a different section of the voicemail.conf file and are not the

same as the voicemail users.

A. False

B. True

10. This option authenticates the command using the password used to authenticate the CDR.

A. a

B. j

C. d

D. r

13
Extending Asterisk with AMI and

AGI

In several situations, it may be necessary to extend Asterisk features using external applications. With
conventional PBXs, this was normally done using computer telephony integration (CTI) interface.

Asterisk is built in a computer and not based on a circuit switch. Therefore, there are many different

ways by which it may be extended. In this chapter, we will cover Asterisk‘s CTI interface, called

Asterisk manager interface (AMI).

Since there are other ways to integrate Asterisk with other programs, we will also look at the

command asterisk –rx and the system() application. At the end of this chapter, we will look at the

powerful Asterisk gateway interface (AGI), which enables Asterisk to call external applications made
with any languages that support Linux standard I/O, a much-used resource to build interactive voice

responses (IVRs). The only drawback in Asterisk integration is that it does not have a standard CSTA

interface, which could make it easier for other programs to port applications like dialers, report
generators and others.

Objectives
By the end of this chapter, the reader should be able to:

 Describe access options to external programs

 Use asterisk –rx command to execute a console command

 Use the system() app to call external programs in the dial plan

 Explain what AMI is and how it works

 Configure the manager.conf file and enable AMI

 Execute an AMI command from a PHP program

 Explain what Asterisk manager proxy is and how it works

 Describe different AGI Flavors (DeadAGI, AGI, EAGI, FastAGI)

 Execute a simple AGI program created with PHP

| Chapter 13 - Extending Asterisk with AMI and AGI |

- 256 -

Major ways to extend Asterisk
Asterisk has different ways to interface with external programs. In this chapter, we will cover:

 Linux command line and Asterisk Console

 System() Application

 AMI

 AGI

Extending Asterisk with console CLI
An application can easily call Asterisk from the Linux shell using the following command.

asterisk –rx <command>

Example:

asterisk –rx “stop now”

Even a command with an output can be called:

asterisk:~# asterisk -rx "sip show peers"

Name/username Host Dyn Nat ACL Port Status

4000/4000 10.1.1.6 D 5060 Unmonitored

1 sip peers [1 online , 0 offline]

Extending Asterisk using the System() application
The system() application enables Asterisk to call an external application.

asterisk*CLI> show application system

asterisk*CLI>

 -= Info about application 'System' =-

[Synopsis]

Execute a system command

[Description]

 System(command): Executes a command by using system(). If the command

fails, the console should report a fallthrough.

Result of execution is returned in the SYSTEMSTATUS channel variable:

 FAILURE Could not execute the specified command

 SUCCESS Specified command successfully executed

Example:

This application does a screen-pop using netbios WindowsPopup.

exten => 9000,1,System(/bin/echo -e "'Incoming Call From -> ${CALLERID(num)}
\\r Received: ${DATETIME}'"|/usr/bin/smbclient -M target_netbiosname)
exten => 9000,2,Dial(SIP/9000,15,t)
exten => 9000,3,Hangup

 | What is AMI? |

- 257 -

What is AMI?
AMI enables a client program to connect to an Asterisk instance and issue commands or read events

over a TCP connection. System integrators will find these resources useful for tracking channel states.

AMI relies on a simple concept of a line protocol using key:value pairs over TCP. Asterisk by itself

is not ready to handle too many connections over this interface. If you have lots of connections to
AMI, consider using Asterisk manager proxy.

What language to use for AMI
Selecting a programming language can be hard these days. There are simply too many options—Java,

PHP, Perl, C, C#, Python, and several others. It‘s possible to use AMI with any language that

supports a socket or telnet interface. We have chosen PHP for this book because of its popularity.

AMI protocol behavior

 Before sending any commands to Asterisk, you need to establish an AMI session

 The first line of a packet will have the key ―Action‖ when sent from a client

 The first line of a packet will have the key ―Response‖ or ―Event‖ when coming from

Asterisk

 Packages can be transmitted in any direction after the authentication

Packet types

The type of the packet is determined by the existence of the following keys:

 Action: A packet sent from a client connected to AMI asking for a specific action. There

is a finite set of actions available to clients. The loaded modules determine these actions.
A packet contains the action name and its parameters.

 Response: The response sent from Asterisk to the last action sent from the client.

 Event: Data belonging to an event generated in the Asterisk core or by a module.

When a client sends packets of the Action type, a parameter named ActionID is included. Since the

order in which the responses sent from Asterisk cannot be predicted, ActionID is used to correlate
actions and responses.

Event packets are used in two different contexts. First, events inform the client about changes in

Asterisk (e.g., newly created channels, channels disconnected, or agents logging in and out of a
queue). Second, events are used to transport responses to a client action.

| Chapter 13 - Extending Asterisk with AMI and AGI |

- 258 -

Configuring users and permissions
To access AMI, it is necessary to establish a TCP connection listening to a TCP port (usually 5038).

You will need to configure the /etc/asterisk/manager.conf file to create a user account and

permissions.

There is a finite set of permissions: ―read,‖ ―write,‖ or both. These permissions are defined in the

manager.conf file.

[general]

enabled=yes

port=5038

bindaddr=127.0.0.1

[admin]

secret=senha

read=system,call,log,verbose,command,agent,user

write=system,call,log,verbose,command,agent,user

deny=0.0.0.0/0.0.0.0

permit=127.0.0.1/255.255.255.255

Logging in to the AMI

To log in to and authenticate AMI, you will need to send an action packet of the login type with a
username and account created in the manager.conf.

Action:login

Username:admin

Secret:password

Example: Logging in to AMI using php

<?php

$socket = fsockopen("127.0.0.1","5038", $errno, $errstr, $timeout);

fputs($socket, "Action: Login\r\n");

fputs($socket, "UserName: admin\r\n");

fputs($socket, "Secret: senha\r\n\r\n");

?>

If you don‘t need to receive the events, you can use ―Events Off‖.

<?php

$socket = fsockopen("127.0.0.1","5038", $errno, $errstr, $timeout);

fputs($socket, "Action: Login\r\n");

fputs($socket, "UserName: admin\r\n");

fputs($socket, "Secret: senha\r\n\r\n");

fputs($socket, "Events: off\r\n\r\n");

?>

 | Configuring users and permissions |

- 259 -

Action packets
When you send an action packet to Asterisk, you can provide some extra keys (e.g., called number)

by passing key:value pairs after the action. It is also possible to pass channel and global variables to
the dial plan.

Action: <action type><CRLF>

<Key 1>: <Value 1><CRLF>

<Key 2>: <Value 2><CRLF>

Variable: <Variable 1>=<Value 1><CRLF>

Variable: <Variable 2>=<Value 2><CRLF>

...

<CRLF>

Action commands
You can use the CLI instruction manager show commands to list the available actions. In version

1.6.1 the commands were:

Action Privilege Synopsis

 WaitEvent <none> Wait for an event to occur

 ModuleCheck system,all Check if module is loaded

 ModuleLoad system,all Module management

 CoreShowChannel system,reportin List currently active channels

 Reload system,config,a Send a reload event

 CoreStatus system,reportin Show PBX core status variables

 CoreSettings system,reportin Show PBX core settings (version etc)

 VoicemailUsersL call,reporting, List All Voicemail User Information

 UserEvent user,all Send an arbitrary event

 SendText call,all Send text message to channel

 ListCommands <none> List available manager commands

 MailboxCount call,reporting, Check Mailbox Message Count

 MailboxStatus call,reporting, Check Mailbox

 AbsoluteTimeout system,call,all Set Absolute Timeout

 ExtensionState call,reporting, Check Extension Status

 Command command,all Execute Asterisk CLI Command

 Originate originate,all Originate Call

 Atxfer call,all Attended transfer

 Redirect call,all Redirect (transfer) a call

 ListCategories config,all List categories in configuration file

 CreateConfig config,all Creates an empty file in the configuration directory

 UpdateConfig config,all Update basic configuration

 GetConfigJSON system,config,a Retrieve configuration (JSON format)

 GetConfig system,config,a Retrieve configuration

 Getvar call,reporting, Gets a Channel Variable

 Setvar call,all Set Channel Variable

 Status system,call,rep Lists channel status

 Hangup system,call,all Hangup Channel

 Challenge <none> Generate Challenge for MD5 Auth

 Login <none> Login Manager

 Logoff <none> Logoff Manager

| Chapter 13 - Extending Asterisk with AMI and AGI |

- 260 -

 Events <none> Control Event Flow

 Ping <none> Keepalive command

 DAHDIRestart <none> Fully Restart DAHDI channels (terminates calls)

 DAHDIShowChanne <none> Show status DAHDI channels

 DAHDIDNDoff <none> Toggle DAHDI channel Do Not Disturb status OFF

 DAHDIDNDon <none> Toggle DAHDI channel Do Not Disturb status ON

 DAHDIDialOffhoo <none> Dial over DAHDI channel while offhook

 DAHDIHangup <none> Hangup DAHDI Channel

 DAHDITransfer <none> Transfer DAHDI Channel

 IAXnetstats system,reportin Show IAX Netstats

 IAXpeerlist system,reportin List IAX Peers

 IAXpeers system,reportin List IAX Peers

 QueueRule <none> Queue Rules

 QueuePenalty agent,all Set the penalty for a queue member

 QueueLog agent,all Adds custom entry in queue_log

 QueuePause agent,all Makes a queue member temporarily unavailable

 QueueRemove agent,all Remove interface from queue.

 QueueAdd agent,all Add interface to queue.

 QueueSummary <none> Queue Summary

 QueueStatus <none> Queue Status

 Queues <none> Queues

 AgentLogoff agent,all Sets an agent as no longer logged in

 Agents agent,all Lists agents and their status

 UnpauseMonitor call,all Unpause monitoring of a channel

 MeetmeList reporting,all List participants in a conference

 MeetmeUnmute call,all Unmute a Meetme user

 MeetmeMute call,all Mute a Meetme user

 PlayDTMF call,all Play DTMF signal on a specific channel.

 SIPnotify system,all Send a SIP notify

 SIPshowregistry system,reportin Show SIP registrations (text format)

 SIPqualifypeer system,reportin Show SIP peer (text format)

 SIPshowpeer system,reportin Show SIP peer (text format)

 SIPpeers system,reportin List SIP peers (text format)

 AGI agi,all Add an AGI command to execute by Async AGI

 StopMonitor call,all Stop monitoring a channel

 PauseMonitor call,all Pause monitoring of a channel

 ChangeMonitor call,all Change monitoring filename of a channel

 ShowDialPlan config,reportin List dialplan

 Monitor call,all Monitor a channel

 DBDelTree system,all Delete DB Tree

 DBDel system,all Delete DB Entry

 DBPut system,all Put DB Entry

 DBGet system,reportin Get DB Entry

 Bridge call,all Bridge two channels already in the PBX

 Park call,all Park a channel

 ParkedCalls <none> List parked calls

If you need to know specific command parameters, use the manager show command <command>.

Example:

asterisk*CLI> manager show command originate

Action: Originate

Synopsis: Originate Call

 | Configuring users and permissions |

- 261 -

Privilege: call,all

Description: Generates an outgoing call to a Extension/Context/Priority or

 Application/Data

Variables: (Names marked with * are required)

 *Channel: Channel name to call

 Exten: Extension to use (requires 'Context' and 'Priority')

 Context: Context to use (requires 'Exten' and 'Priority')

 Priority: Priority to use (requires 'Exten' and 'Context')

 Application: Application to use

 Data: Data to use (requires 'Application')

 Timeout: How long to wait for call to be answered (in ms)

 CallerID: Caller ID to be set on the outgoing channel

 Variable: Channel variable to set, multiple Variable: headers are allowed

 Account: Account code

 Async: Set to 'true' for fast origination

Event packets

Events are generated in the manager interface based on some Asterisk activities. There are link and

unlink events.

Link Events:

Link events are triggered when two channels are connected and voice transmission starts. More than

one event can be triggered for a single call. Any call that needs transcoding will generate two events:

the first one is a fail to establish a native bridge between the channels while the second is the call
itself.

Example:

 Event: Link
 Channel1: SIP/4001-AAAA
 Channel2: SIP/4000-BBBB
 Uniqueid1: 1234567890.12
 Uniqueid2: 1234567890.12

Unlink events:

Unlink events are triggered when a link between two channels is disconnected just before the call is

completed.

Example:

 Event: Link
 Channel1: SIP/4001-AAAA
 Channel2: SIP/4000-BBBB
 Uniqueid1: 1234567890.12
 Uniqueid2: 1234567890.12

Events available

Below are some of the events available for Asterisk.

AbstractAgentEvent HoldEvent PeerStatusEvent

| Chapter 13 - Extending Asterisk with AMI and AGI |

- 262 -

AbstractParkedCallEve
nt

JoinEvent QueueEntryEvent

AbstractQueueMemberEv
ent

LeaveEvent QueueEvent

AgentCallbackLoginEve
nt

LinkageEvent QueueMemberAddedEvent

AgentCallbackLogoffEv
ent

LinkEvent QueueMemberEvent

AgentCalledEvent LogChannelEvent QueueMemberPausedEvent

AgentCompleteEvent ManagerEvent QueueMemberRemovedEvent

AgentConnectEvent MeetMeEvent QueueMemberStatusEvent

AgentDumpEvent MeetMeJoinEvent QueueParamsEvent

AgentLoginEvent MeetMeLeaveEvent QueueStatusCompleteEvent

AgentLogoffEvent MeetMeStopTalkingEven
t

RegistryEvent

AgentsCompleteEvent MeetMeTalkingEvent ReloadEvent

AgentsEvent MessageWaitingEvent RenameEvent

AlarmClearEvent NewCallerIdEvent ResponseEvent

AlarmEvent NewChannelEvent ShutdownEvent

CdrEvent NewExtenEvent StatusCompleteEvent

ChannelEvent NewStateEvent StatusEvent

ConnectEvent OriginateEvent UnholdEvent

DBGetResponseEvent OriginateFailureEvent UnlinkEvent

DialEvent OriginateSuccessEvent UnparkedCallEvent

DisconnectEvent ParkedCallEvent UserEvent

DNDStateEvent ParkedCallGiveUpEvent ZapShowChannelsCompleteEv
ent

ExtensionStatusEvent ParkedCallsCompleteEv
ent

ZapShowChannelsEvent

FaxReceivedEvent ParkedCallTimeOutEven
t

HangupEvent PeerEntryEvent

HoldedCallEvent PeerlistCompleteEvent

Asterisk Gateway Interface
AGI is a gateway interface to Asterisk similar to CGI used by web servers. It allows the use of high-
level languages like Perl, PHP, and Python to extend Asterisk‘s functionality. The main application

for CGIs is IVR building. There are four types of AGI:

 Normal AGI, which calls a program inside Asterisk‘s box.

 Fast AGI, which calls an AGI in another server using TCP sockets.

 EAGI, which enables sound channel access and control from the AGI.

 DEADAGI, which gives access to the channel even after hangup(). Usually called in the

‗h‘ extension.

Application format:

asterisk*CLI> core show application agi

 | Asterisk Gateway Interface |

- 263 -

asterisk*CLI>

 -= Info about application 'AGI' =-

[Synopsis]

Executes an AGI compliant application

[Description]

 [E|Dead]AGI(command|args): Executes an Asterisk Gateway Interface compliant

program on a channel. AGI allows Asterisk to launch external programs

written in any language to control a telephony channel, play audio,

read DTMF digits, etc. by communicating with the AGI protocol on stdin

and stdout.

Returns -1 on hangup (except for DeadAGI) or if application requested

 hangup, or 0 on non-hangup exit.

Using 'EAGI' provides enhanced AGI, with incoming audio available out of band

on file descriptor 3

Use the CLI command 'agi show' to list available agi commands

You can show the available AGI commands using the command agi show (1.6.1):

Dead Command Description

 No answer Answer channel

 No channel status Returns status of the connected channel

 Yes database del Removes database key/value

 Yes database deltree Removes database keytree/value

 Yes database get Gets database value

 Yes database put Adds/updates database value

 Yes exec Executes a given Application

 No get data Prompts for DTMF on a channel

 Yes get full variable Evaluates a channel expression

 No get option Stream file, prompt for DTMF, with timeout

 Yes get variable Gets a channel variable

 No hangup Hangup the current channel

 Yes noop Does nothing

 No receive char Receives one character from channels supporting it

 No receive text Receives text from channels supporting it

 No record file Records to a given file

 No say alpha Says a given character string

 No say digits Says a given digit string

 No say number Says a given number

 No say phonetic Says a given character string with phonetics

 No say date Says a given date

 No say time Says a given time

 No say datetime Says a given time as specfied by the format given

 No send image Sends images to channels supporting it

 No send text Sends text to channels supporting it

 No set autohangup Autohangup channel in some time

 No set callerid Sets callerid for the current channel

 No set context Sets channel context

 No set extension Changes channel extension

 No set music Enable/Disable Music on hold generator

 No set priority Set channel dialplan priority

 Yes set variable Sets a channel variable

 No stream file Sends audio file on channel

 No control stream file Sends audio file and allows the listener cont.the

stream

 No tdd mode Toggles TDD mode (for the deaf)

 Yes verbose Logs a message to the asterisk verbose log

 No wait for digit Waits for a digit to be pressed

 No speech create Creates a speech object

| Chapter 13 - Extending Asterisk with AMI and AGI |

- 264 -

 No speech set Sets a speech engine setting

 Yes speech destroy Destroys a speech object

 No speech load grammar Loads a grammar

 Yes speech unload grammar Unloads a grammar

 No speech activate grammar Activates a grammar

 No speech deactivate grammar Deactivates a grammar

 No speech recognize Recognizes speech

 No gosub Execute a dialplan subroutine

To debug, use agi debug.

Using AGI
In this example, we will use php-cli, the php command line version. Install php-cli if it‘s not

already installed. Follow these steps to use php AGI scripts.

Step 1: All AGI scripts are located in /var/lib/asterisk/agi-bin

Step 2: Change the permissions to allow execution.

chmod 755 *.php

Step 3: Shell interface (php specific). The script‘s first lines have to be:

#!/usr/bin/php -q

<?php

Step 4: Open I/O channels:

$stdin = fopen('php://stdin', 'r');

$stdout = fopen('php://stdout', 'w');

$stdlog = fopen('agi.log', 'w');

Step 5: Manage the Asterisk output.

Asterisk sends the information set each time AGI is called.

agi_request:testephp

agi_channel: Zap/1-1

agi_language: en

agi_type: Zap

agi_callerid:

agi_dnid:

agi_context: default

agi_extension: 4000

agi_priority: 1

Save the information sent:

while (!feof($stdin)) {

 $temp = fgets($stdin);

 $temp = str_replace("\n","",$temp);

 $s = explode(":",$temp);

 $agivar[$s[0]] = trim($s[1]);

 If (($temp == "") || ($temp == "\n")) {

 break;

 | Asterisk Gateway Interface |

- 265 -

 }

}

The previous script will create an array named $agivar. Available options are:

 agi_request – AGI file name

 agi_channel – AGI originating channel

 agi_language – Language set

 agi_type – Channel type (e.g., SIP, ZAP)

 agi_uniqueid – Unique identifier

 agi_callerid – CallerID (Ex. Flavio <8590>)

 agi_context – Originating context

 agi_extension – Called extensions

 agi_priority – Priority

 agi_accountcode – Originating account code

To call a variable named agi_extensions, use $agivar[agi_extensions].

Step 6: Use channel AGI

At this point, you can start talking to Asterisk. Use the fputs command to send commands to AGI.

You can also use the echo command.

fputs($stdout,"SAY NUMBER 4000 '79#' \n");
fflush($stdout);

Notes about using quotes:

 AGI command options are not optional

 Some options need to be enclosed in quotes <escape digits>

 Some options should not be enclosed in quotes <digit string>

 Some options can use both formats

 You can use single quotes

Step 7 – Pass variables

Channel variables can be set in the AGI, but cannot be used inside the AGI. The following example

does not work inside an AGI.

SET VARIABLE MY_DIALCOMMAND "SIP/${EXTEN}"

The following example does work:

SET VARIABLE MY_DIALCOMMAND "SIP/4000"

Step 8: Asterisk responses

The following is necessary to verify responses from Asterisk:

$msg = fgets($stdin,1024);
fputs($stdlog,$msg . "\n");

| Chapter 13 - Extending Asterisk with AMI and AGI |

- 266 -

Step 9: Kill the locked (zombie) processes

If your script fails for some reason, the process will hang. Use the killproc command to clean it before

testing again.

 #!/usr/bin/php4 -q
 <?php
 ob_implicit_flush(true);
 set_time_limit(6);
 $in = fopen("php://stdin","r");
 $stdlog = fopen("/var/log/asterisk/agi.log", "w");

 // Enable debug (more verbose)
 $debug = false;

 // Functions definition

 function read() {
 global $in, $debug, $stdlog;
 $input = str_replace("\n", "", fgets($in, 4096));
 if ($debug) fputs($stdlog, "read: $input\n");
 return $input;
 }

 function errlog($line) {
 global $err;
 echo "VERBOSE \"$line\"\n";
 }

 function write($line) {
 global $debug, $stdlog;
 if ($debug) fputs($stdlog, "write: $line\n");
 echo $line."\n";
 }

 // Put agi headers in the array
 while ($env=read()) {
 $s = split(": ",$env);
 $agi[str_replace("agi_","",$s[[0])] = trim($s[[1]);
 if (($env == "") || ($env == "\n")) {
 break;
 }
 }

 // main program
 echo "VERBOSE \"Start here!\" 2\n";
 read();
 errlog("Call from ".$agi['channel']." – Phone ringing ");
 read();
 write("SAY DIGITS 22 X"); // X is the escape digit. since X is not DTMF, no ex
it is possible
 read();
 write("SAY NUMBER 2233 X"); // X is the escape digit. since X is not DTMF, no
exit is possible
 read();

 // clean up file handlers etc.
 fclose($in);
 fclose($stdlog);

 exit;
 ?>

 | Changing the source code |

- 267 -

DeadAGI
DeadAGI is used when you do not have a live channel. Usually you execute the DeadAGI in the ´h´

extension.

FASTAGI

Fast AGI implements AGI using a TCP port (4573 by default) as the Input/Output channel. FastAGI
format is (agi://). For example:

exten => 0800400001, 1, Agi(agi://192.168.0.1)

When the TCP connection is lost or disconnected, the AGI ends and the TCP connection is closed,
followed by a call disconnection. This resource is useful to ease the CPU load from your Asterisk

server running scripts in an external server. You may obtain more details about FastAGI in the source

code directory (please see the file ―agi/fastagi-test‖).

OrderlyCalls has a Java AGI server that implements Fast AGI for Java. For more information, see

http://www.orderlycalls.com

Changing the source code
Asterisk is developed in C language (not C++). Teaching C programming is beyond the scope of this

document. If you are interested, you will find related documentation at www.asterisk.org/developers,

which offers good tips on how to apply and create patches to Asterisk as well API documentation,
mostly generated by Doxygen software, http://www.asterisk.org/doxygen/

For those familiar with C programming, changing the applications source code can be the most

powerful (and dangerous) way to extend Asterisk.

Summary
In this chapter, you have learned how to interface external programs to the Asterisk PBX. We have
started with asterisk –rx passing commands from the Linux shell to the Asterisk console. Next, we

learned about the System() application, which allows calling an external program from the dial plan.

AMI is the closest interface to a CTI interface common in traditional PBXs. To call an application

from the dial plan, we used the AGI, with a taste for its different flavors: DeadAGI for dead channels,
EAGI for handling the audio streaming, Fast AGI for using TCP sockets as the input/output interface,

and normal AGI for calling and processing the scripts inside the same Asterisk box.

Quiz
1. Which of the following is not an interfacing method for Asterisk?

A. AMI

http://www.asterisk.org/developers
http://www.asterisk.org/doxygen/

| Chapter 13 - Extending Asterisk with AMI and AGI |

- 268 -

B. AGI

C. Asterisk –rx

D. System()

E. External()

2. AMI allows for passing Asterisk commands via TCP sockets. This resource is enabled by default.

A. True

B. False

3. AMI is very safe, because its authentication is done using MD5 challenge/response.

A. True

B. False

4. FastAGI allows the calling of external scripts from the dial plan to an external machine using TCP
sockets (usually 4573).

A. True

B. False

5. DeadAGI is used in active channels. It can be used in ZAP channels, but not in SIP or IAX

channels.

A. True

B. False

6. AGI supports only PHP as a scripting language

A. True

B. False

7. The command _____________ shows all available AGI commands.

8. The command ________________ shows all available AMI commands.

9. To debug an AGI, you should use the command __________________________.

14
Asterisk Real-Time

As you know, the Asterisk configuration is achieved through the use of several text files in the
/etc/asterisk directory. Despite the ease of using text files, there are some known drawbacks:

 The need to reload Asterisk each time the files are changed

 Increased memory usage for a large volume of users

 Difficulty coding a provisioning interface using text files

 No possibility of integration to existing databases

ARA or Asterisk Realtime, as it is known, was created by Anthony Minessale II, Mark Spencer, and

Constantine Filin and was designed to allow transparent integration with SQL databases. An LDAP

interface is available too. This system is also known as Asterisk External Configuration and is
configured in /etc/asterisk/extconfig.conf. You can map configuration files to tables in a

database (static configuration) and real-time entries for the dynamic creation of objects without the

need to reload Asterisk.

Objectives
By the end of this chapter, the reader should be able to:

 Understand advantages and limitations of Asterisk Real Time.

 Install MySQL for use with ARA

 Compile and install ARA using MySQL

 Test the system in a lab environment

How does Asterisk Real Time work?
In the new Real Time architecture, all database-specific code was moved to channel drivers. The
channel only calls a generic routine that searches the database. The result is a much simpler and

cleaner process from the source code point of view. The database is accessed by three functions:

 STATIC: Used to set up a static configuration when a module is loaded.

 REALTIME: Used to search objects during a call or another event.

| Chapter 14 - Asterisk Real-Time |

- 270 -

 UPDATE: Used to update objects.

The channel database support was not changed. There are peers and users called static (normal) and

peers and users called real time (database). For the static, it doesn‘t matter if it is loaded from a

configuration file or from the database kept in the memory. However, the real-time peers/users are

loaded only when a call is made. After the call, the peer or user is deleted. Consequently, there is no
support for NAT or message waiting indicator (MWI). You can enable real-time caching using the

command rtcachefriends=yes in the sip.conf file or from the static database. By doing so, you

will have NAT traversal and MWI; however, if you do any updates to this peer/user, you will have to
reload.

Lab: Installing Asterisk Real/Time
For this lab, we will assume that you still have the MySQL libraries that were installed in Chapter 13.

Step 1: Download the add-ons package.

Please check the current version. At the time of writing, I was downloading 1.6.1.1; it
certainly won‘t be the same when you download it.

wget http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-
addons-1.6.2.x.tar.gz

Step 2: Uncompress the file

tar –xzvf asterisk-addons-1.6.2.x.tar.gz

cd asterisk-addons-1.6.2.x

make

http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.6.2.x.tar.gz
http://downloads.asterisk.org/pub/telephony/asterisk/releases/asterisk-addons-1.6.2.x.tar.gz

 | Configuring Asterisk Real Time |

- 271 -

make install

make samples

Confirm the module installation using module show.

Configuring Asterisk Real Time
ARA is configured in the extconfig.conf text file, where two sections can be easily seen. The first

one is the static configuration files section, where you can substitute the text configuration files for

database tables. The second section is the realtime configuration engine, where you configure
database tables for dynamic objects (peers/users). It is not unusual to use text files for the static

configuration and the database for dynamic entries. In this case, the first section is untouched.

extconfig.conf file format:

;

; Static and realtime external configuration

; engine configuration

;

; Please read doc/README.extconfig for basic table

; formatting information.

;

[settings]

;

; Static configuration files:

;

; file.conf => driver,database[,table]

;

; maps a particular configuration file to the given

; database driver, database and table (or uses the

; name of the file as the table if not specified)

| Chapter 14 - Asterisk Real-Time |

- 272 -

;

;uncomment to load queues.conf via the odbc engine.

;

;queues.conf => odbc,asterisk,ast_config

;

; The following files CANNOT be loaded from Realtime storage:

; asterisk.conf

; extconfig.conf (this file)

; logger.conf

;

; Additionally, the following files cannot be loaded from

; Realtime storage unless the storage driver is loaded

; early using 'preload' statements in modules.conf:

; manager.conf

; cdr.conf

; rtp.conf

;

; Realtime configuration engine

;

; maps a particular family of realtime

; configuration to a given database driver,

; database and table (or uses the name of

; the family if the table is not specified

;

;example => odbc,asterisk,alttable

;iaxusers => odbc,asterisk

;iaxpeers => odbc,asterisk

;sipusers => odbc,asterisk

;sippeers => odbc,asterisk

;voicemail => odbc,asterisk

;extensions => odbc,asterisk

;queues => odbc,asterisk

;queue_members => odbc,asterisk

Static configuration section
The static configuration section is where you store the equivalent to configuration files in the

database. These configurations are read during the Asterisk load. Some modules reread the database

when you reload. Examples of the static configuration are:

<conf filename> => <driver>,<databasename>[,table_name]
queues.conf => mysql,asteriskdb,queues_conf
sip.conf => odbc,asteriskdb,sip_conf
iax.conf => ldap,MyBaseDN,iax

Three examples are described above. In the first one, you bind queues.conf to a table queues in the

asteriskdb database. In the second example, you bind sip.conf to the table sip_conf in the

database asteriskdb defined in the odbc configuration. In the last example, you bind iax.conf to an
LDAP directory. MyBaseDN is the base DN to be searched.

 | Database configuration |

- 273 -

In the previous example, the application app_queue.so is loaded while MySQL driver queries the

database and gets the required information.

Real Time configuration section
The real-time configuration (second part of the extconfig.conf file) is where the configuration

piece to be loaded is configured, updated, and unloaded in real time. With real time, it is not
necessary to reload the configurations. The real-time syntax follows:

<family name> => <driver>,<database name>[,table_name]

Example:

sippeers => mysql,asteriskdb,sip_peers
sipusers => mysql,asteriskdb,sip_users
queues => mysql,asteriskdb,queue_table
queue_members => mysql,asteriskdb,queue_member_table
voicemail => mysql,asteriskdb,test

Here we have five configuration lines. In the first line, you bind the family sippeers to a table

sip_peers in the asteriskdb MySQL database. In the last, you bind the voicemail family to the test

table in the asteriskdb database. Note that sip_peers and sip_users could point to the same table.

Database configuration
Now that we have configured the extconfig.conf file, let‘s create the tables. Generally speaking,

the database columns need to have the same fields as the configuration files. For example, for a SIP
or an IAX object, such as the one described below,

[4000]

host=dynamic

secret=senha

context=default

context=ramais

The database table should look like this:

name Host secret context ipaddr port regseconds

4000 dynamic senha default;ramais 10.1.1.1 4569 1765432

To use this with IAX, the tables need to have at least the following fields: name, port, and
regseconds. You may configure other columns to the desired fields. For example, if you want the

parameter callerid, create a column named callerid (the same parameter as the text file). A SIP

table may look like the one below:

name host secret context ipaddr port regseconds username

4000 dynamic senha default 10.1.1.1 5060 1765432 4000

A voicemail table should look like this:

Uniqueid mailbox Context password email fullname

| Chapter 14 - Asterisk Real-Time |

- 274 -

1 4000 Default 4000 joao@silva.com Joao Silva

The uniqueid should be unique to each voicemail user and can be autoincrement. It need not have

any relationship to the mailbox or context.

Building a dial plan using Asterisk Real Time
You can also use the real-time system to create the dial plan. ARA uses the statement switch to

include the real-time extensions into the normal dial plan contained in the extensions.conf file.

The extension table should look like the one below:

context Exten priority app appdata

Ramais 4000 1 dial SIP/4000&IAX2/4000

In the dial plan, you have to use the switch command to use the real time.

[local]

switch => realtime

or

[local]

Switch =>realtime/ramais@extensions

Lab: Installing and creating the database tables
In this lab, we will prepare the database to receive Asterisk parameters. We will prepare just the

REALTIME databases. The static configuration will be left to the configuration text files (Cool isn‘t

it?).

Table creation in MySQL:

 | Lab: Installing and creating the database tables |

- 275 -

Step 1: Get into to the MySQL database using root

mysql –u root –p

Step 2: Create a database for Asterisk Real Time

mysql>create database asteriskdb;

Step 3: Create a user with access to the asteriskdb database

mysql>grant all privileges on „asteriskdb‟.* to 'asterisk'@'localhost'
identified by 'asterisk';

Step 4: Exit MySQL and log in again using the user created in step 3

mysql –u asterisk –p asteriskdb

When asked for the password, type asterisk.

Step 5: Create the necessary tables

Download the following file from www.asteriskguide.com:

wget www.asteriskguide.com/pdf/realtime.sql

Execute the following commands:

mysql asteriskdb -u asterisk -p <realtime.sql

Use asterisk as the password.

Step 6: Install phpmyadmin to handle database tasks

#apt-get install phpmyadmin

Below are two screenshots of the utility log in screen and the table screen.

| Chapter 14 - Asterisk Real-Time |

- 276 -

Step 7: Configure Asterisk to access the database. In the res_mysql.conf

[general]

dbhost = 127.0.0.1

dbname = asteriskdb

dbuser = asterisk

dbpass = asterisk

dbport = 3306

Lab: Configuring and testing ARA
In this lab we will change the extconfig.conf configuration to reflect our database configuration
and tables.

Step 1: Configure extconfig.conf and reload Asterisk

; Realtime configuration engine

;

; maps a particular family of realtime

; configuration to a given database driver,

; database and table (or uses the name of

; the family if the table is not specified

;

;example => odbc,asterisk,alttable

iaxusers => mysql,asteriskdb,iax_buddies

iaxpeers => mysql,asteriskdb,iax_buddies

sipusers => mysql,asteriskdb,sip_buddies

sippeers => mysql,asteriskdb,sip_buddies

 | Lab: Configuring and testing ARA |

- 277 -

voicemail => mysql,asteriskdb,voicemail_users

extensions => mysql,asteriskdb,extensions_table

Step 2: Real Time extension test

Create a new 4001 SIP friend inserting a record on the sip_buddies table and try to authenticate this
peer/user with a softphone.

Step 3: Try a call from the 4000 extension created before (static) and the new 4001

Verify that using SIP shows peers in the SIP objects. You will note that only the static peer is shown.

This behavior is normal since the peer is only created when you call. If you need to have NAT

traversal support or MWI, use rtcachefriends=yes in the sip.conf file.

Step 4: Put the command rtcachefriends=yes in the [general] section of the sip.conf file

Step 5: Once again, try a call from 4000 to 4001

Verify using show peers. Why does it appear now?

Step 6: Create a new SIP peer in the database with the name 4007

Change the phone registration to 4007 without reloading Asterisk

Step 7: Include the extensions in the database

mysql -u asterisk -p

Enter password:

--> Use asterisk when asked.

| Chapter 14 - Asterisk Real-Time |

- 278 -

Use phpadmin to include an extension in the database. If you prefer, use the following commands

instead in the MySQL client interface.

use asteriskdb;

insert into extensions_table(id, context, exten, priority, app, appdata) VALUES
('1','teste', '40007','1','Dial','SIP/40007');

Step 8: Include Asterisk Real Time in the dial plan. In the context default:

switch => realtime/teste@extensions

Reload the extensions to activate the change.

asterisk-server*CLI>extensions reload

Step 9: Reconfigure one of the phones to 40007, if you have not already done so.

Step 10: Dial 40007 from an existent phone

Summary
In this chapter, you have learned that Asterisk Real Time allows you to put your configurations into a

database. Databases supported are MySQL and any other unix ODBC-supported databases. The

configuration is divided into static and real time. Static configuration replaces the configuration files,

while the real-time configuration creates dynamic objects that are loaded only when a call or other
related event happens. We concluded with a practical lab on how to install and configure ARA.

Quiz
1. Asterisk real-time is part of the standard Asterisk distribution.

A. True

B. False

2. To compile ARA and use it with MySQL databases, the following libraries have to be installed.

A. Libmysqlclient12-dev

B. Mysql-server-4.1

C. Perl

D. PHP

3. Configuration of a database server‘s IP addresses and ports is done in the following file:

A. extensions.conf

B. sip.conf

C. res_mysql.conf

D. extconfig.conf

 | Quiz |

- 279 -

4. The file extconfig.conf is used to configure the tables used by real time. This file has two
distinct sections (check two):

A. Static configuration

B. Real-time configuration

C. Outbound routes

D. IP addresses and database ports

5. In the static configuration, once you load the objects from the database, they are loaded

dynamically into Asterisk‘s memory whenever necessary.

A. True

B. False

6. When a SIP channel is configured in real time, it‘s not possible to use resources such as ―qualify‖

or MWI (message waiting indicator) because the channel does not exist until a call is made. This

causes the following problems:

A. This channel can call, but not receive calls

B. The SIP channel could not be used behind NAT because qualify is used to keep NAT

translation open.

C. It‘s not possible to make MWI work in the phones that support it.

D. It‘s not possible to use the channel since SIP is always static.

7. If you want to use real-time configuration with SIP channels, but need to support NAT and MWI,

you should use:

A. Real Time was not created for use with NAT

B. rtcachefriends=yes in sip.conf

C. Only MWI is possible

D. To use NAT, the configuration needs to be static

8. You can still use text configuration files even after installing ARA.

A. True

B. False

9. Phpadmin is mandatory when you use Real Time.

A. True

B. False

10. The database has to be created with all the existing fields of the configuration file.

A. True

B. False

15
Building a simple PBX using AsteriskNOW

It is becoming quite popular to configure Asterisk using a ready-to-run distribution. In this chapter,
we will show you how to install AsteriskNow™ and build a simple PBX using its graphical user

interface called freePBX™. We will execute the same tasks from chapter 3, but with a simpler

interface. Although it is much easier, it is not as flexible. As a general rule, I use ready-to-run

distributions when I want to install a PBX with limited features. To implement complex telephony
applications, Asterisk classic is still the best choice.

Objectives
By the end of this chapter, you should be able to:

 Install Asterisk and freePBX from the AsteriskNOW CD

 Describe the main components of the freePBX

 Build a simple IP PBX through the following tasks

o Install phones and softphones based on the SIP and IAX protocols

o Install and configure a SIP trunk with a VoIP operator
o Install and configure an analog card to connect to the PSTN

o Configure a simple dial plan

o Dial between extensions and external destinations
o Configure voicemail

o Configure the reception of the calls

o Configure an auto-attendant

o Configure an audio conference room

AsteriskNOW
AsteriskNOW is an Asterisk distribution that is easy to install. It is provided by Digium and is based
on the CentOS distribution of Linux. The latest version is 1.5. Below are some technical data about it.

 Web Site: http://www.asterisknow.org

 OS: CentOS 5.3

 |Introduction to freePBX| 281

- 281 -

 Asterisk version 1.4

 GUI: FreePBX or Asterisk GUI

 Language: English

 Strong points: The new AsteriskNOW assumes the freePBX is the standard user interface,

which seems positive to me. FreePBX is becoming a de facto standard for Asterisk GUIs.

We‘ve chosen AsteriskNOW for the lab in this chapter because it is supported and developed by

Digium. Actually, the most important feature here is the freePBX, present on most of the Asterisk

distributions. Thus, if you prefer, you can change the Asterisk distribution without changing the user

interface.

Introduction to freePBX
FreePBX (www.freepbx.org) is an easy-to-use interface to help administrators configure, manage,
and monitor the Asterisk server. The last time I checked, freePBX had more than three million

downloads and is used with the majority of distributions, such as Elastix and Trixbox.

It is important to understand that freePBX significantly changes the way in which you configure
Asterisk. Once you have started using freePBX, you will not be able to freely edit the Asterisk files.

Fortunately, there are custom files that allow edits without changing the freePBX settings.

AsteriskNOW installation
To install AsteriskNOW and freePBX, let‘s use the installation CD, which will take fewer than 20

minutes. Download the ISO and burn a CD to start the installation. The ISO can be downloaded from:

http://dl.digium.com/load_balance.php?q=AsteriskNOW-1.5.0-i386-1of1.iso

Post-installation procedures
Before proceeding, we need to set up the IP address of your server. The next step is to detect and
install telephony cards.

IP Address configuration
The first time you log in to the system, you will see a configuration menu. From this menu, you can

select ―Network Configuration‖. If you skipped the menu screen, use system-config-network. Enter

the IP address, mask, and default gateway. To enable DNS, edit the file /etc/resolv.conf to include a
DNS server to resolve names to IP.

http://www.freepbx.org/

282 | Capítulo 1 | Introdução ao Asterisk

- 282 -

Telephony card configuration
Telephony drivers such as DAHDI come pre-compiled, but you will need to configure the devices to
avoid conflicts with other cards. Follow these steps to install the telephony cards:

Step 1: Create the file genconf_parameters and specify an echo cancellation algorithm

echocan=mg2

Step 2: Edit the file /etc/dahdi/modules and select only the modules that match your cards. Disable

all others by inserting a ―#‖ character in front of the line.

Step 3: Include DAHDI in the server initialization.

#chkconfig -–add dahdi

#chkconfig dahdi on

#reboot

Step 4: Generate the configuration for the telephony card.

#dahdi_genconf

After generating the file, include the file /etc/asterisk/dahdi-channels.conf in the file

/etc/asterisk/chan_dahdi.conf.

#vi chan_dahdi.conf

In the last line of the file, include the following command:

#include dahdi-channels.conf

Step 5: Stop and restart Asterisk and freePBX

#amportal stop

#amportal start

Step 6: Get into the Asterisk console and check that the DAHDI channels were configured. To get
into the console use:

 |Installing extensions on freePBX| 283

- 283 -

#asterisk –r

On the Asterisk console, use the following command:

cli>dahdi show channels

Installing extensions on freePBX
Before starting to create extensions, it is important to edit some general configurations of the files
iax_.general_custom.conf and sip_general_conf_custom. The files iax.conf and sip.conf

should not be changed directly if you are using freePBX.

Edit the file sip_general_custom.conf

bindaddr=ip_do_seu_servidor

binport = 5060

allowguest=no

allowauthreject=yes

disallow=all

allow=ulaw

allow=gsm

context=dummy

Edit the file iax_general_custom.conf

context=dummy

bindaddr=ip_do_seu_servidor

binport = 5060

Restart the Asterisk server using amportal restart.

It is very simple to create freePBX extensions. Use an internet browser to access freePBX at:

http://ip_of_your_server/admin

The user and password are admin:admin.

Step 1: Create a SIP extension in the Extensions menu.

284 | Capítulo 1 | Introdução ao Asterisk

- 284 -

Choose the extension type, in this case Generic SIP Device. Some other options are Generic IAX

Device and Generic Dahdi Device and select the Submit button. Fill the form with extension, name and

secret.

 |Installing extensions on freePBX| 285

- 285 -

The screen above seems very complex at first. Let‘s complete only enough fields to set up an

extension.

User Extension: 6000

Display Name: 6000

Leave the fields below empty and fill in only the Extension Options.

Secret: supersecret

Fill the fields related to the voicemail.

286 | Capítulo 1 | Introdução ao Asterisk

- 286 -

Status: Enabled

Voicemail Password: supersecret

Email Address:email@email.com

Attach: yes

Click submit to save the record.

Step 2: To create an IAX extension, access the extensions menu.

Choose the type of extension—in our case, Generic IAX Device. Click the Submit button. Fill in the

fields for the extension, device name, and secret.

 |Installing extensions on freePBX| 287

- 287 -

Fill in the parameters related to the IAX extension.

Extension: 6003

Display Name: 6003

288 | Capítulo 1 | Introdução ao Asterisk

- 288 -

Secret: supersecret

Fill in the voicemail parameters as well.

Status: Enabled

Voicemail Password: supersecret

Email Address: email@email.com

Attach: yes

Click submit

Step 3: Log in with the extension 6000 using the X-Lite and 6003 using Zoiper. Test the calls

between the extensions. After testing the phones, turn off 6003 to test the voicemail.

FreePBX codes
FreePBX comes with a series of predefined codes to access the server.

 |Dialing external numbers| 289

- 289 -

On the Feature Codes, page you will see codes to several PBX operations. Use *98 and *97 to access

the voicemail.

Dialing external numbers
To dial external numbers, you need to create trunks and outbound routes. We are going to show you

how to create these items. Below we will give you two examples; the first is how to create an analog

290 | Capítulo 1 | Introdução ao Asterisk

- 290 -

trunk using an X100P clone card while the second is how to create a SIP trunk, if you are using a

VoIP provider.

Creating a trunk using an FXO interface

In the chapter on analog lines, you learned how to configure analog cards. After configuring the card
correctly, you can use the channel DAHDI/g1 (or your specific group). Access the trunks option and

select:

 Add Zap Trunk (DAHDI compatibility mode).

Add the fields:

Outbound Caller ID: ―your phone number‖

Zap Identifier: In our case, DAHDI/g1. You should change the DAHDI group (e.g., g0, g1)

accordingly.

 |Dialing external numbers| 291

- 291 -

Creating a SIP trunk to a VoIP Provider

To create a SIP trunk, you need to open an account in a SIP provider. This material does not have the

intention to be biased toward a specific provider. Check with your VoIP operator for the correct

parameters before starting. Choose the option Trunks and select Add a SIP trunk.

To configure the SIP trunk, fill in the following data:

host=provider

username=user

292 | Capítulo 1 | Introdução ao Asterisk

- 292 -

secret=secret

fromuser=user

fromdomain=provider

insecure=invite

dtmfmode=rfc2833

context=from-trunk

disallow=all

allow=ulaw

type=peer

Creating an outbound route

After creating the trunks, you will need to create an outbound route to these trunks. In other words,

you will identify which numbers will be forwarded to these destinations. Choose the Outbound routes

option and select Add Route.

On this screen, you will fill in the name of the route, the dialing rules (see onscreen help), and the
sequence of trunks to be used. In our case, we used 9|.—in other words, any number prefixed by 9

with any number of digits will be sent to the trunk specified, with the first digit stripped.

Receiving calls

Our PBX is almost ready. Now it is time to receive calls from the trunk to an extension. The creation

of the inbound route is not difficult. You need to change the SIP trunk and add a few lines in the
details of the peer, and then you will be able to create the inbound route.

 |Dialing external numbers| 293

- 293 -

For a provider, you shouldn‘t insert anything in the incoming settings, just below the outgoing

settings because the SIP authentication sequence searches for an entry with the name in the SIP

FROM header field. Checking this parameter, you will see that this field is filled in with the call

identifier from the public network. In other words, you cannot create a user with each number coming
from the public network. If the Asterisk server does not find a user with a name matching the content

of the SIP FROM header, it searches for a peer who has the host matching the incoming IP address.

If it finds a peer with the matching address, it will use this peer as the entry point, so you should add
context=from-pstn to indicate that all calls coming from the provider will be handled in the from-

pstn context in the file extensions.conf. Furthermore, you should insert the insecure=invite to

receive the calls. This command will instruct Asterisk to not send the md5 challenge to the provider—

in other words, Asterisk will not ask for a username and password because you have a name and

294 | Capítulo 1 | Introdução ao Asterisk

- 294 -

password provided by your provider. However, your provider does not have a user and password

provided by you configured on its servers. If you are behind a NAT device, please include nat=yes
and qualify=yes.

Creating an inbound route
Before receiving calls, your trunk needs to be registered. The registration line is filled with

username:password@voipproviderIP/DID.

After preparing the SIP trunk to receive incoming calls, you should add a parameter that was passed

during the registration of the trunk (user:password@provider/did) in the DID number, which will

enable the system to forward this call to the final destination—in our case, extension 6000.

 |Using a digital receptionist| 295

- 295 -

296 | Capítulo 1 | Introdução ao Asterisk

- 296 -

Using a digital receptionist
You can enhance your productivity by replacing manual repetitive work required to transfer calls to

the right destinations with an interactive voice response (IVR) system. Before we can configure the

auto-attendant, some planning is required. Let‘s suppose that you want to create the following
application:

Initial message: Welcome to XYZ Telecom; press 1 for sales, 2 for support, or wait for the next

available agent.

First, you will need to record these phrases on files:

 menu.wav: Welcome to XYZ Telecom; press 1 for sales, 2 for support, or wait for the next

available agent.

 Option 1: Transfer to extension 6001

 Option 2: Transfer to extension 6003

 No option selected (timeout): Transfer to the operator.

 Invalid option: Return to the beginning of the recording

Recording an announcement
FreePBX is very ingenious for recording announcements. Use the System Recordings option. In the

menu below, you should indicate your phone extension. After doing so, it will release the code *77 to
start a recording. Follow the recording instructions; in the end, the system will allow you to name the

recording and save it. Thus, you can generate all the announcements required by your auto-attendant

system.

 |Using a digital receptionist| 297

- 297 -

Creating the auto-attendant

To create the auto-attendant, you should install a new module. This operation is very simple: Access

the Module Admin menu and select Search Online Updates. FreePBX will show you a series of
modules available. Double click on the IVR module and then select Download and Install.

At the end of the page, choose the process button. This menu allows for a series of operations, such as

the upgrades of the modules.

Creating the IVR itself

Below is the screen to create the auto-attendant IVR. Let‘s explain the configuration item per item.

298 | Capítulo 1 | Introdução ao Asterisk

- 298 -

 |Creating a conference room| 299

- 299 -

The screen above includes a series of options that should be configured for the IVR to work. Below

are some of the options selected.

Name: auto-attendant

Announcement: menu.wav Name of the recording to be played.
Timeout: 10 Time in seconds to wait for an option

Direct dial enable Enable the user to dial directly an extensions

Option 1 When 1 is dialed, transfer to extension 6000

Option 2 When 2 is dialed, transfer to extension 6001
Option i (invalid) If some digit is invalid (3-9), return to the IVR

Option t (timeout) If no digit is dialed, transfer to extension 6003

300 | Capítulo 1 | Introdução ao Asterisk

- 300 -

Creating a conference room
To create a conference room, we will need to install a new module in the freePBX called conference.

To create a conference, simply add the number and the XXX [missing word?] of the conference

room. Dial the number of the room to test the conference.

Important: The conference room won’t work if you don’t have a timing source.
Check if you have at least one DAHDI card loaded. If you system does not use any
telephony card, please load the module dahdi_dummy in the Linux command line
before trying.

Summary
This chapter has provided significant information that will enable you to build a complete PBX

solution with voicemail, IVR, and conference room in less than one hour. Initially, I was against the

adoption of graphical user interfaces because troubleshooting is harder. However, the level of

 |Summary| 301

- 301 -

productivity obtained by the use of a GUI surpasses the possible disadvantages. I‘m not afraid to say
that, for low to medium complexity IP PBX setups, freePBX is my choice.

