— A R
e

Leif Madsen,
Jim Van Meggelen
& Russell Bryant

O’REILLY"

9

Networking/Telephony

Asterisk: The Definitive Guide

Design a complete VoIP or analog PBX with Asterisk, even if you
have no previous Asterisk experience and only basic telecom-
munications knowledge. This bestselling guide makes it easy, with
a detailed roadmap to installing, configuring, and integrating this
open source software into your existing phone system.

Ideal for Linux administrators, developers, and power users, this
book shows you how to write a basic dialplan step by step, and
quickly brings you up to speed on the latest Asterisk features in

version 1.8.

B Integrate Asterisk with analog, VolP, and digital telephony

systems

B Build a simple interactive dialplan, and dive into advanced

concepts

B Use Asterisk’s voicemail options—including a standalone

voicemail server

B Build a menuing system and add applications that act on

caller input

B Incorporate a relational database with MySQL and PostgreSQL

m Connect to external services such as LDAP, calendars, XMPP,

and Skype

B Use Automatic Call Distribution to build a call queuing system

B Learn how to use Asterisk’s security, call routing, and faxing

features

“If this is your first project
with Asterisk, this book
will take you to the point
where you're able to stun
everyoneyou know with
the sophisticated tricks
that your phone system
can accomplish.”

—JohnTodd
Asterisk and VolIP Evangelist

Leif Madsen is a consultant
specializing in Asterisk
clustering and call-center
integration. He is a cofounder
of the Asterisk Documentation
Project.

Jim Van Meggelen has more
than 20 years of enterprise
telecom experience. He is
a partner in Core Telecom
Innovations, Inc., and
iConverged LLC.

Russell Bryant is the engineer-
ing manager for the Open
Source Software team at
Digium, Inc. He has been a
core member of the Asterisk
development team since 2004.

US $54.99

780596

CAN $63.99
ISBN: 978-0-596-51734-2

517342

55499

Twitter: @oreillymedia
facebook.com/oreilly

O’REILLY"

oreilly.com

Asterisk™: The Definitive Guide

THIRD EDITION

Asterisk™: The Definitive Guide

Leif Madsen, Jim Van Meggelen, and Russell Bryant

O’REILLY*

Beijing - Cambridge - Farnham - Kéln - Sebastopol - Tokyo

Asterisk™: The Definitive Guide, Third Edition
by Leif Madsen, Jim Van Meggelen, and Russell Bryant

Copyright © 2011 Leif Madsen, Jim Van Meggelen, and Russell Bryant. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides Indexer: Fred Brown

Production Editor: Teresa Elsey Cover Designer: Karen Montgomery
Copyeditor: Rachel Head Interior Designer: David Futato
Proofreader: Andrea Fox lllustrator: Robert Romano

Production Services: Molly Sharp

Printing History:
June 2005: First Edition.
August 2007: Second Edition.
April 2011: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Asterisk: The Definitive Guide, the images of starfish, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51734-2
[LSI]
1302181785

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Forewordoounn Xix
Preface ..ot Xxiii
1. ATelephonyRevolutioncoviiiiiiiiiiiiiiiiiiiiiiiiiiriniien, 1
Asterisk and VoIP: Bridging the Gap Between Traditional and Network
Telephony 2
The Zapata Telephony Project 2
Massive Change Requires Flexible Technology 3
Asterisk: The Hacker’s PBX 4
Asterisk: The Professional’s PBX 5
The Asterisk Community 5
The Asterisk Mailing Lists 6
Asterisk Wiki Sites 7
The IRC Channels 7
Asterisk User Groups 7
The Asterisk Documentation Project 8
The Business Case 8
Conclusion 8
2. Asterisk Architecturettt 9
Modules 10
Applications 12
Bridging Modules 15
Call Detail Recording Modules 15
Channel Event Logging Modules 16
Channel Drivers 17
Codec Translators 18
Format Interpreters 18
Dialplan Functions 19
PBX Modules 21

Resource Modules
Addon Modules
Test Modules
File Structure
Configuration Files
Modules
The Resource Library
The Spool
Logging
The Dialplan
Hardware
Asterisk Versioning
Previous Release Methodologies
The New Release Methodology
Conclusion

Installing Asteriskccoviiiiiiiiiiiiiiiinann.,

Installation Cheat Sheet
Distribution Installation
CentOS Server
Ubuntu Server
Software Dependencies
Downloading What You Need
Getting the Source via Subversion
Getting the Source via wget
How to Install It
LibPRI
DAHDI
Asterisk
Setting File Permissions
Base Configuration
Disable SELinux
Initial Configuration
make menuselect
Updating Asterisk
Common Issues
Upgrading Asterisk
Conclusion

Initial ConfigurationTaskscccovvviinnienn.n.

asterisk.conf
The [directories] Section
The [options] Section

oooooooooooooooooo

oooooooooooooooooo

21
23
24
24
24
24
25
25
25
25
26
26
26
27
28

29
31
35
35
40
44
46
47
47
48
48
49
50
50
51
51
52
59
64
66
68
69

n
71
71
72

vi | Table of Contents

The [files] Section 75

The [compat] Section 75
modules.conf 75
The [modules] Section 76
indications.conf 77
musiconhold.conf 79
Converting Music to a Format That Works Best with Asterisk 79
Conclusion 81
User Device Configurationcovviiiiiiiiiiiiiieiniinennennennnnns 83
Telephone Naming Concepts 84
Hardphones, Softphones, and ATAs 86
Configuring Asterisk 87
How Channel Configuration Files Work with the Dialplan 88
sip.conf 89
iax.conf 95
Modifying Your Channel Configuration Files for Your Environment 98
Loading Your New Channel Configurations 98
The Asterisk CLI 99
Testing to Ensure Your Devices Have Registered 99
Analog Phones 100
A Basic Dialplan to Test Your Devices 103
Under the Hood: Your First Call 104
Conclusion 105
Dialplan Basicscvriiniiiiiiiiii i it e i 107
Dialplan Syntax 107
Contexts 108
Extensions 110
Priorities 111
Applications 113
The Answer(), Playback(), and Hangup() Applications 113
A Simple Dialplan 115
Hello World 115
Building an Interactive Dialplan 116
The Goto(), Background(), and WaitExten() Applications 116
Handling Invalid Entries and Timeouts 119
Using the Dial() Application 119
Using Variables 122
Pattern Matching 125
Includes 129
Conclusion 130

Table of Contents | vii

7. Outside CONNECEIVITY . .ovvvnvrriniiiiiii it i ii i eiennennranes 131

The Basics of Trunking 131
Fundamental Dialplan for Outside Connectivity 132
PSTN Circuits 133
Traditional PSTN Trunks 134
Installing PSTN Trunks 136
VoIP 144
PSTN Termination 144
PSTN Origination 145
VoIP to VoIP 147
Configuring VoIP Trunks 147
Emergency Dialing 154
Conclusion 156
8. Voicemail ...t 157
Comedian Mail 157
The [general] Section 158
The [zonemessages] Section 166
The Contexts Section 167
An Initial voicemail.conf File 168
Dialplan Integration 169
The VoiceMail() Dialplan Application 169
The VoiceMailMain() Dialplan Application 171
Creating a Dial-by-Name Directory 171
Using a Jitterbuffer 172
Storage Backends 172
Linux Filesystem 172
ODBC 173
IMAP 173
Using Asterisk As a Standalone Voicemail Server 174
Integrating Asterisk into a SIP Environment As a Standalone
Voicemail Server 174
SMDI (Simplified Message Desk Interface) 177
Conclusion 179
9. Internationalizationcoooiiiiiiiiiiii 181
Devices External to the Asterisk Server 182
PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones 185
DAHDI Drivers 187
Asterisk 189
Caller ID 189
Language and/or Accent of Prompts 190
Time/Date Stamps and Pronunciation 191

viii | Table of Contents

10.

1.

Conclusion—Easy Reference Cheat Sheet

DeeperintotheDialplancoiiiiiiiiiiiiiil,

Expressions and Variable Manipulation
Basic Expressions
Operators
Dialplan Functions
Syntax
Examples of Dialplan Functions
Conditional Branching
The Gotolf() Application
Time-Based Conditional Branching with GotolfTime()
Macros
Defining Macros
Calling Macros from the Dialplan
Using Arguments in Macros
GoSub()
Defining Subroutines
Calling Subroutines from the Dialplan
Using Arguments in Subroutines
Returning from a Subroutine
Local Channels
Using the Asterisk Database (AstDB)
Storing Data in the AstDB
Retrieving Data from the AstDB
Deleting Data from the AstDB
Using the AstDB in the Dialplan
Handy Asterisk Features
Zapateller()
Call Parking
Conferencing with MeetMe()
Conclusion

ParkingandPagingccoviiiiiiiiiiiiiiiiininn.,

features.conf
The [general] section
The [featuremap] Section
The [applicationmap] Section
Application Map Grouping
Parking Lots
Overhead and “Underchin” Paging (a.k.a. Public Address)
Places to Send Your Pages
Zone Paging

194

............. 195

195
195
196
198
198
198
199
199
202
204
204
205
206
207
207
208
209
210
211
214
214
214
215
215
217
217
217
218
219

............. 221

221
222
225
225
227
228
229
230
235

Table of Contents | ix

Conclusion 236

12. InternetGallROUtINGovniriii ittt it ii i eaeenas 237
DNS and SIP URIs 237
The SIP URI 238
SRV Records 238
Accepting Calls to Your System 240
Dialing SIP URIs from Asterisk 246
ENUM and E.164 247
E.164 and the ITU 247
ENUM 248
Asterisk and ENUM 249
ISN, ITAD, and freenum.org 250
Got ISN? 251
ITAD Subscriber Numbers (ISNs) 251
Management of Internet Numbering 251

IP Telephony Administrative Domains (ITADs) 252
Create a DNS Entry for Your ITAD 253
Testing Your ITAD 254
Using ISNs in Your Asterisk System 254
Security and Identity 256
Toll Fraud 257
Spam over Internet Telephony (SPIT) 258
Distributed Denial of Service Attacks 258
Phishing 258
Security Is an Ongoing Process 259
Conclusion 259
13. Automatic Call Distribution (ACD) QUEUESovvvrvireirennennenneennns 261
Creating a Simple ACD Queue 262
Queue Members 266
Controlling Queue Members via the CLI 266
Controlling Queue Members with Dialplan Logic 268
Automatically Logging Into and Out of Multiple Queues 270
An Introduction to Device State 273
The queues.conf File 275
The agents.conf File 281
Advanced Queues 283
Priority Queue (Queue Weighting) 283
Queue Member Priority 284
Changing Penalties Dynamically (queuerules.conf) 285
Announcement Control 287
Overflow 291

X | Table of Contents

14.

15.

Using Local Channels
Queue Statistics: The queue_log File
Conclusion

Device States . o.vvrviii i e e

Device States
Checking Device States
Extension States
Hints
Checking Extension States
SIP Presence
Asterisk Configuration
Using Custom Device States
An Example
Distributed Device States
Using OpenAlS
Using XMPP
Shared Line Appearances
Installing the SLA Applications
Configuration Overview
Key System Example with Analog Trunks
Key System Example with SIP Trunks
Shared Extension Example
Additional Configuration
Limitations
Conclusion

The Automated Attendantccovvvvnnenn..

An Auto Attendant Is Not an IVR
Designing Your Auto Attendant
The Greeting
The Main Menu
Timeout
Invalid
Dial by Extension
Building Your Auto Attendant
Recording Prompts
The Dialplan

Delivering Incoming Calls to the Auto Attendant

IVR
Conclusion

293
296
299

.................... 301

301
302
303
303
304
306
306
307
308
309
310
314
318
318
319
319
323
325
327
328
329

................... 331

331
332
333
334
335
335
336
336
336
338
339
340
340

Table of Contents | xi

16. Relational Database Integrationccoviiiiiiiiiiiiiininnn.,
Installing and Configuring PostgreSQL and MySQL
Installing PostgreSQL for CentOS
Installing PostgreSQL for Ubuntu
Installing MySQL for CentOS
Installing MySQL for Ubuntu
Configuring PostgreSQL
Configuring MySQL
Installing and Configuring ODBC
Configuring ODBC for PostgreSQL
Configuring ODBC for MySQL
Configuring ODBC for Microsoft SQL
Validating the ODBC Connector
Configuring res_odbc to Allow Asterisk to Connect Through ODBC
Managing Databases
Troubleshooting Database Issues
A Gentle Introduction to func_odbc
Getting Funky with func_odbc: Hot-Desking
Using Realtime
Static Realtime
Dynamic Realtime
Storing Call Detail Records (CDRs)
ODBC Voicemail
Creating the Large Object Type for PostgreSQL
ODBC Voicemail Storage Table Layout
Configuring voicemail.conf for ODBC Storage
Testing ODBC Voicemail
Conclusion

17. Interactive VOiCe ReSPONSEvuiniininininiiininininenenenenenenenss
What Is IVR?
Components of an IVR
IVR Design Considerations
Do
Don’t
Asterisk Modules for Building ITVRs
CURL
func_odbc
AGI
AMI
A Simple IVR Using CURL
Installing the cURL Module
The Dialplan

342
342
342
343
343
343
345
346
347
349
350
351
352
353
353
354
354
368
368
371
375
378
379
381
382
383
387

389
389
390
392
392
392
392
392
392
393
393
393
393
394

xii | Table of Contents

18.

19.

A Prompt-Recording Application 394

Speech Recognition and Text-to-Speech 395
Text-to-Speech 395
Speech Recognition 396

Conclusion 396

External Servicesoiiiiiiiiiiii 397

Calendar Integration 398
Compiling Calendaring Support into Asterisk 398
Configuring Calendar Support for Asterisk 399
Triggering Calendar Reminders to Your Phone 402
Controlling Calls Based on Calendar Information 407
Writing Call Information to a Calendar 408
Conclusion 411

VoiceMail IMAP Integration 411
Compiling IMAP VoiceMail Support into Asterisk 412

Using XMPP (Jabber) with Asterisk 418
Compiling Jabber Support into Asterisk 419
Jabber Dialplan Commands 419
chan_gtalk 425

Skype Integration 429
Installation of Skype for Asterisk 429
Using Skype for Asterisk 429

LDAP Integration 434
Configuring OpenLDAP 435
Compiling LDAP Support into Asterisk 437
Configuring Asterisk for LDAP Support 437

Text-to-Speech Utilities 440
Festival 440
Cepstral 442

Conclusion 442

) 443

What Is a Fax? 443

Ways to Handle Faxes in Asterisk 443

spandsp 444
Obtaining spandsp 444
Compiling and Installing spandsp 444
Adding the spandsp Library to Your libpath 445
Recompiling Asterisk with spandsp Support 445
Disabling spandsp (Should You Want to Test Digium Fax) 446

Digium Fax For Asterisk 446
Obtaining Digium FFA 446

Table of Contents | xiii

Disabling Digium FFA (Should You Want to Test spandsp) 446

Incoming Fax Handling 447
Fax to TIFF 447
Fax to Email 447
Fax Detection 448

Outgoing Fax Handling 449
Transmitting a Fax from Asterisk 450
File Format for Faxing 450
An Experiment in Email to Fax 451

Fax Pass-Through 454
Using Fax Buffers in chan_dahdi.conf 454

Conclusion 455

20. Asterisk Manager Interface (AMI)ovviniiniiiiiiiiiieiiienneenans 457

Quick Start 457
AMI over TCP 458
AMI over HTTP 459

Configuration 460
manager.conf 460
http.conf 464

Protocol Overview 465
Message Encoding 466
AMI over HTTP 467

Development Frameworks 471
CSTA 471

Interesting Applications 472
AsteriskGUI 472
Flash Operator Panel 473

Conclusion 473

21. Asterisk Gateway Interface (AGI)ovuvviirinirenrinnrenneennnes 475

Quick Start 475

AGI Variants 477
Process-Based AGI 477
DeadAGI Is Dead 478
FastAGI—AGI over TCP 478
Async AGI—AMI-Controlled AGI 479

AGI Communication Overview 480
Setting Up an AGI Session 480
Commands and Responses 482
Ending an AGI Session 486

Development Frameworks 487

Conclusion 488

xiv | Table of Contents

22,

23.

24,

Clusteringcoovvvieniiiiiiiiiiiiiiieieenanns

Traditional Call Centers

Hybrid Systems

Pure Asterisk, Nondistributed

Asterisk and Database Integration
Single Database
Replicated Databases

Asterisk and Distributed Device States
Distributing Device States over a LAN

Distributing Device States over a WAN

Multiple Queues, Multiple Sites
Conclusion

Distributed Universal Number Discovery (DUNDi)

How Does DUNDi Work?
The dundi.conf File

Configuring Asterisk for Use with DUNDi

General Configuration

Initial DUNDI Peer Definition
Creating Mapping Contexts

Using Mapping Contexts with Peers
Allowing Remote Connections
Controlling Responses

Performing Lookups from the Dialplan

Conclusion

System Monitoring and Logging

logger.conf
Reviewing Asterisk Logs
Logging to the Linux syslog Daemon
Verifying Logging

Call Detail Records
CDR Contents
Dialplan Applications
cdr.conf
Backends
Example Call Detail Records
Caveats

CEL (Channel Event Logging)
Channel Event Types
Channel Event Contents
Dialplan Applications
cel.conf

489
490
492
493
493
495
496
496
497
499
501

........................... 503

503
505
507
507
509
510
512
514
516
519
522

...................... 523

523
525
526
527
527
527
529
529
530
536
537
537
537
539
540
540

Table of Contents | xv

Backends 540

Example Channel Events 546
SNMP 551
Installing the SNMP Module for Asterisk 551
Configuring SNMP for Asterisk Using OpenNMS 552
Monitoring Asterisk with OpenNMS 558
Conclusion 559
25. Weblnterfacesoooiiiiiiiiiiii 561
Flash Operator Panel 562
Queue Status and Reporting 562
Queue Status Display 563
Queue Reporting 563
Call Detail Records 563
A2Billing 564
Conclusion 564
DT 14 565
Scanning for Valid Accounts 565
Authentication Weaknesses 567
Fail2ban 567
Installation 568
Configuration 569
Encrypted Media 571
Dialplan Vulnerabilities 571
Securing Asterisk Network APIs 572
IAX2 Denial of Service 573
Other Risk Mitigation 574
Resources 575
Conclusion—A Better Idiot 576
27. Asterisk: A Future for Telephonycoiviiiiiiiiiiiiiiiiiinne 577
The Problems with Traditional Telephony 577
Closed Thinking 578
Limited Standards Compliancy 578
Slow Release Cycles 579
Refusing to Let Go of the Past and Embrace the Future 579
Paradigm Shift 580
The Promise of Open Source Telephony 580
The Itch That Asterisk Scratches 580
Open Architecture 581
Standards Compliance 582
Lightning-Fast Response to New Technologies 582

xvi | Table of Contents

A.

B.

Passionate Community

Some Things That Are Now Possible
The Future of Asterisk

Speech Processing

High-Fidelity Voice

Video

Wireless

Unified Messaging

Peering

Challenges

Opportunities

Understanding Telephony

ProtocolsforVoIPcovvvviinininiinenns

ooo

582
582
586
587
588
588
589
590
590
591
594

Table of Contents | xvii

Foreword

“There’s more than one way to do it.” I've been working with Asterisk for nine years,
and this motto becomes more true with each release, each added feature, and each
clever person who attacks a telecommunications problem with this incredibly flexible
toolkit. T had the fantastic opportunity to work as the community manager for the
Asterisk project at Digium for two years, which gave me one of the best vantage points
for seeing the scope and imagination of the worldwide development effort pushing
Asterisk forward. The depth and breadth of Asterisk is staggering—installations with
hundreds of thousands of users are now commonplace. I see Asterisk making deep
inroads into the financial, military, hospital, Fortune 100 enterprise, service provider,
calling card, and mobile environments. In fact, there really aren’t any areas that I can
think of where Asterisk isn’t now entrenched as the default choice when there is a need
for a generalized voice tool to do “stuff.”

Asterisk has been emblematic of the way that open source software has changed busi-
ness—and changed the world. My favorite part of any Asterisk project overview or
conference talk is answering questions from someone new to Asterisk. As I continue
to answer “Yes, it can do that,” I watch as the person’s eyes grow wide. The person
starts to smile when he really starts to think about new things to do that his old phone
or communication system couldn’t possibly have done. Radio integration? Sure.
Streaming MP3s into or out of phone calls? OK. Emailing recorded conference calls to
the participants? No problem. Integration of voice services into existing Java apps?
Easy. Fax? Instant messages? IVRs? Video? Yes, yes, yes, yes.

The affirmative answers just keep flowing, and at that point, the best thing to do is to
sit the person down and start showing him quick demonstrations of how Asterisk can
be quickly deployed and developed. Then, I typically point the person toward the first
edition of this book, Asterisk: The Future of Telephony, and set him loose. In just a few
hours of development (or longer, of course), companies can change the way they deliver
products to customers, nonprofits can overhaul how their users interact with the serv-
ices they offer, and individuals can learn to build a perfectly customized call-handling
system for their mobile and home phones. Asterisk scales up and down from individual
lines to vast multiserver installations across multiple continents, but the way to start is

Xix

http://oreilly.com/catalog/9780596009625

to install the package, open up some of the configuration files, and start looking at
examples.

From the basic beginnings of a PBX that Mark Spencer coded in 1999, the Asterisk
project, with the help of thousands of developers, has moved from simply connecting
phone calls and has matured into a platform that can handle voice, video, and text
across dozens of virtual and physical interface types. The creation and growth of
Asterisk were the inescapable results of the convergence of the four horsemen of the
proprietary hardware apocalypse: open source development ideas, the Internet,
Moore’s Law, and the plummeting costs of telecommunications. Even hardware ven-
dors who may be frightened of Asterisk from a competitive standpoint are using it in
their labs and core networks: almost all devices in the Voice-over-IP world are tested
with Asterisk, making it the most compatible system across vendors.

At arecent communications conference I attended, the question “Who uses Asterisk?”
was posed to the 1000-plus crowd. Nearly 75 percent raised their hands. Asterisk is a
mature, robust software platform that permeates nearly every area of the telecommu-
nications industry and has firmly cemented itself as one of the basic elements in any
open source service delivery system. I tell people that it’s reasonable for anyone deliv-
ering services both via phone and web to want to add an “A” for Asterisk to the LAMP
(Linux, Apache, MySQL, [Perl/Python/PHP]) acronym, making it LAAMP. (LAMA-P
was another option, but for some reason nobody seems to like that version...I don’t
know why.)

The expansion of this book to include more examples is something I’ve been looking
forward to for some time. Asterisk is accessible because of the ease with which a novice
can understand basic concepts. Then it continues to succeed as the novice becomes a
pro and starts tapping the “other ways to do it” with more sophisticated implementa-
tions, using AGI with Java, Perl, or Python (or one of the other dozen or so supported
languages), or even writing her own custom apps that work as compile-time options
in Asterisk. But the first step for anyone, no matter what his or her skill level, is to look
at examples of basic apps others have written. Leif, Jim, and Russell have not only put
together a fantastic compendium of Asterisk methods, but they have also provided an
excellent list of examples that will let the novice or expert quickly learn new techniques
and “more than one way to do it.”

Asterisk 1.x is fantastically powerful and can solve nearly any voice problem you might
have. For those of you building the most complex installations, there is even more
interesting work—which will be realized quite soon—in development. The currently-
in-development Asterisk SCF (Scalable Communications Framework) is being built as
an adjunct open source project to allow Asterisk 1.x systems to scale in even more
powerful ways—stay tuned, or better yet, get involved with the project as a developer.

xx | Foreword

If you’re an experienced Asterisk developer or integrator, I'm sure this book will have
a few “Hey, that’s a neat way to do it!” moments for you, which is one of the joys of
Asterisk. If this is your first project with Asterisk, I’d like to welcome you to the huge
community of users and developers dedicated to making Asterisk better. This book will
take you from a vague idea of doing something with computers and voice communi-
cation to the point where you’re able to stun everyone you know with your phone
system’s sophisticated tricks.

You're encouraged to participate in the online mailing lists, IRC chatrooms, and yearly
AstriCon conference that provide up-to-the-second news and discussion surrounding
the project. Without your interest, input, and code, Asterisk wouldn’t exist. Open
source projects are hungry for new ideas and excellent contributions: I encourage you
to be a participant in the Asterisk community, and I look forward to seeing your ques-
tions and examples in the next edition of this book.

—John Todd

Foreword | xxi

Preface

This is a book for anyone who uses Asterisk.

Asterisk is an open source, converged telephony platform, which is designed primarily
to run on Linux. Asterisk combines more than 100 years of telephony knowledge into
a robust suite of tightly integrated telecommunications applications. The power of
Asterisk lies in its customizable nature, complemented by unmatched standards com-
pliance. No other PBX can be deployed in so many creative ways.

Applications such as voicemail, hosted conferencing, call queuing and agents, music
on hold, and call parking are all standard features built right into the software. More-
over, Asterisk can integrate with other business technologies in ways that closed, pro-
prietary PBXs can scarcely dream of.

Asterisk can appear quite daunting and complex to a new user, which is why docu-
mentation is so important to its growth. Documentation lowers the barrier to entry and
helps people contemplate the possibilities.

Produced with the generous support of O’Reilly Media, Asterisk: The Definitive
Guide is the third edition of what was formerly called Asterisk: The Future of
Telephony. We decided to change the name because Asterisk has been so wildly suc-
cessful that it is no longer an up-and-coming technology. Asterisk has arrived.

This book was written for, and by, members of the Asterisk community.

Audience

This book is intended to be gentle toward those new to Asterisk, but we assume that
you’re familiar with basic Linux administration, networking, and other IT disciplines.
If not, we encourage you to explore the vast and wonderful library of books that
O’Reilly publishes on these subjects. We also assume you’re fairly new to telecommu-
nications (both traditional switched telephony and the new world of Voice over IP).

However, this book will also be useful for the more experienced Asterisk administrator.
We ourselves use the book as a reference for features that we haven’t used for a while.

Xxiii

http://oreilly.com/catalog/9780596517342/
http://oreilly.com/catalog/9780596517342/
http://oreilly.com/catalog/9780596009625/
http://oreilly.com/catalog/9780596009625/

Organization

The book is organized into these chapters:

Chapter 1, A Telephony Revolution
This is where we chop up the kindling and light the fire. Welcome to Asterisk!

Chapter 2, Asterisk Architecture
Discusses the file structure of an Asterisk system.

Chapter 3, Installing Asterisk
Covers obtaining, compiling, and installing Asterisk.

Chapter 4, Initial Configuration Tasks
Describes some initial configuration tasks for your new Asterisk system. This
chapter goes over some of the configuration files required for all Asterisk
installations.

Chapter 5, User Device Configuration
Provides guidance on configuring Asterisk to allow devices such as telephones to
connect and make calls.

Chapter 6, Dialplan Basics
Introduces the heart of Asterisk, the dialplan.

Chapter 7, Outside Connectivity
Discusses how to configure Asterisk to connect to other systems, such as other
Asterisk servers, Internet telephony service providers, or the plain old telephone
network.

Chapter 8, Voicemail
Covers the usage of one of the most popular applications included with Asterisk,
the voicemail system.

Chapter 9, Internationalization

Focuses on issues that an Asterisk administrator should be aware of when deploy-
ing a system outside of North America.

Chapter 10, Deeper into the Dialplan
Goes over some more advanced dialplan concepts.

Chapter 11, Parking and Paging
Describes the usage of two popular telephony features included with Asterisk, call
parking and paging.

Chapter 12, Internet Call Routing
Covers techniques for routing calls between different administrative domains on
the Internet.

Chapter 13, Automatic Call Distribution (ACD) Queues
Discusses how to build call queues in Asterisk.

xxiv | Preface

Chapter 14, Device States
Introduces the concept of device states and how they can be used as presence
indicators.

Chapter 15, The Automated Attendant
Covers how to build a menuing system using the Asterisk dialplan.

Chapter 16, Relational Database Integration
Discusses various ways that Asterisk can be integrated with a database.

Chapter 17, Interactive Voice Response
Goes over how Asterisk can be used to build applications that act on input provided
by a caller.

Chapter 18, External Services
Provides instructions on how to connect to external services including LDAP, cal-
endars, IMAP for voicemail, XMPP, Skype, and text-to-speech.

Chapter 19, Fax
Discusses the various options for integrating sending and receiving faxes with an
Asterisk system.

Chapter 20, Asterisk Manager Interface (AMI)
Introduces a network API for monitoring and controlling an Asterisk system.

Chapter 21, Asterisk Gateway Interface (AGI)
Introduces the Asterisk API that allows call control to be implemented in any pro-
gramming language.

Chapter 22, Clustering
Discusses a number of approaches for clustering multiple Asterisk servers together
once the demands of a deployment exceed the capabilities of a single server.

Chapter 23, Distributed Universal Number Discovery (DUNDi)
Covers a peer-to-peer protocol native to Asterisk that can be used for call routing.

Chapter 24, System Monitoring and Logging
Introduces some of the interfaces available for logging and monitoring an Asterisk
system.

Chapter 25, Web Interfaces
A survey of some of the web interfaces that complement an Asterisk installation.

Chapter 26, Security
Discusses some common security issues that Asterisk administrators should be
aware of.

Chapter 27, Asterisk: A Future for Telephony
In conclusion, we discuss some of the things we expect to see from open source
telephony in the near future.

Appendix A, Understanding Telephony
Explores the technologies in use in traditional telecom networks. This used to be
a chapter in old versions of this book. Although not directly relevant to Asterisk

Preface | xxv

we felt that it might still be useful to some readers, so we’ve left it in the book as
an appendix.

Appendix B, Protocols for VoIP
Delves into all the particularities of Voice over IP. This was also a chapter in old
versions of this book.

Appendix C, Preparing a System for Asterisk
Contains information you should be aware of and take into consideration when
planning an Asterisk deployment.

Software

This book is focused on documenting Asterisk version 1.8; however, many of the con-
ventions and much of the information in this book is version-agnostic. Linux is the
operating system we have run and tested Asterisk on, and we have documented instal-
lation instructions for both CentOS (Red Hat Enterprise Linux—based) and Ubuntu
(Debian-based) where they differ from each other.

Conventions Used in This Book

The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and package names, as well as Unix utilities, commands, options,
parameters, and arguments.

Constant width
Used to display code samples, file contents, command-line interactions, library
names, and database commands.

Constant width bold
Indicates commands or other text that should be typed literally by the user. Also
used for emphasis in code.

Constant width italic
Shows text that should be replaced with user-supplied values.

[Keywords and other stuff]
Indicates optional keywords and arguments.

{ choice-1 | choice-2 }
Signifies either choice-1 or choice-2.

N

This icon signifies a tip, suggestion, or general note.

xxvi | Preface

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Asterisk: The Definitive Guide, Third Ed-
ition, by Leif Madsen, Jim Van Meggelen, and Russell Bryant (O’Reilly). Copyright
2011 Leif Madsen, Jim Van Meggelen, and Russell Bryant, 978-0-596-51734-2.”

Ifyou feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari Books Online
Saf When you see a Safari Books Online icon on the cover of your favorite
arari technology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than ebooks. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

Preface | xxvii

mailto:permissions@oreilly.com
http://safari.oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596517342
To comment or ask technical questions about this book, send email to:
bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com
Find us on Facebook: http://facebook.com/oreilly
Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments

To David Duffett, thanks for the excellent chapter on internationalization, which would
not have been served well by being written by us North Americans.

Next, we want to thank our fantastic editor, Michael Loukides, for your patience with
this third edition, which took too long to get off the ground, and many long months to
finally get written. Mike offered invaluable feedback and found incredibly tactful ways
to tell us to rewrite a section (or chapter) when it was needed, and make us think it was
our idea. Mike built us up when we were down, and brought us back to earth when we
got uppity. You are a master, Mike, and seeing how many books have received your
editorial oversight contributes to an understanding of why O’Reilly Media is the success
that it is.

Thanks also to Rachel Head (nee Rachel Wheeler), our copyeditor, who fixes all our
silly grammar, spelling, and style mistakes (and the many Canadianisms that Leif and
Jim feel compelled to include), and somehow leaves the result reading as if it was what
we wrote in the first place. Copyeditors are the unsung heroes of publishing, and Rachel
is one of the very best.

Also thanks to Teresa Elsey, our production editor, and the rest of the unsung heroes
in O’Reilly’s production department.

These are the folks that take our book and make it an O’Reilly book.

During the course of writing this book, we had the pleasure of being able to consult
with many people with specific experience in various areas. Their generous contribu-
tions of time and expertise were instrumental in our research. Thanks to Randy Resnick,
organizer of the VoIP User Group; Kevin Fleming of Digium; Lee Howard, author of
iaxmodem and hylafax; Joshua Colp of Digium; Phillip Mullis of the Toronto Asterisk
Users Group; Allison Smith, the Voice of Asterisk; Flavio E. Goncalves, author of books

xxviii | Preface

http://oreilly.com/catalog/9780596517342
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

on Asterisk, OpenSER, and OpenSIPS; J. Oquendo, Security Guru; Tzafrir Cohen, font
of knowledge about security and lots of other stuff; Jeff Gehlbach, for SNMP; Ovidiu
Sas, for your encyclopedic knowlege of SIP; Tomo Takebe, for some SMDI help; Steve
Underwood, for help with fax and spandsp; and Richard Genthner and John Covert,
for helping with LDAP.

A special thanks should also go to John Todd for being one of the first to write com-
prehensive Asterisk how-tos, all those years ago, and for all the many other things you
do (and have done) for the Asterisk community.

Open Feedback Publishing System (OFPS)

While we were writing this book, O’Reilly introduced its Open Feedback Publishing
System (OFPS), which allowed our book to appear on the Web as we were writing it.
Community members were able to submit feedback and comments, which was of
enormous help to us. The following is a list of their names or handles”:

Matthew McAughan, Matt Pusateri, David Van Ginneken, Asterisk Mania,
Giovanni Vallesi, Mark Petersen, thp4, David Row, tvc123, Frederic Jean, John
Todd, Steven Sokol, Laurent Steffan, Robert Dailey, Howard Harper, Joseph Re-
nsin, Howard White, Jay Eames, Vincent Thomasset, Dave Barnow, Sebastien
Dionne, Igor Nikolaev, Arend van der Kolk, Anwar Hossain, craigesmith, nkabir,
anest, Nicholas Barnes, Alex Neuman, Justin Korkiner, Stefan Schmidt, pabe-
langer, jfinstrom, roderickmontgomery, Shae Erisson, Gaston Draque, Richard
Genthner, Michael S Collins, and Jeff Peeler

Thanks to all of you for your valuable contribution to this book.

Thanks to Sean Bright, Ed Guy, Simon Ditner, and Paul Belanger for assisting us with
clarifying best practices for user and group policies for Asterisk installation. In the past
it was common to just install Asterisk with root permissions, but we have elected to
describe an installation process that is more in keeping with Linux best practices,™ and
these fine gents contributed to our discussions on that.

Kudos to all the folks working on the FreeSWITCH, YATE, SER, Kamailio, OpenSIPS,
SER, sipXecs, Woomera, and any other open source telecom projects, for stimulating
new thoughts, and for pushing the envelope.

Everyone in the Asterisk community also needs to thank Jim Dixon for creating the
first open source telephony hardware interfaces, starting the revolution, and giving his
creations to the community at large.

* We tried wherever possible to include the contributors’ names, but in some cases could not, and therefore
included their handles instead.

+ Without starting a holy war!

Preface | xxix

Finally, and most importantly, thanks go to Mark Spencer, the original author of
Asterisk and founder of Digium, for Asterisk, for Pidgin (http://www.pidgin.im), and
for contributing his creations to the open source community. Asterisk is your legacy!

Leif Madsen

It sort of amazes me where I started with Asterisk, and where I’ve gone with Asterisk.
In 2002, while attending school, a bunch of my friends and myself were experimenting
with voice over the Internet using Microsoft’s MSN product. It worked quite well, and
allowed us to play video games while conversing with each other—at least, until we
wanted to add a third participant. So, I went out searching for some software that could
handle multiple voices (the word was conferencing, but I didn’t even know that at the
time, having had little exposure to PBX platforms). I searched the Internet but didn’t
find anything in particular I liked (or that was free). I turned to IRC and explained what
[was looking for. Someone (I wish I knew who) mentioned that I should check out
some software called Asterisk (he presumably must have thought I was looking for
MeetMe (), which I was).

Having the name, I grabbed the software and started looking at what it could do. In-
credibly, the functionality I was looking for, which I thought would be the entirety of
the software, was only one component in a sea of functionality. And having run a BBS
for years prior to going to college, the fact that I could install a PCI card and connect
it to the phone network was not lost on me. After a couple of hours of looking at the
software and getting it compiled, I started telling one of my teachers about the PCI
cards and how maybe we could get some for the classroom for labs and such (our
classroom had 30 computers at 10 tables of 3). He liked the idea and started talking to
the program coordinator, and within about 30 minutes an order had been placed for
20 cards. Pretty amazing considering they were TDM400Ps decked out with four
daughter cards, and they had only heard about them an hour prior to that.

Then the obsession began. I spent every extra moment of that semester with a couple
of computers dedicated to Asterisk use. In those two months, I learned a lot. Then we
had a co-op break. I didn’t find any work immediately, so I moved home and continued
working on Asterisk, spending time on IRC, reading through examples posted by John
Todd, and just trying to wrap my head around how the software worked. Luckily I had
a lot of help on IRC (for these were the days prior to any documentation on Asterisk),
and I learned a lot more during that semester.

Seeing that the people who took a great interest in Asterisk at the time had a strong
sense of community and wanted to contribute back, I wanted to do the same. Having
no practical level of coding knowledge, I decided documentation would be something
useful to start doing. Besides, I had been writing a lot of papers at school, so I was
getting better at it. One night I put up a website called The Asterisk Documentation
Assigned (TADA) and started writing down any documentation I could. A couple of
weeks later Jared Smith and I started talking, and started the Asterisk Documentation

xxx | Preface

http://www.pidgin.im

Project (http://www.asteriskdocs.org), with the goal of writing an Asterisk book for the
community. That project became the basis of the first edition of this book, Asterisk:
The Future of Telephony.

Nine years later, I'm still writing Asterisk documentation and have become the primary
bug marshal and release manager for the Asterisk project, spoken at every single
AstriCon since 2004 (at which Jared and I spoke about the Asterisk Documentation
Project; I still have the AsteriskDocs magnet his wife made), and become a consultant
specializing in database integration (thanks Tilghman for func_odbc) and clustering
(thanks Mark Spencer for DUNDI). I really love Asterisk, and all that it’s allowed me
to do.

First, thanks to my parents Rick and Carol, for the understanding and support in ev-
erything I've done in my life. From the first computer they purchased for far too much
money when [was in grade 6 (I started taking an interest in computers in grade 2 using
a Commodore 64, and they got me a computer after a parent-teacher interview a few
years later) to letting me use the home phone line for my BBS endeavors (and eventually
getting me my own phone line), and everything else they have ever done for me, I can
never thank them enough. Ilove you both more than you’ll ever imagine.

Thanks to my Grandma T for letting me use her 286 during the years when I didn’t
have a computer at home, and for taking me shopping every year on my birthday for
15 years. Love lots!

To my beautiful wife, Danielle, for setting the alarm every morning before she left for
work, letting me sleep those extra 10 minutes before starting on this book, and under-
standing when I had to work late because I went past my 9 A.M. stop-writing time,
thank you and I love you so much.

There are so many people who help me and teach me new things every day, but the
most influential on my life in Asterisk are the following: Mark Spencer for writing
software that has given me a fantastic career, John Todd for his early examples, Brian
K. West for his early help and enthusiasm on IRC, Steve Sokol and Olle Johansson for
flying me to my first AstriCon (and subsequent ones!) and letting me be part of the first
Asterisk training classes, Jared Smith for helping start the documentation project and
doing all the infrastructure that I could never have done, Jim Van Meggelen for joining
in early on the project and teaching me new ways to look at life, and Russell Bryant for
being an amazing project leader and easy to work with every day, and for not holding
a grudge about the bush.

JimVan Meggelen

When we set out to write the very first edition of this book over five years ago, we were
confident that Asterisk was going to be a huge success. Now, a half-decade later, we’ve
written this third edition of what the worldwide Asterisk community calls “The Asterisk
Book,” and we’ve matured from revolutionaries into Asterisk professionals.

Preface | xxxi

http://www.asteriskdocs.org

Asterisk has proven that open source telecom is a lasting idea, and the open source
telecom landscape is nowadays complemented by more than just Asterisk. Projects like
Freeswitch, sipXecs (from SipFoundry), OpenSER/Kamailio/OpenSIPS, and many,
many more (and more to come) help to round out the ecosystem.

[want to take this opportunity to thank my very good friend Leif Madsen, who has
been with me through all three editions. In our daily lives we don’t always have many
opportunities to work with each other (or even grab a pint, these days!), and it’s always
a delight to work with you. I also want to thank Russell Bryant, who joined us for this
edition, and whose dedication to this project and the Asterisk project in general is an
inspiration to me. You’re a Renaissance man, Russell. To Jared Smith, who helped
found the Asterisk Documentation Project and coauthored the first two editions with
Leif and me (but has since moved on to the Fedora project), I can only say: Asterisk’s
loss is Fedora’s gain.

I would like to thank my business partners at Core Telecom Innovations and iCon-
verged LLC, without whom I could not do all the cool things I get to do in my profes-
sional career.

I would like to thank all my friends in the improv community, for helping me to keep
laughing at all the challenges that life presents.

Thanks to all my family, who bring love into my life.

Finally, thanks to you, the Asterisk community. This book is our gift to you. We hope
you enjoy reading it as much as we’ve enjoyed writing it.

Russell Bryant

I started working on Asterisk in 2004. I was a student at Clemson University and was
working as a co-op engineer at ADTRAN in Huntsville, Alabama. My first job at
ADTRAN was working in the Product Qualification department. I remember working
with Keith Morgan to use Asterisk as a VoIP traffic generator for testing QoS across a
router test network. Meanwhile, a fellow co-op and friend, Adam Schreiber, introduced
me to Mark Spencer. Over the next six months, [immersed myself in Asterisk. I learned
as much as I could about Asterisk, telephony, and C programming. When Asterisk 1.0
was released in the fall of 2004, I was named the release maintainer.

At the beginning of 2005, I was hired by Digium to continue my work on Asterisk
professionally. T have spent the past six amazing years working with Digium to improve
Asterisk. T have worked as a software developer, a software team lead, and now as the
engineering manager of the Asterisk development team. [am extremely grateful for the
opportunity to contribute to so many areas of the Asterisk project. There are many
people that deserve thanks for the support they have provided along the way.

xxxii | Preface

To my wife, Julie, I cannot thank you enough for all the love and support you have
given me. Thank you for keeping my life balanced and happy. You are the best. I love
you!

To my parents, thank you for giving me so many great opportunities in my life to explore
different things and find what I really enjoy. You taught me to work hard and never
give up.

To Leif and Jim, thank you for your invitation to contribute to this book. It has been
a fun project, largely due to the pleasure of working with the two of you. Thanks for
the laughs and for your dedication to this book as a team effort.

[have learned a lot from many people at Digium. There are three people who stand out
the most as my mentors: Mark Spencer, Kevin P. Fleming, and David Deaton. Thank
you all for going the extra mile to teach me along the way. [am extremely grateful.

To the software development team at Digium, thank you for being such an amazing
team to work with. Your dedication and brilliance play a huge part in the success of
Asterisk and make Digium a great place to work.

To Travis Axtell, thank you for your help in my early days of learning about Linux and
for being a good friend.

To my dogs, Chloe and Baxter, thanks for keeping me company while I worked on the
book every morning.

To all of my friends and family, thank you for your love, support, and fun times.

To the entire Asterisk community, thank you for using, enjoying, and contributing to
Asterisk. We hope you enjoy the book!

Preface | xxxiii

CHAPTER 1
A Telephony Revolution

First they ignore you, then they laugh at you,
then they fight you, then you win.

—Mahatma Gandhi

When we first set out—nearly five years ago—to write a book about Asterisk, we con-
fidently predicted that Asterisk would fundamentally change the telecommunications
industry. Today, the revolution we predicted is all but complete. Asterisk is now the
most successful private branch exchange (PBX) in the world, and is an accepted (albeit
perhaps not always loved) technology in the telecom industry.

Unfortunately, over the past five years the telecom industry has continued to lose its
way. The methods by which we communicate have changed. Whereas 20 years ago
phone calls were the preferred way to converse across distances, the current trend is to
message via text (email, IM, etc.). The phone call is seen as a bit of a dead thing, espe-
cially by up-and-coming generations.

Asterisk remains pretty awesome technology, and we believe it is still one of the best
hopes for any sort of sensible integration between telecom and all the other technologies
businesses might want to interconnect with.

With Asterisk, no one is telling you how your phone system should work, or what
technologies you are limited to. If you want it, you can have it. Asterisk lovingly em-
braces the concept of standards compliance, while also enjoying the freedom to develop
its own innovations. What you choose to implement is up to you—Asterisk imposes
no limits.

Naturally, this incredible flexibility comes with a price: Asterisk is not a simple system
to configure. This is not because it’s illogical, confusing, or cryptic; on the contrary, it
is very sensible and practical. People’s eyes light up when they first see an Asterisk
dialplan and begin to contemplate the possibilities. But when there are literally thou-
sands of ways to achieve a result, the process naturally requires extra effort. Perhaps it
can be compared to building a house: the components are relatively easy to understand,
but a person contemplating such a task must either a) enlist competent help or

b) develop the required skills through instruction, practice, and a good book on
the subject.

Asterisk and VolP: Bridging the Gap Between Traditional and
Network Telephony

Voice over IP (VoIP) is often thought of as little more than a method of obtaining free
long-distance calling. The real value (and—Ilet’s be honest—challenge as well) of VoIP
is that it allows voice to become nothing more than another application in the data
network.

[t sometimes seems that we’ve forgotten that the purpose of the telephone is to allow
people to communicate. It is a simple goal, really, and it should be possible for us to
make it happen in far more flexible and creative ways than are currently available to
us. Technologies such as Asterisk lower the barriers to entry.

The Zapata Telephony Project

When the Asterisk project was started (in 1999), there were other open-source
telephony projects in existence. However, Asterisk, in combination with the Zapata
Telephony Project, was able to provide public switched telephone interface (PSTN)
interfaces, which represented an important milestone in transitioning the software from
something purely network-based to something more practical in the world of telecom
at that time, which was PSTN-centric.

The Zapata Telephony Project was conceived of by Jim Dixon, a telecommunications
consulting engineer who was inspired by the incredible advances in CPU speeds that
the computer industry has now come to take for granted. Dixon’s belief was that far
more economical telephony systems could be created if a card existed that had nothing
more on it than the basic electronic components required to interface with a telephone
circuit. Rather than having expensive components on the card, digital signal processing
(DSP)” would be handled in the CPU by software. While this would impose a tremen-
dous load on the CPU, Dixon was certain that the low cost of CPUs relative to their
performance made them far more attractive than expensive DSPs, and, more impor-
tantly, that this price/performance ratio would continue to improve as CPUs continued
to increase in power.

Like so many visionaries, Dixon believed that many others would see this opportunity,
and that he merely had to wait for someone else to create what to him was an obvious
improvement. After a few years, he noticed that not only had no one created these cards,

* The term DSP also means digital signal processor, which is a device (usually a chip) that is capable of
interpreting and modifying signals of various sorts. In a voice network, DSPs are primarily responsible for
encoding, decoding, and transcoding audio information. This can require a lot of computational effort.

2 | Chapter1: ATelephony Revolution

but it seemed unlikely that anyone was ever going to. At that point it was clear that if
he wanted a revolution, he was going to have to start it himself. And so the Zapata
Telephony Project was born:

Since this concept was so revolutionary, and was certain to make a lot of waves in the
industry, I decided on the Mexican revolutionary motif, and named the technology and
organization after the famous Mexican revolutionary Emiliano Zapata. I decided to call
the card the “tormenta” which, in Spanish, means “storm,” but contextually is usually
used to imply a big storm, like a hurricane or such.t

Perhaps we should be calling ourselves Asteristas. Regardless, we owe Jim Dixon a debt
of thanks, partly for thinking this up and partly for seeing it through, but mostly for
giving the results of his efforts to the open source community. As a result of Jim’s
contribution, Asterisk’s PSTN engine came to be.

Over the years, the Zapata Telephony interface in Asterisk has been modified and im-
proved. The Digium Asterisk Hardware Device Interface (DAHDI) Telephony interface
in use today is the offspring of Jim Dixon’s contribution.

Massive Change Requires Flexible Technology

Every PBX in existence suffers from shortcomings. No matter how fully featured it is,
something will always be left out, because even the most feature-rich PBX will always
fail to anticipate the creativity of the customer. A small group of users will desire an
odd little feature that the design team either did not think of or could not justify the
cost of building, and, since the system is closed, the users will not be able to build it
themselves.

If the Internet had been thusly hampered by regulation and commercial interests, it is
doubtful that it would have developed the wide acceptance it currently enjoys. The
openness of the Internet meant that anyone could afford to get involved. So, everyone
did. The tens of thousands of minds that collaborated on the creation of the Internet
delivered something that no corporation ever could have.*

As with many other open source projects, such as Linux and so much of the critical
software running the Internet, the development of Asterisk was fueled by the dreams
of folks who knew that there had to be something more than what traditional industries
were producing. These people knew that if one could take the best parts of various
PBXs and separate them into interconnecting components—akin to a boxful of LEGO
bricks—one could begin to conceive of things that would not survive a traditional

t Jim Dixon, “The History of Zapata Telephony and How It Relates to the Asterisk PBX” (http://www
.asteriskdocs.org/modules/tinycontent/index.php?id=10).

1 We realize that the technology of the Internet formed out of government and academic institutions, but what
we’re talking about here is not the technology of the Internet so much as the cultural phenomenon of it,
which exploded in the early *90s.

Massive Change Requires Flexible Technology | 3

http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10
http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10

corporate risk-analysis process. While no one can seriously claim to have a complete
picture of what this thing should look like, there is no shortage of opinions and ideas.$

Many people new to Asterisk see it as unfinished. Perhaps these people can be likened
to visitors to an art studio, looking to obtain a signed, numbered print. They often leave
disappointed, because they discover that Asterisk is the blank canvas, the tubes of paint,
the unused brushes waiting.!

Even at this early stage in its success, Asterisk is nurtured by a greater number of artists
than any other PBX. Most manufacturers dedicate no more than a few developers to
any one product; Asterisk has scores. Most proprietary PBXs have a worldwide support
team comprising a few dozen real experts; Asterisk has hundreds.

The depth and breadth of the expertise that surrounds this product is unmatched in
the telecom industry. Asterisk enjoys the loving attention of old telco guys who
remember when rotary dial mattered, enterprise telecom people who recall when
voicemail was the hottest new technology, and data communications geeks and coders
who helped build the Internet. These people all share a common belief—that the
telecommunications industry needs a proper revolution.*

Asterisk is the catalyst.

Asterisk: The Hacker's PBX

Telecommunications companies that choose to ignore Asterisk do so at their peril. The
flexibility it delivers creates possibilities that the best proprietary systems can scarcely
dream of. This is because Asterisk is the ultimate hacker’s PBX.

The term hacker has, of course, been twisted by the mass media into meaning “mali-
cious cracker.” This is unfortunate, because the term actually existed long before the
media corrupted its meaning. Hackers built the networking engine that is the Internet.
Hackers built the Apple Macintosh and the Unix operating system. Hackers are also
building your next telecom system. Do not fear; these are the good guys, and they’ll be
able to build a system that’s far more secure than anything that exists today. Rather
than being constricted by the dubious and easily cracked security of closed systems,

§ Between the releases of Asterisk 1.2 and Asterisk 1.4, over 4,000 updates were made to the code in the SVN
repository. Between the releases of Asterisk 1.4 and 1.8, over 10,000 updates were made.

I Tt should be noted that these folks need not leave disappointed. Several projects have arisen to lower the
barriers to entry for Asterisk. By far the most popular and well known is the FreePBX interface (and the
multitude of projects based on it). These interfaces (check out http://www.voip-info.org/wikilview/Asterisk
+GUI for an idea of how many there are) do not make it easier to learn Asterisk, because they separate you
from the platform or dialplan configuration, but many of them will deliver a working PBX to you much faster
than the more hands-on approach we employ in this book.

#The telecom industry has been predicting a revolution since before the crash; time will tell how well it
responds to the open source revolution.

4 | Chapter1: ATelephony Revolution

http://www.voip-info.org/wiki/view/Asterisk+GUI
http://www.voip-info.org/wiki/view/Asterisk+GUI

the hackers will be able to quickly respond to changing trends in security and fine-tune
the telephone system in response to both corporate policy and industry best practices.

Like other open source systems, Asterisk will be able to evolve into a far more secure
platform than any proprietary system, not in spite of its hacker roots, but rather because
of them.

Asterisk: The Professional’s PBX

Never in the history of telecommunications has a system so suited to the needs of
business been available, at any price. Asterisk is an enabling technology, and as with
Linux, it will become increasingly rare to find an enterprise that is not running some
version of Asterisk, in some capacity, somewhere in the network, solving a problem as
only Asterisk can.

This acceptance is likely to happen much faster than it did with Linux, though, for
several reasons:

* Linux has already blazed the trail that led to open source acceptance. Asterisk is
following that lead.

* The telecom industry is crippled, with no leadership being provided by the giant
industry players. Asterisk has a compelling, realistic, and exciting vision.

* End users are fed up with incompatible and limited functionality, and horrible
support. Asterisk solves the first two problems; entrepreneurs and the community
are addressing the latter.

The Asterisk Community

One of the compelling strengths of Asterisk is the passionate community that developed
and supports it. This community, led by the fine folks at Digium, is keenly aware of
the cultural significance of Asterisk and has an optimistic view of the future.

One of the more powerful side effects of the Asterisk community’s energy is the coop-
eration it has spawned among telecommunications, networking, and information tech-
nology professionals who share a love for this phenomenon. While these cadres have
traditionally been at odds with each other, in the Asterisk community they delight in
each others’ skills. The significance of this cooperation cannot be underestimated.

If the dream of Asterisk is to be realized, the community must continue to grow—yet
one of the key challenges that the community currently faces is a rapid influx of new
users. The members of the existing community, having birthed this thing called
Asterisk, are generally welcoming of new users, but they’ve grown impatient with being
asked the kinds of questions whose answers can often be obtained independently, if
one is willing to devote some time to research and experimentation.

The Asterisk Community | 5

Obviously, new users do not fit any particular kind of mold. While some will happily
spend hours experimenting and reading various blogs describing the trials and tribu-
lations of others, many people who have become enthusiastic about this technology
are completely uninterested in such pursuits. They want a simple, straightforward, step-
by-step guide that’ll get them up and running, followed by some sensible examples
describing the best methods of implementing common functionality (such as voicemail,
auto attendants, and the like).

To the members of the expert community, who (correctly) perceive that Asterisk is like
aweb development language, this approach doesn’t make any sense. To them, it’s clear
that you have to immerse yourself in Asterisk to appreciate its subtleties. Would one
ask for a step-by-step guide to programming and expect to learn from it all that a lan-
guage has to offer?

Clearly, there’s no one approach that’s right for everyone. Asterisk is a different animal
altogether, and it requires a totally different mind-set. As you explore the community,
though, be aware that it includes people with many different skill sets and attitudes.
Some of these folks do not display much patience with new users, but that’s often due
to their passion for the subject, not because they don’t welcome your participation.

The Asterisk Mailing Lists

As with any community, there are places where members of the Asterisk community
meet to discuss matters of mutual interest. Of the mailing lists you will find at http://
lists.digium.com, these three are currently the most important:

Asterisk-Biz
Anything commercial with respect to Asterisk belongs in this list. If you’re selling
something Asterisk-related, sell it here. If you want to buy an Asterisk service or
product, post here.

Asterisk-Dev
The Asterisk developers hang out here. The purpose of this list is the discussion of
the development of the software that is Asterisk, and its participants vigorously
defend that purpose. Expect a lot of heat if you post anything to this list not spe-
cifically relating to programming or development of the Asterisk code base. General
coding questions (such as queries on interfacing with AGI or AMI) should be di-
rected to the Asterisk-Users list.

The Asterisk-Dev list is not second-level support! If you scroll
through the mailing list archives, you’ll see this is a strict rule. The
Asterisk-Dev mailing list is about discussion of core Asterisk de-

velopment, and questions about interfacing your external pro-
grams via AGI or AMI should be posted on the Asterisk-Users list.

6 | Chapter1: ATelephony Revolution

http://lists.digium.com
http://lists.digium.com

Asterisk-Users
This is where most Asterisk users hang out. This list generates several hundred
messages per day and has over ten thousand subscribers. While you can go here
for help, you are expected to have done some reading on your own before you post
a query.

Asterisk Wiki Sites

The Asterisk Wiki (which exists in large part due to the tireless efforts of James
Thompson—thanks James!) is a source of much enlightenment and confusion. Another
important resource is the community-maintained repository of VoIP knowledge at http:
/lwww.voip-info.org, which contains a truly inspiring cornucopia of fascinating, infor-
mative, and frequently contradictory information about many subjects, just one of
which is Asterisk. Since Asterisk documentation forms by far the bulk of the informa-
tion on this website,” and it probably contains more Asterisk knowledge than all other
sources put together (with the exception of the mailing list archives), it is a popular
place to go for Asterisk knowledge.

An important new wiki project is the official Asterisk Wiki, found at http://wiki.asterisk
.org. While not yet as full of content as voip-info.org, this wiki will be more formally
supported and is therefore more likely to contain information that is kept current and
accurate.

The IRC Channels

The Asterisk community maintains Internet Relay Chat (IRC) channels on irc.free-
node.net. The two most active channels are #asterisk and #asterisk-dev.T To cut down
on spam-bot intrusions, both of these channels now require registration to join.¥

Asterisk User Groups

Over the past decade, in many cites around the world, lonely Asterisk users began to
realize that there were other like-minded people in their towns. Asterisk User Groups
(AUGs) began to spring up all over the place. While these groups don’t have any official
affiliation with each other, they generally link to one anothers’ websites and welcome
members from anywhere. Type “Asterisk User Group” into Google to track down one
in your area.

* More than 30%, at last count.

t The #asterisk-dev channel is for the discussion of changes to the underlying code base of Asterisk and is also
not second-tier support. Discussions related to programming external applications that interface with
Asterisk via AGI or AMI are meant to be in #asterisk.

1 To register, run /msg nickserv help when you connect to the service via your favorite IRC client.

The Asterisk Community | 7

http://www.voip-info.org
http://www.voip-info.org
http://wiki.asterisk.org
http://wiki.asterisk.org

The Asterisk Documentation Project

The Asterisk Documentation Project was started by Leif Madsen and Jared Smith, but
several people in the community have contributed.

The goal of the documentation project is to provide a structured repository of written
work on Asterisk. In contrast with the flexible and ad hoc nature of the Wiki, the
Docs project is passionate about building a more focused approach to various
Asterisk-related subjects.

As part of the efforts of the Asterisk Docs project to make documentation available
online, this book is available at the http://www.asteriskdocs.org website, under a Cre-
ative Commons license.

The Business Case

[tis very rare to find businesses these days that do not have to reinvent themselves every
few years. It is equally rare to find a business that can afford to replace its communi-
cations infrastructure each time it goes in a new direction. Today’s businesses need
extreme flexibility in all of their technology, including telecom.

In his book Crossing the Chasm (HarperBusiness), Geoffrey Moore opines, “The idea
that the value of the system will be discovered rather than known at the time of instal-
lation implies, in turn, that product flexibility and adaptability, as well as ongoing
account service, should be critical components of any buyer’s evaluation checklist.”
What this means, in part, is that the true value of a technology is often not known until
it has been deployed.

How compelling, then, to have a system that holds at its very heart the concept of
openness and the value of continuous innovation.

Conclusion

So where to begin? Well, when it comes to Asterisk, there is far more to talk about than
we can fit into one book. This book can only lay down the basics, but from this foun-
dation you will be able to come to an understanding of the concept of Asterisk—and
from that, who knows what you will build?

8 | Chapter1: ATelephony Revolution

http://www.asteriskdocs.org

CHAPTER 2
Asterisk Architecture

First things first, but not necessarily in that order.

—Doctor Who

Asterisk is very different from other, more traditional PBXs, in that the dialplan in
Asterisk treats all incoming channels in essentially the same manner.

In a traditional PBX, there is a logical difference between stations (telephone sets) and
trunks (resources that connect to the outside world). This means, for example, that
you can’t install an external gateway on a station port and route external calls to it
without requiring your users to dial the extension number first. Also, the concept of
an off-site resource (such as a reception desk) is much more difficult to implement on
a traditional PBX, because the system will not allow external resources any access to
internal features.”

Asterisk, on the other hand, does not have an internal concept of trunks or stations. In
Asterisk, everything that comes into or goes out of the system passes through a channel
of some sort. There are many different kinds of channels; however, the Asterisk dialplan
handles all channels in a similar manner, which means that, for example, an internal
user can exist on the end of an external trunk (e.g., a cell phone) and be treated by the
dialplan in exactly the same manner as that user would be if she were on an internal
extension. Unless you have worked with a traditional PBX, it may not be immediately
obvious how powerful and liberating this is. Figure 2-1 illustrates the differences be-
tween the two architectures.

* To be fair, many traditional PBXs do offer this sort of functionality. However, it is generally kludgy, limited
in features, and requires complex, proprietary software to be installed in the PBX (such as vendor-specific
protocol extensions).

PBX

Trunks Stations

PRI

PRI—— \ /
A123-

—

1

Figure 2-1. Asterisk vs. PBX architecture

Modules

Asterisk is built on modules. A module is a loadable component that provides a specific
functionality, such as a channel driver (for example, chan_sip.so), or a resource that
allows connection to an external technology (such as func_odbc.so). Asterisk modules
are loaded based on the /etc/asterisk/modules.conf file. We will discuss the use of many
modules in this book. At this point we just want to introduce the concept of modules,
and give you a feel for the types of modules that are available.

It is actually possible to start Asterisk without any modules at all, although in this state
it will not be capable of doing anything. It is useful to understand the modular nature
of Asterisk in order to appreciate the architecture.

You can start Asterisk with no modules loaded by default and load each

desired module manually from the console, but this is not something

%' that you'd want to put into production; it would only be useful if you

" were performance-tuning a system where you wanted to eliminate ev-
erything not required by your specific application of Asterisk.

The types of modules in Asterisk include the following:
* Applications
* Bridging modules
* (Call detail recording (CDR) modules
* Channel event logging (CEL) modules

10 | Chapter2: Asterisk Architecture

¢ Channel drivers

* Codec translators

* Format interpreters
* Dialplan functions
¢ PBX modules

* Resource modules
¢ Addons modules

¢ Test modules

In the following sections we will list each module available within these categories,
briefly identify its purpose, and give our opinion on its relative popularity and/or im-
portance (while some modules are proven and deservedly popular, others are quite old,
are barely ever used anymore, and are only maintained for the purpose of backward-
compatibility). The details of how specific modules work will be covered in various
chapters throughout the book, depending on what the module is and what it does.
Some modules will be covered thoroughly; others may not be covered at all.

Regarding the Popularity/Status column in the tables that follow, the following list
contains our opinions with respect to the meanings we have chosen (your mileage may

vary):

Insignificant
This module is ancient history. If you use it, be aware that you are mostly on your
own when it comes to any sort of community support.

Unreliable
This module is new or experimental, and is not suitable for production.

Useful

This module is current, maintained, popular, and recommended.

Usable
This module works but may be incomplete or unpopular, and/or is not recom-
mended by the authors.
New
This module is quite new, and its completeness and popularity are difficult to gauge
at this time.
Deprecated
This module has been replaced by something that is considered superior.
Limited
This module has limitations that may make it unsuitable to your requirements.
Essential
This module is one you’ll never want to be without.

Modules | 11

And now, without further ado, let’s take a look at the modules, grouped by module
type.

Applications

Dialplan applications are used in extensions.conf to define the various actions that can
be applied to a call. The Dial() application, for example, is responsible for making
outgoing connections to external resources and is arguably the most important dialplan
application. The available applications are listed in Table 2-1.

Table 2-1. Dialplan applications

Name Purpose Popularity/Status
app_adsiprog Loads Analog Display Services Interface (ADSI) scriptsinto Insignificant
compatible analog phones
app_alarmreceiver Supports receipt of reports from alarm equipment Insignificant
app_amd Detects answering machines Unreliable
app_authenticate Compares dual-tone multi-frequency (DTMF) input against ~ Useful
a provided string (password)
app_cdr Writes ad hoc record to (DR Useful
app_celgenuserevent Generates user-defined events for CEL New
app_chanisavail Checks the status of a channel Unreliable
app_channelredirect Forces another channelinto a different part of the Useful
dialplan
app_chanspy Allows a channel to listen to audio on another channel Useful

app_confbridge
app_controlplayback

app_dahdibarge

app_dahdiras

Provides conferencing (new version)

Plays back a prompt and offers fast forward and rewind
functions

Allows barging in on a DAHDI channel

Creates a RAS server over a DAHDI channel (no modem em-
ulation)

New—not fully featured yet
Useful

Deprecated—see
app_chanspy
Insignificant

app_db Used to add/change/delete records in Asterisk’s built-in Deprecated—see func_db
Berkeley database

app_dial Used to connect channels together (i.e., make phone calls) Essential

app_dictate Plays back a recording and offers start/stop functions Useful

app_directed pickup Answersa call for another extension Useful

app_directory Presents the list of names from voicemail.conf Useful

app_disa Provides dialtone and accepts DTMF input Useful®

app_dumpchan Dumps channel variables to Asterisk ommand-line Useful

interface (CLI)

12 | Chapter2: Asterisk Architecture

Name
app_echo

app_exec

app_externalivr
app_fax
app_festival
app_flash

app_followme

app_forkcdr
app_getcpeid
app_ices
app_image
app_ivrdemo

app_jack

app_macro
app_meetme
app_milliwatt

app_minivm

app_mixmonitor
app_morsecode
app_mp3
app_nbscat
app_originate
app_osplookup
app_page

app_parkandannounce
app_playback
app_playtones

app_privacy

app_queue

Purpose
Loops received audio back to source channel

ContainsExec (), TryExec(),andExecIf();executes
a dialplan application based on conditions

Controls Asterisk as with an AGI, only asynchronously
Provides SendFax () and ReceiveFax()
Enables basic text to speech using Festival TTS engine

Performs a hook-switch flash on channels (primarily
analog)

Performs find me/follow me functionality based on
followme.conf

Starts new (DR record on current call
Gets the ADSI CPE ID

Sends audio to an Icecast server
Transmits an image to supported devices
Sample application for developers

Works with JACK Audio Connection Kit to share audio be-
tween compatible applications

Triggers dialplan macros
Provides multiparty conferencing
Generates 1004-Hz tone for testing loss on analog circuits

Provides primitive functions to allow you to build your own
voicemail application in dialplan

Records both sides of a call and mixes them together
Generates Morse code

Uses mpg123 to play an MP3

Streams audio from Network Broadcast Stream (NBS)
Allows origination of a call

Performs Open Settlement Protocol (OSP) lookup

Creates multiple audio connections to specified devices for
public address (paging)

Enables automated announcing of parked calls
Plays a file to the channel (does not accept input)
Plays pairs of tones of specified frequencies

Requests input of caller's phone number if no CallerID is
received

Provides Automatic Call Distribution (ACD)

Popularity/Status
Useful
Useful

Useful
Useful®
Usable
Useful

Useful

Usable
Insignificant
Usable
Limited
Insignificant
Useful

Deprecated—see GoSub ()
Useful—fully featured
Useful

Usable

Useful
Usable
Insignificant
Insignificant
Useful
Usable
Useful

Usable
Useful
Useful

Insignificant

Useful

Modules | 13

Name

app_read

app_readexten

app_readfile

app_record

app_rpt

app_sayunixtime
app_senddtmf
app_sendtext
app_setcallerid

app_skel

app_sms
app_softhangup
app_speech utils
app_stack

app_system
app_talkdetect

app_test
app_transfer
app_url

app_userevent

app_verbose
app_voicemail

app_waitforring

app_waitforsilence

app_waituntil

Purpose

Requests input of digits from callers and assigns input to a
variable

Requests input of digits from callers and passes call to a
designated extension and context

Loads contents of a text file into a channel variable

Records received audio to a file

Provides a method to interface with an audio board for the
app_rpt project

Plays back time in specified format
Transmits DTMF to calling party
Sends a text string to compatible channels

Sets CallerlD on a channel

Sample application for developers

Sends SMS message in compatible countries
Requests hangup of channel

Provides utilities relating to speech recognition

Provides Gosub (), GoSubIf(), Return(), Stack
Pop(), LOCAL(),and LOCAL_PEEK()

Executes commands in a Linux shell

Similarto app_background, but allows for any received
audio to interrupt playback

(lient/server testing application
Performs a transfer on the current channel
Passes a URI to the called channel

Generates a custom event in the Asterisk Manager
Interface (AMI)

Generates a custom event in the Asterisk CLI
Provides voicemail

Waits for a RING signaling event (not to be confused with

RINGING); most likely unnecessary, as only chan_dahdi
with analog channels where ringing is received (such as an
FXO port) generates the RING signaling event

IncludesWaitForSilence() andWaitForNoise();
listens to the incoming channel for a specified number of
milliseconds of noise/silence

Waits until current Linux epoch matches specified epoch

Popularity/Status
Useful

Usable

Deprecated—see the FILE()

function in func_env
Useful
Limited

Useful
Useful

Insignificant

Deprecated—seefunc_call

erid
Useful
Limited
Useful
Useful

Essential

Useful
Useful

Usable
Useful
Limited
Useful

Useful
Essential

Insignificant

Useful

Useful

14 | Chapter2: Asterisk Architecture

Name Purpose Popularity/Status

app_while IncludesWhile(), EndWhile(), ExitWhile(),and Useful
ContinueWhile(); provides while-loop functionalityin
the dialplan

app_zapateller Generates SIT tone to discourage telemarketers Usable

2 The use of (DISA) is considered to be a security risk.

b Requires a suitable DSP engine to handle encoding/decoding of fax signaling (see Chapter 19).
¢ Ifyou are a developer.

d Requires an external speech recognition application.

Bridging Modules

Bridging modules are new in Asterisk 1.8: they perform the actual bridging of channels
in the new bridging API. Each provides different features, which get used in different
situations depending on what a bridge needs. These modules, listed in Table 2-2, are

currently only used for (and are essential to) app_confbridge.

Table 2-2. Bridging modules

Name Purpose

bridge builtin features Performs bridging when utilizing built-in user features (such as
those found in features.conf).

bridge multiplexed Performs complex multiplexing, as would be required in a large
conference room (multiple participants). Currently only used by
app_confbridge.

bridge simple Performs simple channel-to-channel bridging.

bridge softmix Performs simple multiplexing, as would be required in a large
conference room (multiple participants). Currently only used by
app_confbridge.

Popularity/Status

New

New

New

New

Call Detail Recording Modules

The CDR modules, listed in Table 2-3, are designed to facilitate as many methods of
storing call detail records as possible. You can store CDRs to a file (default), a database,

RADIUS, or syslog.

" advantage of CDR is that it just works.

Call detail records are not intended to be used in complex billing ap-
~ plications. If you require more control over billing and call reporting,
v you will want to look at channel event logging, discussed next. The

Modules | 15

Table 2-3. Call detail recording modules

Name

cdr_adaptive odbc

cdr_csv

cdr_custom

cdr_manager

cdr_odbc

cdr_pgsql
cdr_radius
cdr_sqlite
cdr_sqlite3 custom
cdr_syslog

cdr_tds

Purpose

Allows writing of CDRs through ODBC frame-
work with ability to add custom fields

Writes CDRs to disk as a comma-separated
values file

As above, but allows for the addition of custom
fields

Outputs CDRs to Asterisk Manager Interface
(AMI)

Writes CDRs through ODBC framework
Writes CDRs to PostgreSQL

Writes CDRs to RADIUS

Writes CDRs to SQLite2 database

Writes CDRs to SQLite3 with custom fields
Writes CDRs to syslog

Writes CDRs to Microsoft SQL or Sybase

Popularity/Status
Useful

Usable

Useful

Useful

Usable

Useful

Usable—does not support custom fields
Deprecated—use sqlite3_custom
Useful

Useful

Usable—requires an old version of 1ibtds

We will discuss some reporting packages that you may wish to use with CDR in

Chapter 25.

Channel Event Logging Modules

Channel event logging provides much more powerful control over reporting of call
activity. By the same token, it requires more careful planning of your dialplan, and by
no means will it work automatically. Asterisk’s CEL modules are listed in Table 2-4.

Table 2-4. Channel event logging modules

Name

cel custom

cel manager

cel odbc

cel pgsql

cel radius

cel sqlite3 custom

cel tds

Purpose Popularity/Status

CEL to disk/file Useful

CEL to AMI Useful

CEL to ODBC Useful

CEL to PostgreSQL Useful

CEL to RADIUS Usable—does not support custom fields

CEL to Sqlite3 Useful

CEL to Microsoft SQL or Sybase

Usable—requires an old version of 1ibtds

16 | Chapter2: Asterisk Architecture

Channel Drivers

Without channel drivers, Asterisk would have no way to make calls. Each channel
driver is specific to the protocol or channel type it supports (SIP, ISDN, etc.). The
channel module acts as a gateway to the Asterisk core. Asterisk’s channel drivers are
listed in Table 2-5.

Table 2-5. Channel drivers

Name Purpose Popularity/Status
chan_agent Provides agent channel for Queue () Useful
|chan_alsa Provides connection to Advanced Linux Sound Useful
Architecture
chan_bridge Used internally by the ConfBridge () application; Essential ®
should not be used directly
chan_console Provides connection to portaudio New
chan_dahdi Provides connection to PSTN cards that use DAHDI Useful
channel drivers
chan_gtalk Provides connection to Google Talk Usable
chan_h323 Provides connection to H.323 endpoints Deprecated—see chan_ooh323 in
Table 2-11
chan_iax2 Provides connection to IAX2 endpoints Useful
chan_jingle Provides connection to Jingle-enabled endpoints Usable
chan_local Providesamechanismtotreataportionofthedialplan Useful
asa channel
chan_mgcp Media Gateway Control Protocol channel driver Usable
chan_misdn Provides connection to mISDN supported ISDN cards ~ Limited
chan_multicast_rtp Provides connection to multicast RTP streams Useful
chan_nbs Network Broadcast Sound channel driver Insignificant
chan_oss Open Sound System driver Useful
chan_phone Linux telephony interface driver (very old) Insignificant
chan_sip Session Initiation Protocol channel driver Essential
chan_skinny Cisco Skinny Client Control Protocol (SCCP) channel ~ Usable
driver
chan_unistim Nortel Unistim protocol channel driver Usable
chan_usbradio Channel driver for CM108 USB cards with Usable
radio interface
chan_vpb Voicetronix channel driver Insignificant®

o

o

If you are using the ConfBridge () application.

Some Voicetronix hardware is supported by Zaptel using an addon Zaptel module distributed by Voicetronix. However, Zaptel is no longer

supported by Asterisk and this driver has not been ported to DAHDI.

Codec Translators

The codec translators (Table 2-6) allow Asterisk to convert audio stream formats be-
tween calls. So if a call comes in on a PRI circuit (using G.711) and needs to be passed
out a compressed SIP channel (e.g., using G.729, one of many codecs that SIP can
handle), the relevant codec translator would perform the conversion.*

W N

If a codec (such as G.729) uses a complex encoding algorithm, heavy
use of transcoding can place a massive burden on the CPU. Specialized
* Qi hardware for the decoding/encoding of G.729 is available from hard-
" ware manufacturers such as Sangoma and Digium (and likely others).

Table 2-6. Codec translators

Name Purpose Popularity/Status
codec_adpcm Adaptive Differential Pulse Coded Modulation codec Insignificant
codec_alaw A-law PCM codec used all over the world (except Canada/USA) on the PSTN Essential
codec_a_mu A-law to mu-law direct converter Useful
codec_dahdi Utilizes proprietary Digium hardware transcoding card Essential®
codec_g722 Wideband audio codec Useful
codec_g726 Flavor of ADPCM Insignificant
codec_gsm Global System for Mobile Communications (GSM) codec Useful
codec_ilbc Internet Low Bitrate Codec Insignificant
codec_lpc10 Linear Predictive Coding vocoder (extremely low bandwidth) Insignificant
codec_resample Resamples between 8-bit and 16-bit signed linear Usable
codec_speex Speex codec Usable
codec_ulaw Mu-law PCM codec used in Canada/USA on PSTN Essential

2 Ifyou are using a Digium codec transcoder card.

Format Interpreters

Format interpreters (Table 2-7) perform the function of codec translators, but they do
their work on files rather than channels. If you have a recording on a menu that has
been stored as GSM, a format interpreter would need to be used to play that recording
to any channels not using the GSM codec.*

t More information about what codecs are and how they work is available in “Codecs” on page 625.

1 It is partly for this reason that we do not recommend the default GSM format for system recordings. WAV
recordings will sound better and use less CPU.

18 | Chapter2: Asterisk Architecture

If you store a recording in several formats (such as WAV, GSM, etc.), Asterisk will
determine the least costly format$ to use when a channel requires that recording.

Table 2-7. Format interpreters

Name Plays files stored in Popularity/Status
format_g723 G.723.9723 Insignificant
format_g726 G.726.9726 Insignificant
format_g729 G.729.9729 Useful
format_gsm RPE-LTP (original GSM codec) .gsm Usable
format_h263 H.263—video .h263 Usable
format_h264 H.264—video .h264 Usable
format_ilbc Internet Low Bitrate Codec..ilbc Insignificant
format_jpeg Graphicfile jpeg jpg Insignificant
format_ogg vorbis 0Ogg container.ogg Usable
format_pcm Various Pulse-Coded Modulation Useful
formats: .alaw, .al, .alw, .pcm, .ulaw, .ul, .mu, .ulw, .g722, .au
format_siren14 G.722.1 Annex C (14 kHz) .siren14 New
format_siren7 G.722.1 (7 kHz) .siren7 New
format_slni16 16-bit signed linear..sin16 New
format_sln 8-bit signed linear .sln .raw Useful
format_vox vox Insignificant
format_wav wav Useful
format_wav_gsm GSM audio in a WAV container. WAV, .wav49 Usable
Dialplan Functions

Dialplan functions, listed in Table 2-8, complement the dialplan applications (see
“Applications” on page 12). They provide many useful enhancements to things like
string handling, time and date wrangling, and ODBC connectivity.

Table 2-8. Dialplan functions

Name Purpose Popularity/Status
func_aes Encrypts/decrypts an AES string Useful
func_audiohookinherit Allows calls to be recorded after transfer Useful
func_baseb4 Encodes/decodes a base-64 string Usable
func_blacklist Writes/reads blacklist in astdb Useful

§ Some codecs can impose a significant load on the CPU, such that a system that could support several hundred
channels without transcoding might only be able to handle a few dozen when transcoding is in use.

Modules | 19

Name

func_callcompletion

func_callerid
func_cdr
func_channel

func_config

func_connectedline

func_curl
func_cut
func_db
func_devstate
func_dialgroup
func_dialplan
func_enum

func_env

func_extstate
func_global
func_groupcount
func_iconv

func_lock

func_logic

func_math

func_md5
func_module
func_odbc
func_pitchshift
func_rand
func_realtime

func_redirecting

func_shal
func_shell

func_speex

Purpose

Gets/sets call completion configuration parameters for the channel
Gets/sets CallerlD

Gets/sets (DR variable

Gets/sets channel information

Includes AST_CONFIG(); reads variables from config file
Changes connected line information on supported handsets
Uses cURL to obtain data from a URI

Slices and dices strings

Provides astdb functions

Gets state of device

(reates a group for simultaneous dialing

Validates that designated target exists in dialplan

Performs ENUM lookup

Includes FILE (), STAT(),and ENV(); performs operating system
actions

Returns status of a hinted extension

Gets/sets global variables

Gets/sets channel count for members of a group
Converts between character sets

Includes LOCK (), UNLOCK (), and TRYLOCK (); setsalock that can
be used to avoid race conditions in the dialplan

Includes TSNULL(), SET(), EXISTS(), IF(), IFTIME(),and
IMPORT (); performs various logical functions

Includes MATH(), INC(), and DEC(); performs mathematical
functions

Converts supplied string to an MD5 hash

Checks to see if supplied module is loaded into memory

Allows dialplan integration with ODBC resources

Shifts the pitch of an audio stream

Returns a random number within a given range

Performs lookups within the Asterisk Realtime Architecture (ARA)

Provides access to information about where this call was redirected
from

Converts supplied string to an SHAT hash
Performs Linux shell operations and returns results

Reduces noise and performs dB gain/loss on an audio stream

Popularity/Status
New
Useful
Useful
Useful
Usable
New
Useful
Useful
Useful
Useful
Useful
Useful
Useful
Useful

Useful
Useful
Useful
Usable
Useful

Useful

Useful

Useful
Usable
Useful
Useful
Useful
Useful
Useful

Useful
Useful
Useful

20 | Chapter2: Asterisk Architecture

Name Purpose Popularity/Status

func_sprintf Performs string format functions similar to C function of same name ~ Useful
func_srv Perform SRV lookups in the dialplan Useful
func_strings Includes over a dozen string manipulation functions Useful
func_sysinfo Gets system information such as RAM, swap, load average, etc. Useful
func_timeout Gets/sets timeouts on channel Useful
func_uri Converts strings to URI-safe encoding Useful
func_version Returns Asterisk version information Usable
func_vmcount Returns count of messages in a voicemail folder for a particular user ~ Useful
func_volume Sets volume on a channel Useful

PBX Modules

The PBX modules are peripheral modules that provide enhanced control and configu-
ration mechanisms. For example, pbx_config is the module that loads the traditional
Asterisk dialplan. The currently available PBX modules are listed in Table 2-9.

Table 2-9. PBX modules

Name Purpose Popularity/Status

pbx_ael Asterisk Extension Logic (AEL) offers a dialplan scripting language that looks likea Usable?
modern programming language.

pbx_config This is the traditional, and most popular, dialplan language for Asterisk. Without ~ Useful
this module, Asterisk cannot read extensions.conf.

pbx_dundi Performs data lookups on remote Asterisk systems. Useful
pbx_loopback Performs something similar to a dialplan include, but in a deprecated manner. Insignificant®
pbx_lua Allows creation of a dialplan using the Lua scripting language. Useful
pbx_realtime Provides functionality related to the Asterisk Realtime Architecture. Useful
pbx_spool Provides outgoing spool support relating to Asterisk call files. Useful

@ We have not found too many people using AEL. We suspect this is because most developers will tend to use AGI/AMI if they do not want
to use traditional dialplans.

b We've never heard of this being used in production.

Resource Modules

Resource modules integrate Asterisk with external resources. For example, res_odbc
allows Asterisk to interoperate with ODBC database connections. The currently avail-
able resource modules are listed in Table 2-10.

Modules | 21

Table 2-10. Resource modules

Name

res_adsi
res_ael share
res agi

res_ais

res_calendar
res_calendar_caldav
res_calendar_exchange
res_calendar_icalendar
res_clialiases
res_clioriginate
res_config curl
res_config ldap
res_config odbc
res_config pgsql
res_config sqlite
res_convert
res_crypto

res curl

res_fax
res_fax_spandsp
res_http post
res_jabber
res_limit
res_monitor
res_musiconhold
res_mutestream
res_odbc
res_phoneprov
res_pktccops

res_realtime

res_rtp asterisk

res_rtp multicast

Purpose

Provides ADSI

Provides shared routines for use with pbx_ael
Provides Asterisk Gateway Interface

Provides distributed message waiting indication (MWI) and
device state notifications via an implementation of the AIS
standard, such as OpenAlIS

Enables base integration to calendaring systems
Provides CalDAV-specific capabilities

Provides MS Exchange capabilities

Provides Apple/Google iCalendar capabilities

Creates CLI aliases

Originates a call from the CLI

Pulls configuration information using cURL

Pulls configuration information using LDAP

Pulls configuration information using 0DBC

Pulls configuration information using PostgreSQL
Pulls configuration information using SQLite

Uses the (LI to perform file conversions

Provides cryptographic capabilities

Provides common subroutines for other cURL modules
Provides common subroutines for other fax modules
Plug-in for fax using the spandsp package

Provides POST upload support for the Asterisk HTTP server
Provides Jabber/XMPP resources

Enables adjusting of system limits on the Asterisk process
Provides call recording resources

Provides music on hold (MOH) resources

Allows muting/unmuting of audio streams

Provides common subroutines for other 0DBC modules
Provisions phones from Asterisk HTTP server

Provides PacketCable COPS resources

Provides CLI commands for the Asterisk Realtime
Architecture (ARA)

Provides RTP

Provides multicast-RTP

Popularity/Status
Essential®

Essential ifyou're using AEL
Useful

Useful

Useful
Useful
Useful
Useful
Useful
Usable
Useful
Usable
Useful
Usable
Usable
Usable
Useful
Useful
Useful
Useful
Usable
Useful
Usable
Useful
Essential
New
Useful
New
New
Useful

Essential

New

22 | Chapter2: Asterisk Architecture

Name Purpose Popularity/Status

res_security log Enables security logging New

res_smdi Provides voicemail notification using the SMDI protocol Limited

res_snmp Provides system status information to an SNMP-managed ~ Usable
network

res_speech Generic speech recognition API Limited®

res_timing dahdi Provides timing using the DAHDI kernel interface Useful

res_timing_kqueue Provides timing using a kernel feature in some BSDs, in- New
cluding Mac 0S X

res_timing pthread Provides timing using only parts of the standard Useful

pthread API; less efficient but more portable than other
timing modules.

res_timing_timerfd Provides timing using the timexfd APl provided by newer Useful
versions of the Linux kernel

2 While most of the ADSI functionality in Asterisk is never used, the voicemail application uses this resource.
b Requires a separately licensed product in order to be used.

Addon Modules

Addon modules are community-developed modules with different usage or distribution
rights from those of the main code. They are kept in a separate directory and are not
compiled and installed by default. To enable these modules, use the menuselect build
configuration utility. Currently available addon modules are listed in Table 2-11.

Table 2-11. Addon modules

Name Purpose Popularity/Status
app_mysql Executes MySQL queries with a Deprecated—see func_odbc
dialplan application
app_saycountpl Says Polish counting words Deprecated—now integrated in say.conf
cdr_mysql Logs call detail recordstoaMySQL ~ Usable—we recommend cdr_adaptive_odbc instead
database
chan_mobile Enables making and receiving Limited?
phone calls using cell phones over
Bluetooth
chan_ooh323 Enables making and receiving VoIP Usable
calls using the H.323 protocol
format_mp3 Allows Asterisk to play MP3 files Usable
res_config mysql UsesaMySQL database as a real- Useful

time configuration backend

While chan_mobile works great with many phones, problems have been reported with some models. When a problem does occur, it
is very difficult for developers to solve unless they have a phone of the same model to test with.

&

Modules | 23

Test Modules

Test modules are used by the Asterisk development team to validate new code. They
are constantly changing and being added to, and are not useful unless you are devel-
oping Asterisk software.

If you are an Asterisk developer, however, the Asterisk Test Suite may be of interest to
you as you can build automated tests for Asterisk and submit those back to the project,
which runs on several different operating systems and types of machines. By expanding
the number of tests constantly, the Asterisk project avoids the creation of regressions
in code. By submitting your own tests to the project, you can feel more confident in
future upgrades.

More information about installing the Asterisk Test Suite is available in this blog post:
http://blogs.asterisk.org/2010/04/29/installing-the-asterisk-test-suite/. More informa-
tion about building tests is available in this document: http://svn.asterisk.org/svn/test
suite/asterisk/trunk/README.txt or you can join the #asterisk-testing channel on the
Freenode IRC network.

File Structure

Asterisk is a complex system, composed of many resources. These resources make use
of the filesystem in several ways. Since Linux is so flexible in this regard, it is helpful to
understand what data is being stored, so that you can understand where you are likely
to find a particular bit of stored data (such as voicemail messages or log files).

Configuration Files

The Asterisk configuration files include extensions.conf, sip.conf, modules.conf, and
dozens of other files that define parameters for the various channels, resources, mod-
ules, and functions that may be in use.

These files will be found in /etc/asterisk. You will be working in this folder a lot as you
configure and administer your Asterisk system.

Modules

Asterisk modules are usually installed to the /usr/lib/asterisk/modules folder. You will
not normally have to interact with this folder; however, it will be occasionally useful
to know where the modules are located. For example, if you upgrade Asterisk and select
different modules during the menuselect phase of the install, the old (incompatible)
modules from the previous Asterisk version will not be deleted, and you will get a
warning from the install script. Those old files will need to be deleted from the modules
folder. This can be done either manually or with the “uninstall” make (make unin-
stall) target.

24 | Chapter2: Asterisk Architecture

http://blogs.asterisk.org/2010/04/29/installing-the-asterisk-test-suite/
http://svn.asterisk.org/svn/testsuite/asterisk/trunk/README.txt
http://svn.asterisk.org/svn/testsuite/asterisk/trunk/README.txt

The Resource Library

There are several resources that require external data sources. For example, music on
hold (MOH) can’t happen unless you have some music to play. System prompts also
need to be stored somewhere on the hard drive. The /var/lib/asterisk folder is where
system prompts, AGI scripts, music on hold, and other resource files are stored.

The Spool

The spool is where Linux stores files that are going to change frequently, or will be
processed by other processes at a later time. For example, under Linux print jobs and
pending emails are normally written to the spool until they are processed.

For Asterisk, the spool is used to store transient items such as voice messages, call
recordings, !l call files, and so forth.

The Asterisk spool will be found under the /var/spool/asterisk directory.

Logging
Asterisk is capable of generating several different kinds of log files. The /var/log/aster-

isk folder is where things such as call detail records (CDRs), channel events from CEL,
debug logs, queue logs, messages, errors, and other output are written.

This folder will be extremely important for any troubleshooting efforts you undertake.
We will talk more about how to make use of Asterisk logs in Chapter 24.

The Dialplan

The dialplan is the heart of Asterisk. All channels that arrive in the system will be passed
through the dialplan, which contains the call-flow script that determines how the in-
coming calls are handled.

A dialplan can be written in one of three ways:

* Using traditional Asterisk dialplan syntax in /etc/asterisk/extensions.conf

* Using asterisk Extension Logic (AEL) in /etc/asterisk/extensions.ael

* Using LUA in /etc/asterisk/extensions.lua
Later in this book, we’ll have devoted several chapters to the subject of how to write a
dialplan using traditional dialplan syntax (by far the most popular choice). Once you

learn this language, it should be fairly easy to transition to AEL or LUA, should you
desire.

[I' Not call detail records (CDRs), but rather audio recordings of calls generated by the MixMonitor () and related
applications.

The Dialplan | 25

Hardware

Asterisk is capable of communicating with a vast number of different technologies. In
general, these connections are made across a network connection; however, connec-
tions to more traditional telecom technologies, such as the PSTN, require specific
hardware.

Many companies produce this hardware, such as Digium (the sponsor, owner, and
primary developer of Asterisk), Sangoma, Rhino, OpenVox, Pika, Voicetronix,
Junghanns, Dialogic, Xorcom, beroNet, and many others. The authors prefer cards
from Digium and Sangoma; however, the products offered by other Asterisk hardware
manufacturers may be more suitable to your requirements.

The most popular hardware for Asterisk is generally designed to work through the
Digium Asterisk Hardware Device Interface (known as DAHDI). These cards will all
have different installation requirements and different file locations.

In Chapter 7, we will discuss DAHDI in more detail, however, we will limit our dis-
cussion to DAHDI only. You will need to refer to the specific documentation provided
by the manufacturers of any cards you install for details on those cards.

Asterisk Versioning

The Asterisk release methodology has gone through a couple of iterations over the last
few years, and this section is designed to help you understand what the version numbers
mean. Of particular relevance is the change in versioning that happened with the
1.6.x series of releases, which followed a different numbering logic than all other
Asterisk releases (1.0 to 1.8 and onward for the foreseeable future).

Previous Release Methodologies

When we had just Asterisk 1.2 and 1.4, all new development was carried out in trunk
(it still is), and only bug fixes went into the 1.2 and 1.4 branches. The Asterisk 1.2
branch has been marked as EOL (End of Life), and is no longer receiving bug fixes or
security updates. Prior to the 1.6.x branches, bug fixes were carried out only in trunk
and in the 1.4 branch.

Because all new development was done in trunk, until the 1.6 branch was created people
were unable to get access to the new features and functionality. This isn’t to say the
new functionality wasn’t available, but with all the changes that can happen in trunk,
running a production server based on it requires a very Asterisk-savvy (and C code—
savvy) administrator.

To try to relieve the pressure on administrators, and to enable faster access to new
features (in the time frame of months, and not years), a new methodology was created.
Branches in 1.6 would actually be marked as 1.6.0, 1.6.1, 1.6.2, etc., with the third

26 | Chapter2: Asterisk Architecture

number increasing by one each time a new feature release was created. The goal was
to provide new feature releases every 3—4 months (which would be branched from
trunk), providing a shorter and clearer upgrade path for administrators. If you needed
a new feature, you’d only have to wait a few months and could then upgrade to the
next branch.

Tags from these branches look like this:
¢ 1.6.01--1.6.0.2--1.6.03--1.6.0.4--etc.

¢ 16.1.1-16.12--1.6.1.3--1.6.1.4--etc.
e 1621--1622-1.6.23-1.6.2.4-ctc.

Figure 2-2 gives a visual representation of the branching and tagging process in relation
to Asterisk trunk.

tag 1.6.0.7 tag1.6.08

/ 1.6.0 branch (bug fixes) >
Trunk (new features)
\ >
1.6.1branch (bug i
ranch (bug fixes) >

tagl6112 tag16.1.13

Figure 2-2. The Asterisk 1.6.x release process

So, so far we have branches, which are 1.2, 1.4, 1.6.0, 1.6.1, and 1.6.2 (there isno 1.6
branch). Within each of those branches, we create tags (releases), which look like
1.2.14,1.4.30,1.6.0.12,1.6.1.12, and 1.6.2.15.

Unfortunately, it ended up not working out that 1.6.x branches were created from trunk
every 3—4 months: the development process has led to a minimum release time of 6-8
months. Not only that, but the 1.6.x numbering methodology adds problems of its
own. People got confused as to what version to run, and that the 1.6.0, 1.6.1, and 1.6.2
branches were all separate major version upgrades. When you increase the number
from 1.2 to 1.4, and then to 1.8, it is obvious that those are distinct branches and major
version changes. With 1.6.0, 1.6.1, and 1.6.2, it is less obvious.

The New Release Methodology

The development team learned a lot of things during the 1.6.x releases. The idea sur-
rounding the releases was noble, but the implementation ended up being flawed when
put into real use. So, with Asterisk 1.8, the methodology has changed again, and will
look a lot more like that used in the 1.2 and 1.4 releases.

Asterisk Versioning | 27

While the development team still wants to provide access to new features and core
changes on a more regular basis (every 12 months being the goal), there is recognition
thatitis also good to provide long-term support to a stable, popular version of Asterisk.
You can think of the Asterisk 1.4 branch as being a long-term support (LTS) version.
The 1.6.0, 1.6.1, and 1.6.2 branches can be thought of as feature releases that continue
to receive bug fixes after release, but are supported for a shorter period of time (about
ayear). The new LTS version is Asterisk 1.8 (what this book is based on); it will receive
bug fixes for four years and an additional year of security releases after that, providing
five years of support from the Digium development team.

During the long-term support phase of Asterisk 1.8, additional branches will be created
on a semi-regular basis as feature releases. These will be tagged as versions 1.10, 1.12,
and 1.14, respectively. Each of these branches will receive bug fixes for a period of one
year, and security releases will continue to be made for an additional year before the
branches are marked as EOL.

The current statuses of all Asterisk branches, their release dates, when they will go into
security release—only mode, and when they will reach EOL status are all documented
on the Asterisk wiki at https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions.

Conclusion

Asterisk is composed of many different technologies, most of which are complicated
in their own right. As such, the understanding of Asterisk architecture can be over-
whelming. Still, the reality is that Asterisk is well-designed for what it does and, in our
opinion, has achieved remarkable balance between flexibility and complexity.

28 | Chapter2: Asterisk Architecture

https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions

CHAPTER 3
Installing Asterisk

I long to accomplish great and noble tasks, but it is my
chief duty to accomplish humble tasks as though they
were great and noble. The world is moved along, not
only by the mighty shoves of its heroes, but also by the
aggregate of the tiny pushes of each honest worker.

—Helen Keller

In this chapter we’re going to walk through the installation of Asterisk from the source
code. Many people shy away from this method, claiming that it is too difficult and time-
consuming. Our goal here is to demonstrate that installing Asterisk from source is not
actually that difficult to do. More importantly, we want to provide you with the best
Asterisk platform on which to learn.

In this book we will be helping you build a functioning Asterisk system from scratch.
In this chapter you will build a base platform for your Asterisk system. Given that we
are installing from source, there is potentially a lot of variation in how you can do this.
The process we discuss here is one that we’ve used for many years, and following it will
provide you with a suitable foundation for Asterisk.

As part of this process we will also explain installation of some of the software de-
pendencies on the Linux platform that will be needed for topics covered later in this
book (such as database integration). We will show instructions for installing Asterisk
on both CentOS (a Red Hat—based distribution) and Ubuntu (a Debian-based distri-
bution), which we believe covers the vast majority of Linux distributions being installed
today. We’'ll try to keep the instructions general enough that they should be useful on
any distribution of your choice.”

* If you are using another distribution, we’re willing to bet you are quite comfortable with Linux and should
have no trouble installing Asterisk.

29

http://www.centos.org
http://www.ubuntu.com

We have chosen to install on CentOS and Ubuntu because they are the most popular
options, but Asterisk is generally distribution-agnostic. Asterisk will even install on
Solaris, BSD, or OS XT if you like. We won’t be covering them in this book, though, as
Asterisk is most heavily developed on the Linux platform.

Asterisk Packages

There are also packages that exist for Asterisk that can be installed using popular
package-management programs such as yum or apt-get. You are welcome to experiment
with them. Prebuilt packages may not always be kept up-to-date, though, so for the
latest version we always recommend installing from source.

You can find package instructions at http://www.asterisk.org/downloads/yum.

Some commands you see in this chapter will be split into separate rows, each labeled
for the distribution on which the command should be performed. Commands for which
distributions are not specified are for common commands that can be run on both
distributions.

Asterisk-Based Projects

Many projects have been created that use Asterisk as their underlying platform. Some
of these, such as Trixbox, have become so popular that many people mistake them for
the Asterisk product itself. These projects generally will take the base Asterisk product
and add a web-based administration interface, a complex database, and a rigid set of
constraints on how changes can be made to the configuration.

We have chosen not to cover these projects in this book, for several reasons:

1. This book tries, as much as possible, to focus on Asterisk and only Asterisk.
2. Books have already been written about some of these Asterisk-based projects.

3. We believe that if you learn Asterisk in the way that we will teach you, the knowl-
edge will serve you well, regardless of whether you eventually choose to use one
of these prepackaged versions of Asterisk.

4. For us, the power of Asterisk is that it does not attempt to solve your problems for
you. These projects are an excellent example of what can be built with Asterisk.
They are truly amazing. However, if you are looking to build your own Asterisk
application (which is really what Asterisk is all about), these projects will impose
limitations on you, because they are focused on simplifying the process of building
a business PBX, not on making it easier to access the full potential of the Asterisk
platform.

T Leif calls this “Oh-Eh-Sex,” but Jim thinks it should be pronounced “OS Ten.” We wasted several precious
minutes arguing about this.

30 | Chapter3: Installing Asterisk

http://www.asterisk.org/downloads/yum

Some of the most popular Asterisk-based projects include:

AsteriskNOW http://www.asterisk.org/asterisknow
Trixbox http://www.trixbox.org

Elastix http://www.elastix.org
PBXinaFlash http://www.pbxinaflash.net

We recommend that you check them out.*

Installation Cheat Sheet

If you just want the nitty-gritty on how to get Asterisk up and running quickly, perform
the following at the shell prompt. We encourage you to read through the entire chapter
at least once, though, in order to better understand the full process.$

The instructions provided here assume you’ve already installed either CentOS or
Ubuntu using the steps outlined in “Distribution Installation” on page 35.

W N
)

Remember that Ubuntu requires commands to be prefixed with sudo.

1. Perform a system update and reboot:

(Cent0S yum update -y && reboot
(Cent0S 64-bit yum remove *.i386 && yum update -y && reboot
Ubuntu sudo apt-get update && sudo apt-get upgrade &3 sudo reboot

2. Synchronize time and install the NTP (Network Time Protocol) daemon:

(Cent0S yum install -y ntp &% ntpdate pool.ntp.org && chkconfig ntpd \
on 88 service ntpd start

(ent0S 64-bit yum install -y ntp && ntpdate pool.ntp.org && chkconfig ntpd \
on &% service ntpd start

Ubuntu sudo apt-get install ntp

1 After you read our book, of course.

§ Once you have experience with several Asterisk installations, you’ll agree thatit’s a quick and painless process.
Nevertheless, this chapter may make the process look complex. This is simply because we have an obligation
to ensure you are provided with all the information you need to accomplish a successful install.

Installation Cheat Sheet | 31

http://www.asterisk.org/asterisknow
http://www.trixbox.org
http://www.elastix.org
http://www.pbxinaflash.net

Some additional configuration of text files is required on Ubuntu.
See “Enable NTP for accurate system time” on page 43.

3. On CentOS, add a new system user:

(Cent0S (32and 64 bit) adduser asteriskpbx &3 passwd asteriskpbx && yum install \

sudo && visudo

See “Adding a system user” on page 39 for specific information.

For an Ubuntu install, we are assuming that the user created during
the installation process is asteriskpbx.

4. Install software dependencies:

(Cent0S sudo yum install gcc gcc-c++ make wget subversion \
libxml2-devel ncurses-devel openssl-devel \
vim-enhanced

(ent0S 64-bit sudo yum install gcc.x86_64 gcc-c++.x86_64 \
make.x86_64 wget.x86_64 subversion.x86_64 \
libxml2-devel.x86_64 ncurses-devel.x86_64 \
openssl-devel.x86_64 vim-enhanced.x86_64

Ubuntu sudo apt-get install build-essential subversion \

libncurses5-dev libssl-dev libxml2-dev vim-nox

5. Create your directory structure:

$ mkdir -p ~/src/asterisk-complete/asterisk
$ cd ~/src/asterisk-complete/asterisk

6. Get the latest source code via Subversion:
$ svn co http://svn.asterisk.org/svn/asterisk/branches/1.8
Or alternatively, you could check out a specific tag:

$ svn co http://svn.asterisk.org/svn/asterisk/tags/1.8.1
7. Build and install the software:

$ cd ~/src/asterisk-complete/asterisk/1.8/
$./configure

32 | Chapter3: Installing Asterisk

10.

11.

12.

13.

$ make
$ sudo make install
$ sudo make config

. Install additional sound prompts from menuselect:

$ cd ~/src/asterisk-complete/asterisk/1.8/
$ make menuselect
$ sudo make install

. Modify the file permissions of the directories Asterisk was installed to:

$ sudo chown -R asteriskpbx:asteriskpbx /usr/lib/asterisk/

$ sudo chown -R asteriskpbx:asteriskpbx /var/lib/asterisk/

$ sudo chown -R asteriskpbx:asteriskpbx /var/spool/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/log/asterisk/

$ sudo chown -R asteriskpbx:asteriskpbx /var/run/asterisk/

$ sudo chown asteriskpbx:asteriskpbx /usr/sbin/asterisk

On CentOS, disable SELinux:

$ sudo vim /etc/selinux/config

Change the value of SELINUX from enforcing to disabled, then reboot.
Create the /etc/asterisk/ directory and copy the indications.conf sample file into it:

$ sudo mkdir -p /etc/asterisk
$ sudo chown asteriskpbx:asteriskpbx /etc/asterisk
$ cd /etc/asterisk/
$ cp ~/src/asterisk-complete/asterisk/1.8/configs/indications.conf.sample \
./indications.conf
Copy the sample asterisk.conf file into /etc/asterisk and change runuser and run

group to have values of asteriskpbx:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/asterisk.conf.sample \
/etc/asterisk/asterisk.conf

$ vim /etc/asterisk/asterisk.conf

See “indications.conf and asterisk.conf” on page 53 for more information.

Create the modules.conf file. Enable loading of modules automatically, and disable
extra modules:

$ cat »> /etc/asterisk/modules.conf

; The modules.conf file, used to define which modules Asterisk should load (or
; not load).

b4
[modules]
autoload=yes

; Resource modules currently not needed
noload => res_speech.so

noload => res_phoneprov.so

noload => res_ael share.so

noload => res_clialiases.so

noload => res_adsi.so

Installation Cheat Sheet | 33

; PBX modules currently not needed
noload => pbx_ael.so
noload => pbx_dundi.so

; Channel modules currently not needed
noload => chan_oss.so
noload chan_mgcp.so

v

noload => chan_skinny.so
noload => chan_phone.so
noload => chan_agent.so
noload => chan_unistim.so
noload => chan_alsa.so

; Application modules currently not needed

noload => app_nbscat.so
noload => app_amd.so

noload => app_minivm.so
noload => app_zapateller.so
noload => app_ices.so

noload => app_sendtext.so
noload => app_speech_utils.so
noload => app_mp3.so

noload => app_flash.so
noload => app_getcpeid.so
noload => app_setcallerid.so
noload => app_adsiprog.so
noload => app_forkcdr.so
noload => app_sms.so

noload => app_morsecode.so
noload => app_followme.so
noload => app_url.so

noload => app_alarmreceiver.so
noload => app_disa.so

noload => app_dahdiras.so
noload => app_senddtmf.so
noload => app_sayunixtime.so
noload => app_test.so

noload => app_externalivr.so
noload => app_image.so
noload => app_dictate.so
noload => app_festival.so

[Ctrl}+p]

14. Configure musiconhold.conf:

$ cat >> musiconhold.conf

; musiconhold.conf
[default]
mode=files
directory=moh

[Ctr1}+p]

34 | Chapter3: Installing Asterisk

15. Save your changes and your module configuration is done. Your system is ready
to configure your dialplan and channels.

Distribution Installation

Because Asterisk relies so heavily on having priority access to the CPU, it is essential
that you install Asterisk onto a server without any graphical interface, such as the X
Windowing system (Gnome, KDE, etc.). Both CentOS and Ubuntu ship a GUI-free
distribution designed for server usage. We will cover instructions for both distributions.

Cent0S Server

CentOS means “Community Enterprise Operating System,” and it is based on Red Hat
Enterprise Linux (RHEL). For more information about what CentOS is and its history,
see http://lwww.centos.org.

You will need to download an ISO from the CentOS website, located at http://mirror
.centos.org/centos/5/isos/. Select either the i386 or x86_64 directory for 32-bit or 64-bit
hardware, respectively. You will then be presented with a list of mirrors that appear to
be close to you physically. Choose one of the mirrors, and you will be presented with
a list of files to download. Likely you will want the first available selection, which is the
first ISO file of a set. You will only need the first ISO file of the set as we’ll be installing
additional software with yum.

Once you’ve downloaded the ISO file, burn it to a CD or DVD and start the installation
process. If you’re installing into a virtual machine (which we don’t recommend for
production use,! but can be a great way to test out Asterisk), you should be able to
mount the ISO file directly and install from there.

Base system installation
Upon booting from the CD, type linux text and then press Enter].#

At this point the text installation interface will start. You will be asked whether you
want to test the media. These instructions assume you’ve already done so, and therefore
can skip that step.

CentOS will then welcome you to the installation. Press |Enter| to continue.

[I' Actually, some people have great success running Asterisk inside virtual machines. It does depend what you’re
planning on using it for though, as you’ll have limited access to hardware, for example.

#You should test the media the first time you are using that particular CD/DVD.

Distribution Installation | 35

http://www.centos.org
http://mirror.centos.org/centos/5/isos/
http://mirror.centos.org/centos/5/isos/

Choose your language and make a keyboard selection.” If you’re in North America, you
will probably just select the defaults.

If you’ve previously formatted your hard drive, you will be asked to initialize the drive,
which will erase all data. Select [Yes|.

The installer will ask if you want to remove the existing partitioning scheme and create
a new one. Select Remove all partitions on selected drives and create default layout. If a
more appropriate option exists, select that instead. In the drive window, verify that the
correct disk drive is selected. (Pressing will cycle through the selections on the
screen.) Once the drive window is selected, you can scroll up and down (presuming
you have multiple drives) and select which hard drive you wish to install to. Toggle the

selections by pressing lspace barl. Verify that the correct drive is selected, press
until the button is highlighted, and press [Enter].

A message confirming that you want to remove all Linux partitions and create the new
partition scheme will be presented. Select .

You will be asked to review the partitioning layout. Feel free to modify the partition
scheme if you prefer something different (see the following sidebar for some advice on
this); however, the default answer is fine for light production use where storage
requirements will be low.t

Separating the /var Mount Point to Its Own Partition

On a system dedicated to Asterisk, the directory with the largest storage requirement
is /var. This is where Asterisk will store recordings, voicemails, log files, prompts, and
a myriad of constantly growing information. In normal operation, it is unlikely that
Asterisk will fill the hard disk. However, if you have extensive logging turned on or are
recording all calls, this could, in theory, occur. (This is likely to happen several months
after you’ve completed the install and to take your entire staff by surprise.)

If the drive the operating system is mounted on fills up, there is the potential for a kernel
panic. By separating /var from the rest of the hard drive, you significantly lower the risk
of a system failure.

L)
)

Having a full volume is still a major problem; however, you will at
least be able to log into the system to rectify the situation.

* Bear in mind that Asterisk is developed using the US keyboard and language, and we’re not aware of any
testing having been done on anything other than US English.

1 Due to the ever-increasing size of hard drives, capacity is becoming less of a problem. A system with a
1 terabyte drive can store somewhere in the range of 2 million minutes of telephony-quality recordings.

36 | Chapter3: Installing Asterisk

At the Review and modify the partitioning layout screen, you can create a separate vol-
ume for /var. Selecting will bring up the Partitioning tool. To partition the drive
accurately, you need to know what the hard drive size is; this may not jibe with what
is stamped on the outside of the drive because you have to tell the tool how to chop up
the drive. A limitation of the tool is that there is no option to say “use all available
space”; that is, you can’t simply could use 500 MB on the / partition and then say “use
the rest for /var”. The workaround is to make a note of the size it has selected for /
currently, as that is the full space, subtract 500 MB from that, and make that the size
for the / partition. The subtracted amount will then be reserved for /var.

A message will appear asking if you’d like to configure the ethO network interface on

your system. Select [Yes|. Be sure the Activate on boot and Enable IPv4 support options
are enabled, then select [OK|.

If your network provides automatic IP provisioning via DHCP, you can just select
. Otherwise, select Manual address configuration, enter the appropriate informa-

tion, and then select [OK].

Next, you’ll be asked to provide a hostname. You can either allow the DHCP server to
provide one for you (if your network assigns hostnames automatically) or enter one

manually, then select OK|.

You will be presented with a list of time zones. Highlight your local time zone and select

OK|

At this point, you will be asked for a root password. Enter a secure password and type
it again to confirm. After entering your secure password, select

Next up will be the package selection. Several packages that you don’t need to install
(and that require additional ISO files you probably haven’t downloaded) are selected
by default. Deselect all options in the list using the , then select the Customize
software selection option. Once you’ve done that, select |OKJ.

You will then be presented with the Package Group Selection screen. Scroll through the
whole list, deselecting each item. If any packages are selected, you’ll be prompted for
additional CDs that you have not downloaded. We’ll be installing additional packages
with the yum application after the operating system is installed. Once you’ve deselected

all packages, select [OK].

A dependency check will then be performed and a confirmation that installation is
ready to begin will be presented. Select to start the installation. The filesystem will
then be formatted, the installation image transferred to the hard drive, and installation
of the system packages performed. Upon installation, you will be asked to reboot.

Remove any media in the drives and select the button.

Distribution Installation | 37

Base system update

Once you’ve rebooted your system, you need to run the yum update command to make
sure you have the latest base packages. To do this, log in using the username root and
the password you created during installation. Once logged in, run the following:

yum update
Is this ok [y/N]: y
When prompted to install the latest packages, press ly] and wait for the packages to

update. If you're asked to accept a GPG key, presslyl. When complete, reboot the system
as it is likely the kernel will have been updated*:

reboot

W N

If you’re running CentOS Server 64-bit, you’ll need to remove all the
32-bit libraries manually. Once you’ve rebooted, or just prior to reboot,
98 run the following command:

yum remove *.i386 -y

This will remove all the 32-bit libraries on your 64-bit system, which
can otherwise cause conflicts and issues when compiling Asterisk and
other software.

Congratulations! You’ve successfully installed and updated the base CentOS system.

Enabling NTP for accurate system time

Keeping accurate time is essential on your Asterisk system, both for maintaining accu-
rate call detail records and for synchronization with your other programs. You don’t
want the times of your voicemail notifications to be off by 10 or 20 minutes, as this can
lead to confusion and panic from those who might think their voicemail notifications
are taking took too long to be delivered. The ntpd command can be used to ensure that
the time on your Asterisk server remains in sync with the rest of the world:

yum install ntp

Is this ok [y/N]: y

ntpdate pool.ntp.org
chkconfig ntpd on

service ntpd start

The defaults shipped with CentOS are sufficient to synchronize the time and keep the
machine’s time in sync with the rest of the world.

1 This reboot step is essential prior to installing Asterisk.

38 | Chapter3: Installing Asterisk

Adding a system user

The Ubuntu server install process asks you to add a system user other than root, but
CentOS does not. In order to be consistent in the book and to be more secure, we’re
going to add another system user and provide it sudo access.§ To add the new user,
execute the adduser command:

adduser asteriskpbx

passwd asteriskpbx

Changing password for user asteriskpbx.

New UNIX password:
Retype new UNIX password:

Now we need to provide the asteriskpbx user sudo access. We do this by modifying the
sudoers file with the visudo command. You’ll need to install visudo the first time you
use it:

yum install sudo

With the sudo-related applications and file installed, we can modify the sudoers file.
Execute the visudo command and look for the lines shown below:

visudo

Allows people in group wheel to run all commands
Swheel ALL=(ALL) ALL

With the %wheel line uncommented as shown in our example, save the file by pressing
Escl, then typing :wq and pressing|Enter|. Now open the /etc/group file in your favorite
editor (nano is easy to use) and find the line that starts with the word wheel. Modify it
like so:

wheel:x:10:root,asteriskpbx

Save the file, log out from root by typing exit, and log in as the asteriskpbx user you
created. Test your sudo access by running the following command:

$ sudo 1ls /root/
[sudo] password for asteriskpbx:

After typing your password, you should get the output of the /root/ directory. If you
don’t, go back and verify the steps to make sure you didn’t skip or mistype anything.
The rest of the instructions in this chapter will assume that you’re the asteriskpbx user
and that you have sudo access.

One last thing needs to done, which will allow you to enter commands without having
to enter the full path. By default only root has /sbin/ and /usr/sbin/ in the default system
PATH, but we’ll add it to our asteriskpbx user as well since we’ll be running many ap-
plications located in those directories.

§ sudo is an application that allows a user to execute commands as another user, such as root, or the superuser.

Distribution Installation | 39

Start by opening the hidden file .bash_profile located within the asteriskpbx home di-
rectory with an editor. We’re then going to append :/usr/sbin:/sbin to the end of the
line starting with PATH:

$ vim ~/.bash_profile
PATH=$PATH: $HOME /bin:/usr/sbin:/sbin

As previously, save the file by pressing and then typing :wq and pressing [Enter].

With the operating system installed, you’re ready to install the dependencies required
for Asterisk. The next section deals with Ubuntu, so you can skip ahead to the section
“Software Dependencies” on page 44, which provides an in-depth review of the in-
stallation process. Alternatively, if you’ve already reviewed the information in that sec-
tion, you may want to refer back to the “Installation Cheat Sheet” on page 31 for a
high-level review of how to install Asterisk.

Ubuntu Server

Ubuntu Server is a popular Linux distribution loosely based on Debian. There is also
a popular desktop version of the software. The Ubuntu Server package contains no GUI
and is ideal for Asterisk installations.

To get the latest version of Ubuntu Server, ! visit http://www.ubuntu.com and select the
Server tab at the top of the page. You will be provided with a page that contains infor-
mation about Ubuntu Server Edition. Clicking the orange Download button in the
upper-right corner will take you to a page where you can select either the 32-bit or 64-
bit version of Ubuntu Server. After selecting one of the options, you can press the Start
download button.

Once you've downloaded the ISO file, burn it to a CD and start the installation process.
If you’re installing into a virtual machine (which we don’t recommend for production
use, but can be a great way to test out Asterisk), you should be able to mount the ISO
file directly and install from there.

Base system installation

Upon booting from the CD, you will be presented with a screen where you can select
your language of choice. By default English is the selected language, and after a timeout
period, it will be automatically selected. After selecting your language, press [Enter].

The next screen will give you several options, the first of which is Install Ubuntu

Server. Select it by pressing Enter|

You will then be asked which language to use for the installation (yes, this is slightly
redundant). Select your language of choice (the default is English), and press .

[I' Of course, projects can change their websites whenever they want. Hopefully the instructions we’ve provided
here are accurate enough to help guide you through the site even in the event of changes.

40 | Chapter3: Installing Asterisk

http://www.ubuntu.com

You will be presented with a list of countries. Once you’ve found your country and

highlighted it, press Enter].

You will then be asked if you would like to use the keyboard layout detector. If you
know which keyboard type you have, you can select and then pick it from a list of
formats.

If you are utilizing the keyboard layout detector, you will be prompted to press a series
of keys. If you use the keyboard detector and it does not detect your keyboard correctly
(typical when installing into a virtual machine via a remote console), you can go back
and select from a list manually.

Once you’ve picked your keyboard, the installation will continue by attempting to set
up your network automatically. If all goes well, you will be prompted to enter a host-
name for your system. You can pick anything you want here, unless your network
requires your system to a have a specific hostname. Input it now and then press
-Enter.

The installer will attempt to contact a Network Time Protocol (NTP) server to syn-
chronize your clock. Ubuntu will then try to autodetect your time zone and present
you with its choice. If correct, select|Yes|, otherwise, select and you’ll be presented
with a list of time zones to select from. Select your time zone, or select from the world-
wide list if your time zone is not shown. Once you’ve selected your time zone, press

to continue.

The installer will then ask you some questions about partitioning your system. Typically
the default is fine, which is to use the guided system, utilizing the entire disk, and to
set up the Logical Volume Manager (LVM). Press Enter| once you’ve made your selec-
tion. Then you’ll be asked which partition to install to, which likely is the only one on

your system. Press to continue, at which point you’ll be asked to confirm the
changes to the partition table. Select and press to continue.

You will now be asked how much space to use (the default value will be to use the
entire disk). Press once you've entered and confirmed the amount of space you
want to use. The installer will then request one last confirmation before making the
changes to the disk. Select to write the changes to disk. The installer will now
format the hard disk, write the partitioning scheme to disk, copy the files, and perform
the file installation.

When the file installation is complete, you’ll be asked to enter the Full name of the new
user, from which a username will be generated. The system will suggest a username,
but you are free to change the username to whatever you like.

Distribution Installation | 41

After entering your username, you’ll be asked to supply a password, and then asked to
confirm the password you’ve entered. Ubuntu does a good job of providing a secure
system by not providing direct access to root, but rather using the sudo application,
which allows you to run commands as root without being the root user. Enter a user-
name,* such as asteriskpbx, and a secure password to continue. You’ll use these to log
into the system once the installer ends. The installer will then ask you if you want to
encrypt your home directory. This is not necessary and will add CPU overhead.

W

The rest of the installation instructions will assume that asteriskpbx was
chosen as the username.

If your system is behind a web proxy, enter the proxy information now. If you’re not
behind a proxy, or don’t know if you are, simply press [Enter|.

You will then be asked if you want to install updates automatically. The default is to
perform no automatic updates, which is what we recommend. Should a system reboot
occur, an update to the kernel will render Asterisk nonstartable until you recompile
it" (which won’t make you popular). It is better practice to identify updates on a regular
basis and perform them manually in a controlled manner. Normally, you would want
to advise your users of the expected downtime and schedule the downtime to happen
after business hours (or while a redundant system is running). Select No automatic

updates and press |Enter].

Since we’ll be installing our dependencies with apt-get, we only need to select one
package during the install: OpenSSH server. SSH is essential if you wish to perform
remote work on the system. However, if your local policy states that your server needs
to be managed directly, you may not want to install the OpenSSH server.

Pressing the key will acceit the current selections and move on

with the install. You need to use |space bar|to toggle your selections.

After you've selected OpenSSH server, press [Enter]

If this is the only operating system on the machine (which it likely is), Ubuntu will give
you the option to install the GRUB bootloader on your system. It provides this prompt
in order to give you the option of skipping the GRUB installation, as it will modify the
master boot record (MBR) on your system. If there is another operating system it has

#Ubuntu has reserved the username asterisk internally.

* While we say Asterisk here, specifically it is DAHDI that is the problem. DAHDI is a set of Linux kernel
modules used with Asterisk.

42 | Chapter3: Installing Asterisk

failed to detect that has information loaded into the MBR, it’s nice to be able to skip
modifying it. If this is the only operating system installed on your server, select [Yes|.

When the system has finished the install, you’ll be asked to remove any media in the
drives and to reboot the system by selecting Continue, at which point the installation
will be complete and the system will reboot.

Base system update

Now that we’ve completed installing Ubuntu Server, we need to perform a system
update with apt-get to make sure we have the latest packages installed. You’ll be pre-
sented with a login prompt where you’ll log in with the username and password you
created in the installer (e.g., asteriskpbx). Once logged in, run the following command:

$ sudo apt-get update
[sudo] password for asteriskpbx:

Reading package lists... Done

$ sudo apt-get upgrade
Reading state information... Done

Do you want to continue [Y/n]? y

The password that sudo wants is the password you just logged in with.

Press|Enter|when prompted to continue, at which point the latest package updates will
be installed. When complete, reboot the system for the changes to take effect as the
kernel has probably been updated.

$ sudo reboot

Congratulations! You’ve successfully installed and updated the base Ubuntu Server
system.

Enable NTP for accurate system time

Keeping accurate time is essential on your Asterisk system, both for maintaining accu-
rate call detail records as well as for synchronization with your other programs. You
don’t want the times of your voicemail notifications to be off by 10 or 20 minutes, as
this can lead to confusion and panic from those who might think their voicemail noti-
fication took too long to be delivered:

$ sudo apt-get install ntp

Distribution Installation | 43

The default on Ubuntu is to run a time sync server without ever changing the time on
your own machine. This won’t work for our needs, so we’ll need to change the
configuration file slightly. Because of this, we need to guide you through using a com-
mand line editor. The nano editor is already installed on your Ubuntu machine and is
remarkably easy to useT:

$ sudo nano /etc/ntp.conf
Your terminal will switch to full-screen output.

Use your arrow keys to move down to the section that looks like

By default, exchange time with everybody, but don't allow configuration.
restrict -4 default kod notrap nomodify nopeer noquery
restrict -6 default kod notrap nomodify nopeer noquery

Add two new lines after this section, to allow ntpd to synchronize your time with the
outside world, such that the above section now looks like
By default, exchange time with everybody, but don't allow configuration.

restrict -4 default kod notrap nomodify nopeer noquery
restrict -6 default kod notrap nomodify nopeer noquery

restrict -4 127.0.0.1
restrict -6 ::1
That’s everything we need to change, so exit the editor by pressing [Ctrl+X]. When

prompted whether to save the modifications, press Y}, nano will additionally ask you
for the filename. Just hit to confirm the default /etc/ntp.conf.

Now restart the NTP daemon:
$ sudo /etc/init.d/ntp restart

With the operating system installed, you’re ready to install the dependencies required
for Asterisk. The next section provides an in-depth review of the installation process.
If you’ve already reviewed the information in “Software Dependencies” on page 44,
you may want to refer back to “Installation Cheat Sheet” on page 31 for a high-level
review of how to install Asterisk.

Software Dependencies

The first thing you need to do once you’ve completed the installation of your operating
system is to install the software dependencies required by Asterisk. The commands
listed in Table 3-1 have been split into two columns, for Ubuntu Server and CentOS
Server. These packages will allow you to build a basic Asterisk system, along with
DAHDI and LibPRI. Not every module will be available at compile time with these

1 If you’re already familiar with another editor, go ahead and use it. The nano editor has been selected for its
ease of use and its handy on-screen instructions. We even know a developer at Digium who uses it while
writing code for Asterisk, though most people tend to use more complex editors such as emacs or vim.

44 | Chapter3: Installing Asterisk

dependencies; only the most commonly used modules will be built. If additional
dependencies are required for other modules used later in the book, instructions will
be provided as necessary.

Please be aware that the dependency information on CentOS 64-bit does
*t% not take into account that 32-bit libraries should not be installed. If such

libraries are installed, you will end up with additional packages that use
disk space and can cause conflicts if the system attempts to compile
against a 32-bit library instead of its 64-bit counterpart. In order to re-
solve this problem, add .x86_64 to the end of each package name when
installing it. So, for example, instead of executing yum install ncurses-
devel, you will execute yum install ncurses-devel.x86_64. This is not
necessary on a 32-bit platform.

Table 3-1. Software dependencies for Asterisk on Ubuntu Server and CentOS Server
Ubuntu Cent0S
sudo apt-get install build-essential \ sudo yum install gcc gcc-c++ make wget \
subversion libncurses5-dev libssl-dev \ subversion libxml2-devel ncurses-devel \

libxml2-dev vim-nox openssl-devel vim-enhanced

These packages will get you most of what you’ll need to get started with installing
Asterisk, DAHDI, and LibPRI. Note that you will also require the software dependen-
cies for each package that we indicate needs to be installed. These will be resolved
automatically for you when you use either yum or apt-get.

We have also included the OpenSSL development libraries, which are not strictly nec-
essary to compile Asterisk, but are good to have: they enable key support and other
encryption functionality.

We have installed vim as our editor, but you can choose anything you want, such as
nano, joe, or emacs.

Asterisk contains a script that will install the dependencies for all features in Asterisk.
At this time it is complete for Ubuntu but does not list all required packages for CentOS.
Once you have downloaded Asterisk using the instructions in “Downloading What
You Need” on page 46, use the following commands if you would like to run it:

$ cd ~/src/asterisk-complete/asterisk/1.8

$ sudo ./contrib/scripts/install_prereq install
$ sudo ./contrib/scripts/install_prereq install-unpackaged

Software Dependencies | 45

Third-Party Repositories

For certain software dependencies, a third-party repository may be necessary. This
appears to be most often the case when using CentOS. A couple of repositories that
seem to be able to provide all the extra dependencies required are RPMforge (http://dag
.wieers.com/rpm/) and EPEL (Extra Packages for Enterprise Linux, http://fedoraproject
.org/wiki/EPEL).

We may occasionally refer to these third-party repositories when they are required to
obtain a dependency for a module we are trying to build and use.

Downloading What You Need

There are several methods of getting Asterisk: via the Subversion code repository, via
wget from the downloads site, or via a package-management system such as apt-get or
yum. We're only going to cover the first two methods, since we’re interested in building
the latest version of Asterisk from source. Typically, package-management systems will
have versions that are older than those available from Subversion or the downloads
site, and we want to make sure we have the most recent fixes available to us, so we tend
to avoid them.

W

The official packages from Digium do tend to stay up to date. There are
currently packages for CentOS/RHEL available at http://www.asterisk
U .org/downloads/yum.

Before we start getting the source files, let’s create a directory structure to house the
downloaded code. We’re going to create the directory structure within the home di-
rectory for the asteriskpbx user on the system. Once everything is built, it will be in-
stalled with the sudo command. We’ll then go back and change the permissions and
ownership of the installed files in order to build a secure system. To begin, issue the
following command:

$ mkdir -p ~/src/asterisk-complete/asterisk

Now that we’ve created a directory structure to hold everything, let’s get the source
code. Choose one of the following two methods to get your files:

1. Subversion

2. wget

46 | Chapter3: Installing Asterisk

http://dag.wieers.com/rpm/
http://dag.wieers.com/rpm/
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://www.asterisk.org/downloads/yum
http://www.asterisk.org/downloads/yum

Getting the Latest Version

Asterisk is a constantly evolving project, and there are many different versions of the
software that you can implement.

In Chapter 2, we talked about Asterisk versioning. The concept of how Asterisk is
versioned is important to understand because the versioning system for Asterisk has
undergone a few changes of methodology over the years. So, if you’re not up to speed
on Asterisk versioning, we strongly recommend that you go back and read “Asterisk
Versioning” on page 26.

Having said all that, in most cases all you need to do is grab the latest version from the
http:/lwww.asterisk.org/downloads website. We will be installing and using Asterisk 1.8
throughout this book.

Getting the Source via Subversion

Subversion is a version control system that is used by developers to track changes to
code over a period of time. Each time the code is modified, it must first be checked out
of the repository; then it must be checked back in, at which point the changes are
logged. Thus, if a change creates a regression, the developers can go back to that change
and remove it if necessary. This is a powerful and robust system for development work.
It also happens to be useful for Asterisk administrators seeking to retrieve the software.
To download the source code to the latest version of Asterisk 1.8, use these commands:

$ cd ~/src/asterisk-complete/asterisk
$ svn co http://svn.asterisk.org/svn/asterisk/branches/1.8

You can now skip directly to “How to Install It” on page 48.

W N

The preceding commands will retrieve the latest changes to the source
in that particular branch, which are changes that have been made after
s the latest release. If you would prefer to use a released version, please
" refer to the next section.

Getting the Source via wget

To obtain the latest released versions of DAHDI, LibPRI, and Asterisk using the wget
application, issue the following commands:
$ cd ~/src/asterisk-complete/asterisk
$ wget \
http://downloads.asterisk.org/pub/telephony/asterisk/asterisk-1.8-current.tar.gz
$ tar zxvf asterisk-1.8-current.tar.gz

The next step is to compile and install the software, so onward to the next section.

Downloading What You Need | 47

http://www.asterisk.org/downloads

How to Install It

With the source files downloaded you can compile the software and install it. The order
for installing is:

1. LibPRI#
2. DAHDIS
3. Asteriskl

Installing in this order ensures that any dependencies for DAHDI and Asterisk are
installed prior to running the configuration scripts, which will subsequently ensure that
any modules dependent on LibPRI or DAHDI will be built.

So, let’s get started.

LibPRI

LibPRI is a library that adds support for ISDN (PRI and BRI). The use of LibPRI is
optional, but since it takes very little time to install, doesn’t interfere with anything,
and will come in handy if you ever want to add cards to a system at a later point, we
recommend that you install it now.

Check out the latest version of LibPRI and compile it like so:

$ cd ~/src/asterisk-complete/

$ mkdir libpri

$ cd libpri/

$ svn co http://svn.asterisk.org/svn/libpri/tags/1.4.<your version number>
$ cd 1.4.<your version number>

$ make

$ sudo make install

B
)

You can also download the source via wget from http://downloads.aster
isk.org/pub/telephony/libpri/.

With LibPRI installed, we can now install DAHDI.

1 Strictly speaking, if you are not going to be using any ISDN connections (BRI and PRI), you can install Asterisk
without LibPRI. However, we are going to install it for the sake of completeness.

§ This package contains the kernel drivers to allow Asterisk to connect to traditional PSTN circuits. It is also
required for the MeetMe() conferencing application. Again, we will install this for completeness.

I If you don’t install this, none of the examples in this book will work, but it could still make a great bathroom
reader. Just sayin’.

48 | Chapter3: Installing Asterisk

http://downloads.asterisk.org/pub/telephony/libpri/
http://downloads.asterisk.org/pub/telephony/libpri/

DAHDI

The Digium Asterisk Hardware Device Interface, or DAHDI (formerly known as Zaptel),
is the software Asterisk uses to interface with telephony hardware. We recommend that
you install it even if you have no hardware installed, because DAHDI is a dependency
required for building the timing module res_timing_dahdi and is used for Asterisk
dialplan applications such as MeetMe().

DAHDI-tools and DAHDI-linux

DAHDI is actually a combination of two separate code bases: DAHDI-tools, which
provides various administrator tools such as dahdi_cfg, dahdi_scan, etc.; and DAHDI-
linux, which provides the kernel drivers. Unless you're only updating one or the other,
you’ll be installing both at the same time, which is referred to as DAHDI-linux-com-
plete. The version numbering for DAHDI-linux-complete will look something like
2.4.0+2.4.0, where the number to the left of the plus sign is the version of DAHDI-
linux included, and the version number to the right of the plus sign is the DAHDI-
tools version included.

There are also FreeBSD drivers for DAHDI, which are maintained by the community.
These drivers are available at http://downloads.asterisk.org/pub/telephony/dahdi-freebsd
-completel/.

Another dependency is required for installing DAHDI, and that is the kernel source. It
is important that the kernel version being used match exactly that of the kernel source
being installed. You can use uname -a to verify the currently running kernel version:

* CentOS: sudo yum install kernel-devel- uname -1’

* Ubuntu: sudo apt-get install linux-headers-uname -1’

The use of uname -r surrounded by backticks (*) is for filling in the currently running
kernel version so the appropriate package is installed.

The following commands show how to install DAHDI-linux-complete 2.4.0+2.4.0.
There may be a newer version available by the time you are reading this, so check
downloads.asterisk.org first. If there is a newer version available, just replace the version
number in the commands:

$ cd ~/src/asterisk-complete/

$ mkdir dahdi

$ cd dahdi/

$ svn co http://svn.asterisk.org/svn/dahdi/linux-complete/tags/2.4.0+2.4.0
$ cd 2.4.0+2.4.0

$ make

$ sudo make install

$ sudo make config

HowtolInstall It | 49

http://downloads.asterisk.org/pub/telephony/dahdi-freebsd-complete/
http://downloads.asterisk.org/pub/telephony/dahdi-freebsd-complete/

You will need to have Internet access when running the make all com-
mand, as it will attempt to download the latest hardware firmware from

the Digium servers.

After installing DAHDI, we can move on to installing Asterisk.

B
)

You can also download the source via wget from http://downloads.aster
isk.org/pub/telephony/dahdi-linux-complete/.

Asterisk
With both DAHDI and LibPRI installed, we can now install Asterisk:

$ cd ~/src/asterisk-complete/asterisk/1.8
$./configure

$ make

$ sudo make install

$ sudo make config

With the files now installed in their default locations, we need to modify the permis-
sions of the directories and their contents.

B
)

There is an additional step that is not strictly required, but is quite com-

mon (and arguably important): the make menuselect command, which

Wis provides a graphical interface that allows detailed selection of which

" modules and features will be compiled. We will discuss this in “make
menuselect” on page 59.

Setting File Permissions

In order to run our system more securely, we’ll be installing Asterisk and then running
it as the asteriskpbx user. After installing the files into their default locations, we need
to change the file permissions to match those of the user we’re going to be running as.
Execute the following commands after running make install (which we did previously):

$ sudo chown -R asteriskpbx:asteriskpbx /usr/lib/asterisk/

$ sudo chown -R asteriskpbx:asteriskpbx /var/lib/asterisk/

$ sudo chown -R asteriskpbx:asteriskpbx /var/spool/asterisk/

$ sudo chown -R asteriskpbx:asteriskpbx /var/log/asterisk/

$ sudo chown -R asteriskpbx:asteriskpbx /var/run/asterisk
$ sudo chown asteriskpbx:asteriskpbx /usr/sbin/asterisk

In order to use MeetMe() and DAHDI with Asterisk as non-root, you must change
the /etc/udev/rules.d/dahdi.rules so that the OWNER and GROUP fields match the non-root
user Asterisk will be running as. In this case, we’re using the asteriskpbx user.

50 | Chapter3: Installing Asterisk

http://downloads.asterisk.org/pub/telephony/dahdi-linux-complete/
http://downloads.asterisk.org/pub/telephony/dahdi-linux-complete/

Change the last line of the dahdi.rules file to the following;:
SUBSYSTEM=="dahdi", OWNER="asteriskpbx", GROUP="asteriskpbx", MODE="0660"

With that out of the way, we can move on to performing the base configuration that
should be done after all installations.

Base Configuration

Now that we’ve got Asterisk installed, we can get our system up and running. The
purpose here is to get Asterisk loaded up and ready to go, as it isn’t doing anything
useful yet. These are the steps that all system administrators will need to start out with
when installing a new system. If the commands that need to be run differ on CentOS
and Ubuntu, you will see a table with rows labeled for each distribution; otherwise,
you will see a single command that should be run regardless of which Linux distribution
you have chosen.

Disable SELinux

This section applies only to CentOS users, so if you’re using Ubuntu,
you can skip to the next section.
&8

In CentOS, the Security-Enhanced Linux (SELinux) system is enabled by default, and
it often gets in the way of Asterisk. Sometimes the issues are quite subtle, and at least
one of the authors has spent a good number of hours debugging issues in Asterisk that
turned out to be resolved by disabling SELinux. There are many articles on the Internet
that describe the correct configuration of SELinux, but we’re going to disable it for the
sake of simplicity.

B
)

While disabling SELinux is not the ideal situation, the configuration of
SELinux is beyond the scope of this book, and frankly, we just don’t
W have enough experience with it to configure it correctly.

To temporarily switch off SELinux, perhaps in order to verify whether an issue you’re
having is being caused by SELinux, run the following command as root:

$ sudo echo 0 > /selinux/enforce

You can reenable SELinux by doing the same thing, but replacing the 0 with a 1:

$ sudo echo 1 > /selinux/enforce

Base Configuration | 51

To disable SELinux permanently, modify the /etc/selinux/config file:

$ cd /etc/selinux/
$ sudo vim config

Change the SELINUX option from enforcing to disabled.

W

Alternatively, you can change the value of enforcing to permissive,
which simply logs the errors instead of enforcing the policy.

When you’re done modifying the configuration file, you’ll have the following:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:

enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - SELinux is fully disabled.

SELINUX=disabled

SELINUXTYPE= type of policy in use. Possible values are:

targeted - Only targeted network daemons are protected.
strict - Full SELinux protection.

SELINUXTYPE=targeted

SETLOCALDEFS= Check local definition changes
SETLOCALDEFS=0

Since you can’t disable SELinux without rebooting, you’ll need to do that now:

$ sudo reboot

Initial Configuration

In order to get Asterisk up and running cleanly, we need to create some configuration
files. We could potentially install the sample files that come with Asterisk (by executing
the make samples command in our Asterisk source) and then modify those files to suit
our needs, but the make samples command installs many sample files, most of them
for modules that you will never use. We want to limit which modules we are loading,
and we also believe that it’s easier to understand Asterisk configuration if you build
your config files from scratch, so we’re going to create our own minimal set of config-
uration files.#

The first thing we need to do (assuming it does not already exist) is create the /etc/
asterisk/ directory where our configuration files will live:

$ sudo mkdir /etc/asterisk/
$ sudo chown asteriskpbx:asteriskpbx /etc/asterisk/

#1f your /etc/asterisk/ folder has files in it already, move those files to another directory, or delete them if you
are sure you don’t need what is there.

52 | Chapter3: Installing Asterisk

Running make samples on a system that already has configuration files
will overwrite the existing files.

Using make samples to Create Sample
Configuration Files for Future Reference

Even though we are not going to use the sample configuration files that come with
Asterisk, the fact is that they are an excellent reference. If there is a module that you
are not currently using but wish to put into production, the sample file will show you
exactly what syntax to use, and what options are available for that module.

Running the sudo make samples command in your Asterisk source directory” is harmless
on a new system that has just been built, but it is very dangerous to run on a system
that already has configuration files, as this command will overwrite any existing files
(which would be a disaster for you if you do not have a current backup).

If you’ve run the sudo make samples command, you will want to move the files that it
has created in /etc/asterisk/ to another folder. We like to create a folder called /etc/
asterisk/unused/ and put any sample/unused configuration files in there, but feel free
to store them wherever you like.

We’re now going to step through all the files that are required to get a simple Asterisk
system up and running.

indications.conf and asterisk.conf

The first file needed is indications.conf, a file that contains information about how to
detect different telephony tones for different countries. There is a perfectly good sample
file that we can use in the Asterisk source, so let’s copy it into our /etc/asterisk/ directory:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/indications.conf.sample \
/etc/asterisk/indications.conf

Because we’re running Asterisk as non-root, we need to tell Asterisk which user to run
as. This is done with the asterisk.conf file. We can copy a sample version of it from the
Asterisk source to /etc/asterisk:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/asterisk.conf.sample \
/etc/asterisk/asterisk.conf

The asterisk.conf file contains many options that we won’t go over here (they are cov-
ered in “asterisk.conf” on page 71), but we do need to make an adjustment. Near the
end of the [options] section, there are two options we need to enable: runuser and
rungroup.

* lusr/src/asterisk-complete/asterisk/asterisk-1.8.<your version>/

Base Configuration | 53

Open the asterisk.conf file with an editor such as nano or vim: Uncomment the run
user and rungroup lines, and modify them so that they each contain asteriskpbx as the
assigned value. Open the /etc/asterisk/asterisk.conf file with vim:

$ vim /etc/asterisk/asterisk.conf
Then modify the file by uncommenting the two lines starting with runuser and run
group and modifying the value to asteriskpbx.

runuser=asteriskpbx
rungroup=asteriskpbx

We now have all the configuration files required to start a very minimal version of
Asterisk.T Give it a shot by starting Asterisk up in the foreground:

$ /usr/sbin/asterisk -cvwv

B
)

We are specifying the full path to the asterisk binary, but if you modify
your PATH system variable to include the /usr/sbin/ directory you don’t
s need to specify the full path. See “Adding a system user” on page 39 for
" information about modifying the $PATH environment variable.

Asterisk will start successfully without any errors or warnings (although it does warn
you that some files are missing), and present to you the Asterisk command-line interface
(CLI). At this point there are no modules, minimal core functionality, and no channel
modules with which to communicate, but Asterisk is up and running.

Executing the module show command at the Asterisk CLI shows that there are no ex-
ternal modules loaded:

*CLI> module show

Module Description Use Count
0 modules loaded

We’ve done this simply to demonstrate that Asterisk can be run in a very minimal state,
and doesn’t require the dozens of modules that a default install will enable. Let’s stop
Asterisk with the core stop now CLI command:

*CLI> core stop now

T So minimal, in fact, that it’s completely useless at this point. But we digress.

54 | Chapter3: Installing Asterisk

The Asterisk Shell Command

Asterisk can be run either as a daemon or as an application. In general, you will want
to run it as an application when you are building, testing, and troubleshooting, and as
a daemon when you put it into production.

The command to start Asterisk is the same regardless of whether you’re running it as
a daemon or an application:

asterisk

However, without any arguments, this command will assume certain defaults and start
Asterisk as a background application. In other words, you never want to run the com-
mand asterisk on its own, but rather will want to pass some options to it to better define
the behavior you are looking for. The following list provides some examples of common
usages.

-h
This command displays a helpful list of the options you can use. For a complete
list of all the options and their descriptions, run the command man asterisk.

This option starts Asterisk as an application (in the foreground). This means that
Asterisk is tied to your user session. In other words, if you close your user session
by logging out or losing the connection, Asterisk dies. This is the option you will
typically use when building, testing, and debugging, but you would not want to
use this option in production. If you started Asterisk in this manner, type core stop
now at the CLI prompt to stop Asterisk and exit.

-V, -VV, -VVV, -VVVV, elcC.

This option can be used with other options (e.g., -cvvv) in order to increase the
verbosity of the console output. It does exactly the same thing as the CLI command
core set verbose n where n is any integer between 0 and 5 (any integer greater than
5 will work, but will not provide any more verbosity). Sometimes it’s useful to not
set the verbosity at all. For example, if you are looking to see only startup errors,
notices, and warnings, leaving verbosity off will prevent all the other startup mes-
sages from being displayed.

-d, -dd, -ddd, -dddd, etc.
This option can be used in the same way as -v, but instead of normal output, this
will specify the level of debug output (which is primarily useful for developers who
wish to troubleshoot problems with the code). You will also need to enable output
of debugging information in the logger.conf file (which we will cover in more detail
in Chapter 24).

This command is essential if you want to connect to the CLI of an Asterisk process
running as a daemon. You will probably use this option more than any other for
Asterisk systems that are in production. This option will only work if you have a
daemonized instance of Asterisk already running. To exit the CLI when this option
has been used, type exit.

Base Configuration | 55

This option will add a timestamp to CLI output.

-X
This command allows you to pass a string to Asterisk that will be executed as if it
had been typed at the CLI. As an example, to get a quick listing of all the channels
in use without having to start the Asterisk console, simply type asterisk -rx 'core
show channels' from the shell, and you’ll get the output you are looking for.

-8

This option instructs Asterisk to dump a core file if it crashes.

We recommend you try out a few combinations of these commands to see what they do.

safe_asterisk

When you install Asterisk using the make config directive it will create a script called
safe_asterisk, which is run during the init process of Linux each time you boot.

The safe_asterisk script provides the following benefits:

* Restarts Asterisk automatically after a crash
* Can be configured to email the administrator if a crash has occurred
* Defines where crash files are stored (/tmp by default)
* Executes a script if a crash has occurred
You don’t need to know too much about this script, other than to understand that it

should normally be running. In most environments this script works fine in its default
format.

modules.conf

So, we’ve managed to get Asterisk running, but it’s not able to do anything useful for
us yet. To tell Asterisk what modules we expect it to load, we’ll need a modules.conf file.

Create the file modules.conf in your /etc/asterisk/ directory with the following command
(replace the >> with > if you instead want to overwrite an existing file):

$ cat >> /etc/asterisk/modules.conf
Type (or paste) the following lines, and press |Ctrl+D| on a new line when you’re
finished:

; The modules.conf file, used to define which modules Asterisk should load (or

; not load).

bl
[modules]
autoload=yes

56 | Chapter3: Installing Asterisk

Using cat to Quickly Create Files and Add Content to Them

There are many cases in a Linux system where it is necessary to create a file, and then
add some content to it. This is commonly done by using the touch command to create
the file, and then opening it with an editor to add the content. However, there is a less-
known way of doing this that lets you create the file and add the content all at once:

* Use the cat program to redirect output to the file you want (use >> to append, or
> to overwrite).

* Paste or type the content you want to add to the file.
« Press|Ctlq+D] to complete your changes.

Presto! File created and content added.

The autoload=yes line will tell Asterisk to automatically load all modules located in
the /usr/lib/asterisk/modules/ directory. If you wanted to, you could leave the file like
this, and Asterisk would simply load any modules it found in the modules folder.

With your new modules.conf file in place, starting Asterisk will cause a whole slew of
modules to be loaded. You can verify this by starting Asterisk and running the module
show command:

$ asterisk -c
*CLI> module show

Module Description Use Count
res_speech.so Generic Speech Recognition API 0
res_monitor.so Call Monitoring Resource 0
func_math.so Mathematical dialplan function 0

171 modules loaded

We now have many modules loaded, and many additional dialplan applications and
functions at our disposal. We don’t need all these resources loaded, though, so let’s
filter out some of the more obscure modules that we don’t need at the moment. Modify
your modules.conf file to contain the following noload lines, which will tell Asterisk to
skip loading the identified modules:

; Resource modules

noload => res_speech.so

noload => res_phoneprov.so

noload => res_ael_share.so

noload => res_clialiases.so
noload => res_adsi.so

; PBX modules
noload => pbx_ael.so
noload => pbx_dundi.so

Base Configuration | 57

; Channel

noload
noload
noload
noload
noload
noload
noload

=>

modules
chan_oss.so
chan_mgcp.so
chan_skinny.so
chan_phone.so
chan_agent.so
chan_unistim.so
chan_alsa.so

; Application modules

noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload
noload

There are, of course, other modules that you could remove, and others that you may
find extremely useful, so feel free to tweak this file as you wish. Ideally, you should be
loading only the modules that you need for the system you are running. The examples
in this book assume that your modules.conf file looks like our example here.

Additional information about the modules.conf file can be found in the section “mod-

=>

app_nbscat.so
app_amd.so
app_minivm.so
app_zapateller.so
app_ices.so
app_sendtext.so
app_speech_utils.so
app_mp3.so
app_flash.so
app_getcpeid.so
app_setcallerid.so
app_adsiprog.so
app_forkcdr.so
app_sms.so
app_morsecode.so
app_followme.so
app_url.so
app_alarmreceiver.so
app_disa.so
app_dahdiras.so
app_senddtmf.so
app_sayunixtime.so
app_test.so
app_externalivr.so
app_image.so
app_dictate.so
app_festival.so

ules.conf” on page 75.

musiconhold.conf

The musiconhold.conf file defines the classes for music on hold in your Asterisk system.
By defining different classes, you can specify different hold music to be used in various
situations, such as different announcements to be played while holding in a queue, or
different hold music if you have multiple PBXs hosted on the same system. For now,

58 | Chapter3: Installing Asterisk

we’ll just create a default music on hold class so that we have at a minimum some hold
music when placing callers on hold:

$ cd /etc/asterisk/
$ cat >> musiconhold.conf

; musiconhold.conf
[default]
mode=files
directory=moh

[Ctr1}+p]

We’ve created a musiconhold.conf file and defined our [default] hold music class.
We're also assuming you installed the hold music from the menuselect system; by de-
fault there is at least one music on hold package installed, so unless you disabled it,
you should have music in at least one format.

Additional information about musiconhold.conf can be found in the section “musicon-
hold.conf” on page 79.

make menuselect

menuselect is a text-based menu system in Asterisk used to configure which modules
to compile and install. The modules are what give Asterisk its power and functionality.
New modules are constantly being created.

In the installation sections, we conveniently skipped over using the menuselect system
in order to keep the instructions simple and straightforward. However, it is important
enough that we have given menuselect its own section.

In addition to specifying which modules to install, menuselect also allows you to set
flags that can aid in debugging issues (see Chapter 2), set optimization flags, choose
different sound prompt files and formats, and do various other nifty things.

Uses for menuselect

We would need a whole chapter in order to fully explore menuselect, and for the most
part you won’t need to make many changes to it. However, the following example will
give you an idea of how menuselect works, and is recommend for any installation.

By default Asterisk only installs the core sound prompt files, and only in GSM format.
Also, the three OpSound music on hold files available for download are only selected
in .wav format.¥

1 A good way to put the final touches on your new system is to install some appropriate sound files to be used
as music on hold. There are only three songs installed by default, and callers will quickly tire of listening to
the same three songs over and over again. We’ll discuss this more in “musiconhold.conf” on page 79.

Base Configuration | 59

http://www.opsound.org/

We’re going to want extra sound prompts installed instead of just the default core sound
prompts, and in a better-sounding format than GSM. We can do this with the menu-
select system by running make menuselect in the Asterisk source directory. Before ex-
ploring that, though, let’s talk about the different menuselect interfaces.

menuselect interfaces

There are two interfaces available for menuselect: curses and newt. If the 1ibnewt libra-
ries are installed, you will get the blue and red interface shown in Figure 3-1. Otherwise,
by default menuselect will use the curses (black and white) interface shown in Figure 3-2.

The minimum screen size for the curses interface is 80x27, which means
it may not load if you’re using the default terminal size for a simple
distribution installation. This is not a problem when you’re using SSH
to reach the server remotely, as typically your terminal can be resized,
but if you’re working at the terminal directly you may need to have
screen buffers installed to enable a higher resolution, which is not rec-
ommended for a system running Asterisk. The solution is to use the
newt-based menuselect system.

Asterisk Module and Build Option Selection

Add-ons (= README -a s.txt) -] 1
Applications app_saycountpl
Bridging Modules cdr_mysql

Call Detail Recording chan mobile
Channel Event Logging chan_ooh323
Charrel Drivers format mp3

Codec Translators res config mysql
Format Interpreters

Dialplan Functions

- BRI .

Simple Mysqgl Interface

Depends on: mysglclient(E)
Can use: N/A
Conflicts with: N/A

<ENTER> toggles selection | <Fl2> saves & exits | <E exlits without save

Figure 3-1. menuselect using the newt interface

60 | Chapter3: Installing Asterisk

Figure 3-2. menuselect using the curses interface

Installing Dependencies for newt-Based menuselect

To get the newt-based menuselect working, you need to have the libnewt development
libraries installed:

¢ CentOS: sudo yum install libnewt-devel
* Ubuntu: sudo apt-get install libnewt-dev

If you’ve previously used menuselect with the curses interface, you need to rebuild. You
can do this with the following commands:

$ cd ~/src/asterisk-complete/asterisk/1.8.<your version>/
$ cd menuselect

$ make clean

$./configure

$cd..

$ make menuselect

After that you should have the newt-based interface available to you.

Using menuselect

Run the following commands to start menuselect:

$ cd ~/src/asterisk-complete/asterisk/1.8.<your version>/
$ make menuselect

Base Configuration | 61

You will be presented with a screen such as that in Figure 3-1 or Figure 3-2. You can
use the arrow keys on your keyboard to move up and down. The key will
take you into a submenu, and the key will take you back. You can use the

space bar] or [Enter] key to select and deselect modules. Pressing the [q] key will quit
without saving, while the x| key will save your selections and then quit.

Module Dependencies

Modules that have XXX in front of them are modules that cannot be compiled because
the configure script was not able to find the dependencies required (for example, if you
don’t have the unixODBC development package installed, you will not be able to com-
pile func_odbcS). Whenever you install a dependency, you will always need to rerun
configure before you run menuselect, so that the new dependency will be properly lo-
cated. The dependant module will at that point be available in menuselect. If the module
selection still contains XXX, either the configure script is still unable to find the depend-
ency or not all dependencies have been satisfied.

Once you've started menuselect, scroll down to Core Sound Packages and press the
key (or [Enter) to open the menu. You will be presented with a list of
available options. These options represent the core sound files in various languages and
formats. By default, the only set of files selected is CORE-SOUNDS-EN-GSM, which is the
English-language Core Sounds package in GSM format.

Select CORE-SOUNDS-EN-WAV and CORE - SOUNDS-EN-ULAW (or ALAW if you’re outside of North
America or Japanl), and any other sound files that may be applicable in your network.

The reason we have multiple formats for the same files is that Asterisk
can play back the appropriate format depending on which codec is ne-
% gotiated by an endpoint. This can lower the CPU load on a system sig-
" nificantly.

After selecting the appropriate sound files, press the key to go back to the
main menu. Then scroll down two lines to the Extra Sound Packages menu and press
the key (or [Enter]). You will notice that by default there are no packages
selected. As with the core sound files, select the appropriate language and format to be
installed. A good option is probably to install the English sound files in the WAV, ULAW,
and ALAW formats.

§ Which we will cover in Chapter 16, along with many other cool things.

[I'If you want to understand all about mu-law and A-law, you can read the section “Logarithmic
companding” on page 607. All you need to know here is that outside of North America and Japan, A-law is
used.

62 | Chapter3: Installing Asterisk

Once you’ve completed selecting the sound files, press the |x| key to save and exit
menuselect. You then need to install your new prompts by downloading them from the
Asterisk downloads site. This is done simply by running make install again:

$ sudo make install
$ sudo chown -R asteriskpbx:asteriskpbx /var/lib/asterisk/sounds/

The files will be downloaded, extracted, and installed into the appropriate location
(/var/liblasterisk/sounds/<language>/by default). Your Asterisk server will need to have
a working Internet connection in order to retrieve the files.

Scripting menuselect

Administrators often build tools when performing installations on several machines,
and Asterisk is no exception. If you need to install Asterisk onto several machines, you
may wish to build a set of scripts to help automate this process. The menuselect system
contains command-line options that you can use to enable or disable the modules that
are built and installed by Asterisk.

If you are starting with a fresh checkout of Asterisk, you must first execute the config-
ure script in order to determine what dependencies are installed on the system. Then
you need to build the menuselect application and run the make menuselect-tree com-
mand to build the initial tree structure:

$ cd ~/src/asterisk-complete/asterisk/1.8.<your version>/

$./configure

$ cd menuselect

$ make menuselect

$cd..

$ make menuselect-tree
Generating input for menuselect ...

For details about the options available, run menuselect/menuselect --help from the top
level of your Asterisk source directory. You will be returned output like the following:
Usage: menuselect/menuselect [--enable <option>] [--disable <option>]
[--enable-category <category>] [--enable-all]
[--disable-category <category>] [--disable-all] [...]
[<config-file> [...]]
Usage: menuselect/menuselect { --check-deps | --list-options
| --list-category <category> | --category-list | --help }
[<config-file> [...]]
The options displayed can then be used to control which modules are installed via the
menuselect application. For example, if you wanted to disable all modules and install
a base system (which wouldn’t be of much use) you could use the command:

$ menuselect/menuselect --disable-all menuselect.makeopts
If you then look at the menuselect.makeopts file, you will see a large amount of text that

displays all the modules and categories that have been disabled. Let’s say you now want
to enable the SIP channel and the Dial() application. Enabling those modules can be

Base Configuration | 63

done with the following command, but before doing that look at the current menuse-
lect.makeopts (after disabling all the modules) and locate app_dial in the MENUSE
LECT_APPS category and chan_sip in the MENUSELECT _CHANNELS category. After executing
the following command, look at the menuselect.makeopts file again, and you will see
that those modules are no longer listed:

% menuselect/menuselect --disable-all --enable chan_sip \
--enable app_dial menuselect.makeopts

W

The modules listed in the menuselect.makeopts file are those that will
not be built—modules that are not listed will be built when the make
s application is executed.

You can then build the menuselect.makeopts file in any way you want by utilizing the
other commands, which will allow you to build custom installation scripts for your
system using any scripting language you prefer.

Updating Asterisk

If this is your first installation, you can skip ahead to the section “Base Configura-
tion” on page 51. If you’re in the process of updating your system, however, there are
a couple of things you should be aware of.

L)
)

When we say updating your system, that is quite different from upgrad-
ing your system. Updating your system is the process of installing new
& minor versions of the same branch. For example, if your system is run-
" ning Asterisk 1.8.2 and you need to upgrade to the latest bug fix version
for the 1.8 branch, which was version 1.8.3, you’d be updating your
system to 1.8.3. In contrast, we use the term upgrade to refer to changes
between Asterisk branches (major version number increases). So, for
example, an upgrade would be going from Asterisk 1.4.34 to Asterisk
1.8.0.

When performing an update, you follow the same instructions outlined in the section
“How to Install It” on page 48.

W N
)

Additionally, if you’ve checked out a new directory for this version of
Asterisk (versus running svn up on a checked-out branch), and previ-
W ously used menuselect to tweak the modules to be compiled, you can
" copy the menuselect.makeopts file from one directory to another prior
to running ./configure. By copying menuselect.makeopts from the old
version to the new version, you save the step of having to (de)select all
your modules again.

64 | Chapter3: Installing Asterisk

The basic steps are:

$ cd ~/src/asterisk-complete/asterisk/1.8.<your version number>/
$./configure

$ make

$ make install

W

You don’t need to run sudo make install because we’ve already set the
directory ownership to the asteriskpbx user. You should be able to install
Wls: new files directly into the appropriate directories.

Upon installation, however, you may get a message like the following:
WARNING WARNING WARNING

Your Asterisk modules directory, located at
/usr/lib/asterisk/modules

contains modules that were not installed by this
version of Asterisk. Please ensure that these
modules are compatible with this version before
attempting to run Asterisk.

chan_mgcp.so
chan_oss.so
chan_phone.so
chan_skinny.so
chan_skype.so
codec_g729a.s0
res_skypeforasterisk.so

WARNING WARNING WARNING

This warning message is indicating that modules installed in the /usr/lib/asterisk/mod-
ules/ directory are not compatible with the version you’ve just installed. This most often
occurs when you have installed modules in one version of Asterisk, and then installed
anew version of Asterisk without compiling those modules (as the installation process
will overwrite any modules that existed previously, replacing them with their upgraded
versions).

To get around the warning message, you can clear out the /ust/lib/asterisk/modules/
directory prior to running make install. There is a caveat here, though: if you’ve installed
third-party modules, such as commercial modules from Digium (including chan_skype,
codec_g729a, etc.), you will need to reinstall those if you’ve cleared out your modules
directory.

It is recommended that you keep a directory with your third-party modules in it that
you can reinstall from upon update of your Asterisk system. So, for example, you might
create the /usr/src/asterisk-complete/thirdparty/1.8 directory as follows:

Updating Asterisk | 65

$ cd ~/src/asterisk-complete/
$ mkdir thirdparty/
$ mkdir thirdparty/1.8/

Downloading third-party modules into this directory allows you to easily reinstall those
modules when you upgrade. Just follow the installation instructions for your module,
many of which will be as simple as rerunning make install from the modules source
directory or copying the precompiled binary to the /ust/lib/asterisk/modules/ directory.

Be sure to change the file permissions to match those of the user running
R Asterisk!

Common Issues

In this section we’re going to cover some common issues you may run into while
compiling Asterisk, DAHDI, or LibPRI. Most of the issues you’ll run into have to do
with missing dependencies. If that is the case, please review “Software Dependen-
cies” on page 44 to make sure you’ve installed everything you need.

W
\
- Any time you install additional packages, you will need to run
ﬁ & the ./configure scriptin your Asterisk source in order for the new package
™N
* Qs to be detected.

-bash: wget: command not found

This message means you have not installed the wget application, which is required for
you to download packages from the Asterisk downloads site, for Asterisk to download
sound files, or for DAHDI to download firmware for hardware.

Ubuntu (Cent0S
$sudo apt-get install wget $sudo yum -y install wget

configure: error: no acceptable C compiler found in $PATH

This means that the Asterisk configure script is unable to find your C compiler, which
typically means you have not yet installed one. Be sure to install the gcc package for
your system.

Ubuntu Cent0S
$sudo apt-get install gcc $sudo yum install gec

66 | Chapter3: Installing Asterisk

make: gcc: command not found

This means that the Asterisk configure script is unable to find your C compiler, which
typically means you have not yet installed one. Be sure to install the gcc package for
your system.

Ubuntu Cent0S
$sudo apt-get install gcc $sudo yum install gec

configure: error: (++ preprocessor “/lib/cpp” fails sanity check

This error is presented by the Asterisk configure script when you have not installed the
GCC C++ preprocessor.

Ubuntu Cent0S

$sudo apt-get install g++ $sudo yum install gcc-c++

configure: error: *** Pleaseinstall GNU make. Itisrequired to build Asterisk!

This error is encountered when you have not installed the make application, which is
required to build Asterisk.

Ubuntu Cent0S

$sudo apt-get install make $sudo yum install make

configure: *** XML documentation will not be available because the
‘libxml2’ development package is missing.

You will encounter this error when the XML parser libraries are not installed. These
are required by Asterisk 1.8 and later, since console documentation (e.g., when you
run core show application dial on the Asterisk CLI) is generated from XML.

Ubuntu Cent0S
$sudo apt-get install libxml2-dev $sudo yum install libxml2-devel

configure: error: *** termcap support not found

This error happens when you don’t have the ncurses development library installed,
which is required by menuselect and for other console output in Asterisk.

Ubuntu Cent0S

$sudo apt-get install ncurses-dev $sudo yum install ncurses-devel

Common Issues | 67

You do not appear to have the sources for the 2.6.18-164.6.1.¢el5 kernel
installed.

You will get this error when attempting to build DAHDI without having installed the
Linux headers, which are required for building Linux drivers.

Ubuntu Cent0S

$sudo apt-get install linux-headers-‘uname -r* $sudo yum install kernel-devel

E:Unabletolocktheadministrationdirectory(/var/lib/dpkg/),areyouroot?

If you encounter this error it’s likely that you forgot to prepend sudo to the start of the
command you were running, which requires root permissions.

Upgrading Asterisk

Upgrading Asterisk between major versions, such as from 1.2 to 1.4 or from 1.6.2 to
1.8 is akin to upgrading an operating system. Once a phone switch is in production, it
is terribly disruptive for that system to be unavailable for nearly any length of time, and
the upgrade of that phone system needs to be well thought-out, planned, and tested as
much as possible prior to deployment. And because every deployment is different, it is
difficult, if not impossible, for us to walk you through a real system upgrade. However,
we can certainly point you in the right direction for the information you require in order
to perform such an upgrade, thereby giving you the tools you need to be successful.

A production Asterisk system should never be upgraded between major versions with-
out first deploying it into a development environment where the existing configuration
files can be tested and reviewed against new features and syntax changes between ver-
sions. For example, it may be that your dialplan relies on a deprecated command and
should be updated to use a new command that contains more functionality, has a better
code base, and will be updated on a more regular basis. Commands that are deprecated
are typically leftin the code for backward-compatibility, but issues reported about these
deprecated commands will be given lower priority than issues to do with the newer
preferred methods.

There exist two files that should be read prior to any system upgrade: CHANGES and
UPGRADE.txt, which are shipped with the Asterisk source code. These files contain
details on changes to syntax and other things to be aware of when upgrading between
major versions. The files are broken into different sections that reference things such
as dialplan syntax changes, channel driver syntax changes, functionality changes, and
deprecation of functionality, with suggestions that you update your configuration files
to use the new methods.

68 | Chapter3: Installing Asterisk

Another thing to consider when performing an upgrade is whether you really need to
perform the upgrade in the first place. If you’re using a long-term support (LTS)# ver-
sion of Asterisk and that version is happily working along for you, perhaps there is no
reason to upgrade your existing production system. An alternative to upgrading the
entire system is simply to add functionality to your system by running two versions
simultaneously on separate systems. By running separate boxes, you can access the
functionality added to a later version of Asterisk without having to disrupt your existing
production system. You can then perform the migration more gradually, rather than
doing a complete system upgrade instantly.

Two parts of Asterisk should be thoroughly tested when performing an upgrade be-
tween major versions: the Asterisk Manager Interface (AMI) and the Asterisk Gateway
Interface (AGI).

These two parts of Asterisk rely on testing your code to make sure any cleanup of syntax
changes in either the AMI or the AGI, or added functionality, does not interfere with
your existing code. By performing a code audit on what your program is expecting to
send or receive against what actually happens, you can save yourself a headache down
the road.

The testing of call detail records (CDRs) is also quite important, especially if they are
relied upon for billing. The entire CDR structure is really designed for simple call flows,
but it is often employed in complex call flows, and when someone reports an issue to
the tracker and it is fixed, it can sometimes have an effect on others who are relying on
the same functionality for different purposes. Asterisk 1.8 now includes channel event
logging (CEL), which is a system designed to get around some of the limitations of CDR
in more complex call flows (such as those that involve transfers, etc.). More information
about CEL is available in “CEL (Channel Event Logging)” on page 537.

Upgrading Asterisk can be a successful endeavor as long as sufficient planning and
testing are carried out prior to the full rollout. In some cases migrating to a separate
physical machine on which you’ve performed testing is preferred, as it can give you a
system to roll back to in case of some failure that can’t be resolved immediately. It’s
the planning, and particularly having a backup plan, that is the most important aspect
of an Asterisk upgrade.

Conclusion

In this chapter we looked at how to install an operating system (one of Ubuntu or
CentOS) and Asterisk itself. We did this securely by installing via sudo and running
Asterisk as the non-root user asteriskpbx. We are well on our way to building a func-
tional Asterisk system that will serve us well. In the following chapters we will explore

#More information about Asterisk releases and their support schedule is available at https://wiki.asterisk.org/
wiki/display/AST/Asterisk+Versions.

Conclusion | 69

https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions
https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions

how to connect devices to our Asterisk system in order to start placing calls internally
and how to connect Asterisk to outside services in order to place phone calls to end-
points connected to the PSTN and accept calls from those endpoints.

70 | Chapter3: Installing Asterisk

CHAPTER 4
Initial Configuration Tasks

Careful. We don’t want to learn from this.

—Calvin & Hobbes

In the last chapter, we covered how to install Asterisk. But where should you get started
with configuration? That is the question this chapter answers. There are a few common
configuration files that are relevant regardless of what you are using Asterisk to ac-
complish. In some cases they may not require any modification, but you need to be
aware of them.

asterisk.conf

The asterisk.conf configuration file allows you to tweak various settings that can affect
how Asterisk runs as a whole.

There is a sample asterisk.conf file included with the Asterisk source. It is not necessary
to have this file in your /etc/asterisk folder in order to have a working system, but you
may find that some of the possible options will be of use to you.

W

. Asterisk will look for asterisk.conf in the default configuration location,
"‘:\ which is usually /etc/asterisk. To specify a different location for aster-
T Qlay isk.conf, use the -C command-line option:

$ sudo asterisk -C /custom/path/to/asterisk.conf

The [directories] Section

For most installations of Asterisk, changing the directories is not necessary. However,
this can be useful for running more than one instance of Asterisk at the same time, or
if you would like files stored in nonstandard locations.

n

The default directory locations and the options you can use to modify them are listed
in Table 4-1. For additional information about the usage of these directories, see the
File Structure section of Chapter 2.

Table 4-1. asterisk.conf [directories] section

Option
astetcdir

astmoddir

astvarlibdir

astdbdir
astkeydir

astdatadir

astagidir

astspooldir

astrundir

astlogdir

Value/Example
/etc/asterisk

Jusr/lib/asterisk/
modules
/var/lib/asterisk

/var/lib/asterisk
/var/lib/asterisk

/var/lib/asterisk
/var/lib/asterisk/
agi-bin
/var/spool/asterisk

/var/run/asterisk

/var/log/asterisk

Notes
The location where the Asterisk configuration files are stored.

The location where loadable modules are stored.

Thebase location for variable stateinformation used by various parts of Asterisk.
This includes items that are written out by Asterisk at runtime.

Asterisk will store its internal database in this directory as a file called astdb.

Asterisk will useasubdirectory called keysin thisdirectory asthe defaultlocation
for loading keys for encryption.

This is the base directory for system-provided data, such as the sound files that
come with Asterisk.

Asterisk will use a subdirectory called agi-bin in this directory as the default
location for loading AGI scripts.

The Asterisk spool directory, where voicemail, call recordings, and the call orig-
ination spool are stored.

The location where Asterisk will write out its UNIX control socket as well as its
process ID (PID) file.

The directory where Asterisk will store its log files.

The [options] Section

This section of the asterisk.conf file configures defaults for global runtime options. The
available options are listed in Table 4-2. Most of these are also controllable via
command-line parameters to the asterisk application. For a complete list of the
command-line options that relate to these options, see the Asterisk manpage:

$ man asterisk

Table 4-2. asterisk.conf [options] section

Option

verbose

debug

alwaysfork

nofork

Value/Example

3

yes

yes

Notes

Sets the default verbose setting for the Asterisk logger. This value is also set by
the -v command-line option. The verbose level is 0 by default.

Sets the default debug setting for the Asterisk logger. This value is also set by
the -d command-line option. The debug level is 0 by default.

Forking forces Asterisk to always run in the background. This option is set to
no by default.

ForcesAsterisktoalwaysrunintheforeground. Thisoptionissettonobydefault.

72 | Chapter4: Initial Configuration Tasks

Option
quiet

timestamp

execincludes

console

highpriority

initcrypto

nocolor

dontwarn

dumpcore

languageprefix

internal_timing

systemname

autosystemname

maxcalls

maxload

maxfiles

Value/Example

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

yes

my_system_name

yes

100

0.9

1000

Notes

Quiet mode reduces the amount of output seen at the console when Asterisk is
run in the foreground. This option is set to no by default.

Adds timestamps to all output except output from a CLI command. This option
is set to no by default.

Enables the use of #exec in Asterisk configuration files. This option is set to
no by default.

Runs Asterisk in console mode. Asterisk will run in the foreground and will
present a prompt for CLI commands. This option is set to no by default.

Runs the Asterisk application with real-time priority. This option is set to no by
default.

Loads keys fromthe astkeydir atstartup. This optionis set to no by default.?

Suppresses color output from the Asterisk console. This is useful when saving
console output to a file. This option is set to no by default.

Disables a few warning messages. This option was putin place to silence warn-
ings that are generally correct, but may be considered to be so obvious that
they become an annoyance. This option is set to no by default.

Tells Asterisk to generate a core dump in the case of a crash. This option is set
to no by default.”

Configures how the prompt language is used in building the path for a sound
file.Bydefault, thisisyes, which places thelanguage before any subdirectories,
such as en/digits/1.gsm. Setting this option to no causes Asterisk to behave as
itdid in previous versions, placing the language as the last directory in the path,
(e.q. digits/en/1.gsm).

Uses a timing source to synchronize audio that will be sent out to a channel in
cases such as file playback or music on hold. This option is set to yes by default
and should be left that way; its usefulness has greatly diminished over the last
few major versions of Asterisk.

Givesthisinstance of Asteriskaunique name. Whenthishas been set, the system
name will be used as part of the uniqueid field for channels. This s incredibly
useful if more than one system will be logging CDRs to the same database table.
By default, this option is not set.

Automatically sets the system name by using the hostname of the system. This
option is set to no by default.

Sets a maximum number of simultaneous inbound channels. No limit is set by
default.

Sets a maximum load average. If the load average is at or above this threshold,
Asterisk will not accept new calls. No threshold is set by default.

Set the maximum number of file descriptors that Asterisk is allowed to have
open. The default limit imposed by the system is commonly 1024, which is not
enough for heavily loaded systems. It is common to set this limit to a very high
number. The default system-imposed limit is used by default.

asterisk.conf | 73

Option Value/Example Notes

minmemfree 1 Sets the minimum number of megabytes of free memory required for Asterisk
to continue accepting calls. If Asterisk detects that there is less free memory
available than this threshold, new calls will not be accepted. This option is not
set by default.

cache_record_files yes When doing recording, stores the file in the record_cache_dir until re-
cordingis complete. Once complete, itwill be movedinto the originally specified
destination. The default for this option is no.

record_cache_dir /tmp Sets the directory to be used when cache_record_filesissettoyes.The
default location is a directory called tmp within the astspooldir.

transmit_silence yes Transmits silence to the caller in cases where there is no other audio source.
This includes call recording and the Wait () family of dialplan applications,
among other things. The default for this option is no.¢

transcode_via_sln yes When building a codec translation path, forces signed linear to be one of the
steps in the path. The default for this option is yes.

runuser asterisk Sets the system user that the Asterisk application should run as. This option is
not set by default, meaning that the application will continue to run as the user
that executed the application.

rungroup asterisk Sets the system group that the Asterisk application should run as. This option
is not set by default.
lightbackground yes When using colors in the Asterisk console, it will output colors that are com-

patible with a light-colored background. This option is set to no by default, in
which case Asterisk uses colors that look best on a black background.

documenta- en_US Thebuilt-indocumentationfor Asteriskapplications, functions,and otherthings

tion_language is included in an external XML document. This option specifies the preferred
language for documentation. Ifitis not available, the default of en_US will be
used.

hideconnect yes Setting this option to yes causes Asterisk to not display notifications of remote

console connections and disconnections at the Asterisk CLI. This is useful on
systems where there are scripts that use remote consoles heavily. The default
setting is no.

lockconfdir no When this option is enabled, the Asterisk configuration directory will be pro-
tected with a lock. This helps protect against having more than one application
attempting to write to the same file at the same time. The default value is no.

o

Ifany of the keys require a passphrase, this will block the startup process of Asterisk. An alternativeis to run keys init at the Asterisk command
line.

This is critical for debugging crashes. However, Asterisk must be compiled with the DONT_OPTIMIZE option enabled in menuselect for
the core dump to be useful.

There is an important caveat to note when this option is enabled. The silence is generated in uncompressed signed linear format, which
means that it will have to be transcoded into the format that the caller’s channel expects. The result may be that transcoding is required
for a call that would not normally require it.

o

~

74 | Chapter4: Initial Configuration Tasks

The [files] Section

This section of asterisk.conf includes options related to the Asterisk control socket. It
is primarily used by remote consoles (asterisk -r). The available options are listed in
Table 4-3.

Table 4-3. asterisk.conf [files] section

Option Value/Example Notes

astctlpermissions 0660 Sets the permissions for the Asterisk control socket.

astctlowner root Sets the owner for the Asterisk control socket.

astctlgroup apache Sets the group for the Asterisk control socket.

astctl asterisk.ctl Setsthe filename for the Asterisk control socket. The default is asterisk.ct!.
The [compat] Section

Occasionally the Asterisk development team decides that the best way forward involves
making a change that is not backward-compatible. This section contains some options
(listed in Table 4-4) that allow reverting behavior of certain modules back to previous
behavior.

Table 4-4. asterisk.conf [compat] section

Option Value/Example Notes

pbx_realtime 1.6 Inversions earlier than Asterisk 1.6.x, the pbx_realtime module would automatically
convert pipe characters into commas for arguments to Asterisk applications. This is no
longer done by default. To enable this previous behavior, set this option to 1. 4.

res_agi 1.6 Inversionsearlierthan Asterisk 1.6.x, the EXECAGI command would automatically convert
pipe charactersinto commas forarguments to Asterisk applications. Thisis no longer done
by default. To enable this previous behavior, set this optionto 1. 4.

app_set 1.6 Starting with the Asterisk 1.6.x releases, the Set () application only allows setting the
value of asingle variable. Previously, Set () would allow setting more than one variable
by separating them with a 8. This was done to allow any characters in the value of a
variable, including the & character, which was previously used as a separator. MSet () is
a new application that behaves like Set () used to. However, setting this option to
1.4 makes Set () behave like MSet ().

modules.conf

This file is not strictly required in an Asterisk installation; however, without any mod-
ules Asterisk won’t really be able to do anything, so for all practical purposes, you need
amodules.conf file in your /etc/asterisk folder. If you simply define autoload=yes in your
modules.conf file, Asterisk will search for all modules in the /ust/lib/asterisk/modules
folder and load them at startup.

modules.conf | 75

Although most modules do not use much in the way of resources, and they all load
very quickly, it just seems cleaner to our minds to load only those modules that you
are planning on using in your system. Additionally, there are security benefits to not
loading modules that accept connections over a network.

In the past we felt that explicitly loading each desired module was the best way to handle
this, but we have since found that this practice creates extra work. After every upgrade
we found ourselves having to edit the modules.conf file to correct all the module dif-
ferences between releases, and the whole process ended up being needlessly compli-
cated. What we prefer to do these days is to allow Asterisk to automatically load the
modules that it finds, but to explicitly tell Asterisk not to load any modules we do not
want loaded by use of the noload directive. A sample modules.conf file can be found in
“modules.conf” on page 56.

Using menuselect to Control Which Modules Are Compiled and Installed

One other way that you can control which modules Asterisk loads is to simply not
compile and install them in the first place. During the Asterisk installation process, the
make menuselect command provides you with a menu interface that allows you to
specify many different directives to the compiler, including which modules to compile
and install. If you never compile and install a module, the effect of this at load time is
that it won’t exist, and therefore won’t be loaded. If you are new to Linux and Asterisk,
this may create confusion for you if you later want to use a module and discover that
it doesn’t exist on your system.

More information about menuselect is available in “make menuselect” on page 59.

The [modules] Section

The modules.conf file contains a single section. The options available in this section are
listed in Table 4-5. With the exception of autoload, all of the options may be specified
more than once.

A list of all loadable modules is available in Chapter 2, with notes on
our opinion regarding the popularity/status of each of them.

76 | Chapter4: Initial Configuration Tasks

Table 4-5. modules.conf [modules] section

Option Value/Example Notes

autoload yes Instead of explicitly listing which modules to load, you can use this directive to tell Asterisk
toload all modules that it finds in the modules directory, with the exception of modules listed
as not to be loaded using the noload directive. The default, and our recommendation, is to
set this option to yes.

preload res_odbc.so Indicates that a module should be loaded at the beginning of the module load order. This
directive is much less relevant than it used to be; modules now have a load priority built into
them that solves the problems that this directive was previously used to solve.

load chan_sip.so Definesamodule thatshould be loaded. This directive s only relevant if autoload is set to
no.

noload chan_alsa.so Definesa module that should not be loaded. This directive is only relevant if autoload is
settoyes.

require chan_sip.so Does the same thing as Load; additionally, Asterisk will exit if this module fails to load for
some reason.

preload- res_odbc.so Does the same thing as preload; additionally, Asterisk will exit if this module fails to load
require for some reason.

indications.conf

The sounds that people expect from the telephone network vary in different parts of
the world. Different countries or regions present different sounds for events such as
dialtone, busy signal, ringback, congestion, and so forth.

The indications.conf file defines the parameters for the various sounds that a telephone
system might be expected to produce, and allows you to customize them. In the early
days of Asterisk this file only contained sounds for a limited number of countries, but
it is now quite comprehensive.

To assign the tones common for your region to channels, you can simply assign the
tonezone using the CHANNEL() function, and that tonezone will apply for the duration
of the call (unless changed later):

Set(CHANNEL (tonezone)=[yourcountry]) ; i.e., uk, de, etc.

However, since signaling from a call could come from various places (from the carrier,
from Asterisk, or even from the set itself), you should note that simply setting the
tonezone in your dialplan does not guarantee that those tones will be presented in all
situations.

indications.conf | 77

Hacking indications.conf for Fun and Profit

If you have too much time on your hands, you can do all sorts of pointless but enter-
taining things with your indications. For example, fans of Star Wars can make the
following change to the end of their indications.conf files:

[starwars](us)

description = Star Wars Theme Song

ring = 262/400,392/500,0/100,349/400,330/400,294/400,524/400,392/500,0/100,349/400, \
330/400,294/400,524/400,392/500,0/100,349/400, 330/400, 349/400, 294/500,0/2000

If you then use the country named 'starwars' in your configuration files or dialplan, any
ringing you pass back will sound quite different from the standard ring you are used
to. Try the following dialplan code to test out your new ringing sound:

exten => 500,1,Answer ()

same => n,Set(CHANNEL (tonezone)=starwars)
same => n,Dial(SIP/0000FFFF0002) ; or whatever your channel is named in sip.conf

W8
Og Depending on the type of device used to call into this example, you
may wonder if it will actually work. SIP phones, for example, typi-
cally generate their own tones instead of having Asterisk generate
them. This example was carefully crafted to ensure that Asterisk will
generate a ringback tone to the caller. The key is the Answer () that is
executed first. Later, when an outbound call is made to another de-
vice, the only method Asterisk has available to pass back a ringing
indication to the caller is by generating inband audio, since as far as
the caller’s phone is concerned, this call has already been answered.

ey

While Asterisk will run without an indications.conf file, it is strongly recommended that
you include one: copy the sample over from /usr/src/asterisk-complete/1.8/configs/indi-
cations.conf.sample, modify the country parameter in the [general] section to match
your region, and restart Asterisk.

chan_dahdi Ignores indications.conf

DAHDI does not use the indications.conf file from Asterisk, but rather has the tones
compiled in. For more information, see Chapter 7.

If your system supports multiple countries (for example, if you have a centralized
Asterisk system that has users from different regions), you may not be able to simply
define the default country. In this case, you have a couple of options:

1. Define the country in the channel definition file for the user.

2. Define the country in the dialplan using the CHANNEL (tonezone) function.

78 | Chapter4: Initial Configuration Tasks

For more information about using Asterisk in different countries, see Chapter 9.

musiconhold.conf

If you plan on selling Asterisk-based telephone systems and you do not change the
default music on hold that ships with Asterisk, you are sending the message, loud and
clear, that you don’t really know what you are doing.”

Part of the problem with music on hold is that while in the past it was common to just
plug a radio or CD player into the phone system, the legal reality is that most music
licenses do not actually allow you to do this. That’s right: if you want to play music on
hold, somebody, somewhere, typically wants you to pay them for the privilege.

So how to deal with this? There are two legal ways: 1) pay for a music on hold license
from the copyright holder, or 2) find a source of music that is released under a license
suitable for Asterisk.

We’re not here to give you legal advice; you are responsible for understanding what is
required of you in order to use a particular piece of music as your music on hold source.
What we will do, however, is show you how to take the music you have and make it
work with Asterisk.

Getting Free Music

There are several websites that offer music that has been released under Creative Com-
mons or other licenses. Lately, we’ve been enjoying music from Jamendo. Each song
may have its own licensing requirements, and just because you can download a song
for free does not mean you have permission to use it as music on hold. Be aware of the
licensing terms for the music you are planning to use for your music on hold.

Converting Music to a Format That Works Best with Asterisk

It’s quite common to have music in MP3 format these days. While Asterisk can use
MP3s as a music source, this method is not at all ideal. MP3s are heavily compressed,
and in order to play them the CPU has to do some serious work to decompress them
in real time. This is fine when you are only playing one song and want to save space on
your iPod, but for music on hold, the proper thing to do is convert the MP3 to a format
that is easier on the CPU.

* Note that Leif uses the default music, but his excuse is that he’s lazy and wants to go and play Forza on his
Xbox. The cobbler’s kids have no shoes.

musiconhold.conf | 79

http://www.jamendo.com

CentOS Prerequisite

Since CentOS does not have MP3 capability installed with sox, you will have to install
mpg123 before you can convert MP3 files for use with Asterisk.

First you will need to install the rpmforge repository. To find out which version you
need, open your web browser and go to http://dag.wieers.com/rpm/FAQ.php#B. Select
the text for the version/architecture you want to install and paste it into your shell:

$ rpm -Uhv http://apt.sw.be/redhat ...
You need to make sure this new repository is used correctly, so run the following:
$ yum install yum-priorities

(If you want to know more about yum priorities, see this site: http://wiki.centos.org/
PackageManagement/Yum/Priorities.)

Once the repository has been added, you can proceed to get mpg123:
$ yum install mpgi123

Once that’s done, your CentOS system is ready to convert MP3 files for use with
Asterisk.

If you are familiar with the file formats and have some experience working with audio
engineering software such as Audacity, you can convert the files on your PC and upload
them to Asterisk. We find it is simpler to upload the source MP3 files to the Asterisk
server (say, to the /tmp folder), and then convert them from the command line.

To convert your MP3 files to a format that Asterisk understands, you need to run the
commands outlined here (in this example we are using a file named SilentCity.mp3).

Cent0S

First, convert the MP3 file to a WAV file:
$ mpg123 -w SilentCity.wav SilentCity.mp3

Then, downsample the resulting WAV file to a sampling rate that Asterisk understands:
$ sox SilentCity.wav -t raw -r 8000 -s -w -c 1 SilentCity.sln

Ubuntu
If you have not done so already, install sox, and the libsox-fmt-all package:
sudo apt-get install sox libsox-fmt-all

Then, convert your MP3 file directly to the uncompressed SLN format:
$ sox SilentCity.mp3 -t raw -r 8000 -s -w -c 1 SilentCity.sln

80 | Chapter4: Initial Configuration Tasks

http://dag.wieers.com/rpm/FAQ.php#B
http://wiki.centos.org/PackageManagement/Yum/Priorities
http://wiki.centos.org/PackageManagement/Yum/Priorities

In newer versions of sox (e.g., version 14.3.0, which shipped with
Ubuntu 10.10), the -w option has changed to -2.

Completing file conversion

The resulting file will exist in the /tmp folder (or wherever you uploaded to) and needs
to be copied to the /var/lib/asterisk/moh folder:

$ cp *.sln /var/lib/asterisk/moh
You now need to reload musiconhold in Asterisk in order to have it recognize your new
files:

$ asterisk -rx "module unload res_musiconhold.so"
$ asterisk -rx "module load res_musiconhold.so"

To test that your music is working correctly, add the following to the [UserServices]
context in your dialplan:

exten => 664,1,No0p()
same => n,Progress()
same => n,MusicOnHold()

Dialing 664 from one of your sets should play a random file from your moh directory.

Conclusion

This chapter helped you complete some initial configuration of Asterisk. From here
you can move on to setting up some phones and taking advantage of the many features
Asterisk has to offer.

Conclusion | 81

CHAPTER 5
User Device Configuration

I don’t always know what I'm talking about,
but I know I'm right.

—Muhammad Ali

In this chapter we’ll delve into the user devices that you might want to connect to
Asterisk, typically VoIP telephones of some sort. Configuring a channel in Asterisk for
the device to connect through is relatively straightforward, but you also need to con-
figure the device itself so it knows where to send its calls.” In other words, there are two
parts to configuring a device on Asterisk: 1) telling Asterisk about the device, and
2) telling the device about Asterisk.

How Asterisk Relates to the SIP Protocol

SIP is a peer-to-peer protocol, and while it is common to have a setup where endpoints
act as clients and some sort of gateway acts as a server, the protocol still thinks in terms
of peer-to-peer relationships. What this means is that a SIP telephone expects to make
a direct connection to another SIP telephone, without a PBX in between.

The reality is that many SIP transactions happen through a server, and in the case of
Asterisk, it is common to have the PBX in the middle of all connections. When a SIP
call is made from a telephone to another telephone through Asterisk, there are actually
two calls happening: one from the originating set to Asterisk, and another separate call
from Asterisk to the destination set. Asterisk bridges the two channels together.

From the perspective of the SIP telephone, therefore, you need to configure it to send
all its calls to Asterisk, even though the device is quite capable of directly connecting
to another SIP endpoint without the Asterisk server. The SIP protocol is complex and
very flexible, and configuring endpoints can seem difficult because they have much
more flexibility than we require of them for an Asterisk implementation.

* This has nothing to do with Asterisk configuration, and each hardware manufacturer will have its own tools
to allow you to configure its devices.

83

While most devices will have a web-based interface for defining parameters, if you're
putting more than one or two phones into production we recommend using a server-
based configuration process, wherein the set is only told the location of a file server.
The set will identify itself and download customized files that define the required pa-
rameters for that telephone. As an example, these could be XML files on an FTP server.
The exact download process and syntax of these files will differ from manufacturer to
manufacturer. In this chapter we will only talk about the configuration of sets from the
perspective of Asterisk.

Telephone Naming Concepts

Before we get started with configuring Asterisk for our telephones, we are going to
recommend some best practices regarding telephone naming, abstracting the concepts
of users, extension numbers, and telephones from each other.

In Asterisk, all the system cares about is the channel name. There is really no concept
ofauseratall,T and extensions are simply ways of directing call flow through the system.
For example, your dialplan might inform Asterisk that when extension number 100 is
requested it should call the phone on my desk, but extension 100 could just as easily
call a company voicemail box, play back a prompt, or join a conference room. We can
even specify that extension 100 should ring the device on my desk from Monday to
Friday between 9 A.M. and 5 P.M., but ring a device on someone else’s desk the rest
of the time. Inversely, when a call is made from a device during business hours, the
callerID could show a daytime number, and the rest of the time could show an after-
hours number (many reception desks become security desks at night).

Asterisk Extensions

The concept of an extension in Asterisk is crucial. In most PBXs, an extension is a
number that you dial to cause a phone or service to ring. In Asterisk, an extension is
the name of a grouping of instructions in the dialplan. Think of an Asterisk extension
as a script name, and you’re on the right track. Yes, an Asterisk extension could be a
number (such as 100) that rings a phone, but it could just as easily be a name (such as
voicemail) that runs a sequence of dialplan applications.

We'll be going into Asterisk extensions in far more detail throughout this book, but
before we do that we want to get some phones set up.

The abstraction between the name of an extension and what that extension does is a
powerful concept in Asterisk, as extension 100 could do a number of things depending

T Actually, Asterisk does try to implement and abstract the concepts of users and devices internally by using
the users.conf file; however, it is typically only used by the Asterisk GUI. Abstracting the concepts logically
using the dialplan is easier to understand and far more flexible.

84 | Chapter5: User Device Configuration

on any number of variables that are programmed into the system. This is especially
relevant in the context of features such as hot-desking.

Hot-desking is a feature that allows someone to log into a device and receive his calls
at that device. Let’s say we have three sales agents who typically work outside of the
office, but spend a couple of days each month in the office to do paperwork. Since they
are unlikely to be on-site at the same time, instead of having a separate telephone for
each of those three sales agents, they could share a single office phone (or on a larger
scale, a dozen folks could share a pool of, say, three phones). This scenario illustrates
the convenience (and necessity) of allowing the system to separate the concept of a user
and extension from the physical phone.

So what are some examples of bad names for telephone devices? Something like a per-
son’s name, such as [SimonLeBon], would be a poor name for a telephone as the phone
may also be used by Joan Jett and Rick Astley. The same reasoning can be applied to
why you would not want to name a phone based on an extension number: a phone
name of [100] would be a poor choice since you might want to reprovision the device
for extension 160 in the future, or it might be used by several people with different
extensions in a hot-desking solution. Using numeric account names is also very bad
from a security perspective and is discussed in more detail in Chapter 26.

A popular way to name a phone is using the MAC address of the device. This is a unique
identifier specific to the phone that follows it where it goes and doesn’t directly relate
to the user operating the phone or the extension number currently associated with it.
Some corporations have stickers they place on their equipment with a bar code and
other information that allows them to keep stock of provisioned equipment; these
unique codes would also be an acceptable choice to use for phone names as they don’t
provide any logical relation to a particular person, but do provide specific information
about the devices themselves.

The choice is yours as to how you want to name your phones, but we primarily want
to abstract any concept of the telephone being owned by a person, or even its location
in the network, since these concepts are outside the realm of Asterisk and can change
at any time.

Throughout this book, you’ll see us using phone names that look like MAC addresses
(such as 0000FFFF0001 and 0000FFFF0002) to differentiate between devices. You will want
to use phone names that match the hardware you are using (or some other string that
is unique to the device you are registering).

As a final consideration, we should make it clear that what we are suggesting regarding
device names is not a technical requirement. You are free to name your devices anything
you want, as long as they meet the requirements of Asterisk’s naming conventions for
devices (stay with alphanumeric characters with no spaces and you’ll be fine).

Telephone Naming Concepts | 85

Hardphones, Softphones, and ATAs

There are three types of endpoints you would typically provide your users with that
could serve as a telephone set. They are popularly referred to as hardphones, soft-
phones, and Analog Terminal Adaptors (ATAs).

A hardphone is a physical device. It looks just like an office telephone: it has a handset,
numbered buttons, etc. It connects directly to the network, and it’s what people are
referring to when they talk about a VoIP telephone (or a SIP telephone).

A softphone is a software application that runs on a laptop or desktop. The audio must
pass through the PC’s sound system, so you normally need a headset that will work
well with telephony applications. More recently, softphone applications have been
written for smart phones that allow you to connect to other networks other than just
the cellular network. The interface of the softphone is often styled to look like a physical
telephone, but this is not necessary.

An ATA is designed to allow traditional analog telephones (and other analog devices,
such as fax machines, cordless phones, paging amplifiers, and such) to connect to a SIP
network,* and will typically be a sandwich-sized box that contains an RJ-11 connector
for the phone (commonly referred to as an FXS port), an RJ-45 connector for the net-
work, and a power connector. Some ATAs may support more than one phone.

Hardphones have the advantage that the handsets have good acoustic properties for
voice communications. Any decent-quality telephone is engineered to pick up the fre-
quencies of the human voice, filter out unwanted background noise, and normalize the
resulting waveform. People have been using telephones for as long as the telephone
network has existed, and we tend to like what is familiar, so having a device that com-
municates with Asterisk using a familiar interface will be attractive to many users. Also,
a hardphone does not require your computer to be running all the time.

Disadvantages to hardphones include that they are nonportable and expensive, relative
to the many quality softphones on the market today that are available for free. Also,
the extra clutter on your desk may not be desirable if you have limited work space, and
if you move around a lot and are not generally at the same location, a hardphone is not
likely to suit your needs (although, one at each location you frequent might be a valid
solution).

Softphones solve the portability issue by being installed on a device that is likely already
moving with you, such as your laptop or smart phone. Also, their minimal cost (typi-
cally free, or around the $30 price range for a fully featured one) is attractive. Because
many softphones are free, it is likely that the first telephone set you connect to Asterisk
will be a softphone. Also, because softphones are just software, they are easy to install
and upgrade, and they commonly have other features that utilize other peripherals, like

1 Or any other network, for that matter. ATAs could more formally be said to be analog-to-digital gateways,
where the nature of the digital protocol may vary (e.g., proprietary ATAs on traditional PBXs).

86 | Chapter5: User Device Configuration

a webcam for video calling, or perhaps an ability to load files from your desktop for
faxing.

Some of the disadvantages of softphones are the not-always-on nature of the devices,
the necessity to put on a headset each time you take a call, and the fact that many PCs
will at random times during the day choose to do something other than what the user
wants them to do, which might cause the softphone to stop working while some back-
ground task hogs the CPU.

ATAs have the advantage of allowing you to connect to your SIP network analog de-
vices,S such as cordless phones (which are still superior in many cases to more advanced
types of wireless phonesl), paging amplifiers, and ringers. ATAs can also sometimes be
used to connect to old wiring, where a network connection might not function
correctly.

The main disadvantage of an ATA is that you will not get the same features through
an analog line as you would from a SIP telephone. This is technology that is over a
century old.

With Asterisk, we don’t necessarily need to make the choice between having a soft-
phone, a hardphone, or an ATA; it’s entirely possible and quite common to have a
single extension number that rings multiple devices at the same time, such as a desk
phone, the softphone on a laptop, a cell phone, and perhaps a strobe light in the back
of the factory (where there is too much noise for a ringer to be heard).

Asterisk will happily allow you to interact with the outside world in ways that were
scarcely dreamed of only a few years ago. As we see more unification of communications
applications with the popularity of social networks, communities such as Skype, and
more focus on network-based services such as those provided by Google, the flexibility
and popularity of software-based endpoints will continue to grow. The blurring of the
lines between voice and applications is constantly evolving, and softphones are well
positioned to rapidly respond to these changes.

We still like a desk phone, though.

Configuring Asterisk

In this section we’ll cover how to create the sip.conf and iax.conf configuration files in
the /etc/asterisk/ directory, which are used for defining the parameters by which SIP
and TAX2 devices can communicate with your system.

§ An ATA is not the only way to connect analog phones. Hardware vendors such as Digium sell cards that go
in the Asterisk server and provide analog telephony ports.

Il For a really awesome cordless analog phone, you want to check out the EnGenius DuraFon devices, which
are expensive, but impressive.

Configuring Asterisk | 87

Asterisk allows devices using many different protocols to speak to it

(and therefore to each other). However, the SIP and IAX2 protocols are

918 the most popular and mature VoIP modules, so we will focus our at-

" tention on them. For your first Asterisk build, you might be best off not
bothering with the other protocols (such as Skinny/SCCP, Unistim,
H.323, and MGCP), and getting comfortable working with SIP and
IAX2 first. The configuration for the other protocols is similar, and the
sample configuration files are full of information and examples, so once
you have the basics down, other protocols should be fairly easy to
work with.

The channel configuration files, such as sip.conf and iax.conf, contain the configuration
for the channel driver, such as chan_iax2.so or chan_sip.so, along with the information
and credentials required for a telephony device to contact and interact with Asterisk.

Common information about the channel driver is contained at the top of the configu-
ration file, in the [general] section. All section names are encased in square brackets,
including device names. Anything that follows a section name (or device definition,
which for our purposes is essentially the same thing) is applied to that section. The
[general] section can also contain information to define defaults for device configu-
rations, which are overridden in the section for each device, or in a template. Asterisk
also comes with defaults that are hardcoded, so while some settings are mandatory,
many other settings can be ignored as long as you are happy with the defaults.

Asterisk will check for parameters in the following order:

1. Check the specific section for the relevant channel.

2. Check the template for the section.
3. Check the [general] section.
4. Use the hardcoded defaults.

This means that just because you didn’t specify a setting for a particular

) S .
parameter doesn’t mean your device isn’t going to have a setting for that
parameter. If you are not sure, set the parameter explicitly in the section
of the configuration file that deals with that specific channel, or in the
relevant template.

This concept should make more sense as you read on.

How Channel Configuration Files Work with the Dialplan

While we haven’t discussed Asterisk dialplans yet, it is useful to be able to visualize the
relationship between the channel configuration files (sip.conf, iax.conf) and the dialplan
(extensions.conf). The dialplan is the heart of an Asterisk system: it controls how call
logic is applied to any connection from any channel, such as what happens when a
device dials extension 101 or an incoming call from an external provider is routed. Both

88 | Chapter5: User Device Configuration

the relevant channel configuration file and the extensions.conf file play a role in most
calls routed through the system. Figure 5-1 provides a graphical representation of the
relationship between the sip.conf and extensions.conf files.

When a call comes into Asterisk, the identity of the incoming call is matched in the
channel configuration file for the protocol in use (e.g., sip.conf). The channel configu-
ration file also handles authentication and defines where that channel will enter the
dialplan.

Once Asterisk has determined how to handle the channel, it will pass call control to
the correct context in the dialplan. The context parameter in the channel configuration
file tells the channel where it will enter the dialplan (which contains all the information
about how to handle and route the call).

sip.conf extensions.conf
[general]
 p»-[0000FFFF0001] [globals]

context=LocalSets —

Telephone L [Localsets]

exten => 101,1,D1al(51pXooooFFFFoooz]——|

[0000FFFFoo02] <
<@+ host=dynamic

Telephone

Figure 5-1. Relationship of sip.conf to extensions.conf

Conversely, if the dialplan has been programmed to dial another device when the re-
quest for extension number 101 is being processed, a request to dial telephony device
0000FFFF0002 will use the channel configuration file to determine how to pass the call
back out of the dialplan to the telephone on the network (including such details as
authentication, codec, and so forth).

A key point to remember is that the channel configuration files control not only how
calls enter the system, but also how they leave the system. So, for example, if one set
calls another set, the channel configuration file is used not only to pass the call through
to the dialplan, but also to direct the call from the dialplan to the destination.

sip.conf

The SIP# channel module is arguably the most mature and feature-rich of all the channel
modules in Asterisk. This is due to the enormous popularity of the SIP protocol, which

#The SIP RFC is a long read, but about the first 25 pages are a good introduction. Check it out at http://www
Jdetf.org/rfc/rfc3261.txt.

Configuring Asterisk | 89

http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt

has taken over the VoIP/telecom industry and been implemented in thousands of de-
vices and PBXs. If you look through the sip.conf.sample file in the ./configs subdirectory
of your Asterisk source you will notice a wealth of options available. Fortunately, the
default options are normally all you need, and therefore you can create a very simple
configuration file that will allow most standard SIP telephones to connect with Asterisk.

The first thing you need to do is create a configuration file in your /etc/asterisk directory
called sip.conf.

Paste or type the following information into the file:

[general]

context=unauthenticated ; default context for incoming calls
allowguest=no ; disable unauthenticated calls

srvlookup=yes ; enabled DNS SRV record lookup on outbound calls
udpbindaddr=0.0.0.0 ; listen for UDP requests on all interfaces
tcpenable=no ; disable TCP support

[office-phone](!)
type=friend
context=LocalSets
host=dynamic
nat=yes

; create a template for our devices

; the channel driver will match on username first, IP second

; this is where calls from the device will enter the dialplan

; the device will register with asterisk

; assume device is behind NAT

; *¥** NAT stands for Network Address Translation, which allows
; multiple internal devices to share an external IP address.

; a secure password for this device -- DON'T USE THIS PASSWORD!
; accept touch-tones from the devices, negotiated automatically
; reset which voice codecs this device will accept or offer

; which audio codecs to accept from, and request to, the device
5 in the order we prefer

secret=s3CuR#p@s5
dtmfmode=auto
disallow=all
allow=ulaw
allow=alaw

; define a device name and use the office-phone template
[0000FFFF0001] (office-phone)

; define another device name using the same template
[0000FFFF0002] (office-phone)

Open the sip.conf file you’ve just created, and we’ll go over each item.

We’ve created four sections, the first one being the [general] section. This is a standard
section that appears at the top of the configuration file for all channel modules, and
must always be named in this way. The [general] section contains general configura-
tion options for how that protocol relates to your system, and can be used to define
default parameters as well.

For example, we’ve defined the default context as unauthenticated, to ensure that we
have explicitly declared where unauthenticated guest calls will enter the dialplan (rather
than leaving that to chance). We’ve named it unauthenticated to make it obvious that
calls processed in this context are not trusted, and thus should not be able to do things
such as make outbound calls to the PSTN (which could potentially cost money, or
represent identity theft). You should be aware that we could have used any name we

90 | Chapter5: User Device Configuration

wanted, and also that there needs to be an identically named context in exten-
sions.conf to define the call flow for unauthenticated calls.

The next option is allowguest, which we’ve disabled as we don’t want to accept any
unauthenticated calls at this time. Keep in mind that for some channels you may ac-
tually want to accept unauthenticated calls. A common use for allowing unauthenti-
cated calls is for companies that allow dialing by uniform resource identifiers (URIs),
like email addresses. If we wanted to allow customers to call us from their phones
without having to authenticate, we could enable guest calls and handle them in the
unauthenticated context defined by the previous option.

W
- You may be wondering why you might ever want to allow unauthenti-
"‘:‘ cated calls. The reason is that if you publish your SIP URI on your busi-
TN Q8 ness cards (e.g., sip:leif.madsen@shifteight.org), calls to that URI will

fail if your unauthenticated context simply hangs up. What you want
instead is for your unauthenticated context to put incoming calls into a
controlled environment. You may wish to allow the calls, but you won’t
necessarily trust them.”

The srvlookup option is used to enable Asterisk to perform a lookup via a DNS SRV
record, which is typically used for outbound connections to service providers. We’ll
talk more about Asterisk and DNS in Chapter 12.

The udpbindaddrfoption takes the value of an IP address or0.0.0.0 to tell Asterisk which
network interface it should listen to for requests carried by the UDP network transport
protocol (which is the protocol that actually carries the voice channels). By defining
0.0.0.0, we're instructing the channel driver to listen on all available interfaces. Alter-
natively, we could limit VoIP connections for this protocol to a single interface by
defining the IP address of a specific network interface on our system.

Currently in Asterisk the udpbindaddr and tcpbindaddr options are an
‘“% all-or-one proposition. In other words, if you have three NICs in your

system, you can’t restrict VoIP traffic to two of them: it’s either one only,
or all of them.

* The whole concept of security and trust on a VoIP network is something that can become quite
complex. Spammers are already hard at work figuring out this technology, and you need to be
aware of the concepts. We’'ll cover this in more depth later in the book, such as in Chapter 7
and Chapter 26.

t The complement to this option is tcpbindaddr, used for listening for requests carried via the TCP network
transport protocol.

Configuring Asterisk | 91

IPv6 in sip.conf

As of version 1.8, Asterisk supports [Pv6 for both SIP and RTP traffic. All of the con-
figuration options in /etc/asterisk/sip.conf related to IP addresses can accept either an
IPv4 or an IPv6 address. As an example, consider the different values for the udpbin
daddr option:

udpbindaddrvalue Description

192.168.100.50 Bind to a specific IPv4 address.

2001:db8::1 Bind to a specific IPv6 address

0.0.0.0 Bind to all IPv4 addresses on the system.
Bind to all IPv4 and IPv6 addresses.

The tcpenable option allows us to accept requests via the TCP network transport pro-
tocol. For now we’ve disabled it, as the UDP method is currently more mature (and
more popular) and we’re attempting to eliminate as many barriers as possible. Having
said that, feel free to test TCP support once you're comfortable configuring your
devices.

There are also tlsenable and tlsbindaddr options for enabling SIP over
TLS (encrypted SIP). We'll cover the configuration of SIP with TLS in
Qs Chapter 7.

The next section we’ve defined is a template we have chosen to name [office-phone]
(). We've created it as a template so that we can use the values within it for all of our
devices.

W

Following the section name with (!) tells Asterisk to treat this section
as a template. By doing this we eliminate the need to repetitively add
and change configuration options for every device we choose to define.
Templates are extremely useful and are available in all of Asterisk’s
configuration files. If you want to change something for an individual
device that was previously defined in the template for that device, you
can do that under the section header, and it will override what was de-
fined by the template. It is not necessary to use templates, but they are
extremely handy, and we use them extensively.

oy

92 | Chapter5: User Device Configuration

In the [office-phone] template we’ve defined several options required for authentica-
tion and control of calls to and from devices that use that template. The first option
we've configured is the type, which we’ve set to friend. This tells the channel driver to
attempt to match on name first, and then IP address.

SIP Configuration Matching and the type Option

In the example we have provided, the configuration for SIP phones is set with
type=friend. There are two other type definitions you can use: user and peer. The
difference between them has to do with how Asterisk interprets incoming SIP requests.
The rules are covered in this table:

type = Description
peer Match incoming requests to a configuration entry using the source IP address and port number.
user Match incoming requests to a configuration entry using the username in the From header of the SIP

request. This name is matched to a section in sip.conf with the same name in square brackets.

friend Thisenablesmatchingrulesforbothpeeranduser.Thisisthesettingmostcommonlyusedfor SIPphones.

When a request from a telephone is received and authenticated by Asterisk, the re-
quested extension number is handled by the dialplan in the context defined in the device
configuration; in our case, the context named LocalSets.

The host option is used when we need to send a request to the telephone (such as when
we want to call someone). Asterisk needs to know where the device is on the network.
By defining the value as dynamic, we let Asterisk know that the telephone will tell us
where it is on the network instead of having its location defined statically. If we wanted
to define the address statically, we could replace dynamic with an IP address such as
192.168.128.30.

The nat option is used to tell Asterisk to enable some tricks to make phone calls work
when a SIP phone may be located behind a NAT. This is important because the SIP
protocol includes TP addresses in messages. If a phone is on a private network, it may
end up placing private addresses in SIP messages, which are often not useful.

The password for the device is defined by the secret parameter. While this is not strictly
required, you should note that it is quite common for unsavory folks to run phishing
scripts that look for exposed VoIP accounts with insecure passwords and simple device
names (such as a device name of 100 with a password of 1234). By utilizing an uncom-
mon device name such as a MAC address, and a password that is a little harder to guess,
we can significantly lower the risk to our system should we need to expose it to the
outside world.

Configuring Asterisk | 93

Name Purpose Popularity/Status

func_sprintf Performs string format functions similar to C function of same name Useful
func_srv Perform SRV lookups in the dialplan Useful
func_strings Includes over a dozen string manipulation functions Useful
func_sysinfo Gets system information such as RAM, swap, load average, etc. Useful
func_timeout Gets/sets timeouts on channel Useful
func_uri Converts strings to URI-safe encoding Useful
func_version Returns Asterisk version information Usable
func_vmcount Returns count of messages in a voicemail folder for a particular user ~ Useful
func_volume Sets volume on a channel Useful

PBX Modules

The PBX modules are peripheral modules that provide enhanced control and configu-
ration mechanisms. For example, pbx_config is the module that loads the traditional
Asterisk dialplan. The currently available PBX modules are listed in Table 2-9.

Table 2-9. PBX modules

Name Purpose Popularity/Status

pbx_ael Asterisk Extension Logic (AEL) offers a dialplan scripting language that looks likea Usable?
modern programming language.

pbx_config This is the traditional, and most popular, dialplan language for Asterisk. Without ~ Useful
this module, Asterisk cannot read extensions.conf.

pbx_dundi Performs data lookups on remote Asterisk systems. Useful
pbx_loopback Performs something similar to a dialplan include, but in a deprecated manner. Insignificant®
pbx_lua Allows creation of a dialplan using the Lua scripting language. Useful
pbx_realtime Provides functionality related to the Asterisk Realtime Architecture. Useful
pbx_spool Provides outgoing spool support relating to Asterisk call files. Useful

@ We have not found too many people using AEL. We suspect this is because most developers will tend to use AGI/AMI if they do not want
to use traditional dialplans.

b We've never heard of this being used in production.

Resource Modules

Resource modules integrate Asterisk with external resources. For example, res_odbc
allows Asterisk to interoperate with ODBC database connections. The currently avail-
able resource modules are listed in Table 2-10.

Modules | 21

Hardphones, Softphones, and ATAs

There are three types of endpoints you would typically provide your users with that
could serve as a telephone set. They are popularly referred to as hardphones, soft-
phones, and Analog Terminal Adaptors (ATAs).

A hardphone is a physical device. It looks just like an office telephone: it has a handset,
numbered buttons, etc. It connects directly to the network, and it’s what people are
referring to when they talk about a VoIP telephone (or a SIP telephone).

A softphone is a software application that runs on a laptop or desktop. The audio must
pass through the PC’s sound system, so you normally need a headset that will work
well with telephony applications. More recently, softphone applications have been
written for smart phones that allow you to connect to other networks other than just
the cellular network. The interface of the softphone is often styled to look like a physical
telephone, but this is not necessary.

An ATA is designed to allow traditional analog telephones (and other analog devices,
such as fax machines, cordless phones, paging amplifiers, and such) to connect to a SIP
network,* and will typically be a sandwich-sized box that contains an RJ-11 connector
for the phone (commonly referred to as an FXS port), an RJ-45 connector for the net-
work, and a power connector. Some ATAs may support more than one phone.

Hardphones have the advantage that the handsets have good acoustic properties for
voice communications. Any decent-quality telephone is engineered to pick up the fre-
quencies of the human voice, filter out unwanted background noise, and normalize the
resulting waveform. People have been using telephones for as long as the telephone
network has existed, and we tend to like what is familiar, so having a device that com-
municates with Asterisk using a familiar interface will be attractive to many users. Also,
a hardphone does not require your computer to be running all the time.

Disadvantages to hardphones include that they are nonportable and expensive, relative
to the many quality softphones on the market today that are available for free. Also,
the extra clutter on your desk may not be desirable if you have limited work space, and
if you move around a lot and are not generally at the same location, a hardphone is not
likely to suit your needs (although, one at each location you frequent might be a valid
solution).

Softphones solve the portability issue by being installed on a device that is likely already
moving with you, such as your laptop or smart phone. Also, their minimal cost (typi-
cally free, or around the $30 price range for a fully featured one) is attractive. Because
many softphones are free, it is likely that the first telephone set you connect to Asterisk
will be a softphone. Also, because softphones are just software, they are easy to install
and upgrade, and they commonly have other features that utilize other peripherals, like

1 Or any other network, for that matter. ATAs could more formally be said to be analog-to-digital gateways,
where the nature of the digital protocol may vary (e.g., proprietary ATAs on traditional PBXs).

86 | Chapter5: User Device Configuration

http://www.rfc-editor.org/rfc/rfc5456.txt

Running make samples on a system that already has configuration files
will overwrite the existing files.

Using make samples to Create Sample
Configuration Files for Future Reference

Even though we are not going to use the sample configuration files that come with
Asterisk, the fact is that they are an excellent reference. If there is a module that you
are not currently using but wish to put into production, the sample file will show you
exactly what syntax to use, and what options are available for that module.

Running the sudo make samples command in your Asterisk source directory” is harmless
on a new system that has just been built, but it is very dangerous to run on a system
that already has configuration files, as this command will overwrite any existing files
(which would be a disaster for you if you do not have a current backup).

If you’ve run the sudo make samples command, you will want to move the files that it
has created in /etc/asterisk/ to another folder. We like to create a folder called /etc/
asterisk/unused/ and put any sample/unused configuration files in there, but feel free
to store them wherever you like.

We’re now going to step through all the files that are required to get a simple Asterisk
system up and running.

indications.conf and asterisk.conf

The first file needed is indications.conf, a file that contains information about how to
detect different telephony tones for different countries. There is a perfectly good sample
file that we can use in the Asterisk source, so let’s copy it into our /etc/asterisk/ directory:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/indications.conf.sample \
/etc/asterisk/indications.conf

Because we’re running Asterisk as non-root, we need to tell Asterisk which user to run
as. This is done with the asterisk.conf file. We can copy a sample version of it from the
Asterisk source to /etc/asterisk:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/asterisk.conf.sample \
/etc/asterisk/asterisk.conf

The asterisk.conf file contains many options that we won’t go over here (they are cov-
ered in “asterisk.conf” on page 71), but we do need to make an adjustment. Near the
end of the [options] section, there are two options we need to enable: runuser and
rungroup.

* lusr/src/asterisk-complete/asterisk/asterisk-1.8.<your version>/

Base Configuration | 53

This icon indicates a warning or caution.

Using Code Examples

This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Asterisk: The Definitive Guide, Third Ed-
ition, by Leif Madsen, Jim Van Meggelen, and Russell Bryant (O’Reilly). Copyright
2011 Leif Madsen, Jim Van Meggelen, and Russell Bryant, 978-0-596-51734-2.”

Ifyou feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari Books Online
Saf When you see a Safari Books Online icon on the cover of your favorite
arari technology book, that means the book is available online through the

O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than ebooks. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us

Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.

1005 Gravenstein Highway North

Sebastopol, CA 95472

(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)

(707) 829-0104 (fax)

Preface | xxvii

Asterisk™: The Definitive Guide

The Asterisk CLI

The best way to see what is happening with your Asterisk system is through the Asterisk
CLI. This interface provides various levels of output to let you know what is happening
on your system, and offers a wealth of useful utilities to allow you to affect your running
system. Begin by calling up the Asterisk CLI and reloading the configuration files for

your channel modules:

$ sudo asterisk -r
*CLI> module reload chan_sip.so
*CLI> module reload chan_iax2.so

Verify that your new channels have been loaded:

*CLI> sip show peers
*CLI> sip show users
*CLI> iax2 show peers
*CLI> iax2 show users

\

W

“t
(182

At this point your Asterisk system should be configured to handle reg-
istrations from the defined devices. Calls to and from the sets will not
work until the configuration on the devices has been completed. Since

" each deviceis different in this regard, detailed configuration instructions

for each model are outside of the scope of this book.

Testing to Ensure Your Devices Have Registered

Once your device has registered to Asterisk, you will be able to query the location and

state of the device from the Asterisk CLI.

It is a common misconception that registration is how a device authen-
ticates itself for the purpose of obtaining permission to make calls. This
is incorrect. The only purpose of registration is to allow a device to

" identify its location on the network, so that Asterisk# knows where to

send calls intended for that device.

Authentication for outgoing calls is an entirely separate process and al-
ways happens on a per-call basis, regardless of whether a set has regis-
tered. This means that your set may be able to make calls, but not receive
them. This will normally happen when the set has not registered suc-
cessfully (so Asterisk does not know where it is), and yet has the correct
credentials for making calls (so Asterisk is willing to accept calls from it).

To check the registration status of a device, simply call up the Asterisk CLI:

$ sudo asterisk -r

#Or any other SIP registrar server, for that matter.

Testing to Ensure Your Devices Have Registered | 99

Typing the following command returns a listing of all the peers that Asterisk knows
about (regardless of their state):

*CLI> sip show peers

Name/username Host Dyn Nat ACL Port Status
0000FFFF0001/0000FFFF0001 192.168.1.100 D N 5060 Unmonitored
0000FFFF0002/0000FFFF0002 192.168.1.101 D N 5060 Unmonitored

W

- You may notice that the Name/username field does not always show the
full name of the device. This is because this field is limited to 25
* Qs characters.

Note that the Status in our example is set to Unmonitored. This is because we are not
using the qualify=yes option in our sip.conf file.

Analog Phones

There are two popular methods for connecting analog phones to Asterisk. The first is
by using an ATA that most commonly connects to Asterisk using the SIP protocol. The
Asterisk configuration for an ATA is the same as it would be for any other SIP-based
handset. The other method is to directly connect the phones to the Asterisk server using
telephony hardware from a vendor such as Digium. Digium sells telephony cards that
can be added to your server to provide FXS ports for connecting analog phones (or fax
machines). For the purposes of demonstrating the configuration, we’re going to show
the configuration required if you had a Digium AEX440E card, which is an AEX410
half-length PCI-Express with four FXS modules and hardware-based echo cancellation.

Regardless of which hardware you are using, consult your vendor’s
documentation for any hardware-specific configuration requirements.

First, ensure that both Asterisk and DAHDI are installed (refer back to “How to Install
It” on page 48 for instructions). Note that DAHDI must be installed before you install
Asterisk. When you install DAHDI, be sure to install the init script as well. This will
ensure that your hardware is properly initialized when the system boots up. The init
script is installed from the DAHDI-tools package.

100 | Chapter5: User Device Configuration

The init script uses the /etc/dahdi/modules file to determine which modules should be
loaded to support the hardware in the system. The installation of the init script attempts
to automatically set up this file for you, but you should check it to make sure it is correct:

Autogenerated by tools/xpp/dahdi_genconf (Dahdi::Config::Gen::Modules) on
Tue Jul 27 10:31:46 2010

If you edit this file and execute tools/xpp/dahdi_genconf again,

your manual changes will be LOST.

wctdm24xxp

There is one more configuration file required for DAHDI: /etc/dahdi/system.conf. Tt
looks like this:

Specify that we would like DAHDI to generate tones that are
used in the United States.

loadzone = us

defaultzone = us

We have 4 FXS ports; configure them to use FXO signaling.
fxoks = 1-4

W

This configuration assumes the card is being used in the United States.
For some tips on internationalization, see Chapter 9.

If the card you are configuring does not have hardware-based echo cancellation, an-
other line will need to be added to /etc/dahdi/system.conf to enable software-based echo
cancellation:

echocanceller = mg2,1-4

N

MG2 is the recommended echo canceller that comes with the official
DAHDI package. There is another open source echo canceller out there
%s" thatis compatible with DAHDI, called OSLEC (Open Source Line Echo
Canceller). Many people report very good results with the use of
OSLEC. For more information about the installation of OSLEC on your
system, see the website at hitp://www.rowetel.com/blog/oslec.html.

Now, use the init script to load the proper modules and initialize the hardware:

$ sudo /etc/init.d/dahdi start
Loading DAHDI hardware modules:
wctdm24xxp: [oK]

Running dahdi_cfg: [oK]

Now that DAHDI has been configured, it is time to move on to the relevant configu-
ration of Asterisk. Once Asterisk is installed, ensure that the chan_dahdi module has
been installed. If it is not loaded in Asterisk, check to see if it exists in /ust/lib/asterisk/

Analog Phones | 101

http://www.rowetel.com/blog/oslec.html

modules/. If it is there, edit /etc/asterisk/modules.conf to load chan_dahdi.so. If the mod-
ule is not present on disk, DAHDI was not installed before installing Asterisk; go back
and install it now (see “DAHDI” on page 49 for details). You can verify its presence
using the following command:

*CLI> module show like chan_dahdi.so

Module Description Use Count
chan_dahdi.so DAHDI Telephony Driver 0

1 modules loaded

Next, you must configure /etc/asterisk/chan_dahdi.conf. This is the configuration file
for the chan_dahdi module, which is the interface between Asterisk and DAHDI. It
should look like this:

[trunkgroups]
; No trunk groups are needed in this configuration.
[channels]

; The channels context is used when defining channels using the
; older deprecated method. Don't use this as a section name.

[phone] (1)
5
; A template to hold common options for all phones.

)

usecallerid = yes
hidecallerid = no
callwaiting = no
threewaycalling = yes
transfer = yes
echocancel = yes
echotraining = yes
immediate = no
context = LocalSets
signalling = fxo_ks ; Uses FXO signaling for an FXS channel

[phone1](phone)
callerid = "Mark Michelson" <(256)555-1212>
dahdichan = 1

[phone2](phone)
callerid = "David Vossel" <(256)555-2121>
dahdichan = 2

[phone3](phone)
callerid = "Jason Parker" <(256)555-3434>
dahdichan = 3

[phone4](phone)
callerid = "Matthew Nicholson" <(256)555-4343>
dahdichan = 4

102 | Chapter5: User Device Configuration

You can verify that Asterisk has loaded your configuration by running the dahdi show
channels CLI command:

*CLI> dahdi show channels

Chan Extension Context Language MOH Interpret Blocked State
pseudo default default In Service
1 LocalSets default In Service
2 LocalSets default In Service
3 LocalSets default In Service
4 LocalSets default In Service

For detailed information on a specific channel, you can run dahdi show channel 1.

A Basic Dialplan to Test Your Devices

We’re not going to dive too deeply into the dialplan just yet, but an initial dialplan that
you can use to test your newly registered devices will be helpful. Place the following
contents in /etc/asterisk/extensions.conf:

[LocalSets]
exten => 100,1,Dial(SIP/0000FFFF0001) ; Replace O000FFFF0001 with your device name

exten => 101,1,Dial(SIP/0000FFFF0002) ; Replace 0000FFFF0002 with your device name

5
; These will allow you to dial each of the 4 analog phones configured
; in the previous section.

J

exten => 102,1,Dial(DAHDI/1)
exten => 103,1,Dial(DAHDI/2)
exten => 104,1,Dial(DAHDI/3)
exten => 105,1,Dial(DAHDI/4)

exten => 200,1,Answer ()
same => n,Playback(hello-world)
same => n,Hangup()

This basic dialplan will allow you to dial your SIP devices using extensions 100 and
101. The four lines of the analog card can be dialed with extensions 102 through 105,
respectively. You can also listen to the hello-world prompt that was created for this
book by dialing extension 200. All of these extensions are arbitrary numbers, and could
be anything you want. Also, this is by no means a complete dialplan; we’ll develop it
further in later chapters.

You will need to reload your dialplan before changes will take effect in Asterisk. You
can reload it from the Linux shell:

$ sudo asterisk -rx "dialplan reload"

A Basic Dialplan to Test Your Devices | 103

or from the Asterisk CLI:
*CLI> dialplan reload

You should now be able to dial between your two new extensions. Open up the CLI
in order to see the call progression. You should see something like this (and the set you
are calling should ring):
-- Executing [100@LocalSets:1] Dial("SIP/0000FFFF0001-0000000c",
"SIP/0000FFFF0001") in new stack

-- Called 0000FFFF0001
-- SIP/0000FFFF0001-0000000d is ringing

If this does not happen, you are going to need to review your configuration and ensure
you have not made any typos.

Under the Hood: Your First Call

In order to get you thinking about what is happening under the hood, we’re going to
briefly cover some of what is actually happening with the SIP protocol when two sets
on the same Asterisk system call each other.

W N

Asterisk as a B2BUA

%' 4. Bearin mind that there are actually two calls going on here: one from
0% the originating set to Asterisk, and another from Asterisk to the desti-
nation set. SIP is a peer-to-peer protocol, and from the perspective of
the protocol there are two calls happening. The SIP protocol is not aware
that Asterisk is bridging the calls; each set understands its connection
to Asterisk, with no real knowledge of the set on the other side. It is for
this reason that Asterisk is often referred to as a B2BUA (Back to Back
User Agent). This is also why it is so easy to bridge different protocols
together using Asterisk.

For the call you just made, the dialogs shown in Figure 5-2 will have taken place.

For more details on how SIP messaging works, please refer to Appendix B and the SIP
RFC at http://www.ietf.org/rfc/rfc3261.txt.

104 | Chapter5: User Device Configuration

http://www.ietf.org/rfc/rfc3261.txt

192.168.128.126 192.168.128.145

it
Request: INVITE sjp
0.524 (5060} o
0524 § }.§mlu5: 100 Trying,

{ h i

{5060}
' Request: INVITE sj
0526 (5050220 sjp.

¢ {5060}

15060) SIPISDP: Request: INVITE sip:101@192.168.128. 134;transport=UDP, with session description

U= 192.168.128.134 S
. o .
0.521 \‘m;? uest: INVITE) 5060 ' SIP/SDP: Request: INVITE sip: 168.128.134;transport=UDP, with session p
0522 ‘m}i" tus: 401 Unauthe | SIP: Status: 401 Unauthorized
{ R o '
0523 \‘mﬂ uest: ACK si 1!?%, ' SIP: Request: ACK sip:101@192.168.128.134:transport=UDP
H
H

SIP: Status: 100 Trying
SIPISDP: Request: INVITE sip:0000FFFF00U2@182.168.128.145, with session description

H
0.543 E . ﬁw&:{m, SIP: Status: 100 Trying
0.696 | .‘m@w:ma SIP: Status: 180 Ringing
0.696 ‘m}ﬁw{m, ' SIP: Status: 180 Ringing
3.190 | . 'Status: 200 OK, wit, SIP/SDP: Status: 200 OK, with session description
3.190 E : ﬂEIME&ﬁm, SIP: Request: ACK sip:0000FFFFOD02@192.168.125. 145
3.190 am;wcm: | SIP/SDP: Status: 200 OK, with session description
3.299 “mﬂﬁlwﬂgm, E SIP: Request: ACK sip:101@192.168.128.134
6.444 i amwwﬂ'ﬁma SIP: Request: BYE sip:0D00FFFFO001@192.168.126.134
6.444 ' . M“::ma SIP: Status: 200 OK
6.445 ‘msﬂwﬂﬁm, i SIP: Request: BYE sip: 168.128.126:5060; IDP
6.462 am;M’km: ' SIP: Status: 200 OK
| h H

Figure 5-2. SIP dialogs

Conclusion

In this chapter we learned best practices for device naming by abstracting the concepts
of users, extension numbers, and devices, and how to define the device configuration
and authentication parameters in the channel configuration files. Next, we’ll delve into
the magic of Asterisk that is the dialplan, and see how simple things can create
great results.

Conclusion | 105

CHAPTER 6
Dialplan Basics

Everything should be made as simple as possible,
but not simpler.

—Albert Einstein

The dialplan is the heart of your Asterisk system. It defines how calls flow into and out
of the system. A form of scripting language, the dialplan contains instructions that
Asterisk follows in response to external triggers. In contrast to traditional phone sys-
tems, Asterisk’s dialplan is fully customizable.

This chapter introduces the essential concepts of the dialplan. The information pre-
sented here is critical to your understanding of dialplan code and will form the basis of
any dialplan you write. The examples have been designed to build upon one another,
and we recommend that you do not skip too much of this chapter, since it is so fun-
damentally important to Asterisk. Please also note that this chapter is by no means an
exhaustive survey of all the possible things dialplans can do; our aim is to cover just
the essentials. We’ll cover more advanced dialplan topics in later chapters. You are
encouraged to experiment.

Dialplan Syntax

The Asterisk dialplan is specified in the configuration file named extensions.conf.

W

- The extensions.conf file usually resides in the /etc/asterisk/ directory, but
"‘:\ its location may vary depending on how you installed Asterisk. Other
T 98y common locations for this file include /usi/local/etc/asterisk/ and /opt/

" etclasterisk/.

The dialplan is made up of four main concepts: contexts, extensions, priorities, and
applications. After explaining the role each of these elements plays in the dialplan, we’ll
have you build a basic but functioning dialplan.

107

Sample Configuration Files

If you installed the sample configuration files when you installed Asterisk, you will most
likely have an existing extensions.conf file. Instead of starting with the sample file, we
suggest that you build your extensions.conf file from scratch. Starting with the sample
file is not the best or easiest way to learn how to build dialplans.

That being said, the sample extensions.conf file remains a fantastic resource, full of
examples and ideas that you can use after you’ve learned the basic concepts. If you
followed our installation instructions, you will find the file extensions.conf.sample in
the folder /usr/src/asterisk-complete/asterisk/1.8/configs (along with many other sample
config files).

Contexts

Dialplans are broken into sections called contexts. Contexts keep different parts of the
dialplan from interacting with one another. An extension that is defined in one context
is completely isolated from extensions in any other context, unless interaction is spe-
cifically allowed. (We’ll cover how to allow interaction between contexts near the end
of the chapter. See “Includes” on page 129 for more information.)

As a simple example, let’s imagine we have two companies sharing an Asterisk server.
If we place each company’s automated attendant in its own context, they will be com-
pletely separated from each other. This allows us to independently define what happens
when, say, extension 0 is dialed: Callers dialing 0 from Company A’s voice menu will
get Company A’s receptionist, while callers dialing 0 at Company B’s voice menu will
get Company B’s receptionist. (This assumes, of course, that we’ve told Asterisk to
transfer the calls to the receptionists when callers press 0.")

Contexts are defined by placing the name of the context inside square brackets ([]).
The name can be made up of the letters A through Z (upper- and lowercase), the num-
bers 0 through 9, and the hyphen and underscore.™ A context for incoming calls might
look like this:

[incoming]

* This is a very important consideration. With traditional PBXs, there are generally a set of defaults for things
like reception, which means that if you forget to define them, they will probably work anyway. In Asterisk,
the opposite is true. If you do not tell Asterisk how to handle every situation, and it comes across something
it cannot handle, the call will typically be disconnected. We’ll cover some best practices later that will help
ensure this does not happen. See “Handling Invalid Entries and Timeouts” on page 119 for more information.

T Please note that the space is conspicuously absent from the list of allowed characters. Don’t use spaces in
your context names—you won't like the result!

108 | Chapter6: Dialplan Basics

Context names have a maximum length of 79 characters (80 characters
— 1 terminating null).

All of the instructions placed after a context definition are part of that context, until
the next context is defined. At the beginning of the dialplan, there are two special
contexts named [general] and [globals]. The [general] section contains a list of gen-
eral dialplan settings (which you’ll probably never have to worry about), and we will
discuss the [globals] context in the section “Global variables” on page 123. For now,
it’s just important to know that these two labels are not really contexts. Avoid the use
of [general], [default], and [globals] as context names, but otherwise name your
contexts anything you wish.

When you define a channel (which is not done in the extensions.conf file, but rather in
files such as sip.conf, iax.conf, chan_dahdi.conf, etc.), one of the required parameters
in each channel definition is context. The context is the point in the dialplan where
connections from that channel will begin. The context setting for the channel is how you
plug the channel into the dialplan. Figure 6-1 illustrates the relationship between chan-
nel configuration files and contexts in the dialplan.

sip.conf extensions.conf
[general]
 p»-[0000FFFF0001] [globals]

context=LocalSets —

Telephone L [Localsets]

exten => 101,1,Dial (Sip/0000FFFF0002]

Figure 6-1. Relation between channel configuration files and contexts in the dialplan

This is one of the most important concepts to understand when dealing

with channels and dialplans. Once you understand the relationship of

W the context definition in a channel to the matching context in the

" dialplan, you will find it much easier to troubleshoot the call flow
through an Asterisk system.

An important use of contexts (perhaps the most important use) is to provide security.
By using contexts correctly, you can give certain callers access to features (such as long-
distance calling) that aren’t made available to others. If you do not design your dialplan
carefully, you may inadvertently allow others to fraudulently use your system. Please
keep this in mind as you build your Asterisk system; there are many bots on the Internet
that were specifically written to identify and exploit poorly secured Asterisk systems.

Dialplan Syntax | 109

The Asterisk wiki at https://wiki.asterisk.org/wiki/display/AST/Impor
‘*% tant+Security+Considerations outlines several steps you should take to

keep your Asterisk system secure. (Chapter 26 in this book also deals
with security.) It is vitally important that you read and understand this
page. If you ignore the security precautions outlined there, you may end
up allowing anyone and everyone to make long-distance or toll calls at
your expense!

If you don’t take the security of your Asterisk system seriously, you may
end up paying—literally. Please take the time and effort to secure your
system from toll fraud.

Extensions

In the world of telecommunications, the word extension usually refers to a numeric
identifier that, when dialed, will ring a phone (or system resource such as voicemail or
a queue). In Asterisk, an extension is far more powerful, as it defines the unique series
of steps (each step containing an application) through which Asterisk will take that call.

Within each context, we can define as many (or few) extensions as required. When a
particular extension is triggered (by an incoming call or by digits being dialed on a
channel), Asterisk will follow the steps defined for that extension. It is the extensions,
therefore, that specify what happens to calls as they make their way through the
dialplan. Although extensions can, of course, be used to specify phone extensions in
the traditional sense (i.e., extension 153 will cause the SIP telephone set on John’s desk
to ring), in an Asterisk dialplan, they can be used for much more.

The syntax for an extension is the word exten, followed by an arrow formed by the
equals sign and the greater-than sign, like this:

exten =>

This is followed by the name (or number) of the extension. When dealing with tradi-
tional telephone systems, we tend to think of extensions as the numbers you would
dial to make another phone ring. In Asterisk, you get a whole lot more; for example,
extension names can be any combination of numbers and letters. Over the course of
this chapter and the next, we’ll use both numeric and alphanumeric extensions.

L)
)

Assigning names to extensions may seem like a revolutionary concept,
but when you realize that many VolP transports support (or even ac-
W' tively encourage) dialing by name or email address rather than just by
" number, it makes perfect sense. This is one of the features that makes
Asterisk so flexible and powerful.

110 | Chapter6: Dialplan Basics

https://wiki.asterisk.org/wiki/display/AST/Important+Security+Considerations
https://wiki.asterisk.org/wiki/display/AST/Important+Security+Considerations

Each step in an extension is composed of three components:

¢ The name (or number) of the extension

* The priority (each extension can include multiple steps; the step number is called
the “priority™)

* The application (or command) that will take place at that step

These three components are separated by commas, like this:

exten => name,priority,application()

Here’s a simple example of what a real extension might look like:

exten => 123,1,Answer()

In this example, the extension name is 123, the priority is 1, and the application is
Answer().

Priorities

Each extension can have multiple steps, called priorities. The priorities are numbered
sequentially, starting with 1, and each executes one specific application. As an example,
the following extension would answer the phone (in priority number 1), and then hang
it up (in priority number 2):

exten => 123,1,Answer()
exten => 123,2,Hangup()

It’s pretty obvious that this code doesn’t really do anything useful. We’ll get there. The
key point to note here is that for a particular extension, Asterisk follows the priorities
in order. This style of dialplan syntax is still seen from time to time, although (as you’ll
see momentarily) it is not generally used anymore for new code:

exten => 123,1,Answer()

exten => 123,2,do something

exten => 123,3,do something else

exten => 123,4,do one last thing
exten => 123,5,Hangup()

Unnumbered priorities

In older releases of Asterisk, the numbering of priorities caused a lot of problems.
Imagine having an extension that had 15 priorities, and then needing to add something
at step 2: all of the subsequent priorities would have to be manually renumbered.
Asterisk does not handle missing steps or misnumbered priorities, and debugging these
types of errors was pointless and frustrating.

Beginning with version 1.2, Asterisk addressed this problem: it introduced the use of
the n priority, which stands for “next.” Each time Asterisk encounters a priority named
n, it takes the number of the previous priority and adds 1. This makes it easier to make

Dialplan Syntax | 111

changes to your dialplan, as you don’t have to keep renumbering all your steps. For
example, your dialplan might look something like this:

exten => 123,1,Answer()

exten => 123,n,do something

exten => 123,n,do something else

exten => 123,n,do one last thing
exten => 123,n,Hangup()

Internally, Asterisk will calculate the next priority number every time it encounters an
n.¥ Bear in mind that you must always specify priority number 1. If you accidentally
put an n instead of 1 for the first priority (a common mistake even among experienced
dialplan coders), you’ll find after reloading the dialplan that the extension will not exist.

The 'same =>' operator

In the never-ending effort to simplify coding effort, a new construct was created to make
extension building and management even easier. As long as the extension remains the
same, rather than having to type the full extension on each line, you can simply type
same =>, followed by the priority and application:
exten => 123,1,Answer()
same => n,do something
same => n,do something else

same => n,do one last thing
same => n,Hangup()

The indentation is not required, but it may make for easier reading. This style of dialplan
will also make it easier to copy code from one extension to another. We prefer this style
ourselves, and highly recommend it.

Priority labels

Priority labels allow you to assign a name to a priority within an extension. This is to
ensure that you can refer to a priority by something other than its number (which
probably isn’t known, given that dialplans now generally use unnumbered priorities).
The reason it is important to be able to address a particular priority in an extension is
that you will often want to send calls from other parts of the dialplan to a particular
priority in a particular extension. We’ll talk about that more later. To assign a text label
to a priority, simply add the label inside parentheses after the priority, like this:

exten => 123,n(label),application()

Later, we’ll cover how to jump between different priorities based on dialplan logic.
You’ll see a lot more of priority labels, and you’ll use them often in your dialplans.

T Asterisk permits simple arithmetic within the priority, such as n+200, and the priority s (for same), but their
usage is somewhat deprecated due to the existence of priority labels. Please note that extension s and priority
s are two distinct concepts.

112 | Chapter6: Dialplan Basics

A very common mistake when writing labels is to insert a comma be-
tween the n and the (| like this:

exten => 123,n,(label),application() ;<-- THIS IS NOT GOING TO WORK

This mistake will break that part of your dialplan, and you will get an
error stating that the application cannot be found.

Applications

Applications are the workhorses of the dialplan. Each application performs a specific
action on the current channel, such as playing a sound, accepting touch-tone input,
looking something up in a database, dialing a channel, hanging up the call, and so forth.
In the previous example, you were introduced to two simple applications: Answer () and
Hangup(). You’ll learn more about how these work momentarily.

Some applications, including Answer() and Hangup(), need no other instructions to do
their jobs. Most applications, however, require additional information. These addi-
tional elements, or arguments, are passed on to the applications to affect how they
perform their actions. To pass arguments to an application, place them between the
parentheses that follow the application name, separated by commas.

L)
o)

Occasionally, you may also see the pipe character (|) being used as a
separator between arguments, instead of a comma. Starting in Asterisk
s 1.6.0, support for the pipe as a separator character has been removed.$

The Answer(), Playback(), and Hangup() Applications

The Answer () application is used to answer a channel that is ringing. This does the initial
setup for the channel that receives the incoming call. As we mentioned earlier,
Answer () takes no arguments. Answer () is not always required (in fact, in some cases it
may not be desirable at all), but it is an effective way to ensure a channel is connected
before performing further actions.

The Progress() Application

Sometimes it is useful to be able to pass information back to the network before an-
swering a call. The Progress () application attempts to provide call progress information
to the originating channel. Some carriers expect this, and thus you may be able to
resolve strange signaling problems by inserting Progress() into the dialplan where your
incoming calls arrive.

§ Except in some parts of voicemail.conf.

Dialplan Syntax | 113

The Playback() application is used for playing a previously recorded sound file over a
channel. Input from the user is ignored, which means that you would not use Play
back() in an auto attendant, for example, unless you did not want to accept input at
that point.l

W

Asterisk comes with many professionally recorded sound files, which
should be found in the default sounds directory (usually /var/lib/aster-
4 isk/sounds/). When you compile Asterisk, you can choose to install
" various sets of sample sounds that have been recorded in a variety of
languages and file formats. We’ll be using these files in many of our
examples. Several of the files in our examples come from the Extra
Sound Package, so please take the time to install it (see Chapter 3). You
can also have your own sound prompts recorded in the same voices as
the stock prompts by visiting http://www.theivrvoice.com/. Later in the
book we’ll talk more about how you can use a telephone and the dialplan
to create and manage your own system recordings.

To use Playback(), specify a filename (without a file extension) as the argument. For
example, Playback(filename) would play the sound file called filename.wav, assuming
it was located in the default sounds directory. Note that you can include the full path
to the file if you want, like this:

Playback(/home/john/sounds/filename)

The previous example would play filename.wav from the /home/john/sounds/ directory.
You can also use relative paths from the Asterisk sounds directory, as follows:

Playback(custom/filename)

This example would play filename.wav from the custom/ subdirectory of the default
sounds directory (probably /var/lib/asterisk/sounds/custom/filename.wav). Note that if
the specified directory contains more than one file with that filename but with different
file extensions, Asterisk automatically plays the best file.#

The Hangup() application does exactly as its name implies: it hangs up the active chan-
nel. You should use this application at the end of a context when you want to end the
current call, to ensure that callers don’t continue on in the dialplan in a way you might
not have anticipated. The Hangup() application does not require any arguments, but
you can pass an ISDN cause code if you want (e.g., Hangup(16)).

[l There is another application called Background() that is very similar to Playback(), except that it does allow
input from the caller. You can read more about this application in Chapter 15 and Chapter 17.

Asterisk selects the best file based on translation cost—that is, it selects the file that is the least CPU-intensive
to convert to its native audio format. When you start Asterisk, it calculates the translation costs between the
different audio formats (they often vary from system to system). You can see these translation costs by typing
show translation at the Asterisk command-line interface. The numbers shown represent how many
milliseconds it takes Asterisk to transcode one second of audio. We’ll talk more about the different audio
formats (known as codecs) in “Codecs” on page 625.

114 | Chapter6: Dialplan Basics

http://www.theivrvoice.com/

As we work through the book, we will be introducing you to many more Asterisk
applications.

A Simple Dialplan

OK, enough theory. Open up the file /etc/asterisk/extensions.conf, and let’s take a look
at your first dialplan (which was created in Chapter 5). We’re going to add to that.

Hello World

As is typical in many technology books (especially computer programming books), our
first example is called “Hello World!”

In the first priority of our extension, we answer the call. In the second, we play a sound
file named hello-world, and in the third we hang up the call. The code we are interested
in for this example looks like this:

exten => 200,1,Answer ()

same => n,Playback(hello-world)
same => n,Hangup()

If you followed along in Chapter 5, you’ll already have a channel or two configured, as
well as the sample dialplan that contains this code. If not, what you need is an exten-
sions.conf file in your /etc/asterisk/ directory that contains the following code:

[LocalSets] ; this is the context name
exten => 100,1,Dial(SIP/0000FFFF0001) ; Replace O000FFFF0001 with your device name

exten => 101,1,Dial(SIP/0000FFFF0002) ; Replace O000FFFF0002 with your device name
exten => 200,1,Answer()
same => n,Playback(hello-world)

same => n,Hangup()

W N

If you don’t have any channels configured, now is the time to do so.
There is real satisfaction that comes from passing your first call into an
* Qs Asterisk dialplan on a system that you’ve built from scratch. People get
" this funny grin on their faces as they realize that they have just created
a telephone system. This pleasure can be yours as well, so please, don’t
go any further until you have made this little bit of dialplan work. If you
have any problems, get back to Chapter 5 and work through the
examples there.

If youdon’t have this dialplan code built yet, you’ll need to add it and reload the dialplan
with this CLI command:

*CLI> dialplan reload

ASimple Dialplan | 115

or from the shell with:

$ sudo /usr/sbin/asterisk -rx "dialplan reload"

Calling extension 200 from either of your configured phones should reward you with
the voice of Allison Smith saying “Hello World.”

If it doesn’t work, check the Asterisk console for error messages, and make sure your
channels are assigned to the LocalSets context.

We do not recommend that you move forward in this book until you
e have verified the following:

1. Calls between extension 100 and 101 are working
2. Calling extension 200 plays “Hello World”

Even though this example is very short and simple, it emphasizes the core concepts of
contexts, extensions, priorities, and applications. You now have the fundamental
knowledge on which all dialplans are built.

Building an Interactive Dialplan

The dialplan we just built was static; it will always perform the same actions on every
call. Many dialplans will also need logic to perform different actions based on input
from the user, so let’s take a look at that now.

The Goto(), Background(), and WaitExten() Applications

As its name implies, the Goto() application is used to send a call to another part of the
dialplan. The syntax for the Goto() application requires us to pass the destination con-
text, extension, and priority on as arguments to the application, like this:

same => n,Goto(context,extension,priority)
We’re going to create a new context called TestMenu, and create an extension in our
LocalSets context that will pass calls to that context using Goto():

exten => 201,1,Goto(TestMenu,start,1) ; add this to the end of the
; [LocalSets] context

[TestMenu]
exten => start,1,Answer()

Now, whenever a device enters the LocalSets context and dials 201, the call will be
passed to the start extension in the TestMenu context (which currently won’t do any-
thing interesting because we still have more code to write).

116 | Chapter6: Dialplan Basics

We used the extension start in this example, but we could have used
anything we wanted as an extension name, either numeric or alpha. We
W prefer to use alpha characters for extensions that are not directly diala-
ble, as this makes the dialplan easier to read. Point being, we could have
used 123 or xyz123, or 991uftballons, or whatever we wanted instead of
start. The word “start” doesn’t actually mean anything to the dialplan;
it’s just another extension.

One of the most useful applications in an interactive Asterisk dialplan is the Back
ground()" application. Like Playback(), it plays a recorded sound file. Unlike
Playback(), however, when the caller presses a key (or series of keys) on her telephone
keypad, it interrupts the playback and passes the call to the extension that corresponds
with the pressed digit(s). If a caller presses 5, for example, Asterisk will stop playing
the sound prompt and send control of the call to the first priority of extension 5 (as-
suming there is an extension 5 to send the call to).

The most common use of the Background() application is to create voice menus (often
called auto attendantst or phone trees). Many companies use voice menus to direct
callers to the proper extensions, thus relieving their receptionists from having to answer
every single call.

Background() has the same syntax as Playback():

[TestMenu]
exten => start,1,Answer()
same => n,Background(main-menu)

If you want Asterisk to wait for input from the caller after the sound prompt has finished
playing, you can use WaitExten(). The WaitExten() application waits for the caller to
enter DTMF digits and is used directly following the Background() application, like this:
[TestMenu]
exten => start,1,Answer()

same => n,Background(main-menu)
same => n,WaitExten()

If you'd like the WaitExten() application to wait a specific number of seconds for a
response (instead of using the default timeout?), simply pass the number of seconds as
the first argument to WaitExten(), like this:

same => n,WaitExten(5) ; We recommend always passing a time argument to WaitExten()

* It should be noted that some people expect that Background(), due to its name, will continue onward through
the next steps in the dialplan while the sound is being played. In reality, its name refers to the fact that it is
playing a sound in the background, while waiting for DTMF in the foreground.

t More information about auto attendants can be found in Chapter 15.

1 See the dialplan function TIMEOUT() for information on how to change the default timeouts. See Chapter 10
for information on what dialplan functions are.

Building an Interactive Dialplan | 117

Both Background() and WaitExten() allow the caller to enter DTMF digits. Asterisk then
attempts to find an extension in the current context that matches the digits that the
caller entered. If Asterisk finds a match, it will send the call to that extension. Let’s
demonstrate by adding a few lines to our dialplan example:

[TestMenu]

exten => start,1,Answer()

same => n,Background(main-menu)
same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)
exten => 2,1,Playback(digits/2)

After making these changes, save and reload your dialplan:
*CLI> dialplan reload

If you call into extension 201, you should hear a sound prompt that says “main menu.”
The system will then wait 5 seconds for you to enter a digit. If the digit you press is
either 1 or 2, Asterisk will match the relevant extension, and read that digit back to you.
Since we didn’t provide any further instructions, your call will then end. You’ll also
find that if you enter a different digit (such as 3), the dialplan will be unable to proceed.

Let’s embellish things a little. We’re going to use the Goto() application to have the
dialplan repeat the greeting after playing back the number:

[TestMenu]

exten => start,1,Answer()

same => n,Background(main-menu)
same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)
same => n,Goto(TestMenu,start,1)

exten => 2,1,Playback(digits/2)
same => n,Goto(TestMenu,start,1)

These new lines will send control of the call back to the start extension after playing
back the selected number. This is generally considered friendlier than just hanging up.

W N

If you look up the details of the Goto() application, you’ll find that you
can actually pass either one, two, or three arguments to the application.
v If you pass a single argument, Asterisk will assume it’s the destination
" priority in the current extension. If you pass two arguments, Asterisk
will treat them as the extension and the priority to go to in the current
context.

In this example, we’ve passed all three arguments for the sake of clarity,
but passing just the extension and priority would have had the same
effect, since the destination context is the same as the source context.

118 | Chapter6: Dialplan Basics

Handling Invalid Entries and Timeouts

Now that our first voice menu is starting to come together, let’s add some additional
special extensions. First, we need an extension for invalid entries. In Asterisk, when a
context receives a request for an extension that is not valid within that context (e.g.,
pressing 9 in the preceding example), the call is sent to the i extension. We also need
an extension to handle situations when the caller doesn’t give input in time (the default
timeout is 10 seconds). Calls will be sent to the t extension if the caller takes too long
to press a digit after WaitExten() has been called. Here is what our dialplan will look
like after we’ve added these two extensions:

[TestMenu]

exten => start,1,Answer()

same => n,Background(main-menu)
same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)
same => n,Goto(TestMenu,start,1)

exten => 2,1,Playback(digits/2)
same => n,Goto(TestMenu,start,1)

exten => i,1,Playback(pbx-invalid)
same => n,Goto(TestMenu,start,1)

exten => t,1,Playback(vm-goodbye)
same => n,Hangup()

Using the i and t extensions makes our menu a little more robust and user-friendly.
That being said, it is still quite limited, because outside callers still have no way of
connecting to a live person. To do that, we’ll need to learn about another application,
called Dial().

Using the Dial() Application

One of Asterisk’s most valuable features is its ability to connect different callers to each
other. This is especially useful when callers are using different methods of communi-
cation. For example, caller A might be communicating over the traditional analog
telephone network, while user B might be sitting in a café halfway around the world
and speaking on an IP telephone. Luckily, Asterisk takes much of the hard work out of
connecting and translating between disparate networks. All you have to do is learn how
to use the Dial() application.

The syntax of the Dial() application is more complex than that of the other applications
we've used so far, but don’t let that scare you off. Dial() takes up to four arguments,
which we’ll look at next.

Building an Interactive Dialplan | 119

Argument 1: Destination

The first argument is the destination you’re attempting to call, which (in its simplest
form) is made up of a technology (or transport) across which to make the call, a forward
slash, and the address of the remote endpoint or resource. Common technology types
include DAHDI (for analog and T1/E1/J1 channels), SIP, and TAX2.

For example, let’s assume that we want to call a DAHDI endpoint identified by DAHDI/
1, which is an FXS channel with an analog phone plugged into it. The technology is
DAHDI, and the resource (or channel identifier) is 1. Similarly, a call to a SIP device (as
defined in sip.conf) might have a destination of SIP/0004F2001122, and a call to an IAX
device (defined in iax.conf) might have a destination of TAX2/Softphone.S If we wanted
Asterisk to ring the DAHDI/1 channel when extension 105 is reached in the dialplan, we’d
add the following extension:

exten => 105,1,Dial(DAHDI/1)
We can also dial multiple channels at the same time, by concatenating the destinations
with an ampersand (8), like this:

exten => 105,1,Dial(DAHDI/1&SIP/0004F20011228IAX2/Softphone)
The Dial() application will ring all of the specified destinations simultaneously, and
bridge the inbound call with whichever destination channel answers first (the other
channels will immediately stop ringing). If the Dial() application can’t contact any of

the destinations, Asterisk will set a variable called DIALSTATUS with the reason that it
couldn’t dial the destinations, and continue on with the next priority in the extension.|

The Dial() application also allows you to connect to a remote VoIP endpoint not pre-

viously defined in one of the channel configuration files. The full syntax is:
Dial(technology/user[:password]@remote_host[:port][/remote_extension])

As an example, you can dial into a demonstration server at Digium using the IAX2

protocol by using the following extension:

exten => 500,1,Dial(IAX2/guest@misery.digium.com/s)

The full syntax for the Dial() application is slightly different for DAHDI channels:
Dial(DAHDI/[gGzR]channel or group[/remote extension])
For example, here is how you would dial 1-800-555-1212 on DAHDI channel
number 4#:
exten => 501,1,Dial(DAHDI/4/18005551212)

§ If this were a production environment, this would not actually be a good name for this device. If you have
more than one softphone on your system (or add another in the future), how will you tell them apart?

[I'We’ll cover variables in the upcoming section “Using Variables” on page 122. In future chapters we’ll discuss
how to have your dialplan make decisions based on the value of DIALSTATUS.

#Bear in mind that this assumes that this channel connects to something that knows how to reach external
numbers.

120 | Chapter6: Dialplan Basics

Argument 2: Timeout

The second argument to the Dial() application is a timeout, specified in seconds. If a
timeout is given, Dial() will attempt to call the specified destination(s) for that number
of seconds before giving up and moving on to the next priority in the extension. If no
timeout is specified, Dial() will continue to dial the called channel(s) until someone
answers or the caller hangs up. Let’s add a timeout of 10 seconds to our extension:

exten => 201,1,Dial(DAHDI/1,10)

If the call is answered before the timeout, the channels are bridged and the dialplan is
done. If the destination simply does not answer, is busy, or is otherwise unavailable,
Asterisk will set a variable called DIALSTATUS and then continue on with the next priority
in the extension.

Let’s put what we’ve learned so far into another example:

exten => 201,1,Dial(DAHDI/1,10)
same => n,Playback(vm-nobodyavail)
same => n,Hangup()

As you can see, this example will play the vm-nobodyavail.gsm sound file if the call goes
unanswered.

Argument 3: Option

The third argument to Dial() is an option string. It may contain one or more characters
that modify the behavior of the Dial() application. While the list of possible options
is too long to cover here, one of the most popular is the m option. If you place the letter
m as the third argument, the calling party will hear hold music instead of ringing while
the destination channel is being called (assuming, of course, that music on hold has
been configured correctly). To add the m option to our last example, we simply change
the first line:
exten => 201,1,Dial(DAHDI/1,10,m)

same => n,Playback(vm-nobodyavail)
same => n,Hangup()

Argument 4: URI

The fourth and final argument to the Dial() application is a URL. If the destination
channel supports receiving a URI at the time of the call, the specified URI will be sent
(for example, if you have an IP telephone that supports receiving a URI, it will appear
on the phone’s display; likewise, if you’re using a softphone, the URI might pop up on
your computer screen). This argument is very rarely used.

\

W

Few (if any) phones support URI information being passed to them. If
you’re looking for something like a screen pop, you might want to check
s out Chapter 18, and more specifically the section on Jabber in “Using
© XMPP (Jabber) with Asterisk” on page 418.

Building an Interactive Dialplan | 121

Updating the dialplan
Let’s modify extensions 1 and 2 in our menu to use the Dial() application:

[TestMenu]

exten => start,1,Answer()
same => n,Background(main-menu)
same => n,WaitExten(5)

exten => 1,1,Dial(SIP/0000FFFF0001,10) ; Replace 0000FFFF0001 with your device name
same => n,Playback(vm-nobodyavail)
same => n,Hangup()

exten => 2,1,Dial(SIP/0000FFFF0002,10) ; Replace 0000FFFF0002 with your device name
same => n,Playback(vm-nobodyavail)
same => n,Hangup()

exten => i,1,Playback(pbx-invalid)
same => n,Goto(TestMenu,start,1)

exten => t,1,Playback(vm-goodbye)
same => n,Hangup()

Blank arguments

Note that the second, third, and fourth arguments may be left blank; only the first
argument is required. For example, if you want to specify an option but not a timeout,
simply leave the timeout argument blank, like this:

exten => 1,1,Dial(DAHDI/1,,m)

Using Variables

Variables can be used in an Asterisk dialplan to help reduce typing, improve clarity, or
add logic. If you have some computer programming experience, you already under-
stand what a variable is. If not, we’ll briefly explain what variables are and how they
are used. They are a vitally important Asterisk dialplan concept (and something you
will not find in the dialplan of any proprietary PBX).

A variable is a named container that can hold a value. The advantage of a variable is
that its contents may change, but its name does not, which means you can write code
that references the variable name and not worry about what the value will be. So, for
example, we might create a variable called JOHN and assign it the value of DAHDI/1. This
way, when we’re writing our dialplan we can refer to John’s channel by name, instead
of remembering that John is using the channel named DAHDI/1. If at some point we
change John’s channel to something else, we don’t have to change any of our code that
references the JOHN variable; we only have to change the value assigned to the variable.

There are two ways to reference a variable. To reference the variable’s name, simply
type the name of the variable, such as LEIF. If, on the other hand, you want to reference
the contents of the value, you must type a dollar sign, an opening curly brace, the name

122 | Chapter6: Dialplan Basics

of the variable, and a closing curly brace (in the case of LEIF, we would reference the
value of the variable with ${LEIF}). Here’s how we might use a variable inside the
Dial() application:

exten => 301,1,Set(LEIF=SIP/0000FFFF0001)
same => n,Dial(${LEIF})

In our dialplan, whenever we refer to ${LEIF}, Asterisk will automatically replace it
with whatever value has been assigned to the variable named LEIF.

W
=% Note that variable names are case-sensitive. A variable named LEIF is
different than a variable named Leif. For readability’s sake, all our var-
Wls" iable names in the examples will be written in uppercase. You should
" also be aware that any variables set by Asterisk will be uppercase. Some
variables, such as CHANNEL and EXTEN, are reserved by Asterisk. You
should not attempt to set these variables. It is popular to write global
variables in uppercase and channel variables in Pascal/Camel case.

There are three types of variables we can use in our dialplan: global variables, channel
variables, and environment variables. Let’s take a moment to look at each type.

Global variables

As their name implies, global variables are visible to all channels at all times. Global
variables are useful in that they can be used anywhere within a dialplan to increase
readability and manageability. Suppose for a moment that you had a large dialplan and
several hundred references to the SIP/0000FFFF0001 channel. Now imagine you had to
go through your dialplan and change all of those references to SIP/0000FFFF0002. It
would be a long and error-prone process, to say the least.

On the other hand, if you had defined a global variable that contained the value SIP/
0000FFFF0001 at the beginning of your dialplan and then referenced that instead, you
would have to change only one line of code to affect all places in the dialplan where
that channel was used.

Global variables should be declared in the [globals] context at the beginning of the
extensions.conf file. As an example, we will create a global variable named LEIF with a
value of SIP/0000FFFF0001. This variable is set at the time Asterisk parses the dialplan:

[globals]
LEIF=SIP/0000FFFF0001

Channel variables

A channel variable is a variable that is associated only with a particular call. Unlike
global variables, channel variables are defined only for the duration of the current call
and are available only to the channels participating in that call.

Building an Interactive Dialplan | 123

There are many predefined channel variables available for use within the dialplan,
which are explained in the Asterisk wiki at https://wiki.asterisk.org/wiki/display/AST/
Channel+Variables. Channel variables are set via the Set() application:

exten => 202,1,Set(MagicNumber=42)
same => n,SayNumber (${MagicNumber})

You're going to be seeing a lot more channel variables. Read on.

Environment variables

Environment variables are a way of accessing Unix environment variables from within
Asterisk. These are referenced using the ENV() dialplan function.” The syntax looks like
${ENV(var)}, where var is the Unix environment variable you wish to reference. Envi-
ronment variables aren’t commonly used in Asterisk dialplans, but they are available
should you need them.

Adding variables to our dialplan

Now that we’ve learned about variables, let’s put them to work in our dialplan. We’re
going to add three global variables that will associate a variable name to a channel name:

[globals]
LEIF=SIP/0000FFFF0001
JIM=SIP/0000FFFF0002
RUSSELL=SIP/0000FFFF0003

[LocalSets]
exten => 100,1,Dial(${LEIF})
exten => leif,1,Dial(${LEIF})

exten => 101,1,Dial(${JIM})
exten => jim,1,Dial(${JIIM})

exten => 102,1,Dial(${RUSSELL})
exten => russell,1,Dial(${RUSSELL})

[TestMenu]

exten => 201,1,Answer()
same => n,Background(enter-ext-of-person)
same => n,WaitExten()

exten => 1,1,Dial(DAHDI/1,10)
same => n,Playback(vm-nobodyavail)
same => n,Hangup()

exten => 2,1,Dial(SIP/Jane,10)
same => n,Playback(vm-nobodyavail)
same => n,Hangup()

* We'll get into dialplan functions later. Don’t worry too much about environment variables right now. They
are not important to understanding the dialplan.

124 | Chapter6: Dialplan Basics

https://wiki.asterisk.org/wiki/display/AST/Channel+Variables
https://wiki.asterisk.org/wiki/display/AST/Channel+Variables

exten => i,1,Playback(pbx-invalid)
same => n,Goto(incoming,123,1)

exten => t,1,Playback(vm-goodbye)
same => n,Hangup()

You’ll notice we’ve added pseudonym extension names for our extension numbers. In
“Extensions” on page 110, we explained that Asterisk does not care which naming
scheme you use to identify an extension. We’ve simply added both numeric and named
extension identifiers for reaching the same endpoint; extensions 100 and leif both
reach the device located at SIP/0000FFFF0001, extensions 101 and jim both reach the
device located at SIP/0000FFFF0002, and both 102 and russell reach the device located
at SIP/0000FFFF0003. The devices are identified with the global variables ${LEIF}, $
{JIM}, and ${RUSSELL}, respectively, and we’re dialing those locations using the
Dial() application.

In our test menu we’ve simply picked a couple of random endpoints to dial, such as
DAHDI/1 and SIP/Jane. These could be replaced with any available endpoints that you
wish. Our TestMenu context has been built to start giving you an idea as to what an
Asterisk dialplan looks like.

Pattern Matching

If we want to be able to allow people to dial through Asterisk and have Asterisk connect
them to outside resources, we need a way to match on any possible phone number that
the caller might dial. For situations like this, Asterisk offers pattern matching. Pattern
matching allows you to create one extension in your dialplan that matches many dif-
ferent numbers. This is enormously useful.

Pattern-matching syntax

When using pattern matching, certain letters and symbols represent what we are trying
to match. Patterns always start with an underscore (). This tells Asterisk that we’re
matching on a pattern, and not on an explicit extension name.

If you forget the underscore at the beginning of your pattern, Asterisk
“‘% will think it’s just a named extension and won’t do any pattern match-

ing. This is one of the most common mistakes people make when start-
ing to learn Asterisk.

After the underscore, you can use one or more of the following characters:

X
Matches any single digit from 0 to 9.

Matches any single digit from 1 to 9.

Building an Interactive Dialplan | 125

Matches any single digit from 2 to 9.
[15-7]
Matches a single character from the range of digits specified. In this case, the pat-
tern matches a single 1, as well as any number in the range 5, 6, 7.
. (period)
Wildcard match; matches one or more characters, no matter what they are.

If you’re not careful, wildcard matches can make your dialplans do
things you’re not expecting (like matching built-in extensions such
asiorh). Youshould use the wildcard match in a pattern only after

you’ve matched as many other digits as possible. For example, the
following pattern match should probably never be used:

In fact, Asterisk will warn you if you try to use it. Instead, if you
really need a catch-all pattern match, use this one to match all
strings that start with a digit:

X.

Or this one, to match any alphanumeric string:

_[0-9a-zA-7].

! (bang)

Wildcard match; matches zero or more characters, no matter what they are.

To use pattern matching in your dialplan, simply put the pattern in the place of the
extension name (or number):

exten => NXX,1,Playback(silence/18auth-thankyou)

In this example, the pattern matches any three-digit extension from 200 through 999
(the N matches any digit between 2 and 9, and each X matches a digit between 0 and 9).
That is to say, if a caller dialed any three-digit extension between 200 and 999 in this
context, he would hear the sound file auth-thankyou.gsm.

One other important thing to know about pattern matching is that if Asterisk finds
more than one pattern that matches the dialed extension, it will use the most specific
one (going from left to right). Say you had defined the following two patterns, and a
caller dialed 555-1212:

exten => 555XXXX,1,Playback(silence/18digits/1)
exten => 55512XX,1,Playback(silence/18digits/2)

In this case the second extension would be selected, because it is more specific.

126 | Chapter6: Dialplan Basics

Pattern-matching examples
This pattern matches any seven-digit number, as long as the first digit is 2 or higher:

_NXXXXXX

The preceding pattern would be compatible with any North American Numbering Plan
local seven-digit number.

In areas with 10-digit dialing, that pattern would look like this:
_ NXXNXXXXXX

Note that neither of these two patterns would handle long-distance calls. We’ll cover
those shortly.

The NANP and Toll Fraud

The North American Numbering Plan (NANP) is a shared telephone numbering
scheme used by 19 countries in North America and the Caribbean. All of these countries
share country code 1.

In the United States and Canada, telecom regulations are similar (and sensible) enough
that you can place a long-distance call to most numbers in country code 1 and expect
to pay a reasonable toll. However, many people don’t realize that 17 other countries,
many of which have very different telecom regulations, share the NANP. (More infor-
mation can be found at http://www.nanpa.com.)

One popular scam using the NANP tries to trick naive North Americans into calling
expensive per-minute toll numbers in a Caribbean country; the callers believe that since
they dialed 1-NPA-NXX-XXXX to reach the number, they’ll be paying their standard
national long-distance rate for the call. Since the country in question may have regu-
lations that allow for this form of extortion, the caller is ultimately held responsible for
the call charges.

The only way to prevent this sort of activity is to block calls to certain area codes (809,
for example) and remove the restrictions only on an as-needed basis.

Let’s try another:
_ INXXNXXXXXX

This one will match the number 1, followed by an area code between 200 and 999, then
any seven-digit number. In the NANP calling area, you would use this pattern to match
any long-distance number.T

T If you grew up in North America, you may believe that the 1 you dial before a long-distance call is “the long-
distance code.” This is incorrect. The number 1 is the international country code for NANP. Keep this in
mind if you send your phone number to someone in another country. The recipient may not know your
country code, and thus be unable to call you with just your area code and phone number. Your full phone
number with country code is +1 NPA NXX XXXX (where NPA is your area code)—e.g., +1 416 555 1212.

Building an Interactive Dialplan | 127

http://www.nanpa.com

And finally this one:
_011.

Note the period on the end. This pattern matches any number that starts with 011 and
has at least one more digit. In the NANP, this indicates an international phone number.
(We'll be using these patterns in the next section to add outbound dialing capabilities
to our dialplan.)

Pattern Matches in Other Countries

The examples in this section were NANPA-centric, but the basic logic applies in any
country. Here are some examples for other countries (note that we were not able to test
these, and they are almost certainly incomplete):

; UK, Germany, Italy, China, etc.

_00. ; international dialing code
_0. ; national dialing prefix

; Australia
_0011. ; international dialing code
_0. ; national dialing prefix

This is by no means comprehensive, but it should give you a general idea of the patterns
you’ll want to consider for your own country.

Using the ${EXTEN} channel variable

So what happens if you want to use pattern matching but need to know which digits
were actually dialed? Enter the ${EXTEN} channel variable. Whenever you dial an ex-
tension, Asterisk sets the ${EXTEN} channel variable to the digits that were dialed. We
can use an application called SayDigits() to test this out:

exten => XXX, 1,Answer()
same => n,SayDigits(${EXTEN})

In this example, the SayDigits() application will read back to you the three-digit ex-
tension you dialed.

Often, it’s useful to manipulate the ${EXTEN} by stripping a certain number of digits off
the front of the extension. This is accomplished by using the syntax ${EXTEN: x}, where
x is where you want the returned string to start, from left to right. For example, if the
value of ${EXTEN} is 95551212, ${EXTEN:1} equals 5551212. Let’s try another example:

exten => XXX, 1,Answer()
same => n,SayDigits(${EXTEN:1})

In this example, the SayDigits() application would start at the second digit, and thus
read back only the last two digits of the dialed extension.

128 | Chapter6: Dialplan Basics

More Advanced Digit Manipulation
The ${EXTEN} variable properly has the syntax ${EXTEN:x:y}, where x is the starting po-
sition and y is the number of digits to return. Given the following dial string:
94169671111

we can extract the following digit strings using the ${EXTEN:x:y} construct:

e ${EXTEN:1:3} would contain 416

e ${EXTEN:4:7} would contain 9671111

* ${EXTEN:-4:4} would start four digits from the end and return four digits, giving
us 1111

e ${EXTEN:2:-4} would start two digits in and exclude the last four digits, giving us
16967

* ${EXTEN:-6:-4} would start six digits from the end and exclude the last four digits,
giving us 67

e ${EXTEN:1} would give us everything after the first digit, or 4169671111 (if the num-
ber of digits to return is left blank, it will return the entire remaining string)

This is a very powerful construct, but most of these variations are not very common in
normal use. For the most part, you will be using ${EXTEN} (or perhaps ${EXTEN:1} if you
need to strip off an external access code).

Includes

Asterisk has an important feature that allows extensions from one context to be avail-
able from within another context. This is accomplished through use of the include
directive. The include directive allows us to control access to different sections of the
dialplan.

The include statement takes the following form, where context is the name of the
remote context we want to include in the current context:

include => context

Including one context within another context allows extensions within the included
context to be dialable.

When we include other contexts within our current context, we have to be mindful of
the order in which we are including them. Asterisk will first try to match the dialed
extension in the current context. If unsuccessful, it will then try the first included con-
text (including any contexts included in that context), and then continue to the other
included contexts in the order in which they were included.

We will discuss the include directive more in Chapter 7.

Building an Interactive Dialplan | 129

Conclusion

And there you have it—a basic but functional dialplan. There is still much we have not
covered, but you’ve got all of the fundamentals. In the following chapters, we’ll con-
tinue to build on this foundation.

If parts of this dialplan don’t make sense, you may want to go back and reread a section
or two before continuing on to the next chapter. It’s imperative that you understand
these principles and how to apply them, as the next chapters build on this information.

130 | Chapter6: Dialplan Basics

CHAPTER 7
Outside Connectivity

You cannot always control what goes on outside. But
you can always control what goes on inside.

—Wayne Dyer

In the previous chapters, we have covered a lot of important information that is essential
to a working Asterisk system. However, we have yet to accomplish the one thing that
is vital to any useful PBX: namely, connecting it to the outside world. In this chapter
we will rectify that situation.

The architecture of Asterisk is significant, due in large part to the fact that it treats all
channel types as equal. This is in contrast to a traditional PBX, where trunks (which
connect to the outside world) and extensions (which connect to users and resources)
are very different. The fact that the Asterisk dialplan treats all channels in a similar
manner means that in an Asterisk system you can accomplish very easily things that
are much more difficult (or impossible) to achieve on a traditional PBX.

This flexibility does come with a price, however. Since the system does not inherently
know the difference between an internal resource (such as a telephone set) and an
external resource (for example, a telco circuit), it is up to you to ensure that your
dialplan handles each type of resource appropriately.

The Basics of Trunking

The purpose of trunking is to provide a shared connection between two entities. For
example, a trunk road would be a highway that connects two towns together. Railroads
used the term “trunk” extensively, to refer to a major line that connected feeder lines
together.

Similarly, in telecom, trunking is used to connect two systems together. Carriers use
telecom trunks to connect their networks together, and in a PBX, the circuits that con-
nect the PBX to the outside world are commonly referred to as trunks (although the
carriers themselves do not generally consider these to be trunks). From a technical

131

perspective, the definition of a trunk is not as clear as it used to be (PBX trunks used
totally different technology from station circuits), but as a concept, trunks are still very
important. For example, with VoIP, everything is actually peer-to-peer (so from a tech-
nology perspective there isn’t really such a thing as a trunk anymore), but it is still useful
to be able to differentiate between VoIP resources that connect to the outside world
and VoIP resources that connect to user endpoints (such as SIP telephones).

It’s probably easiest to think of a trunk as a collection of circuits that service a route.
So, in an Asterisk PBX, you might have trunks that go to your VoIP provider for long-
distance calls, trunks for your PSTN circuits, and trunks that connect your various
offices together. These trunks might actually run across the same network connection,
but in your dialplan you could treat them quite differently.

While we believe that VoIP will eventually completely replace the PSTN, many of the
concepts that are in use on VolIP circuits (such as a “phone number”) owe their existence
more to history than any technical requirement, and thus we feel it will be helpful to
discuss using traditional PSTN circuits with Asterisk before we get into VoIP.

If the system you are installing will use VoIP circuits only, that is not a problem. Go
straight to the VoIP section of this chapter,” and we’ll take you through what you need
to do. We do recommend reading the PSTN sections at your convenience, since there
may be general knowledge in them that could be of use to you, but it is not strictly
required in order to understand and use Asterisk.

Fundamental Dialplan for Qutside Connectivity

In a traditional PBX, external lines are generally accessed by way of an access code that
must be dialed before the number.t It is common to use the digit 9 for this purpose.

In Asterisk, it is similarly possible to assign 9 for routing of external calls, but since the
Asterisk dialplan is so much more intelligent, it is not really necessary to force your
users to dial 9 before placing a call. Typically, you will have an extension range for your
system (say, 100—-199), and a feature code range (*00 to *99). Anything outside those
ranges that matches the dialing pattern for your country or region can be treated as an
external call.

If you have one carrier providing all of your external routing, you can handle your
external dialing through a few simple pattern matches. The example in this section is
valid for the North American Numbering Plan (NANP). If your country is not within
the NANP (which serves Canada, the US, and several Caribbean countries), you will
need a different pattern match.

* But do not collect $200.

T In a key system, each line has a corresponding button on each telephone, and lines are accessed by pressing
the desired line key.

132 | Chapter7: Outside Connectivity

The [globals] section contains two variables, named LOCAL and TOLL.¥ The purpose of
these variables is to simplify management of your dialplan should you ever need to
change carriers. They allow you to make one change to the dialplan that will affect all
places where the specified channel is referred to:

[globals]
LOCAL=DAHDI/GO ; assuming you have a PSTN card in your system
TOLL=SIP/YourVoipCarrier ; as defined in sip.conf

The [external] section contains the actual dialplan code that will recognize the num-
bers dialed and pass them to the Dial() application$:

[external]
exten => _NXXNXXXXXX,1,Dial(${LOCAL}/$EXTEN}) ; 10-digit pattern match for NANP
exten => _NXXXXXX,1,Dial(${LOCAL}/${EXTEN}) ; 7-digit pattern match for NANP
exten => _INXXNXXXXXX,1,Dial(${TOLL}/${EXTEN}) ; Long-distance pattern match for NANP
exten => _011.,1,Dial(${TOLL}/${EXTEN}) ; International pattern match for

; calls made from NANP

; This section is functionally the same as the above section.
; It is for people who like to dial '9' before their calls
exten => _9NXXNXXXXXX,1,Dial(${LOCAL}/${EXTEN:1})

exten => _9NXXXXXX,1,Dial(${LOCAL}/${EXTEN:1})

exten => _9INXXNXXXXXX,1,Dial(${TOLL}/${EXTEN:1})

exten => 9011.,1,Dial(${TOLL}/${EXTEN:1})

In any context that would be used by sets or user devices, you would use an
include=> directive to allow access to the external context:

[LocalSets]
include => external

It is critically important that you do not include access to the external
‘5’@ lines in any context that might process an incoming call. The risk here

is that a phishing bot could eventually gain access to your outgoing

trunks (you’d be surprised at how common these phishing bots are).

We cannot stress enough how important it is that you ensure that no
external resource can access your toll lines.

PSTN Circuits

The Public Switched Telephone Network (PSTN) has existed for over a century. It is
the precursor to many of the technologies that shape our world today, from the Internet
to MP3 players.

1 You can name these anything you wish. The words “local” and “toll” do not have any built-in meaning to
the Asterisk dialplan

§ For more information on pattern matches, see Chapter 6.

PSTN Circuits | 133

Traditional PSTN Trunks

There are two types of fundamental technology that phone carriers use to deliver tel-
ephone circuits: analog and digital.

Analog telephony

The first telephone networks were all analog. The audio signal that you generated with
your voice was used to generate an electrical signal that was carried to the other end.
The electrical signal had the same characteristics as the sound being produced.

Analog circuits have several characteristics that differentiate them from other circuits
you might wish to connect to Asterisk:

* No signaling channel exists—most signaling is electromechanical.

* Disconnect supervision is usually delayed by several seconds, and is not completely
reliable.

* Far-end supervision is minimal (for example, answer supervision is lacking).

* Differences in circuits means that audio characteristics will vary from circuit to
circuit, and will require tuning.

Analog circuits that you wish to connect to your Asterisk system will need to connect
to a Foreign eXchange Office (FXO) port. Since there is no such thing as an FXO port
in any standard computer, an FXO card must be purchased and installed in the system
in order to connect traditional analog lines.|

FXO0 and FXS

For any analog circuit, there are two ends: the office (typically the central office of the
PSTN), and the station (typically a phone, but could also be a card such as a modem
or line card in a PBX).

The central office is responsible for:
* Power on the line (nominally 48 VDC)
* Ringing voltage (nominally 90 VAC)
* Providing dial tone

* Detecting hook state (off-hook and on-hook)

* Sending supplementary signaling such as caller ID

[I'You would use the exact same card if you wanted to connect a traditional home telephone line to your Asterisk
system.

134 | Chapter7: Outside Connectivity

The station is responsible for:

* Providing a ringer (or at least being able to handle ringing voltage in some manner)
* Providing a dialpad (or some way of sending DTMF)

* Providing a hook switch to indicate the status of the line

A Foreign eXchange (FX) port is named by what it connects to, not by what it does. So,
for example, a Foreign eXchange Office (FXO) port is actually a station: it connects to
the central office. A Foreign eXchange Station (FXS) port is actually a port that provides
the services of a central office (in other words, you would plug an analog set into an
FXS port).

Itis for this reason that the signaling settings in the Asterisk config files seem backwards:
FXO ports use FXS signaling; FXS ports use FXO signaling. When you understand that
the name of the physical port type is based on what it connects to, the signaling names
in Asterisk make a bit more sense: if an FXO port connects to the central office, it needs
to be able to behave as a station, and therefore needs FXS signaling.

Note that changing from FXO to FXS is not something you can simply do with a settings
change. FXO and FXS ports require completely different electronics. Most analog cards
available for Asterisk use some form of daughter card that connects to the main card
and provides the correct channel type, meaning that you have some flexibility in de-
fining what types of ports you have on your card.

Analog ports are not generally used in medium to large systems. They are most com-
monly used in smaller offices (less than 10 lines; less than 30 phones). Your decision

to use analog might be based on some of the following factors:

* Availability of digital trunks in your area

* Cost (analog is less expensive at smaller densities, but more expensive at higher

densities)

* Logistics (if you already have analog lines installed, you may wish to keep them)

From a technical perspective, you would normally want to have digital rather than
analog circuits. Reality does not always accommodate, though, so analog will likely be

around for a few more years yet.

Digital telephony

Digital telephony was developed in order to overcome many of the limitations of analog.

Some of the benefits of digital circuits include:

* No loss of amplitude over long distances
* Reduced noise on circuits (especially long-distance circuits)
* Ability to carry more than one call per circuit

* Faster call setup and teardown

PSTN Circuits | 135

* Richer signaling information (especially if using ISDN)
* Lower cost for carriers

* Lower cost for customers (at higher densities)

In an Asterisk system (or any PBX, for that matter), there are several types of digital
circuits you might want to connect:

T1 (24 channels)
Used in Canada and the United States (mostly for ISDN-PRI)

E1 (32 channels)
Used in the rest of the world (ISDN-PRI or MFC/R2)

BRI (2 channels)
Used for ISDN-BRI circuits (Euro-ISDN)

Note that the physical circuit can be further defined by the protocol running on the
circuit. For example, a T1 could be used for either ISDN-PRI, or CAS, and an E1 could
be used for ISDN-PRI, CAS, or MFC/R2. We'll discuss the different protocols in the
next section.

Installing PSTN Trunks

Depending on the hardware you have installed, the process for installing your PSTN
cards will vary. We will discuss installation in general terms, which will apply to all
Digium PSTN cards. Other manufacturers tend to provide installation scripts with their
hardware, which will automate much of this for you.

Downloading and installing DAHDI

The Digium Asterisk Hardware Device Interface, a.k.a. DAHDI (DAW-dee)* is the
software framework required to enable communication between PSTN cards and
Asterisk. Even if you do not have any PSTN hardware, we recommend installing
DAHDI since it is a simple, reliable way to get a valid timing source.” Complete DAHDI
installation instructions can be found in Chapter 3.

Disable Loading Extra DAHDI Modules

By default DAHDI will load all compiled modules into memory. As this is unnecessary,
let’s disable loading any of the hardware modules for now. If no modules are loaded in
the configuration files, DAHDI will load the dahdi_dummy driver, which provides an
interface for Asterisk to get timing from the kernel so that timing-dependent modules
such as MeetMe and IAX2 trunking work correctly.

#Don’t ask.

* There are other ways of getting a timing source, and if you want a really tight system it is possible to run
Asterisk without DAHDI, but it’s not something we’re going to cover here.

136 | Chapter7: Outside Connectivity

As of DAHDI 2.3.0, the requirement to load dahdi_dummy for a timing
interface no longer exists. The same functionality has now been in-
Ws: tegrated into the main dahdi kernel module.

The configuration file defining which modules DAHDI will load is in /etc/dahdi/mod-
ules. To disable loading of extra modules, all we need to do is edit the modules file and
comment out all the modules by placing a hash (#) at the start of each line. When you’re
done, your modules configuration file should look similar to the following:

=+

Contains the list of modules to be loaded / unloaded by /etc/init.d/dahdi.

NOTE: Please add/edit /etc/modprobe.d/dahdi or /etc/modprobe.conf if you
would like to add any module parameters.

Format of this file: list of modules, each in its own line.
Anything after a '#' is ignored, likewise trailing and leading
whitespace and empty lines.

Digium TE205P/TE207P/TE210P/TE212P: PCI dual-port T1/E1/31
Digium TE405P/TE407P/TE410P/TE412P: PCI quad-port T1/E1/J1
Digium TE220: PCI-Express dual-port T1/E1/J1

Digium TE420: PCI-Express quad-port T1/E1/J1

#wctaxxp

Digium TE120P: PCI single-port T1/E1/J1

Digium TE121: PCI-Express single-port T1/E1/J1

Digium TE122: PCI single-port T1/E1/J1

#wcte12xp

Digium T100P: PCI single-port T1

Digium E100P: PCI single-port E1

#wctixxp

Digium TE110P: PCI single-port T1/E1/J1

#wctelixp

Digium TDM2400P/AEX2400: up to 24 analog ports

Digium TDM80OOP/AEX800: up to 8 analog ports

Digium TDM410P/AEX410: up to 4 analog ports

#wctdm24xxp

X100P - Single port FXO interface

X101P - Single port FXO interface

#wcfxo

Digium TDM400P: up to 4 analog ports

#wctdm

Digium B410P: 4 NT/TE BRI ports

#wcbaxxp

Digium TC400B: G729 / G723 Transcoding Engine

#wctcaxxp

Xorcom Astribank Devices

#xpp_usb

HoH B HHHE R

You can also use dahdi_genconf modules to generate a proper empty
configuration file. The dahdi_genconf application will search your
U system for hardware and, if none is found, create a modules file that
" does not load any hardware modules.

PSTN Circuits | 137

You can then restart your DAHDI process to unload any existing drivers that were
loaded, and load just the dahdi_dummy module with the init script:

$ sudo /etc/init.d/dahdi restart

Unloading DAHDI hardware modules: done

Loading DAHDI hardware modules:

No hardware timing source found in /proc/dahdi, loading dahdi_dummy
Running dahdi_cfg: [OK]

Before you can start using your hardware, though, you’ll need to configure the /etc/
dahdi/system.conf file; this process is described in “Configuring digital cir-
cuits” on page 138 and “Configuring analog circuits” on page 142.

Configuring digital circuits

Digital telephony was developed by carriers as a way to reduce the cost of long-distance
circuits, as well as improve transmission quality. The entire PSTN backbone has been
fully digital for many years now. The essence of a digital circuit is the digitization of
the audio, but digital trunks also allow for more complex and reliable signaling. Several
standards have been developed and deployed, and for each standard there may be
regional differences as well.

B
)

You can use dahdi_hardware and Isdahdi to help you determine what
telephony hardware your system contains. You can also use dahdi_gen-
s conf modules to build an /etc/asterisk/modules file for you based on the
found hardware.

PRIISDN. Primary Rate Interface ISDN (commonly known as PRI) is a protocol designed
to run primarily on a DS1 circuit (a T1 or E1, depending on where you are in the world)
between a carrier and a customer. PRI uses one of the DSO channels as a signaling
channel (referred to as the D-channel). A typical PRI circuit is therefore broken down
into a group of B-channels (the bearer channels that actually carry the calls), and a
D-channel for signaling. Although it is most common to find a PRI circuit being carried
across a single physical circuit (such as a T1 or E1), it is possible to have a PRI circuit
span multiple DS1s, and even to have multiple D-channels.t

While there are many different ways to configure PRI circuits, we are hoping to avoid
confusing you with all of the options (many of which are obsolete or at least no longer
in common use), and instead provide examples of the more common configurations.

+ Sometimes circuits are referenced by the number of B- and D-channels they contain, so a single T1 running
the PRI protocol in North America might be referred to as 23B+D, and a dual T1 circuit with a backup
D-channel would be a 46B+2D. We’ve even seen PRI referenced as nB+nD, although this can get a little bit
pedantic.

138 | Chapter7: Outside Connectivity

When installing telephony hardware, be sure you update the /etc/dahdi/

modules file to enable the appropriate modules for your hardware and

Qs then reload DAHDI with the init script (Jetc/init.d/dahdi). You can use

* the dahdi_genconf modules command to generate the modules file for
your system as well.

Most PRI circuits in North America will use a T1 with the following characteristics:

* Line code: B8ZS (bipolar with 8-zeros substitution)

* Framing: ESF (extended superframe)

You will need to configure two files. The /etc/dahdi/system.conf file should look some-
thing like this:

loadzone = us
defaultzone = us

span = 1,1,0,esf,b8zs
bchan = 1-23
echocanceller = mg2,1-23
hardhdlc = 24

And the /etc/asterisk/chan_dahdi.conf file should look like this:
[trunkgroups]

[channels]

usecallerid = yes
hidecallerid = no
callwaiting = yes
usecallingpres = yes
callwaitingcallerid = yes
threewaycalling = yes
transfer = yes

canpark = yes
cancallforward = yes
callreturn = yes

echocancel = yes
echocancelwhenbridged = yes
relaxdtmf = yes

rxgain = 0.0
txgain = 0.0
group = 1
callgroup =
pickupgroup
immediate =

1
=1
no

switchtype = national ; commonly referred to as NI2
context = from-pstn

group = 0

echocancel = yes

PSTN Circuits | 139

signalling = pri_cpe
channel => 1-23

Some carriers will use Nortel’s DMS switch, which commonly uses the DMS100 pro-
tocol instead of National ISDN 2. In this case you would set the switchtype to DMS100:

switchtype = dms100
Outside of Canada and the US, PRI circuits will be carried on an E1 circuit.

In Europe, an E1 circuit used for PRI will normally have the following characteristics:

* Line code: CCS
* Framing: HDB3 (high-density bipolar)
The /etc/dahdi/system.conf file might look something like this:

span = 1,0,0,ccs,hdb3,crc4
bchan = 1-15,17-31
hardhdlc = 16

And the /etc/asterisk/chan_dahdi.conf file should look something like this:
[trunkgroups]

[channels]

usecallerid = yes
hidecallerid = no
callwaiting = yes
usecallingpres = yes
callwaitingcallerid = yes
threewaycalling = yes
transfer = yes

canpark = yes
cancallforward = yes
callreturn = yes

echocancel = yes
echocancelwhenbridged = yes
relaxdtmf = yes

rxgain
txgain
group = 1
callgroup =
pickupgroup
immediate =

= 0.0
= 0.0

1
=1
no

switchtype = gsig
context = pri_incoming
group = 0

signalling = pri cpe
channel => 1-15,17-31

BRIISDN. Basic Rate Interface ISDN (commonly known as BRI, or sometimes even just
ISDN) was intended to be the smaller sibling to PRI. BRI only provides two 64K
B-channels and a 16K D-channel. The use of BRI has been somewhat limited in North

140 | Chapter7: Outside Connectivity

America (we don’t recommend using it for any reason), but in some countries in Europe
it is widely used and has almost completely replaced analog.

BRI support under Asterisk will be different depending on the BRI card you are instal-
ling. The manufacturer of your BRI card will provide specific installation instructions
for its hardware.

W
N When installing telephony hardware, be sure you update the /etc/dahdi/
"‘:‘ modules file to enable the appropriate modules for your hardware and
T 98y then reload DAHDI with the init script (etc/init.d/dahdi). You can use

" the dahdi_genconf modules command to generate the modules file for
your system as well.

MFC/R2. The MFC/R2 protocol could be thought of as a precursor to ISDN. It was at
first used on analog circuits, but it is now mostly deployed on the same E1 circuits that
also carry ISDN-PRI. This protocol is not typically found in Canada, the US, or Western
Europe, but it is very popular in some parts of the world (especially Latin America and
Asia), mostly because it tends to be a less expensive service offering from the carriers.

There are many different flavors of this protocol, each country having a different re-
gional variant.

The OpenR2 project provides the 1ibopenr2 library, which needs to be installed on your
system in order for Asterisk to support your R2 circuits. Before installing 1libopenr2,
however, you need to have DAHDI installed.

The compilation and installation order, therefore, is:
1. DAHDI

2. libopenr2
3. Asterisk

Once OpenR2 has been installed, you can use the r2test application to see a list of
variants that are supported:

$ ra2test -1

Variant Code Country

AR Argentina

BR Brazil

CN China

z Czech Republic
Cco Colombia

EC Ecuador

ITu International Telecommunication Union
MX Mexico

PH Philippines
VE Venezuela

For additional information on configuring R2 support in Asterisk, see the configs/
chan_dahdi.conf.sample file included in the Asterisk source tree (search for “mfcr2”).

PSTN Circuits | 141

Additionally, OpenR2 contains some sample configuration files for connecting Asterisk
to networks in various countries. To read information about some of the country var-
iants, search the /doc/asterisk folder and refer to the documents inside the appropriate
subdirectory:

$ 1s doc/asterisk/
ar br ec mx ve

As an example, OpenR2 provides a sample configuration for connecting to Telmex or
Axtel in Mexico. We'll step you through this to give you an idea of the process. First,
you must configure DAHDI by modifying /etc/dahdi/system.conf as shown here:

loadzone = us
defaultzone = us

span = 1,1,0,cas,hdb3
cas 1-15:1101
cas = 17-31:1101

span = 2,1,0,cas,hdb3
cas = 32-46:1101
cas = 48-62:1101

Next, you must configure Asterisk by modifying /etc/asterisk/chan_dahdi.conf as
follows:

signalling = mfcr2

mfcr2_variant = mx

mfcr2_get ani_first = no
mfcr2_max_ani = 10

mfcr2_max_dnis = 4

mfcr2_category = national_subscriber
mfcr2_mfback_timeout = -1
mfcr2_metering pulse_timeout = -1
; this is for debugging purposes
mfcr2_logdir = log

mfcr2_logging = all

; end debugging configuration
channel => 1-15

channel => 17-31

Configuring analog circuits

There are many companies producing PSTN cards for Asterisk. The card will need to
have its drivers installed so that Linux can recognize it (DAHDI ships with these drivers
for Digium cards). From that point, configuration is handled by the Asterisk module
chan_dahdi.

You can use dahdi_hardware and Isdahdi to determine what telephony
hardware your system contains.

142 | Chapter7: Outside Connectivity

When installing telephony hardware, be sure you update the /etc/dahdi/

modules file to enable the appropriate modules for your hardware and

s then reload DAHDI with the init script (Jetc/init.d/dahdi). You can use

* the dahdi_genconf modules command to generate the modules file for
your system as well.

In order to configure an FXO card to work with Asterisk, two files are required.

The first is not an Asterisk configuration file, and is thus located in the /etc/dahdi folder
on your system.* This file, system.conf allows you to define some basic parameters, as
well as specify the channels that will be available to your system. Our example assumes
a four-port FXO card, but many different combinations are possible, depending on
your hardware.

loadzone = us ; tonezone defines sounds the interface must produce
; (dialtone, busy signal, ringback, etc.)

; define a default tonezone

)

; which channels on the card will have these parameters

defaultzone = us
fxsks = 1-4

Once your card and channels are known to the operating system, you must configure
them for Asterisk by means of the file /etc/asterisk/chan_dahdi.conf:

[channels]

; To apply other options to these channels, put them before "channel".

signalling = fxs_ks ; in Asterisk, FXO channels use FXS signaling
; (and yes, FXS channels use FXO signaling)
channel => 1-4 ; apply all the previously defined settings to this channel

In this example, we have told Asterisk that the first four DAHDI channels in the system
are FXO ports.

The s extension. If you are connecting to the PSTN using analog channels, we need to
explain extension s. When calls enter a context without a specific destination extension
(for example, a ringing FXO line from the PSTN), they are passed to the s extension.
(The s stands for “start,” as this is where a call will start if no extension information
was passed with the call). This extension can also be useful for accepting calls that have
been redirected from other parts of the dialplan. For example, if we had a list of DID
numbers that were all going to the same place, we might want to point each DID to the
s extension, rather than having to code duplicate dialplan logic for each DID.

Since this is exactly what we need for our dialplan, let’s begin to fill in the pieces. We
will be performing three actions on the call (answer it, play a sound file, and hang it
up), so our s extension will need three priorities. We’ll place the three priorities below

1 In theory, these cards could be used for any software that supports DAHDI; therefore, the basic card
configuration is not a part of Asterisk.

PSTN Circuits | 143

[incoming], because we have decided that all incoming calls should start in this
contextS:

[incoming]

exten => s,1,Answer()

same => n,Playback(tt-weasels)
same => n,Hangup()

Obviously, you would not normally want to answer a call and then hang up. Typically,
an incoming call will either be answered by an automated attendant, or ring directly to
a phone (or group of phones).

VolP

In the world of telecom, VoIP is still a relatively new concept. For the century or so
prior to VoIP, the only way to connect your site to the PSTN was through the use of
circuits provided for that purpose by your local telephone company. VoIP now allows
for connections between endpoints without the PSTN having to be involved at all (al-
though in most VolP scenarios, there will still be a PSTN component at some point,
especially if there is a traditional E.164 phone number involved).

PSTN Termination

Until VoIP totally replaces the PSTN, there will be a need to connect calls from VoIP
networks to the public telephone network. This process is referred to as termination.
What it means is that at some point a gateway connected to the PSTN needs to accept
calls from the VoIP network and connect them to the PSTN network. From the per-
spective of the PSTN, the call will appear to have originated at the termination point.

Asterisk can be used as a PSTN termination point. In fact, given that Asterisk handles
protocol conversion with ease, this can be an excellent use for an Asterisk system.

In order to provide termination, an Asterisk box will need to be able to handle all of
the protocols you wish to connect to the PSTN. In general, this means that your Asterisk
box will need a PRI circuit to handle the PSTN connection, and SIP channels to handle
the calls coming from the VoIP network. The underlying principle is the same regardless
of whether you’re running a small system providing PSTN trunks to an office full of
VolIP telephones, or a complex network of gateway machines deployed in strategic
locations, offering termination to thousands of subscribers.

§ There is nothing special about any context name. We could have named this context
[stuff_that_comes_in], and as long as that was the context assigned in the channel definition in sip.conf,
iax.conf, chan_dahdi.conf, et al., the channel would enter the dialplan in that context. Having said that, it is
strongly recommended that you give your contexts names that help you to understand their purpose. Some
good context names might include [incoming], [local calls], [long distance], [sip_telephones],
[user_services], [experimental], [remote locations], and so forth. Always remember that a context
determines how a channel enters the dialplan, so name accordingly.

144 | Chapter7: Outside Connectivity

Calls from the VoIP network will arrive in the dialplan in whatever context you assigned
to the incoming SIP channels, and the dialplan will relay the calls out through the PSTN
interface. At its very simplest, a portion of a dialplan that supports termination could

look like this:

[from-voip-network]
exten => X.,1,Verbose(2, Call from VoIP network to ${EXTEN})
same => n,Dial(DAHDI/g0/${EXTEN})

In reality, though, you will often have to handle a more complex routing plan that takes
into consideration things like geography, corporate policy, cost, available resources,
and so forth.

Given that most PSTN circuits will allow you to dial any number, any-
% where in the world, and given that you will be expected to pay for all
incurred charges, we cannot stress enough the importance of security
on any gateway machine that is providing PSTN termination. Criminals
puta lot of effort into cracking phone systems (especially poorly secured

Asterisk systems), and if you do not pay careful attention to all aspects
of security, you will be the victim of toll fraud. It’s only a matter of time.

Do not allow any unsecured VolP connections into any context that
contains PSTN termination.

PSTN Origination

Obviously, if you want to pass calls from your VoIP network to the PSTN, you might
also want to be able to accept calls from the PSTN into your VoIP network. The process
of doing this is commonly referred to as origination. This simply means that the call
originated in the PSTN.

In order to provide origination, a phone number is required. You will therefore need
to obtain a circuit from your local phone company, which you will connect to your
Asterisk system. Depending on where you are in the world, there are several different
types of circuits that could provide this functionality, from a basic analog POTS line to
a carrier-grade SS7 circuit.

\

W N

Phone numbers as used for the purpose of origination are commonly
called direct inward dialing numbers (DIDs). This is not strictly the case
wis in all situations (for example, the phone number on a traditional analog
" line would not be considered a DID), but the term is useful enough that
it has caught on. Historically, a DID referred to a phone number asso-
ciated with a trunk connected to customer premise equipment (CPE).

Since phone numbers are controlled by the traditional telecom industry, you will need
to obtain the number either from a carrier directly, or from one of the many companies
that purchase numbers in bulk and resell them in smaller blocks. If you obtain a circuit

VolP | 145

such as a PRI circuit, you will normally be able to order DID numbers to be delivered
with that circuit.

In order to accept a call from a circuit you are using for origination, you will normally
need to handle the passing of the phone number that was called. This is because PSTN
trunks can typically handle more than one phone number, and thus the carrier needs
to identify which number was called so that your Asterisk system will know how to
route the call. The number that was dialed is commonly referred to as the Dialed Num-
ber Identification Service (DNIS) number. The DNIS number and the DID do not have
to match,! but typically they will. If you are ordering a circuit from the carrier, you will
want to ask that they send the DNIS (if they don’t understand that, you may want to
consider another carrier).

In the dialplan, you associate the incoming circuit with a context that will know how
to handle the incoming digits. As an example, it could look something like this:

[from-pstn]
; This is the context that would be listed in the config file
; for the circuit (i.e. chan_dahdi.conf)

exten => X.,1,Verbose(2,Incoming call to ${EXTEN})
same => n,Goto(number-mapping,${EXTEN},1)

[number-mapping]

; This context is not strictly required, but will make it easier

; to keep track of your DIDs in a single location in your dialplan.
; From here you can pass the call to another part of the dialplan

; where the actual dialplan work will take place.

exten => 4165551234,1,Dial(SIP/0000FFFF0001)

exten => 4165554321,1,Goto(autoattendant-context,start,1)

exten => 4165559876,1,VoiceMailMain() ; a handy back door for listening
; to voice messages

exten => i,1,Verbose(2,Incoming call to invalid number)

In the number-mapping context you explicitly list all of the DIDs that you expect to
handle, plus an invalid handler for any DIDs that are not listed (you could send invalid
numbers to reception, or to an automated attendant, or to some context that plays an
invalid prompt).

I In traditional PBXs, the purpose of DIDs was to allow connection directly to an extension in the office. Many
PBXs could not support concepts such as number translation or flexible digit lengths, and thus the carrier
had to pass the extension number as the DID digits, rather than the number that was dialed (the DNIS
number). For example, the phone number 416-555-1234 might have been mapped to extension 100, and
thus the carrier would have sent the digits 100 to the PBX instead of the DNIS of 4165551234. If you ever
replace an old PBX with an Asterisk system, you may find this translation in place, and you’ll need to obtain
a list of mappings between the numbers that the caller dials and the numbers that are sent to the PBX. It is
also common to see the carrier only pass the last four digits of the DNIS number, which the PBX then translates
into an internal number.

146 | Chapter7: Outside Connectivity

VolP to VolP

Eventually, the need for the PSTN will likely vanish, and most voice communications
will take place over network connections.

The original thinking behind the SIP protocol was that it was to be a peer-to-peer
protocol. Technically, this is still the case. What has happened, however, is that things
have gotten a bit more complicated. Issues such as security, privacy, corporate policies,
integration, centralization, and so forth have made things a bit more involved than
simply putting a URI into a SIP phone and having a SIP phone somewhere else ring in
response.

The SIP protocol has become bloated and complex. Implementing SIP-based systems
and networks has arguably become even more complicated than implementing tradi-
tional phone PBXs and networks.#

We are not going to get into the complexities of designing and implementing VoIP
networks in this book, but we will discuss some of the ways you can configure Asterisk
to support VoIP connectivity to other VoIP systems.

Configuring VoIP Trunks

In Asterisk, there is no need to explicitly install your VoIP modules (unless for some
reason you did not compile Asterisk with the required modules). There are several VoIP
protocols that you can choose to use with Asterisk, but we will focus on the two most
popular: SIP and TAX.

Configuring SIP trunks between Asterisk systems

SIP is far and away the most popular of the VoIP protocols—so much so that many
people would consider other VoIP protocols to be obsolete (they are not, but it cannot
be denied that SIP has dominated VoIP for several years now).

The SIP protocol is peer-to-peer and does not really have a formal trunk specification.
This means that whether you are connecting a single phone to your server or connecting
two servers together, the SIP connections will be similar.

Connecting two Asterisk systems together with SIP. The need to be able to connect two Asterisk
systems together to allow calls to be sent between them is a fairly common requirement.
Perhaps you have a company with two physical locations and want to have a PBX at
each location, or maybe you’re the administrator of the company PBX and you like
Asterisk so much that you would also like to install it at home. This section provides a
quick guide on configuring two Asterisk servers to be able to pass calls to each other

#There are many proprietary PBX systems in the market that have a basic configuration that will work right
out of the box. Asterisk deployments are far more flexible, but seldom as simple.

VolP | 147

over SIP. In our example, we will creatively refer to the two servers as serverA and
serverB.

The first file that must be modified is /etc/asterisk/sip.conf. This is the main configura-
tion file for setting up SIP accounts. First, this entry must be added to sip.conf on
serverA. It defines a SIP peer for the other server:

[serverB]

)

; Specify the SIP account type as 'peer'. This means that incoming

; calls will be matched on IP address and port number. So, when Asterisk

; receives a call from 192.168.1.102 and the standard SIP port of 5060,

; it will match this entry in sip.conf. It will then request authentication
; and expect the password to match the 'secret' specified here.
5
t

ype = peer

This is the IP address for the remote box (serverB). This option can also
be provided a hostname.

ost = 192.168.1.102

When we send calls to this SIP peer and must provide authentication,
we use 'serverA' as our username.

C v e e e

sername = serverA

This is the shared secret with serverB. It will be used as the password
when either receiving a call from serverB, or sending a call to serverB.

ecret = apples

W e e e we

)
; When receiving a call from serverB, match it against extensions
; in the 'incoming' context of extensions.conf.

éontext = incoming

é Start by clearing out the list of allowed codecs.
éisallow = all

é Only allow the ulaw codec.

)
allow = ulaw

W N

Be sure to change the host option to match the appropriate IP address
for your own setup.

148 | Chapter7: Outside Connectivity

Now put the following entry in /etc/asterisk/sip.conf on serverB. It is nearly identical to
the contents of the entry we put on serverA, but the name of the peer and the IP address
were changed:

[serverA]

type = peer

host = 192.168.1.101
username = serverB
secret = apples
context = incoming
disallow = all
allow = ulaw

At this point you should be able to verify that the configuration has been successfully
loaded into Asterisk using some CLI commands. The first command to try is sip show
peers. As the name implies, it will show all SIP peers that have been configured:

*CLI> sip show peers

Name/username Host Dyn Forcerport ACL Port Status

serverB/serverA 192.168.1.101 5060 Unmonitored
1 sip peers [Monitored: 0 online, 0 offline Unmonitored: 1 online, 0 offline]

W

You can also try sip show peer serverB. That command will show much
more detail.

The last step in setting up SIP calls between two Asterisk servers is to modify the dialplan
in /etc/asterisk/extensions.conf. For example, if you wanted any calls made on serverA
to extensions 6000 through 6999 to be sent over to serverB, you would use this line in
the dialplan:

exten => _6XXX,1,Dial(SIP/${EXTEN}@serverB)

Connecting an Asterisk system to a SIP provider. When you sign up for a SIP provider, you may
have service for sending and/or receiving phone calls. The configuration will differ
slightly depending on your usage of the SIP provider. Further, the configuration will
differ between each provider. Ideally, the SIP provider that you sign up with will provide
Asterisk configuration examples to help get you connected as quickly as possible. In
case they do not, though, we will attempt to give you a common setup that will help
you get started.

If you will be receiving calls from your service provider, the service provider will most
likely require your server to register with one of its servers. To do so, you must add a
registration line to the [general] section of /etc/asterisk/sip.conf:

[general]

register => username:password@your.provider.tld

VolP | 149

Next, you will need to create a peer entry in sip.conf for your service provider. Here is
a sample peer entry:

[myprovider]

type = peer

host = your.provider.tld

username = username

secret = password

; Most providers won't authenticate when they send calls to you,
; so you need this line to just accept their calls.

insecure = invite

dtmfmode = rfc2833

disallow = all

allow = ulaw

Now that the account has been defined, you must add some extensions in the dialplan
to allow you to send calls to your service provider:

exten => _INXXNXXXXXX,1,Dial(SIP/${EXTEN}@myprovider)

Encrypting SIP calls. Asterisk supports TLS for encryption of the SIP signaling and SRTP
for encryption of the media streams of a phone call. In this section we will set up calls
using SIP TLS and SRTP between two Asterisk severs. The first step is to ensure the
proper dependencies have been installed. Ensure that you have both OpenSSL and
LibSRTP installed. If either one of these was not installed, reinstall Asterisk after in-
stalling these dependencies to ensure that support for TLS and SRTP are included. Once
complete, make sure that the res_srtp module was compiled and installed. To install
OpenSSL, the package is openssl-devel on CentOS and libssl-dev on Ubuntu. To
install LibSRTP, the package is 1ibsrtp-devel on CentOS and 1ibsrtpo-dev on Ubuntu.

Next we will configure SIP TLS. You must enable TLS using the global t1senable option
in the [general] section of /etc/asterisk/sip.conf on both servers. You can optionally
specify an address to bind to if you would like to limit listening for TLS connections to
a single IP address on the system. In this example, we have the IPv6 wildcard address
specified to allow TLS connections on all IPv4 and IPv6 addresses on the system:

[general]

tlsenable = yes
tlsbindaddr = ::

The next step is to get certificates in place. For the purposes of demonstrating the
configuration and functionality, we are going to generate self-signed certificates using
a helper script distributed with Asterisk. If you were setting this up in a production
environment, you might not want to use self-signed certificates. However, if you do,
there are a number of applications out there that help make it easier to manage your
own certificate authority (CA), such as TinyCA.

The script that we are going to use is ast_tls_cert, which is in the contrib/scripts/ direc-
tory of the Asterisk source tree. We need to generate a CA certificate and two server

150 | Chapter7: Outside Connectivity

certificates. The first invocation of ast_tls_cert will generate the CA cert and the server
cert for serverA. The second invocation of ast_tls_cert will generate the server cert for
serverB:

$ cd contrib/scripts

$ mkdir certs

$./ast_tls_cert -d certs -C serverA -o serverA

$./ast_tls_cert -d certs -C serverB -o serverB -c certs/ca.crt -k certs/ca.key

$ 1s certs

ca.cfg ca.crt ca.key serverA.crt serverA.csr serverA.key serverA.pem
serverB.crt serverB.csr serverB.key serverB.pem tmp.cfg

Now that the certificates have been created, they need to be moved to the appropriate
locations on serverA and serverB. We will use the /var/lib/asterisk/keys/ directory to
hold the certificates. Move the following files to serverA:

* ca.crt

e serverA.pem
And move these files to serverB:

® ca.crt

¢ serverB.pem

With the certificates in place, we can complete the Asterisk configuration. We need to
point Asterisk to the server certificate that we just created. Since we’re using self-signed
certificates, we also need to point to the CA certificate. In the [general] section of /etc/
asterisk/sip.conf on serverA, add these options:

[general]

tlscertfile = /var/lib/asterisk/keys/serverA.pem
tlscafile = /var/lib/asterisk/keys/ca.crt

Make the same changes to sip.conf on serverB:

[general]

tlscertfile = /var/lib/asterisk/keys/serverB.pem
tlscafile = /var/lib/asterisk/keys/ca.crt

When you create the server certificates, the Common Name field must
"E’% match the hostname of the server. If you use the ast_tls_cert script, this

is the value given to the -C option. If there is a problem verifying the
server certificate when you make a call, you may need to fix the Common
Name field. Alternatively, for the sake of testing you can set the t1sdont
verifyserver option to yes in the [general] section of /etc/asterisk/
sip.conf, and Asterisk will allow the call to proceed even if it fails veri-
fication of the server certificate.

In “Connecting two Asterisk systems together with STP” on page 147, we created the
configuration necessary to pass calls between serverA and serverB. We are now going

VolP | 151

to modify that configuration so that Asterisk knows that the calls between the two
servers should be encrypted. The only change required is to add the transport = tls
option to the peer entry for the other server.

On serverA:

[serverB]

type = peer

host = 192.168.1.102
username = serverA
secret = apples
context = incoming
disallow = all
allow = ulaw
transport = tls

On serverB:

[serverA]

type = peer

host = 192.168.1.101
username = serverB
secret = apples
context = incoming
disallow = all
allow = ulaw
transport = tls

Now when you make a call using Dial(SIP/serverA) or Dial(SIP/serverB), the SIP
signaling will be encrypted. You can modify the dialplan to force outgoing calls to have
encrypted signaling by setting the CHANNEL (secure_bridge signaling) function to 1:

[default]

exten => 1234,1,Set(CHANNEL (secure_bridge signaling)=1)
same => n,Dial(SIP/1234@serverB)

On the side receiving the call, you can check whether the signaling on an incoming call
is encrypted using the CHANNEL (secure_signaling) dialplan function. Consider the fol-
lowing example dialplan:

[incoming]

exten => X.,1,Answer()
same => n,GotoIf($["${CHANNEL(secure signaling)}" = "1"]?secure:insecure)
same => n(secure),NoOp(Signaling is encrypted.)
same => n,Hangup()
same => n(insecure),NoOp(Signaling is not encrypted.)
same => n,Hangup()

When a call is sent from serverA to serverB using this configuration, you can see from
the output on the Asterisk console that the dialplan determines that the signaling of
the incoming call is encrypted:

152 | Chapter7: Outside Connectivity

nn

-- Executing [1234@incoming:1] Answer("SIP/serverA-00000000",

-- Executing [1234@incoming:2] GotoIf("SIP/serverA-00000000",
"1?secure:insecure") in new stack

-- Goto (incoming,1234,3)

-- Executing [1234@incoming:3] NoOp("SIP/serverA-00000000",
"Signaling is encrypted.") in new stack

-- Executing [1234@incoming:4] Hangup("SIP/serverA-00000000",

) in new stack

nn

) in new stack

Now that SIP TLS has been set up for calls between serverA and serverB, we will set
up SRTP so that the media streams associated with the call are encrypted as well.
Luckily, it is quite easy to configure, compared to what was required to get SIP TLS
working. First, make sure that you have the res_srtp module loaded in Asterisk:
*CLI> module show like res_srtp.so
Module Description Use Count

res_srtp.so Secure RTP (SRTP) 0
1 modules loaded

To enable SRTP, set the CHANNEL (secure_bridge media) function to 1:
[default]

exten => 1234,1,Set(CHANNEL(secure_bridge signaling)=1)
same => n,Set(CHANNEL(secure_bridge media)=1)
same => n,Dial(SIP/1234@serverB)

This indicates that encrypted media is required for an outbound call. When the call is
sent out via SIP, Asterisk will require that SRTP be used, or the call will fail.

With all of these tools in place, you can ensure that calls between two Asterisk servers
are fully encrypted. The same techniques should be applied for encrypting calls between
Asterisk and a SIP phone.

The dialplan functions provide a mechanism for verifying the encryption status of an
incoming call and forcing encryption on an outgoing call. However, keep in mind that
these tools only provide the means for controlling encryption for one hop of the call
path. If the call goes through multiple servers, these tools do not guarantee that the call
is encrypted through the entire call path. It is important to carefully consider what your
requirements are for secure calls and take all of the necessary steps to ensure that those
requirements are respected throughout the entire call path. Security is complicated,

hard work.

Configuring IAX trunks between Asterisk systems

The Inter-Asterisk eXchange protocol, version 2 (most commonly known as IAX') is
Asterisk’s own VoIP protocol. It is different from SIP in that the signaling and media
are carried in the same connection. This difference is one of the advantages of the IAX
protocol, as it makes getting IAX to work across NAT connections much simpler.

* Pronounced “eeks.”

VolP | 153

IAX trunking. One of the more unique features of the IAX protocol is IAX trunking.
Trunking an TAX connection could be useful on any network link that will often be
carrying multiple simultaneous VoIP calls between two systems. By encapsulating mul-
tiple audio streams in one packet, IAX trunking cuts down on the overhead on the data
connection, which can save bandwidth on a heavily used network link.

IAX encryption. The principal advantage of IAX encryption is that it requires one simple
change to the /etc/asterisk/iax.conf file:

[general]

encryption = yes
For extra protection, you can set the following option to ensure that no IAX connection
can happen without encryption:

forceencryption = yes

Both of these options can be specified in the [general] section, as well as in peer/user/
friend sections in iax.conf.

Emergency Dialing

In North America, people are used to being able to dial 911 in order to reach emergency
services. Outside of North America, well-known emergency numbers are 112 and
999. If you make your Asterisk system available to people, you are obligated (in many
cases regulated) to ensure that calls can be made to emergency services from any tele-
phone connected to the system (even those phones that otherwise are restricted from
making calls).

One of the essential pieces of information the emergency response organization needs
to know is where the emergency is (i.e., where to send the fire trucks). In a traditional
PSTN trunk this information is already known by the carrier and is subsequently passed
along to the Public Safety Answering Point (PSAP). With VoIP circuits things can get
a bit more complicated, by virtue of the fact that VoIP circuits are not physically tied
to any geographical location.

You need to ensure that your system will properly handle 911 calls from any phone
connected to it, and you need to communicate what is available to your users. As an
example, if you allow users to register to the system from softphones on their laptops,
what happens if they are in a hotel room in another country, and they dial 911?21

The dialplan for handling emergency calls does not need to be complicated. In fact, it’s
far better to keep it simple. People are often tempted to implement all sorts of fancy
functionality in the emergency services portions of their dialplans, but if a bug in one
of your fancy features causes an emergency call to fail, lives could be at risk. This is no

T Don’t assume this can’t happen. When somebody calls 911 it’s because they have an emergency, and it’s not
safe to assume that they’re going to be in a rational state of mind.

154 | Chapter7: Outside Connectivity

place for playing around. The [emergency-services] section of your dialplan might look
something like this:

[emergency-services]

exten => 911,Goto(dialpsap,1)

exten => 9911,Goto(dialpsap,1) ; some people will dial '9' because

; they're used to doing that from the PBX
exten => 999,Goto(dialpsap,1)
exten => 112,Goto(dialpsap,1)

exten => dialpsap,1,Verbose(1,Call initiated to PSAP!)
same => n,Dial(${LOCAL}/911) ; REPLACE 911 HERE WITH WHATEVER
; IS APPROPRIATE TO YOUR AREA

[internal]
include => emergency-services ; you have to have this in any context
; that has users in it

In contexts where you know the users are not on-site (for example, remote users with
their laptops), something like this might be best instead:

[no-emergency-services]

exten => 911,Goto(nopsap,1)

exten => 9911,Goto(nopsap,1) ; for people who dial '9' before external calls

exten => 999,Goto(nopsap,1)
exten => 112,Goto(nopsap,1)

exten => nopsap,1,Verbose(1,Call initiated to PSAP!)
same => n,Playback(no-emerg-service) ; you'll need to record this prompt

[remote-users]
include => no-emergency-services

In North America, regulations have obligated many VoIP carriers to offer what is pop-
ularly known as E911.F When you sign up for their services, they will require address
information for each DID that you wish to associate with outgoing calls. This address
information will then be sent to the PSAP appropriate to that address, and your emer-
gency calls should be handled the same as they would be if they were dialed on a
traditional PSTN circuit.

Handling emergency calls does not have to be complicated (in fact, it is best to keep
this as simple as possible). The bottom line is that you need to make sure that the phone
system you create allows emergency calls.

1 It’s not actually the carrier that’s offering this; rather it’s a capability of the PSAP. E911 is also used on PSTN
trunks, but since that happens without any involvement on your part (the PSTN carriers handle the paperwork
for you), you are generally not aware that you have E911 on your local lines.

Emergency Dialing | 155

Conclusion

Eventually, we believe that the PSTN will disappear entirely. Before that happens,
however, a distributed mechanism that is widely used and trusted will be needed to
allow organizations and individuals to publish addressing information so that they can
be found. We’ll explore some of the ways this is already possible in Chapter 12.

156 | Chapter7: Outside Connectivity

CHAPTER 8

Voicemail

Just leave a message, maybe I'll call.

—7Joe Walsh

Before email and instant messaging became ubiquitous, voicemail was a popular
method of electronic messaging. Even though most people prefer text-based messaging
systems, voicemail remains an essential component of any PBX.

Comedian Mail

One of the most popular (or, arguably, unpopular) features of any modern telephone
system is voicemail. Asterisk has a reasonably flexible voicemail system named Come-
dian Mail.” Some of the features of Asterisk’s voicemail system include:

Unlimited password-protected voicemail boxes, each containing mailbox folders
for organizing voicemail

Different greetings for busy and unavailable states
Default and custom greetings

The ability to associate phones with more than one mailbox and mailboxes with
more than one phone

Email notification of voicemail, with the voicemail optionally attached as a sound
filet

Voicemail forwarding and broadcasts

Message-waiting indicator (flashing light or stuttered dialtone) on many types of
phones

Company directory of employees, based on voicemail boxes

* This name was a play on words, inspired in part by Nortel’s voicemail system Meridian Mail.

T No, you really don’t have to pay for this—and yes, it really does work.

157

And that’s just the tip of the iceberg!

The default version of the /etc/asterisk/voicemail.conf file requires a few tweaks in order
to provide a configuration that will be suitable to most situations.

We'll begin by going through the various options you can define in voicemail.conf, and
then we’ll provide a sample configuration file with the settings we recommend for most
deployments.

The voicemail.conf file contains several sections where parameters can be defined. The
following sections detail all the options that are available.

The [general] Section

The first section, [general], allows you to define global settings for your voicemail
system. The available options are listed in Table 8-1.

Table 8-1. [general] section options for voicemail.conf

Option Value/Example Notes

format wav49 | gsm|wav For each format listed, Asterisk will create a separate recording in
that format whenever a message is left. The benefit of this is that
some transcoding steps may be saved ifthe stored formatis the same
as the codec used on the channel. We like wav because it is the
highest quality, and wav49 because it is nicely compressed and easy
to email. We don't like gsm due to it's scratchy sound, but it enjoys
some popularity.?

serveremail user@domain When an email is sent from Asterisk, this is the email address that it
will appear to come from.”

attach yes,no Ifanemailaddressisspecified foramailbox, this determineswhether
the messages is attached to the email (if not, a simple message
notification is sent).

maxmsg 9999 By default Asterisk will only allow a maximum of 100 messages to
bestored per user. Foruserswho delete messages, thisisno problem.
For people who like to save their messages, this space can get eaten
up quickly. With the size of hard drives these days, you could easily
store thousands of messages for each user, so our current thinking
is to set this to the maximum and let the users manage things from
there.

maxsecs 0 Thistypeofsettingwasuseful backin the days whena large voicemail
system might have only 40 MB® of storage: it was necessary to limit
the system because it was easy to fill up the hard drive. This setting
can be annoying to callers (although it does force them to get to the
point, so some people like it). Nowadays, with terabyte drives be-
coming common, there is no reason not to set this to a high value.
Two considerations are: 1) if a channel gets hung in a mailbox, it's
good to set some sort of value so it doesn't stay there for days, but
2) if a user wants to use her mailbox to record notes to herself, she

158 | Chapter8: Voicemail

Option

minsecs

maxgreet

skipms

maxsilence

silencethreshold

maxlogins

moveheard

forward_urgent_auto

Value/Example

1800

3000

128

yes

no

Notes

won't apprediate it if you cut her off after three minutes. A setting
somewhere between 600 seconds (10 minutes) and 3600 seconds
(1 hour) will probably be about right.

Many folks will hang up instead of leaving a message when they call
somebody and get voicemail. Sometimes this hangup happens after
recording has started, so the mailbox owner gets an annoying two-
second message of somebody hanging up. This setting ensures that
Asterisk will ignore messages that are shorter than the configured
minimum length. You should take care not to set this to a value that
is too high, though, because then a message like “Hey it's me give
me a call” (which can be said in less than one second) will get lost,
and you'll get complaints of messages disappearing. Three seconds
seems to be about right. To discourage people from leaving ultra-
short messages that might be discarded, you can request callers to
identify themselves and leave some information about why they
called.

You can define the maximum greeting length if you want. Again,
since storage is not a problem and setting this too low will annoy
your more verbose users, we suggest setting this toa high value and
letting your users figure it out an appropriate length for themselves.

When listening to messages, users can skip ahead or backwards by
pressing (by default) * and #. This setting indicates the length of
the jump (in milliseconds).

This setting defines the maximum time for which the caller can
remain silent before the recording is stopped. We like to set this
setting to one second longer than minsecs (if you set it equal to
or less than minsecs, you will get a warning).

You can fine-tune the silence sensitivity of Asterisk to better define
what qualifies as silence. In practice, this is seldom a good idea, since
you cannot control the volumes of all the calls you'll be getting from
different places. It's best to leave this at the default.

This little security feature is intended to make brute-force attacks
onyourmailbox passwords more time-consuming. Ifabad password
is received this many times, voicemail will hang up and you'll have
to call backin to tryagain. Note that this will notlock up the mailbox.
Patientsnoopers can continue totry tologinto your mailboxas many
times as they like, they'll just have to call back every third attempt.
Ifyou have alot ofham-fingered users, you can set this to something
like 5.

This setting will move listened-to messages to the Old folder. We
recommend leaving this at the default.

Setting this to yes will preserve the original urgency setting of any
messages the user receives and then forwards on. If you leave it at
no, users can set the urgency level themselves on messages that
they forward.

Comedian Mail | 159

Option

userscontext

externnotify

smdienable

smdiport

externpass

externpassnotify

externpasscheck

directoryintro

charset

adsifdn
adsisec
adsiver

pbxskip

fromstring

usedirectory

odbcstorage

odbctable

Value/Example
default

/path/to/script

no

/dev/ttyS0

/path/to/script

/path/to/script

Jusr/local/bin/voice-
mailpwcheck.py

dir-intro

IS0-8859-1

0000000F
9BDBF7AC
1

yes

The Asterisk PBX

yes

<item from
res_odbc. conf>

<table name>

Notes

If you use the users.conffile (we don't), you can define here the
context where entries are registered.

If you wish to run an external app whenever a message is left, you
can define it here.

Ifyou are using Asterisk as a voicemail server on a PBX that supports
SMDI, you can enable it here.

Here is where you would define the SMDI port that messages be-
tween Asterisk and the external PBX would pass across.

Anytime the password on a mailboxis changed, the script you define
here will be notified of the context, mailbox, and new pass
word. The script will then be responsible for updating voice-
mail.conf (the Asterisk voicemail app will not update the password
if this parameter is defined).

Anytime the password ona mailboxis changed, the scriptyou define
here will be notified of the context, mailbox, and new pass
woxd. Asterisk will handle updating the password in voice-
mail.conf. If you have defined externpass, this option will be
ignored.

See the sidebar following this table for a description of this option.

TheDirectory/() dialplanapplication uses the voicemail.conffile
to search by name from an auto attendant. There is a default prompt
that plays, called dir-intro. If you want, you can specify a dif-
ferent file to play instead.

If you need a character set other than 1S0-8859-1 (a.k.a Latin 1) to
be supported, you can specify it here.

Use this option to configure the Feature Descriptor Number.?
Use this option to configure the security lock code.
This specifies the ADSI voicemail application version number.

If you do not want emails from your voicemail to have the string
[PBX] added to the subject, you can set this to yes.

You can use this setting to configure the From: name that will
appear in emails from your PBX.

This option allows users composing messages from their mailboxes
to take advantage of the Directory.

If you want to store voice messages in a database, you can do that
using the Asterisk res_odbc connector. Here, you would set the
name of the item in the res_odbc file. For details, see Chapter 22.

This setting specifies the table name in the database that the odbc
storage setting refers to. For details, see Chapter 22.

160 | Chapter8: Voicemail

Option

emailsubject

emailbody

pagerfromstring

pagersubject

pagerbody

emaildateformat

pagerdateformat

mailcmd

pollmailboxes

Value/Example

[PBX]: New
message $
{VM_MSGNUM} in
mailbox $
{VM_MAILBOX}

Dear $
{VM_NAME}:\n\n
\tjust wanted to
let you know you
were just left a
${VM_DUR} long
message (number
${VM_MSGNUM})
\nin mailbox $
{VM_MAILBOX u
might\nwant to
check it when
you get a
chance. Thanks!
An\n\t\t\t\t--
Asterisk\n

The Asterisk PBX

New VM

New ${VM_DUR}
long msg in box
${VM_MAILBOX}
\nfrom $
{VM_CALLERID},
on ${VM_DATE}

%A, %d %B %Y at
JoH 2 %M : %S

%A, %d %B %Y at
JoH 2 %M 2 %S

Jusr/sbin/send
mail -t

no, yes

Notes

When Asterisk sends an email, you can use this setting to define
what the Subject : line of the email will look like. See the voice-
mail.conf.sample file for more details.

When Asterisk sends an email, you can use this setting to define
whatthe body of the email will look like. See the voicemail.conf.sam-
plefile for more details.

We don'tactually know anybody who uses pagers anymore (nor can
we recall having seen one in many years), but if you have one of
these historical oddities and you want to customize what Asterisk
sends with its pager notification, presumably you can do that with
this. Avery practical usage of this feature for short message voicemail
notifications is to send a message to an email to SMS gateway.

As above.

The formatting for this uses the same rules as emailbody.

This option allows you to specify the date format in emails. Uses the
same rules as the Cfunction STRFTIME.

This option allows you to specify the date format in pager. Uses the
same rules as the C function STRFTIME.

If you want to override the default operating system application for
sending mail, you can specify it here.

If the contents of mailboxes are changed by anything other than
app_voicemail (suchasexternalapplicationsoranotherAsterisk
system), setting this to yes will cause app_voicemailtopollall

Comedian Mail | 161

Option Value/Example Notes
the mailboxes for changes, which will trigger proper message wait-
ing indication (MWI) updates.

pollfreq 30 Used in concert with pol1mailboxes, this option specifies the
number of seconds to wait between mailbox polls.

imapgreetings no, yes Thisenables/disablesremote storage of greetingsin the IMAPfolder.
For more details, see Chapter 18.

greetingsfolder INBOX If you've enabled imapgreetings, this parameter allows you to
define the folder your greetings will be stored in (defaults to INBOX).

imapparentfolder INBOX IMAP servers can handle parent folders in different ways. This field
allows you to specify the parent folder for your mailboxes. For more
details, see Chapter 7.

2 The separator that is used for each format option must be the pipe (|) character.

b Sending email from Asterisk can require some careful configuration, because many spam filters will find Asterisk messages suspicious and
will simply ignore them. We talk more about how to set email for Asterisk in Chapter 18.

¢ Yes, you read that correctly: megabytes.

d The Analog Display Services Interface is a standard that allows for more complex feature interactions through the use of the phone display
and menus. With the advent of VolP telephones, ADSI's popularity has decreased in recent years.

External Validation of Voicemail Passwords

By default, Asterisk does not validate user passwords to ensure they are at least some-
what secure. Anyone who maintains voicemail systems will tell you that a large per-
centage of mailbox users set their passwords to something like 1234 or 1111, or some
other string that’s easy to guess. This represents a huge security hole in the voicemail
system.

Since the app_voicemail.so module does not have the built-in ability to validate pass-
words, the settings externpass, externpassnotify, and externpasscheck allow you to
validate them using an external program. Asterisk will call the program based on the
path you specify, and pass it the following arguments:
mailbox context oldpass newpass

The script will then evaluate the arguments based on rules that you defined in the
external script and, based on your rules, it should return to Asterisk a value of VALID
for success or INVALID for failure (actually, the return value for a failed password can
be anything except the words VALID or FAILURE). This value is typically printed to

stdout. If the script returns INVALID, Asterisk will play an invalid-password prompt and
the user will need to attempt something different.

Ideally, you would want to implement rules such as the following:

* Passwords must be a minimum of six digits in length

* Passwords must not be strings of repeated digits (e.g., 111111)

* Passwords must not be strings of contiguous digits (e.g., 123456 or 987654)

162 | Chapter8: Voicemail

mailpwcheck.py.

Asterisk comes with a simple script that will greatly improve the security of your voi-
cemail system. It is located in the source code under the folder: /contrib/scripts/voice-

We strongly recommend that you copy it to your /usr/local/bin folder (or wherever you
prefer to put such things), and then uncomment the externpasscheck= option in your
voicemail.conf file. Your voicemail system will then enforce the password security rules
you have established.

Part of the [general] section is an area that is referred to as advanced options. These
options (listed in Table 8-2) are defined in the same way as the other options in the
[general] section, but they can also be defined on a per-mailbox basis, overriding
whatever is defined under [general] for that particular setting.

Table 8-2. Advanced options for voicemail.conf

Option
tz

locale

attach

attachfmt

saycid

cidinternalcontexts

sayduration

saydurationm

dialout

Value/Example

eastern, euro
pean, etc.

de_DE.utfs,
es_US.utfs,
etc.

yes, no

wav49, wav, etc.

yes, no

<context>
<another
context>

yes, no

<context>

Notes

Specifies the zonemessages name, as defined in the
[zonemessages] section, discussed in the next section.

Used to define how Asterisk generates date/time strings in different
locales. To determine the locales that are valid on your Linux system,
type locale -a at the shell.

If an email address is specified for a mailbox, this determines whether
the messages are attached to the email notifications (otherwise, a
simple message notification is sent).

If attach is enabled and messages are stored in different formats,
this defines which format is sent with the email notifications. Often
wav49 isagood choice, as it uses a better compression algorithm and
thus will use less bandwidth.

This command will state the caller ID of the person who left the mes-
sage.

Any dialplan contexts listed here will be searched in an attempt to
locate the mailbox context, so that the name associated with the
mailbox number can be spoken. The voicemail box number needs to
matchthe extensionnumberthatthe call came from, and the voicemail
context needs to match the dialplan context.?

This command will state the length of the message.

Use this to specify the minimum duration of a message to qualify for
its length being played back. For example, if you set this to 2, any
message less than 2 minutes in length will not have its length stated.

If allowed, users can dial out from their mailboxes. This is considered
a very dangerous feature in a phone system (mainly because many

voicemail users like to use 1234 as their password), and is therefore
not recommended. If you insist on allowing this, make sure you have

Comedian Mail | 163

Option

sendvoicemail

searchcontexts

callback

exitcontext

review

operator

envelope

delete

volgain

nextaftercmd

forcename

Value/Example

yes, no

yes, no

<context>

<context>

yes, no

yes, no

no, yes

no, yes

yes, no

yes, no

Notes
asecond level of password in the dialplan where another password is
specified. Even so, this is not a safe practice.

This allows users to compose messages to other users from within their
mailboxes.

This allows voicemail applications in the dialplan to not have to specify
the voicemail context, since all contexts will be searched. This is not
recommended.

This specifies which dialplan context to use to call back to the sender
of a message. The specified context will need to be able to handle
dialing of numbers in the format in which they are received (for ex-
ample, the country code may not be received with the caller ID, but
might be required for the outgoing call).

There are options that allow the callers to exit the voicemail system
when they are in the process of leaving a message (for example, press-
ing 0 to get an operator). By default, the context the caller came from
will be used as the exit context. If desired, this setting will define a
different context for callers exiting the voicemail system.

This should almost always be set to yes (even though it defaults to
no). People get upset if your voicemail system does not allow them
to review their messages prior to delivering them.

Best practice dictates that you should allow your callers to “zero out”
from a mailbox, should they not wish to leave a message. Note that
an o extension (not “zero,” “oh”) is required in the exitcontext in
order to handle these calls.

You can have voicemail play back the details of the message before it
plays the actual message. Since this information can also be accessed
by pressing 5, we generally set this to no.

After an email message notification is sent (which could include the
message itself), the message will be deleted. This option s risky, be-
cause even though a message was emailed, it is no guarantee that it
was received (spam filters seem to love to delete Asterisk voicemail
messages). Point being: on a new system, leave this at no until you
are certain that no messages are being lost due to spam filters.

This setting allows you to increase the volume of received messages.
Volume used to be a problem in older releases of Asterisk, but has not
been an issue for many years. We recommend leaving this at the
default. The sox utility is required for this to work.

Thishandy little setting will save you some time, as it takes you directly
to the next message once you've finished dealing with the current
message.

Thisstrangelittle setting will checkif the mailbox password s the same
as the mailbox number. If it is, it will force the user to change his
voicemail password and record his name.

164 | Chapter8: Voicemail

Option
forcegreetings

hidefromdir

tempgreetwarn

passwordlocation

messagewrap

minpassword

vm-password

vm-newpassword

vm-passchanged

vm-reenterpassword

vm-mismatch

vm-invalid-password

vm-pls-try-again

listen-control-for
ward-key

listen-control-
reverse-key

listen-control-
pause-key

listen-control-
restart-key

Value/Example
yes, no

no, yes

yes, no

spooldir

no, yes

custom_sound

custom_sound

custom_sound

custom_sound

custom_sound

custom_sound

custom_sound

Notes
As above, but for greetings.

If you wish, you can hide specific mailboxes from the
Directory() application using this setting.

Setting this to yes will warn the mailbox owner that she has a tem-
porary greeting set. This can be a useful reminder when people return
from trips or vacations.

Ifyouwant, you can have mailbox passwords stored in the spool folder
for each mailbox.”

If this is set to yes, when the user has listened to the last message,
pressing next (6) will take him to the first message. Also, pressing
previous (4) when at the first message will take the user to the last
message.

This option enforces a minimum password length. Note that this does
not prevent the users from setting their passwords to something that's
easy to guess (such as 123456).

Ifyouwant, you canspecifyacustomsoundhere to use forthe password
prompt in voicemail.

Ifyou want, you can specify a custom sound here to use for the “Please
enter your new password followed by the pound key” prompt in voi-
cemail.

If you want, you can specify a custom sound here to use for the “Your
password has been changed” prompt in voicemail.

Ifyou want, you can specify a custom sound here to use for the “Please
reenter your password followed by the pound key” prompt in
voicemail.

If you want, you can specify a custom sound here to use for the “The
passwords you entered and reentered did not match” prompt in
voicemail.

If you want, you can specify a custom sound here to use for the “That
is not a valid password. Please try again” prompt in voicemail.

Ifyou want, you can specify a custom sound here to use for the “Please
try again” prompt in voicemail.

You can use this setting to customize the fast forward key.

You can use this setting to customize the rewind key.

You can use this setting to customize the pause/unpause key.

You can use this setting to customize the replay key.

Comedian Mail | 165

Option Value/Example Notes

listen-control-stop- 13456789 You can use this setting to customize the interrupt playback key.
key

backupdeleted 0 This setting will allow you to specify how many deleted messages are

automatically stored by the system. This is similar to a recycle bin.
Setting this to 0 disables this feature. Up to 9999 messages can be
stored, afterwhich the oldestmessage will be erased eachtimeanother

message is deleted.

2 Yes, we found this a bit confusing too.

b Typically the spool folder is /var/spool/asterisk/, and it can be defined in /etc/asterisk/asterisk.conf.

The [zonemessages] Section

The next section of the voicemail.conf file is the [zonemessages] section. The purpose
of this section is to allow time zone—specific handling of messages, so you can play back
to the user messages with the correct timestamps. You can set the name of the zone to
whatever you need. Following the zone name, you can define which time zone you
want the name to refer to, as well as some options that define how timestamps are
played back. You can look at the /usr/src/asterisk-complete/asterisk/1.8/configs/voice-
mail.conf.sample file for syntax details. Asterisk includes the examples shown in

Table 8-3.

Table 8-3. [zonemessages] section options for voicemail.conf

Zone name

eastern

central

central24

military

european

Value/Example

America/New_York|'vm-received' Q'digits/at' IMp

America/Chicago| 'vm-received' Q 'digits/at' IMp

America/Chicago|'vm-received' q 'digits/at' H N "hours'

Zulu|'vm-received' q 'digits/at' H N 'hours'
"phonetic/z_p'

Europe/Copenhagen| 'vm-received' a d b 'digits/at' HM

Notes

This value would be suit-
ablefor the eastern time
zone (EST/EDT).

Thisvalue would be suit-
able for the central time
zone (CST/CDT).

This value would also be
suitable for CST/CDT, but
wouldplaybackthetime
in 24-hour format.

This value would be suit-
able for Universal Time
Coordinated (Zulu time,
formerly GMT).

Thisvalue would be suit-
able for Central Euro-
pean time (CEST).

166 | Chapter8: Voicemail

The Contexts Section

All the remaining sections in the voicemail.conf file will be the voicemail contexts, which
allow you to segregate groups of mailboxes.

In many cases, you will only need one voicemail context, commonly named
[default]. This is worth noting, as it will make things simpler in the dialplan: all the
voicemail-related applications assume the context default if no context is specified. In
other words, if you don’t require separation of your voicemail users, use default as
your one and only voicemail context.

The format for the mailboxes is as follows:

mailbox => password[,FirstName LastName[,email addr[,pager addr[,options[|options]]]]]

The pipe character (]) used to be more popular in Asterisk. For the first
few years, it was used as the standard delimiter. More recently, it has
Ws almost completely been replaced by the comma; however, there are still
" a few places where the pipe is used. One of them is in voicemail.conf:
for example, as a separator for any mailbox-specific options, and also
as the separator character in the format= declarative. You’ll see this in
our upcoming example, as well as in the voicemail.conf.sample file.

The parts of the mailbox definition are:

mailbox
This is the mailbox number. It usually corresponds with the extension number of
the associated set.

password
This is the numeric password that the mailbox owner will use to access her voice-
mail. If the user changes her password, the system will update this field in the
voicemail.conf file.

FirstName LastName
This is the name of the mailbox owner. The company directory uses the text in this
field to allow callers to spell usernames.

email address
This is the email address of the mailbox owner. Asterisk can send voicemail noti-
fications (including the voicemail message itself, as an attachment) to the specified
email box.

pager address
This is the email address of the mailbox owner’s pager or cell phone. Asterisk can
send a short voicemail notification message to the specified email address.
options
This field is a list of options for setting the mailbox owner’s time zone and over-
riding the global voicemail settings. There are nine valid options: attach,

Comedian Mail | 167

serveremail, tz, saycid, review, operator, callback, dialout, and exitcontext.
These options should be in option = value pairs, separated by the pipe character
(]). The tz option sets the user’s time zone to a time zone previously defined in the
[zonemessages] section of voicemail.conf, and the other eight options override the
global voicemail settings with the same names.

The mailboxes you define in your voicemail.conf file might look like the following
examples:

[default]

100 => 5542,Mike Loukides,mike@shifteight.org

101 => 67674,Tim OReilly,tim@shifteight.org

102 => 36217,Mary JonesSmith,mary.jones-smith@shifteight.org

; *** This needs to all be on the same line
103 => 5426,Some Guy,,,dialout=fromvm|callback=Ffromvm
| review=yes | operator=yes |envelope=yes

[shifteight]

100 => 0107,Leif Madsen,leif@shifteight.org

101 => 0523,Jim VanMeggelen,jim@shifteight.org,,attach=no|maxmsg=100
102 => 11042,Tilghman Lesher,,,attach=no|tz=central

The Asterisk directory cannot handle the concept of a family name that
: is anything other than a simple word. This means that family names
such as O’Reilly, Jones-Smith, and yes, even Van Meggelen must have

any punctuation characters and spaces removed before being added to
voicemail.conf.

The contexts in voicemail.conf are an excellent and powerful concept, but you will likely
find that the default context will be all that you need in normal use.

An Initial voicemail.conf File

We recommend the following sample as a starting point. You can refer to ~/asterisk-
complete/asterisk/1.8/configs/voicemail.conf.sample for details on the various settings:

; Voicemail Configuration

[general]

format=wav49|wav
serveremail=voicemail@shifteight.org
attach=yes

skipms=3000

maxsilence=10

silencethreshold=128

maxlogins=3

emaildateformat=%A, %B %d, %Y at %r
pagerdateformat=%A, %B %d, %Y at %r
sendvoicemail=yes ; Allow the user to compose and send a voicemail while inside

168 | Chapter8: Voicemail

[zonemessages]

eastern=America/New_York|'vm-received' Q 'digits/at' IMp
central=America/Chicago|'vm-received' Q 'digits/at' IMp
central24=America/Chicago|'vm-received' q 'digits/at' H N 'hours'
military=Zulu|'vm-received' q 'digits/at' H N 'hours' 'phonetic/z_p
european=Europe/Copenhagen|'vm-received' a d b 'digits/at' HM

[shifteight.org]

100 => 1234,Leif Madsen,leif@shifteight.org

101 => 1234,Jim Van Meggelen,jim@shifteight.org
102 => 1234,Russell Bryant,russell@shifteight.org
103 => 1234,Jared Smith,jared@shifteight.org

W
- Setting up a Linux server to handle the sending of email is a Linux ad-
ﬁ:‘ ministration task that is beyond the scope of this book. You will need
N\ N 1 - .
* 9l to test your voicemail to email service to ensure that the email is being

" handled appropriately by the Mail Transfer Agent (MTA),* and that
downstream spam filters are not rejecting the messages (one reason this
might happen is if your Asterisk server is using a hostname in the email
body that does not in fact resolve to it).

Dialplan Integration

There are two primary dialplan applications that are provided by the app_voice-
mail.so module in Asterisk. The first, simply named VoiceMail(), does exactly what
you would expect it to, which is to record a message in a mailbox. The second one,
VoiceMailMain(), allows a caller to log into a mailbox to retrieve messages.

The VoiceMail() Dialplan Application

When you want to pass a call to voicemail, you need to provide two arguments: the
mailbox (or mailboxes) in which the message should be left, and any options relating
to this, such as which greeting to play or whether to mark the message as urgent. The
structure of the VoiceMail() command is this:

VoiceMail(mailbox[@context][8mailbox[@context][&...]1][,options])

The options you can pass to VoiceMail() to provide a higher level of control are detailed
in Table 8-4.

1 Also sometimes called a Message Transfer Agent.

Dialplan Integration | 169

Table 8-4. VoiceMail() optional arguments

Argument Purpose

b Instructs Asterisk to play the busy greeting for the mailbox (if no busy greeting is found, the unavailable greeting
will be played).

d([c]) Accepts digits to be processed by context c. If the context is not specified, it will default to the current context.

g(#) Applies the specified amount of gain (in decibels) to the recording. Only works on DAHDI channels.

s Suppresses playback of instructions to the callers after playing the greeting.

u Instructs Asterisk to play the unavailable greeting for the mailbox (this is the default behavior).

u Indicates that this message is to be marked as urgent. The most notable effect this has is when voicemail is stored

on an IMAP server. In that case, the email will be marked as urgent. When the mailbox owner calls in to the
Asterisk voicemail system, he should also be informed that the message is urgent.

P Indicates that this message is to be marked as priority.

The VoiceMail() application sends the caller to the specified mailbox, so that he can
leave a message. The mailbox should be specified as mailbox@context, where context
is the name of the voicemail context. The option letters b or u can be added to request
the type of greeting. If the letter b is used, the caller will hear the mailbox owner’s
busy message. If the letter u is used, the caller will hear the mailbox owner’s unavaila-
ble message (if one exists).

Consider this simple example extension 101, which allows people to call John:
exten => 101,1,Dial(${JOHN})

Let’s add an unavailable message that the caller will be played if John doesn’t answer
the phone. Remember, the second argument to the Dial() application is a timeout. If
the call is not answered before the timeout expires, the call is sent to the next priority.
Let’s add a 10-second timeout, and a priority to send the caller to voicemail if John
doesn’t answer in time:

exten => 101,1,Dial(${JOHN},10)
exten => 101,n,VoiceMail (101@default,u)

Now, let’s change it so that if John is busy (on another call), the caller will be sent to
his voicemail, where he will hear John’s busy message. To do this, we will make use of
the ${DIALSTATUS} variable, which contains one of several status values (type core show
application dial at the Asterisk console for a listing of all the possible values):
exten => 101,1,Dial(${JOHN},10)

same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)

same => n(unavail),VoiceMail(101@default,u)

same => n,Hangup()

same => n(busy),VoiceMail(101@default,b)

same => n,Hangup()

Now callers will get John’s voicemail (with the appropriate greeting) if John is either
busy or unavailable. A slight problem remains, however, in that John has no way of
retrieving his messages. We will remedy that in the next section.

170 | Chapter8: Voicemail

The VoiceMailMain() Dialplan Application

Users can retrieve their voicemail messages, change their voicemail options, and record
their voicemail greetings using the VoiceMailMain() application. VoiceMailMain() ac-
cepts two arguments: the mailbox number (and optionally the context) to be accessed,
and some options. Both arguments are optional.

The structure of the VoiceMailMain() application looks like this:
VoiceMailMain([mailbox][@context][,options])

If you do not pass any arguments to VoiceMailMain(), it will play a prompt asking the

caller to provide her mailbox number. The options that can be supplied are listed in
Table 8-5.

Table 8-5. VoiceMailMain() optional arguments

Argument Purpose

p Allows you to treat the <mailbox> parameter as a prefix to the mailbox number.
g(#) Increases the gain by # decibels when playing back messages.
s Skips the password check.

a(folder) Startsthe session in one of the following voicemail folders (defaultsto 0):0 - INBOX, 1 - 0ld, 2 -
Work, 3 - Family, 4 - Friends, 5 - Custl, 6 - Cust2, 7 - Cust3, 8 - Cust4,
9 - Custs

To allow users to dial 8500 to check their voicemail or modify their voicemail options,
you would add an extension to the dialplan like this:

[Services]

exten => *98,1,VoiceMailMain()

Creating a Dial-by-Name Directory

One last feature of the Asterisk voicemail system that we should cover is the dial-by-
name directory. This is created with the Directory() application. This application uses
the names defined in the mailboxes in voicemail.conf to present the caller with a dial-
by-name directory of the users.

Directory() takes up to three arguments: the voicemail context from which to read the
names, the optional dialplan context in which to dial the user, and an option string
(which is also optional). By default, Directory() searches for the user by last name, but
passing the f option forces it to search by first name instead. Let’s add two dial-by-
name directories to the incoming context of our sample dialplan, so that callers can
search by either first or last name:

exten => 8,1,Directory(default,incoming,f)
exten => 9,1,Directory(default,incoming)

Dialplan Integration | 171

If callers press 8, they’ll get a directory by first name. If they dial 9, they’ll get the
directory by last name.

Using a Jitterbuffer

When using Asterisk as a voicemail server,§ you may want to add a jitterbuffer in be-
tween voicemail and the caller. The purpose of a jitterbuffer is to help deal with the
fact that when a call traverses an IP network, the traffic may not arrive with perfect
timing and in perfect order. If packets occasionally arrive with a bit of delay (jitter) or
if they arrive out of order, a jitterbuffer can fix it so that the voicemail system receives
the voice stream on time and in order. If the jitterbuffer detects that a packet was lost
(or may arrive so late that it will no longer matter), it can perform packet loss conceal-
ment. That is, it will attempt to make up a frame of audio to put in place of the lost
audio to make it harder to hear that audio was lost.

In Asterisk, jitterbuffer support can only be enabled on a bridge between two channels.
In the case of voicemail, there is generally only a single channel connected to one of the
voicemail applications. To enable the use of a jitterbuffer in front of voicemail, we create
a bridge between two channels by using a Local channel and specifying the j option.
Specifying the n option for the Local channel additionally ensures that the Local channel
is not optimized out of the call path in Asterisk:

[Services]
exten => *98,1,Dial(Local/vmm@Services/nj)

exten => vmm,1,VoiceMailMain()

Storage Backends

The storage of messages on a traditional voicemail system has always tended to be
overly complicated.!l Asterisk, on the other hand, not only provides you with a simple,
logical, filesystem-based storage mechanism, but also offers a few extra message storage
options.

Linux Filesystem

By default, Asterisk will store voice messages in the spool folder, at /var/spool/asterisk/
voicemail/<context>/<mailbox>. The messages can be stored in multiple formats (such

§ This advice applies to any situation where Asterisk is the endpoint of a call. Another example would be when
using the MeetMe() or ConfBridge() applications for conferencing.

Il Nortel used to store its messages in a sort of special partition, in a proprietary format, which made it pretty
much impossible to extract messages from the system, or email them, or archive them, or really do anything
with them.

172 | Chapter8: Voicemail

as WAV and GSM), depending on what you specified as the format in the [general]
section of your voicemail.conf file. Your greetings will also be stored in this folder.

W

Asterisk will not create a folder for any mailboxes that do not have any
recordings yet (as would be the case with a new mailbox), so this folder
%s cannot be used as a reliable method of determining which mailboxes
" exist on the system.

Here’s an example of what might be in a mailbox folder. This mailbox has no new
messages in the INBOX, has two saved messages in the Old folder, and has busy and
unavailable greetings recorded:

/var/spool/asterisk/voicemail/default
. /INBOX

./0ld
./01d/msg0000. WAV
./01d/msg0000. txt
./01d/msg0001. WAV
./01d/msg0001. txt
./Urgent

./busy .WAV
./unavail
./unavail .WAV

B
)

For each message, there is a matching msg####.txt file, which contains

the envelope information for the message. The msg####.txt file is also

Wls' critically important for message waiting indication (MWT), as this is the

" file that Asterisk looks for in the INBOX to determine whether the mes-
sage light for a user should be on or off.

0DBC

In a centralized or distributed system, you may find it desirable to store messages as
binary objects in a database, instead of as files on the filesystem. We’ll discuss this in
detail in “ODBC Voicemail” on page 378.

IMAP

Many people would prefer to manage their voicemail as part of their email. This has
been called unified messaging by the telecom industry, and its implementation has tra-
ditionally been expensive and complex. Asterisk allows for a fairly simple integration
between voicemail and email, either through its built-in voicemail to email handler, or
through a relationship with an IMAP server. We'll discuss IMAP integration in detail
in “VoiceMail IMAP Integration” on page 411.

Storage Backends | 173

Using Asterisk As a Standalone Voicemail Server

In a traditional telecom environment, the voicemail server was typically a standalone
unit (provided either as a separate server altogether, or as an add-in card to the system).
Very few PBXs had fully integrated voicemail (in the sense that voicemail was an integral
part of the PBX rather than a peripheral device).

Asterisk is quite capable of serving as a standalone voicemail system. The two most
common reasons one might want to do this are:

1. If you are building a large, centralized system and have several servers each pro-
viding a specific function (proxy server, media gateway, voicemail, conferencing,
etc.)

2. If you wish to replace the voicemail system on a traditional PBX with an Asterisk
voicemail

Asterisk can serve in either of these roles.

Integrating Asterisk into a SIP Environment As a Standalone
Voicemail Server

If you want to have Asterisk act as a dedicated voicemail server (i.e., with no sets reg-
istered to it and no other types of calls passing through it), the process from the dialplan
perspective is quite simple. Getting message waiting to work can be a bit more difficult,
though.

Let’s start with a quick diagram. Figure 8-1 shows an overly simplified example of a
typical SIP enterprise environment. We don’t even have an Asterisk server in there
(other than for the voicemail), in order to give you a generic representation of how
Asterisk could serve as a standalone voicemail server in an otherwise non-Asterisk
environment.

Unfortunately, Asterisk cannot send message notification to an endpoint if it doesn’t
know where that endpoint is. In a typical Asterisk system, where set registration and
voicemail are handled on the same machine, this is never a problem, since Asterisk
knows where the sets are. But in an environment where the sets are not registered to
Asterisk, this can become a complex problem.

There are several solutions on the Internet that recommend using the externnotify
option in voicemail.conf, triggering an external script whenever a message is left in a
mailbox (or deleted). While we can’t say that’s a bad approach, we find it a bit kludgy,
and it requires the administrator to understand how to write an external script or pro-
gram to handle the actual passing of the message.

174 | Chapter8: Voicemail

\-..j

Media Gateway
192.168.1.2

SIP telephone Proxy Server
192.168.1.100 192.168.1.1

Voicemail Server
192.168.1.3

Figure 8-1. Simplified SIP enterprise environment

Instead you can statically define an entry for each mailbox in the voicemail server’s
sip.conf file, indicating where the message notifications are to be sent. Rather than
defining the address of each endpoint, however, you can have the voicemail server send
all messages to the proxy, which will handle the relay of the message notifications to
the appropriate endpoints.

The voicemail server still needs to know about the SIP endpoints, even though the
devices are not registered directly to it. This can be done either through a sip.conf file
that identifies each SIP endpoint, or through a static real-time database that does the
same thing. Whether you use sip.conf or the Asterisk Realtime Architecture (ARA),
each endpoint will require an entry similar to this:

[messagewaiting](!) ; a template to handle the settings common

; to all mailboxes
type=peer
subscribecontext=voicemailbox ; the dialplan context on the voicemail server

context=voicemailbox the dialplan context on the voicemail server
host=192.168.1.1 ip address of presence server

[

[

this will need to match the subscriber

name on the proxy

this has to be in the form mailbox@mailboxcontext
this will need to match the subscriber

name on the proxy

[0000FFFF0001] (messagewaiting)

mailbox=0000FFFF0001@DIR1
defaultuser=0000FFFF0001

e e e e we

Using Asterisk As a Standalone Voicemail Server | 175

Note that Asterisk’s dynamic realtime will not work with this configu-
ration, as a peer’s information is only loaded into memory when there
s+ is an actual call involving that peer. Since message notification is not a
call as far as Asterisk is concerned, using dynamic realtime will not allow
message waiting to happen for any peers not registered to Asterisk.

-
e

You will not want to implement this unless you have prototyped the basic operation of
the solution. Although we all agree that SIP is a protocol, not everyone agrees as to the
correct way to implement the protocol. As a result, there are many interoperability
challenges that need to be addressed in a solution like this. We have provided a basic
introduction to this concept in this book, but the implementation details will depend
on other factors external to Asterisk, such as the capabilities of the proxy.

The fact that no device has to register with Asterisk will significantly reduce the load
on the Asterisk server, and as a result this design should allow for a voicemail server
that can support several thousand subscribers.

Dialplan requirements

The dialplan of the voicemail server can be fairly simple. Two needs must be satisfied:

1. Receive incoming calls and direct them to the appropriate mailbox

2. Handle incoming calls from users wishing to check their messages

The system that is passing calls to the voicemail server should set some SIP headers in
order to pass additional information to the voicemail server. Typically, this information
would include the mailbox/username that is relevant to the call. In our example, we
are going to set the headers X-Voicemail-Mailbox and X-Voicemail-Context, which will
contain information we wish to pass to the voicemail server.#

If the source system is also an Asterisk system, you might set the headers
using the SIPAddHeader() voicemail application, in a manner similar
st to this:

exten => sendtovoicemail,1,Verbose(2,Set SIP headers for voicemail)
same => n,SipAddHeader (X-Voicemail-Mailbox: <mailbox number>)
same => n,SipAddHeader (X-Voicemail-Context: voicemailbox)

Note that this dialplan does not go on the voicemail server. It would
only be useful if one of the other servers in your environment was also
an Asterisk server. If you were using a different kind of server, you would
need to find out how to set custom headers in that platform, or find out
if it already uses specific headers for this sort of thing, and possibly
modify the dialplan on the voicemail server to handle those headers.

#As far as we know, there aren’t any specific SIP headers that are standardized for this sort of thing, so you
should be able to name the headers whatever you want. We chose these header names simply because they
make some sort of sense. You may find that other headers would suit your needs better.

176 | Chapter8: Voicemail

The voicemail server will need an extensions.conf file containing the following:

[voicemailbox]
; direct incoming calls to a mailbox
exten => Deliver,1,NoOp()
same => n,Set(Mailbox=${SIP_HEADER(X-Voicemail-Mailbox)})
same => n,Set(MailboxContext=${SIP_HEADER(X-Voicemail-Context)})
same => n,VoiceMail(${Mailbox}@${MailboxContext})
same => n,Hangup()

; connect users to their mailbox so that they can retrieve messages exten =>
Retrieve,1,NoOp()

same => n,Set(Mailbox=${SIP_HEADER(X-Voicemail-Mailbox)})

same => n,Set(MailboxContext=${SIP_HEADER(X-Voicemail-Context)})

same => n,VoiceMailMain(${Mailbox}@${MailboxContext})

same => n,Hangup()

sip.conf requirements

In the sip.conf file on the voicemail server, not only are entries required for all the
mailboxes for message waiting notification, but some sort of entry is required to define
the connection between the voicemail server and the rest of the SIP environment:

[VOICEMAILTRUNK]

type=peer

defaultuser=voicemail

fromuser=voicemail

secret=som3things3cur3

canreinvite=no

host=<address of proxy/registrar server>

disallow=all

allow=ulaw

dtmfmode=rfc2833

context=voicemailbox

The other end of the connection (probably your proxy server) must be configured to
pass voicemail connections to the voicemail server.

Running Asterisk as a standalone voicemail server requires some knowledge of clus-
tering and integration, but you can’t beat the price.

SMDI (Simplified Message Desk Interface)

The Simplified Message Desk Interface (SMDI) protocol is intended to allow commu-
nication of basic message information between telephone systems and voicemail
systems.

Asterisk supports SMDI, but given that this is an old protocol that runs across a serial
connection, there are likely to be integration challenges. Support in various PBXs and
other devices may be spotty. Still, it’s a fairly simple protocol, so for sure it’s worth
testing out if you are considering using Asterisk as a voicemail replacement.

Using Asterisk As a Standalone Voicemail Server | 177

The following is not a detailed explanation of how to configure SMDI for Asterisk, but
rather an introduction to the concepts, with some basic examples. If you are planning
on implementing SMDI, you will need to write some complex dialplan logic and have
a good understanding of how to interconnect systems via serial connections.

SMDI is enabled in Asterisk by the use of two options in the [general] section of the
voicemail.conf file:

smdienable=yes
smdiport=/dev/ttyS0; or whatever serial port you are connecting your SMDI service to

Additionally, you will need an smdi.conf file in your /etc/asterisk folder to define the
details of your SMDI configuration. It should look something like this (see the
smdi.conf.sample file for more information on the available options):

[interfaces]

charsize=7

paritybit=even

baudrate=1200 hopefully a higher bitrate is supported
smdiport=/dev/ttySo ; or whatever serial port you'll be using to handle
SMDI messages on asterisk

-

-

map incoming digit strings (typically DID numbers)

to a valid mailbox@context in voicemail.conf

first declare which SMDI port the following mailboxes
will use

[mailboxes]

smdiport=/dev/ttySo

e e e W

4169671111=1234@default
4165551212=9999@default

In the dialplan there are two functions that will be wanted in an SMDI configuration.
The SMDI_MSG_RETRIEVE() function pulls the relevant message from the SMDI message
queue. You need to pass the function a search key (typically the DID that is referred to
in the message), and it will pass back an ID number that can be referenced by the
SMDI_MSG() function:

SMDI_MSG_RETRIEVE(<smdi port>,<search key>[,timeout[,options]])

Once you have the SMDI message ID, you can use the SMDI_MSG() function to access
various details about the message, such as the station, callerID, and type (the SMDI
message type):

SMDI_MSG(<message_id>,<component>)

In your dialplan, you will need to handle the lookup of the SMDI messages that come
in, in order to ensure that calls are handled correctly. For example, if an incoming call
is intended for delivery to a mailbox, the message type might be one of B (for busy) or
N (for unanswered calls). If, on the other hand, the call is intended to go to VoiceMail
Main() because the caller wants to retrieve his messages, the SMDI message type would
be D, and that would have to be handled.

178 | Chapter8: Voicemail

Conclusion

While the Asterisk voicemail system is quite old in terms of Asterisk code, it is never-
theless a powerful application that can (and does) compete quite successfully with
expensive, proprietary voicemail systems.

Conclusion | 179

CHAPTER 9
Internationalization

David Duffett

I'traveled a good deal all over the world, and I got along
pretty good in all these foreign countries, for I have a
theory that it’s their country and they got a right

to run it like they want to.

—Will Rogers

Telephony is one of those areas of life where, whether at home or at work, people do
not like surprises. When people use phones, anything outside of the norm is an ex-
pectation not met, and as someone who is probably in the business of supplying tele-
phone systems, you will know that expectations going unmet can lead to untold misery
in terms of the extra work, lost money, and so forth that are associated with customer
dissatisfaction.

In addition to ensuring that the user experience is in keeping with what users expect,
there is also the need to make your Asterisk feel “at home.” For example, if an outbound
call is placed over an analog line (FXO), Asterisk will need to interpret the tones that
it “hears” on the line (busy, ringing, etc.).

By default (and maybe as one might expect since it was “born in the USA”), Asterisk
is configured to work within North America. However, since Asterisk gets deployed in
many places and (thankfully) people from all over the world make contributions to it,
itis quite possible to tune Asterisk for correct operation just about anywhere you choose
to deploy it.

If you have been reading this book from the beginning, chapter by chapter, you will
have already made some choices during the process of installation and initial configu-
ration that will have set up your Asterisk to work in your local area (and live up to your
customers’ expectations).

181

Quite a few of the chapters in this book contain information that will help you inter-
nationalize’ or (perhaps more properly) localize your Asterisk implementation. The
purpose of this chapter is to provide a single place where all aspects of the changes that
need to be made to your Asterisk-based telephone system in this context can be refer-
enced, discussed, and explained. The reason for using the phrase “Asterisk-based tel-
ephone system” rather than just “Asterisk” is that some of the changes will need to be
made in other parts of the system (IP phones, ATAs, etc.), while other changes will be
implemented within Asterisk and DAHDI configuration files.

Let’s start by getting a list together (in no particular order) of the things that may need
to be changed in order to optimise your Asterisk-based telephone system for a given
location outside of North America. You can shout some out if you like...

* Language/accent of the prompts

* Physical connectorization for PSTN interfaces (FXO, BRI, PRI)

* Tones heard by users of IP phones and/or ATAs

* Caller ID format sent and/or received by analog interfaces

* Tones for analog interfaces to be supplied or detected by Asterisk

* Format of time/date stamps for voicemail

* The way the above time/date stamps are announced by Asterisk

* Patterns within the dialplan (of IP phones, ATAs, and Asterisk itself if you are using

the sample dialplan)
* The way to indicate to an analog device that voicemail is waiting (MWI)

* Tones supplied to callers by Asterisk (these come into play once a user is “inside”
the system; e.g., the tones heard during a call transfer)

We'll cover everything in this list, adopting a strategy of working from the outer edge
of the system toward the very core (Asterisk itself). We will conclude with a handy
checklist of what you may need to change and where to change it.

Although the principles discussed in this chapter will allow you to adapt your Asterisk
specifically for your region (or that of your customer), for the sake of consistency all of
our examples will focus on how to adapt Asterisk for one region: the United Kingdom.

Devices External to the Asterisk Server

There are massive differences between a good old fashioned analog telephone and any
one of the large number of IP phones out there, and we need to pick up on one of the

*

i18n is a term used to abbreviate the word internationalization, due to its length. The format is
<first_letter><number><last_letter>, where <number> is the number of letters between the first and last
letters. Other words, such as localization (L10n), modularization (m12n), etc. have also found a home with
this scheme, which Leif finds a little bit ridiculous. More information can be found here: http:/'www.w3.org/
2001/12/Glossary#I18N.

182 | Chapter9: Internationalization

http://www.w3.org/2001/12/Glossary#I18N
http://www.w3.org/2001/12/Glossary#I18N

really fundamental differences in order to throw light on the next explanation, which
covers the settings we might need to change on devices external to Asterisk, such as IP
phones.

Have you ever considered the fact that an analog phone is a totally dumb device (we
know that a basic model is very, very cheap) that needs to connect to an intelligent
network (the PSTN), whereas an IP phone (e.g., SIP or IAX2) is a very intelligent device
that connects to a dumb network (the Internet, or any regular IP network)? Figures
9-1 and 9-2 illustrate the difference.

DUMB SMART DUMB

Figure 9-1. The old days: dumb devices connect to a smart network
SMART DUMB SMART

Internet
The Dumb
Network

Figure 9-2. The situation today: smart devices connect through a dumb network

Could we take two analog phones, connect them directly to each other and have the
functionality we would normally associate with a regular phone? No, of course not,
because the network supplies everything: the actual power to the phone, the dialtone
(from the local exchange or CO), the caller ID information, the ringing tone (from the
remote [closest to the destination phone] exchange or CO), all the signaling required,
and so on.

Conversely, could we take two IP phones, connect them directly to each other, and get
some sensible functionality? Sure we could, because all the intelligence is inside the IP
phones themselves—they provide the tones we hear (dialtone, ringing, busy) and run
the protocol that does all the required signaling (usually SIP). In fact, you can try this
for yourself—most mid-price IP phones have a built-in Ethernet switch, so you can
actually connect the two IP phones directly to each other with a regular (straight-
through) Ethernet patch cable, or just connect them through a regular switch. They
will need to have fixed IP addresses in the absence of a DHCP server, and you can

Devices External to the Asterisk Server | 183

usually dial the IP address of the other phone just by using the * key for the dots in
the address.

Figure 9-2 points to the fact that on an IP phone, we are responsible for setting all of
the tones that the network would have provided in the old days. This can be done in
one of (at least) two ways. The first is to configure the tones provided by the IP phone
on the device’s own web GUI. This is done by browsing to the IP address of the phone
(the TP address can usually be obtained by a menu option on the phone) and then
selecting the appropriate options. For example, on a Yealink IP phone, the tones are
set on the Phone page of the web GUI, under the Tones tab (where you’ll find a list of
the different types of tone that can be changed—in the case of the Yealink, these are
Dial, Ring Back, Busy, Congestion, Call Waiting, Dial Recall, Record, Info, Stutter,
Message, and Auto Answer).

The other way that this configuration can be applied is to auto-provision the phone
with these settings. A full explanation of the mechanism for auto-provisioning is beyond
the scope of this book, but you can usually set up the tones in the appropriate attributes
of the relevant elements in the XML file.

While we are changing settings on the IP phones, there are two other things that may
need to be changed in order for the phones to look right and to function correctly as
part of the system.

Most phones display the time when idle and, since many people find it particularly
annoying when their phones show the wrong time, we need to ensure that the correct
local time is displayed. It should be fairly easy to find the appropriate page of the web
GUI (or XML attributes) to specify the time server. You will also find that there are
settings for daylight saving time and other relevant stuff nearby.

The last thing to change is a potential show-stopper as far as the making of a phone
call is concerned—the dialplan. We’re not talking about the dialplan we find in /etc/
asterisk/extensions.conf, but the dialplan of the phone. Not everyone realizes that IP
phones have dialplans too—although these dialplans are more concerned with which
dial strings are permitted than with what to do on a given dial.

The general rule seems to be that if you dial on-hook the built-in dialplan is bypassed,
but if you pick up the handset the dialplan comes into play, and it just might happen
that the dialplan will not allow the dial string you need to be dialed. Although this
problem can manifest itself with a refusal by the phone to pass certain types of numbers
through to Asterisk, it can also affect any feature codes you plan to use. This can easily
be remedied by Googling the model number of the phone along with “UK dialplan”
(or the particular region you need), or you can go to the appropriate page on the web
GUI and either manually adjust the dialplan or pick the country you need from a drop-
down box (depending on the type of phone you are working with).

184 | Chapter9: Internationalization

The prior discussion of IP phone configuration also applies to any analog telephone
adaptors (ATAs) you plan to use—specifically, to those supporting an FXS interface.
In addition, you may need to specify some of the electrical characteristics of the tel-
ephony interface, like line voltage and impedance, together with the caller ID format
that will work with local phones. All that differs is the way you obtain the IP address
for the web GUI—this is usually done by dialing a specific code on the attached analog
phone, which results in the IP address being read back to the caller.

Of course, an ATA may also feature an FXO interface, which will also need to be con-
figured to properly interact with the analog line provided in your region. The types of
things that need to be changed are similar to the FXS interface.

What if you are connecting your analog phone or line to a Digium card? We’ll cover
this next.

PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones

Before we get to DAHDI and Asterisk configuration, we need to physically connect to
the PSTN. Unfortunately, there are no worldwide standards for these connections; in
fact, there are often variations from one part of a given country to another.

PRI connections are generally terminated in an RJ45 connection these days, although
the impedance of the connections can vary. In some countries (notably in South Amer-
ica), it is still possible to find PRIs terminated in two BNC connectors, one for transmit
and one for receive.

Generally speaking, a PRI terminated in an RJ45 will be an ISDN connection, and if
you find the connection is made by a pair of BNC connectors (push-and-twist coaxial
connectors), the likelihood is that you are dealing with a CAS-based protocol (like R2).

Figure 9-3 shows the adaptor required if your telco has supplied BNC connectors (the
Digium cards require an RJ45 connection). It is called a balun, as it converts from a
balanced connection (R]J45) to an unbalanced connection (the BNCs), in addition to
changing the connection impedance.

W
o Basic Rate Interfaces (BRIs) are common in continental Europe and are
"‘:\ almost always supplied via an RJ45 connection.
N a
15)

PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones | 185

Receive 1

B1 Sleeve Receive Heceiv_e 2
. Transmit 4
B1 Center Receive I it5
B2 Center Receive fansm
B2 Sleeve Receive nz=:1
BNC connector Male RJ-48C
(front view) (front view)

Figure 9-3. A balun

Analog connections vary massively from place to place—you will know what kind of
connector is used in your locality. The important thing to remember is that the analog
line is only two wires, and these need to connect to the middle two pins of the RJ11
plug that goes into the Digium card—the other end is the local one. Figure 9-4 shows
the plug used in the UK, where the two wires are connected to pins 2 and 5.

Figure 9-4. The BT plug used for analog PSTN connections in the UK (note only pins 2-5 are present)

The Digium Asterisk Hardware Device Interface, or DAHDI, actually covers a number
of things. It contains the kernel drivers for telephony adaptor cards that work within
the DAHDI framework, as well as automatic configuration utilities and test tools. These
parts are contained in two separate packages (dahdi-linux and dahdi-tools), but we can
also use one complete package, called dahdi-linux-complete. All three packages are
available at http://downloads.digium.com/pub/telephony/. The installation of DAHDI
was covered in Chapter 3.

Chapter 7 covered the use of analog and digital PSTN connections, and we will not
reiterate those details here. If you are using digital PSTN connections, your job is to
find out what sort of connection the telco is giving you. Generally, if you have requested

186 | Chapter9: Internationalization

http://downloads.digium.com/pub/telephony/

a primary rate interface (PRI), this will be a T1 in North America, a J1 in Japan, or an
El in pretty much the rest of the world.

Once you have established the type of PRI connection the telco has given you, there
are some further details that you will require in order to properly configure DAHDI
and Asterisk (e.g., whether the connection is ISDN or a CAS-based protocol). Again,
you will find these in Chapter 7.

DAHDI Drivers

The connections where some real localization will need to take place are those of analog
interfaces. For the purposes of configuring your Asterisk-based telephone system to
work best in a given locality, you will first need to specifically configure some low-level
aspects of the way the Digium card interacts with the connected device or line. This is
done through the DAHDI kernel driver(s), in a file called /etc/dahdi/system.conf.

In the following lines (taken from the sample configuration that you get with a fresh
install of DAHDI), you will find both the loadzone and defaultzone settings. The load
zone setting allows you to choose which tone set(s) the card will both generate (to feed
to analog telephones) and recognize (on the connected analog telephone lines):

E™

Tone Zone Data

ANANNANANANNANNN

Finally, you can preload some tone zones, to prevent them from getting
overwritten by other users (if you allow non-root users to open /dev/dahdi/*
interfaces anyway). Also this means they won't have to be loaded at runtime.
The format is "loadzone=<zone>" where the zone is a two letter country code.

You may also specify a default zone with "defaultzone=<zone>" where zone
is a two letter country code.

o M M M M M O R

An up-to-date list of the zones can be found in the file zonedata.c
#

loadzone = us
#loadzone = us-old
#loadzone=gr
#loadzone=it
#loadzone=fr
#loadzone=de
#loadzone=uk
#loadzone=fi
#loadzone=jp
#loadzone=sp
#loadzone=no
#loadzone=hu
#loadzone=1t
#loadzone=pl
defaultzone=us

#

PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones | 187

The /etc/dahdi/system.conf file uses the hash symbol (#) to indicate a
comment instead of a semicolon (;) like the files in /etc/asterisk/.

Although it is possible to load a number of different tone sets (you can see all the sets
of tones in detail in zonedata.c) and to switch between them, in most practical situations
you will only need:

loadzone=uk # to load the tone set
defaultzone=uk # to default DAHDI to using that set

...or whichever tones you need for your region.

If you perform a dahdi_genconf to automatically (or should that be auto-magically?)
configure your DAHDI adaptors, you will notice that the newly generated /etc/dahdi/
system.conf will have defaulted both loadzone and defaultzone to being us. Despite the
warnings not to hand-edit the file, it is fine to change these settings to what you need.

In case you were wondering how we tell whether there are any voicemails in the mailbox
associated with the channel an analog phone is plugged into, it is done with a stuttered
dialtone. The format of this stuttered dialtone is decided by the loadzone/default
zone combination you have used.

As a quick aside, analog phones that have a message waiting indicator (e.g., an LED or
lamp that flashes to indicate there is new voicemail) achieve this by automatically going
off-hook periodically and listening for the stuttered dialtone. You can witness this by
watching the Asterisk command line to see the DAHDI channel go active (if you have
nothing better to do!).

That’s it at the DAHDI level. We chose the protocol(s) for PRI or BRI connections, the
type of signaling for the analog channels (all covered in Chapter 7), and the tones for
the analog connections that have just been discussed.

\

W

Once you have completed your configuration at the DAHDI level (in /

etc/dahdi/system.conf), you need to perform a dahdi_cfg -vvv to have

%5 DAHDI reread the configuration. This is also a good time to use

" dahdi_tool to check that everything appears to be in order at the Linux
level.

This way, if things do not work properly after you have configured
Asterisk to work with the DAHDI adaptors, you can be sure that the
problem is confined to chan_dahdi.conf (or an #included dahdi-chan-
nels.conf if you are using this part of the dahdi_genconf output).

188 | Chapter9: Internationalization

The relationship between Linux, DAHDI, and Asterisk (and therefore /etc/dahdi/sys-
tem.conf and /etc/asterisk/chan_dahdi.conf) is shown in Figure 9-5.

Asterisk

Asterisk configuration/etc/asterisk/chan_dahdi.conf

DAHD! kernel drivers/etc/dahdi/system.conf

Linux server

Figure 9-5. The relationship between Linux, DAHDI, and Asterisk

Asterisk

With everything set at the Linux level, we now only need to configure Asterisk to make
use of the channels we just enabled at the Linux level and to customize the way that
Asterisk interprets and generates information that comes in from, or goes out over,
these channels. This work is done in /etc/asterisk/chan_dahdi.conf.

In this file we will not only tell Asterisk what sort of channels we have (these settings
will fit with what we already did in DAHDI), but also configure a number of things that
will ensure Asterisk is well suited to its new home.

Caller ID

A key component of this change is caller ID. While caller ID delivery methods are pretty
much standard within the BRI and PRI world, they vary widely in the analog world;
thus, if you plugged an American analog phone into the UK telephone network, it
would actually work as a phone, but caller ID information would not be displayed.
This is because that information is transmitted in different ways in different places
around the world, and an American phone would be looking for caller ID signaling in
the US format, while the UK telephone network would be supplying it (if it is enabled—
it is not standard in the UK; you have to pay for caller ID!) in the UK format.

Not only is the format different, but the method of telling a telephone (or Asterisk) to
look out for the caller ID may vary from place to place too. This is important, as we do
not want Asterisk to waste time looking for caller ID information if it is not being
presented on the line.

Asterisk | 189

Again, Asterisk defaults to the North American caller ID format (no entries in /etc/
asterisk/chan_dahdi.conf describe this, it’s just the default), and in order to change it
we will need to make some entries that describe the technical details of the caller ID
system. In the case of the UK, the delivery of caller ID information is signaled by a
polarity reversal on the telephone line (in other words, the A and B legs of the pair of
telephone wires are temporarily switched over), and the actual caller ID information is
delivered in a format known as V.23 (frequency shift keying, or FSK). So, the entries in
chan_dahdi.conf to receive UK-style caller ID on any FXO interfaces will look like this:
cidstart=polarity ; the delivery of caller ID will be
; signaled by a polarity reversal

cidsignalling=v23 ; the delivery of the called ID information
; will be in V23 format

Of course, you may also need to send caller ID using the same local signaling informa-
tion to any analog phones that are connected to FXS interfaces, and one more entry
may be needed as in some locations the caller ID information is sent after a specified
number of rings. If this is the case, you can use this entry:

sendcalleridafter=2

Before you can make these entries, you will need to establish the details of your local
caller ID system (someone from your local telco or Google could be your friend here,
but there is also some good information in the sample /etc/asterisk/chan_dahdi.conf

file).

Language and/or Accent of Prompts

As you may know, the prompts (or recordings) that Asterisk will use are stored in /var/
lib/asterisk/sounds/. In older versions of Asterisk all the sounds were in this actual di-
rectory, but these days you will find a number of subdirectories that allow the use of
different languages or accents. The names of these subdirectories are arbitrary; you can
call them whatever you want.

Note that the filenames in these directories must be what Asterisk is expecting—for
example, in /var/lib/asterisk/sound/en/ the file hello.gsm would contain the word
“Hello” (spoken by the lovely Allison), whereas hello.gsm in /var/lib/asterisk/sounds/
es/ (for Spanish in this case) would contain the word “Hola” (spoken by the Spanish
equivalent of the lovely AllisonT).

T Who s, in fact, the same Allison who does the English prompts; June Wallack does the French prompts. The
male Australian-accented prompts are done by Cameron Twomey. All voiceover talent are available to record
additional prompts as well. See http://www.digium.com/en/products/ivr/ for more information.

190 | Chapter9: Internationalization

http://www.digium.com/en/products/ivr/

The default directory used is /var/lib/asterisk/sounds/en, so how do you change that?

There are two ways. One is to set the language in the channel configuration file that
calls are arriving through using the language directive. For example, the line:

language=en_UK

placed in chan_dahdi.conf, sip.conf, and so on (to apply generally, or for just a given
channel or profile) will tell Asterisk to use sound files found in /var/lib/asterisk/sounds/
en_UK (which could contain British-accented prompts) for all calls that come in
through those channels.

The other way is to change the language during a phone call through the dialplan. This
(along with many attributes of an individual call) can be set using the CHANNEL () dialplan
function. See Chapter 10 for a full treatment of dialplan functions.

The following example would allow the caller to choose one of three languages in which
to continue the call:
; gives the choice of (1) French, (2) Spanish, or (3) German

exten => s,1,Background(choose-language)
same => n,WaitExten(5)

exten => 1,1,Set(CHANNEL(language)=fr)
exten => 2,1,Set(CHANNEL(language)=es)
exten => 3,1,Set(CHANNEL(language)=de)

; the next priority for extensions 1, 2, or 3 would be handled here
exten => [123],n,Goto(menu,s,1)

If the caller pressed 1 sounds would be played from /var/lib/asterisk/sounds/fr, if he
pressed 2 the sounds would come from /var/lib/asterisk/sounds/es, and so on.

As already mentioned, the names of these directories are arbitrary and do not need to
be only two characters long—the main thing is that you match the name of the sub-
directory you have created in the language directive in the channel configuration, or
when you set the CHANNEL (1anguage) argument in the dialplan.

Time/Date Stamps and Pronunciation

Asterisk uses the Linux system time from the host server, as you would expect, but we
may have users of the system who are in different time zones, or even in different coun-
tries. Voicemail is where the rubber hits the road, as this is where users come into
contact with time/date stamp information.

Consider a scenario where some users of the system are based in the US, while others
are in the UK.

As well as the time difference, another thing to consider is the way people in the two
locations are used to hearing date and time information—in the US, dates are usually

Asterisk | 191

ordered month, day, year and times are specified in 12-hour clock format (e.g.,
2:54 P.M.).

In contrast, in the UK, dates are ordered day, month, year and times are often specified
in 24-hour clock format (14:54 hrs)—although some people in the UK prefer 12-hour
clock format, so we will cover that too.

Since all these things are connected to voicemail, you would be right to guess that we
configure it in /etc/asterisk/voicemail.conf—specifically, in the [zonemessages] section
of the file.

Here is the [zonemessages] part of the sample voicemail.conf file that comes with As-
terisk, with UK24 (for UK people that like 24-hour clock format times) and UK12 (for UK
people that prefer 12-hour clock format) zones added:

[zonemessages]

; Users may be located in different timezones, or may have different
message announcements for their introductory message when they enter
the voicemail system. Set the message and the timezone each user

hears here. Set the user into one of these zones with the tz=attribute
; in the options field of the mailbox. Of course, language substitution
; still applies here so you may have several directory trees that have

; alternate language choices.

; Look in /usr/share/zoneinfo/ for names of timezones.
; Look at the manual page for strftime for a quick tutorial on how the
; variable substitution is done on the values below.

)
)
J
)
)
)
J
J
J
J
)
; Supported values:

; 'filename' filename of a soundfile (single ticks around the filename
; required)

; ${VAR} variable substitution

; A or a Day of week (Saturday, Sunday, ...)

; B or b or h Month name (January, February, ...)

; d or e numeric day of month (first, second, ... thirty-first)

; Y Year

; I or 1 Hour, 12 hour clock

; H Hour, 24 hour clock (single digit hours preceded by "oh")

; k Hour, 24 hour clock (single digit hours NOT preceded by "oh")

5 M Minute, with 00 pronounced as "o'clock"

5 N Minute, with 00 pronounced as "hundred" (US military time)

; Por p AM or PM

; Q "today", "yesterday" or ABdY

; (*note: not standard strftime value)

5 q " (for today), "yesterday", weekday, or ABdY

; (*note: not standard strftime value)

5 R 24 hour time, including minute

Z=EX"ITH<aw

)

eastern=America/New_York|'vm-received' Q 'digits/at' IMp
central=America/Chicago|'vm-received' Q 'digits/at' IMp
central24=America/Chicago|'vm-received' q 'digits/at' H N "hours'
military=Zulu|'vm-received' q 'digits/at' H N 'hours' 'phonetic/z p'
european=Europe/Copenhagen|'vm-received' a d b 'digits/at' HM

192 | Chapter9: Internationalization

UK24=Europe/London| 'vm-received' q 'digits/at' H N 'hours'
UK12=Europe/London| 'vm-received' Q 'digits/at' IMp

These zones not only specify a time, but also dictate the way times and dates are ordered
and read out.

Having created these zones, we can go to the voicemail context part of voicemail.conf
to associate the appropriate mailboxes with the correct zones:

[default]

4001 => 1234,Russell Bryant,rb@shifteight.org,,|tz=central

4002 => 4444,David Duffett,dd@shifteight.org,, |tz=UK24
4003 => 4450,Mary Poppins,mp@shifteight.org,,|tz=UK12|attach=yes

As you can see, when we declare a mailbox, we also (optionally) associate it with a
particular zone. Full details on voicemail can be found in Chapter 8.

The last thing to localize in our Asterisk configuration is the tones played to callers by
Asterisk once they are inside the system (e.g., the tones a caller hears during a transfer).

As identified earlier in this chapter, the initial tones that people hear when they are
calling into the system will come from the IP phone, or from DAHDI for analog
channels.

These tones are set in /etc/asterisk/indications.conf. Here is a part of the sample file,
where you can see a given region specified by the country directive. We just need to
change the country code as appropriate:

indications.conf

Configuration file for location specific tone indications

NOTE:

When adding countries to this file, please keep them in alphabetical

order according to the 2-character country codes!

The [general] category is for certain global variables.
All other categories are interpreted as location specific indications

© e Me We We We e we e e Wl W

)
[general]
country=uk ; default is US, so we have changed it to UK

Your dialplan will need to reflect the numbering scheme for your region. If you do not
already know the scheme for your area, your local telecoms regulator will usually be
able to supply details of the plan. Also, the example dialplan in /etc/asterisk/exten-
sions.conf is, of course, packed with North American numbers and patterns.

Asterisk | 193

Conclusion—Easy Reference Cheat Sheet

Asyou can now see, there are quite a few things to change in order to fully localize your
Asterisk-based telephone system, and not all of them are in the Asterisk, or even
DAHDI, configuration—some things need to be changed on the connected IP phones
or ATAs themselves.

Before we leave the chapter, have a look at Table 9-1: a cheat sheet for what to change

and where to change it, for your future reference.

Table 9-1. Internationalization cheat sheet

What to change Where to change it
(all progress tones « IP phones—on the phone itself
ATAs—on the ATA itself
« Analog phones—DAHDI (/etc/dahdi/system.conf)

Type of PRI/BRI and DAHDI—/etc/dahdi/system.conf and /etc/asterisk/chan_dahdi.conf
protocol
Physical PSTN connections + Balunif required for PRI

Get the analog pair to middle 2 pins of the RJ11 connecting to the Digium card
Caller ID on analog circuits Asterisk—/etc/asterisk/chan_dahdi.conf

Promptlanguage and/orac- « Channel—/etc/asterisk/sip.conf, /etc/asterisk/iax.conf, /etc/asterisk/chan_dahdi.conf,
cent etc.

Dialplan—CHANNEL (1anguage) function

Voicemailtime/datestamps Asterisk—/etc/asterisk/voicemail.conf
and pronunciation

Tones delivered by Asterisk Asterisk—/etc/asterisk/indications.conf

May all your Asterisk deployments feel at home...

194 | Chapter9: Internationalization

CHAPTER 10
Deeper into the Dialplan

For alist of all the ways technology has failed to improve
the quality of life, please press three.

—Alice Kahn

Alrighty. You’ve got the basics of dialplans down, but you know there’s more to come.
If you don’t have Chapter 6 sorted out yet, please go back and give it another read.
We’re about to get into more advanced topics.

Expressions and Variable Manipulation

As we begin our dive into the deeper aspects of dialplans, it is time to introduce you to
a few tools that will greatly add to the power you can exercise in your dialplan. These
constructs add incredible intelligence to your dialplan by enabling it to make decisions
based on different criteria you define. Put on your thinking cap, and let’s get started.

Basic Expressions

Expressions are combinations of variables, operators, and values that you string to-
gether to produce a result. An expression can test values, alter strings, or perform
mathematical calculations. Let’s say we have a variable called COUNT. In plain English,
two expressions using that variable might be “COUNT plus 1” and “COUNT divided by 2.”
Each of these expressions has a particular result or value, depending on the value of
the given variable.

In Asterisk, expressions always begin with a dollar sign and an opening square bracket
and end with a closing square bracket, as shown here:

$[expression]
Thus, we would write our two examples like this:

$[${COUNT} + 1]
$[${COUNT} / 2]

195

When Asterisk encounters an expression in a dialplan, it replaces the entire expression
with the resulting value. It is important to note that this takes place after variable sub-
stitution. To demonstrate, let’s look at the following code’:

exten => 321,1,Set(COUNT=3)

same => n,Set(NEWCOUNT=$[${COUNT} + 1])
same => n,SayNumber (${NEWCOUNT})

In the first priority, we assign the value of 3 to the variable named COUNT.

In the second priority, only one application—Set ()—is involved, but three things ac-
tually happen:

1. Asterisk substitutes ${COUNT} with the number 3 in the expression. The expression
effectively becomes this:

exten => 321,n,Set(NEWCOUNT=$[3 + 1])
2. Asterisk evaluates the expression, adding 1 to 3, and replaces it with its computed
value of 4:
exten => 321,n,Set(NEWCOUNT=4)
3. The Set() application assigns the value 4 to the NENCOUNT variable

The third priority simply invokes the SayNumber () application, which speaks the current
value of the variable ${NEWCOUNT} (set to the value 4 in priority two).

Try it out in your own dialplan.

Operators

When you create an Asterisk dialplan, you’re really writing code in a specialized script-
inglanguage. This means that the Asterisk dialplan—Iike any programming language—
recognizes symbols called operators that allow you to manipulate variables. Let’s look
at the types of operators that are available in Asterisk:

Boolean operators

These operators evaluate the “truth” of a statement. In computing terms, that es-

sentially refers to whether the statement is something or nothing (nonzero or zero,

true or false, on or off, and so on). The Boolean operators are:

exprl | expr2
This operator (called the “or” operator, or “pipe”) returns the evaluation of
expr1 if it is true (neither an empty string nor zero). Otherwise, it returns the
evaluation of expr2.

* Remember that when you reference a variable you can call it by its name, but when you refer to a variable’s
value, you have to use the dollar sign and brackets around the variable name.

196 | Chapter10: Deeperinto the Dialplan

expr1 & expr2
This operator (called “and”) returns the evaluation of expr1 if both expressions
are true (i.e., neither expression evaluates to an empty string or zero). Other-
wise, it returns zero.

exprl {=, >, >=, <, <=, l=}expr2
These operators return the results of an integer comparison if both arguments
are integers; otherwise, they return the results of a string comparison. The
result of each comparison is 1 if the specified relation is true, or 0 if the relation
is false. (If you are doing string comparisons, they will be done in a manner
that’s consistent with the current local settings of your operating system.)

Mathematical operators

Want to perform a calculation? You’ll want one of these:

expri {+, -}expr2
These operators return the results of the addition or subtraction of integer-
valued arguments.

expr1 {*, /, %} expr2
These return, respectively, the results of the multiplication, integer division,
or remainder of integer-valued arguments.

Regular expression operator

You can also use the regular expression operator in Asterisk:

expri : expr2
This operator matches expr1 against expr2, where expr2 must be a regular
expression.T The regular expression is anchored to the beginning of the string
with an implicit ».*
If the match succeeds and the pattern contains at least one regular expression
subexpression—\(... \)—the string corresponding to \1 is returned; other-
wise, the matching operator returns the number of characters matched. If the
match fails and the pattern contains a regular expression subexpression, the
null string is returned; otherwise, 0 is returned.

In Asterisk version 1.0 the parser was quite simple, so it required that you put at least
one space between the operator and any other values. Consequently, the following
might not have worked as expected:

exten => 123,1,Set(TEST=$[2+1])

t For more on regular expressions, grab a copy of the ultimate reference, Jeffrey E. F. Friedl’s Mastering Regular
Expressions (O’Reilly), or visit http://www.regular-expressions.info.

1 If you don’t know what a * has to do with regular expressions, you simply must read Mastering Regular
Expressions. It will change your life!

Expressions and Variable Manipulation | 197

http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/
http://www.regular-expressions.info
http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/

This would have assigned the variable TEST to the string “2+1”, instead of the value 3.
In order to remedy that, we would put spaces around the operator, like so:

exten => 234,1,Set(TEST=$[2 + 1])
This is no longer necessary in current versions of Asterisk, as the expression parser has

been made more forgiving in these types of scenarios. However, for readability’s sake,
we still recommend including the spaces around your operators.

To concatenate text onto the beginning or end of a variable, simply place them together,
like this:
exten => 234,1,Set(NEWTEST=blah${TEST})

Dialplan Functions

Dialplan functions allow you to add more power to your expressions; you can think of
them as intelligent variables. Dialplan functions allow you to calculate string lengths,
dates and times, MD5 checksums, and so on, all from within a dialplan expression.

Syntax

Dialplan functions have the following basic syntax:

FUNCTION_NAME (argument)

You reference a function’s name the same way as a variable’s name, but you reference
a function’s value with the addition of a dollar sign, an opening curly brace, and a
closing curly brace:

${FUNCTION_NAME (argument)}

Functions can also encapsulate other functions, like so:
${FUNCTION NAME(${FUNCTION NAME(argument)})}
A A A Y

ANANA

1 23 4 4321

As you’ve probably already figured out, you must be very careful about making sure
you have matching parentheses and braces. In the preceding example, we have labeled
the opening parentheses and curly braces with numbers and their corresponding clos-
ing counterparts with the same numbers.

Examples of Dialplan Functions

Functions are often used in conjunction with the Set() application to either get or set
the value of a variable. As a simple example, let’s look at the LEN() function. This
function calculates the string length of its argument. Let’s calculate the string length of
a variable and read back the length to the caller:

198 | Chapter10: Deeperinto the Dialplan

exten => 123,1,Set(TEST=example)
same => n,SayNumber (${LEN(${TEST})})

This example will first evaluate $TEST as example. The string “example” is then given to
the LEN() function, which will evaluate as the length of the string, 7. Finally, 7 is passed
as an argument to the SayNumber () application.

Let’s look at another simple example. If we wanted to set one of the various channel
timeouts, we could use the TIMEOUT() function. The TIMEOUT() function accepts one of
three arguments: absolute, digit, and response. To set the digit timeout with the
TIMEOUT() function, we could use the Set() application, like so:

exten => s,1,Set(TIMEOUT(digit)=30)

Notice the lack of ${ } surrounding the function. Just as if we were assigning a value
to a variable, we assign a value to a function without the use of the ${ } encapsulation.

A complete list of available functions can be found by typing core show functions at the
Asterisk command-line interface.

Conditional Branching

Now that you’ve learned a bit about expressions and functions, it’s time to put them
to use. By using expressions and functions, you can add even more advanced logic to
your dialplan. To allow your dialplan to make decisions, you’ll use conditional branch-
ing. Let’s take a closer look.

The Gotolf() Application

The key to conditional branching is the GotoIf() application. GotoIf() evaluates an

expression and sends the caller to a specific destination based on whether the expres-

sion evaluates to true or false.

GotoIf() uses a special syntax, often called the conditional syntax:
GotoIf(expression?destinationi:destination2)

If the expression evaluates to true, the caller is sent to destinationi. If the expression

evaluates to false, the caller is sent to the second destination. So, what is true and what

is false? An empty string and the number 0 evaluate as false. Anything else evaluates
as true.

The destinations can each be one of the following:
* A priority label within the same extension, such as weasels

* An extension and a priority label within the same context, such as 123,weasels

* A context, extension, and priority label, such as incoming,123,weasels

Conditional Branching | 199

Either of the destinations may be omitted, but not both. If the omitted destination is
to be followed, Asterisk simply goes on to the next priority in the current extension.

Let’s use GotoIf() in an example:

exten => 345,1,Set(TEST=1)
same => n,GotoIf($[${TEST} = 1]?weasels:iguanas)
same => n(weasels),Playback(weasels-eaten-phonesys)
same => n,Hangup()
same => n(iguanas),Playback(office-iguanas)
same => n,Hangup()

You will notice that we have used the Hangup() application following

each use of the Playback() application. This is done so that when we

s jump to the weasels label, the call stops before execution gets to the

" office-iguanas sound file. It is becoming increasingly common to see
extensions broken up into multiple components (protected from each
other by the Hangup() command), each one a distinct sequence of steps
executed following a GotoIf().

Providing Only a False Conditional Path
If we wanted to, we could have crafted the preceding example like this:

exten => 345,1,Set(TEST=1)
same => n,GotoIf($[${TEST} = 1]?:iguanas) ; we don't have the weasels label anymore,
; but this will still work
same => n,Playback(weasels-eaten-phonesys)
same => n,Hangup()
same => n(iguanas),Playback(office-iguanas)
same => n,Hangup()

There’s nothing between the ? and the :, so if the statement evaluates to true, execution
will continue at the next step. Since that’s what we want, a label isn’t needed.

We don’t really recommend doing this, because it’s hard to read, but you will see
dialplans like this, so it’s good to be aware that this syntax is totally correct.

Typically, when you have this type of layout where you end up wanting to prevent
Asterisk from falling through to the next priority after you’ve performed that jump, it’s
probably better to jump to separate extensions instead of priority labels. If anything, it
makes it a bit more clear when reading the dialplan. We could rewrite the previous bit
of dialplan like this:

exten => 345,1,Set(TEST=1)

same => n,GotoIf($[${TEST} = 1]?weasels,1:iguanas,1) ; now we're going to
; extension,priority

exten => weasels,1,Playback(weasels-eaten-phonesys) ; this is NOT a label.
; It is a different extension
same => n,Hangup()

200 | Chapter10: Deeper into the Dialplan

exten => iguanas,1,Playback(office-iguanas)
same => n,Hangup()

By changing the value assigned to TEST in the first line, you should be able to have your
Asterisk server play a different greeting.

Let’s look at another example of conditional branching. This time, we’ll use both
Goto() and GotoIf() to count down from 10 and then hang up:
exten => 123,1,Set(COUNT=10)

same => n(start),GotoIf($[${COUNT} > 0]?:goodbye)

same => n,SayNumber (${COUNT})

same => n,Set(COUNT=$[${COUNT} - 1])

same => n,Goto(start)

same => n(goodbye),Hangup()

Let’s analyze this example. In the first priority, we set the variable COUNT to 10. Next,
we check to see if COUNT is greater than 0. If it is, we move on to the next priority. (Don’t
forget that if we omit a destination in the GotoIf() application, control goes to the next
priority.) From there, we speak the number, subtract 1 from COUNT, and go back to
priority label start. If COUNT is less than or equal to 0, control goes to priority label
goodbye, and the call is hung up.

The classic example of conditional branching is affectionately known as the anti-
girlfriend logic. If the caller ID number of the incoming call matches the phone number
of the recipient’s ex-girlfriend, Asterisk gives a different message than it ordinarily
would to any other caller. While somewhat simple and primitive, it’s a good example
for learning about conditional branching within the Asterisk dialplan.

This example uses the CALLERID function, which allows us to retrieve the caller ID in-
formation on the inbound call. Let’s assume for the sake of this example that the vic-
tim’s phone number is 888-555-1212:
exten => 123,1,GotoIf($[${CALLERID(num)} = 8885551212]?reject:allow)

same => n(allow),Dial(DAHDI/4)

same => n,Hangup()

same => n(reject),Playback(abandon-all-hope)

same => n,Hangup()

In priority 1, we call the GotoIf() application. It tells Asterisk to go to priority label
reject if the caller ID number matches 8885551212, and otherwise to go to priority label
allow (we could have simply omitted the label name, causing the GotoIf() to fall
through). If the caller ID number matches, control of the call goes to priority label
reject, which plays back an uninspiring message to the undesired caller. Otherwise,
the call attempts to dial the recipient on channel DAHDI/4.

Conditional Branching | 201

Time-Based Conditional Branching with GotolfTime()

Another way to use conditional branching in your dialplan is with the GotoIfTime()
application. Whereas GotoIf() evaluates an expression to decide what to do, GotoIf
Time () looks at the current system time and uses that to decide whether or not to follow
a different branch in the dialplan.

The most obvious use of this application is to give your callers a different greeting before
and after normal business hours.

The syntax for the GotoIfTime() application looks like this:
GotoIfTime(times,days of week,days of month,months?label)
In short, GotoIfTime() sends the call to the specified label if the current date and time

match the criteria specified by times, days_of week, days_of month, and months. Let’s
look at each argument in more detail:

times
This is a list of one or more time ranges, in a 24-hour format. As an example, 9:00
A.M. through 5:00 P.M. would be specified as 09:00-17:00. The day starts at 0:00
and ends at 23:59.

N

It is worth noting that times will properly wrap around. So, if you

wish to specify the times your office is closed, you might write

%15 18:00-9:00 in the times parameter, and it will perform as expected.

" Note that this technique works as well for the other components
of GotoIfTime(). For example, you can write sat-sun to specify the
weekend days.

days_of week
This is a list of one or more days of the week. The days should be specified as mon,
tue, wed, thu, fri, sat, and/or sun. Monday through Friday would be expressed as
mon-fri. Tuesday and Thursday would be expressed as tue&thu.

B
)

Note that you can specify a combination of ranges and single days,
as in: sun-mon8wed&fri-sat, or, more simply: wed&fri-mon.

days_of month
This is a list of the numerical days of the month. Days are specified by the numbers
1 through 31. The 7th through the 12th would be expressed as 7-12, and the 15th
and 30th of the month would be written as 15830.

202 | Chapter10: Deeper into the Dialplan

months
This is a list of one or more months of the year. The months should be written as
jan-apr for a range, and separated with ampersands when wanting to include non-
sequential months, such as jan8mar&jun. You can also combine them like so:
jan-apr&jundoct-dec.

If you wish to match on all possible values for any of these arguments, simply put an
*in for that argument.

The label argument can be any of the following:

* A priority label within the same extension, such as time_has_passed
* Anextension and a priority within the same context, such as 123, time_has_passed

* A context, extension, and priority, such as incoming,123,time_has_passed

Now that we’ve covered the syntax, let’s look at a couple of examples. The following
example would match from 9:00 A.M. to 5:59 P.M., on Monday through Friday, on any
day of the month, in any month of the year:

exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)

If the caller calls during these hours, the call will be sent to the first priority of the s
extension in the context named open. If the call is made outside of the specified times,
it will be sent to the next priority of the current extension. This allows you to easily
branch on multiple times, as shown in the next example (note that you should always
put your most specific time matches before the least specific ones):

; If it's any hour of the day, on any day of the week,

; during the fourth day of the month, in the month of July,

; we're closed
exten => s,1,GotoIfTime(*,*,4,jul?closed,s,1)

; During business hours, send calls to the open context
same => n,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)
same => n,GotoIfTime(09:00-11:59,sat,*,*?open,s,1)

; Otherwise, we're closed
same => n,Goto(closed,s,1)

W N

If you run into the situation where you ask the question, “But I specified
17:58 and it’s now 17:59. Why is it still doing the same thing?” it should
%" be noted that the granularity of the GotoIfTime() application is only to
" a two-minute period. So, if you specify 18:00 as the ending time of a
period, the system will continue to perform the same way until 18:01:59.

Conditional Branching | 203

Macros

MacrosS are a very useful construct designed to avoid repetition in the dialplan. They
also help in making changes to the dialplan. To illustrate this point, let’s look at our
sample dialplan again. If you remember the changes we made for voicemail, we ended
up with the following for John’s extension:
exten => 101,1,Dial(${JOHN},10)

same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)

same => n(unavail),VoiceMail(101@default,u)

same => n,Hangup()

same => n(busy),VoiceMail(101@default,b)

same => n,Hangup()

Now imagine you have a hundred users on your Asterisk system—setting up the ex-
tensions would involve a lot of copying and pasting. Then imagine that you need to
make a change to the way your extensions work. That would involve a lot of editing,
and you’d be almost certain to have errors.

Instead, you can define a macro that contains a list of steps to take, and then have all
of the phone extensions refer to that macro. All you need to change is the macro, and
everything in the dialplan that references that macro will change as well.

W N
)

If you're familiar with computer programming, you’ll recognize that
macros are similar to subroutines in many modern programming
vs languages. If you’re not familiar with computer programming, don’t
* worry—we’ll walk you through creating a macro.

The best way to appreciate macros is to see one in action, so let’s move right along.

Defining Macros

Let’s take the dialplan logic we used to set up voicemail for John and turn it into a
macro. Then we’ll use the macro to give John and Jane (and the rest of their coworkers)
the same functionality.

§ Although Macro() seems like a general-purpose dialplan subroutine, it has a stack overflow problem that
means you should not try to nest Macro() calls more than five levels deep. If you plan to use a lot of macros
within macros (and call complex functions within them), you may run into stability problems. You will know
you have a problem with just one test call, so if your dialplan tests out, you’re good to go. We also recommend
that you take a look at the GoSub() and Return() applications (see “GoSub()” on page 207), as a lot of macro
functionality can be implemented without actually using Macro(). Also, please note that we are not suggesting
that you don’t use Macro(). It is fantastic and works very well; it just doesn’t nest efficiently.

204 | Chapter10: Deeper into the Dialplan

Macro definitions look a lot like contexts. (In fact, you could argue that they really are
small, limited contexts.) You define a macro by placing macro- and the name of your
macro in square brackets, like this:

[macro-voicemail]

Macro names must start with macro-. This distinguishes them from regular contexts.
The commands within the macro are built almost identically to anything else in the
dialplan; the only limiting factor is that macros use only the s extension. Let’s add our
voicemail logic to the macro, changing the extension to s as we go:

[macro-voicemail]
exten => s,1,Dial(${JOHN},10)

same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
same => n(unavail),VoiceMail(101@default,u)

same => n,Hangup()

same => n(busy),VoiceMail(101@default,b)

same => n,Hangup()

That’s a start, but it’s not perfect, as it’s still specific to John and his mailbox number.
To make the macro generic so that it will work not only for John but also for all of his
coworkers, we’ll take advantage of another property of macros: arguments. But first,
let’s see how we call macros in our dialplan.

Calling Macros from the Dialplan

To use a macro in our dialplan, we use the Macro() application. This application calls
the specified macro and passes it any arguments. For example, to call our voicemail
macro from our dialplan, we can do the following:

exten => 101,1,Macro(voicemail)
The Macro() application also defines several special variables for our use. They include:

${MACRO_CONTEXT}

The original context in which the macro was called.
${MACRO_EXTEN}

The original extension in which the macro was called.

${MACRO_PRIORITY}
The original priority in which the macro was called.

${ARG n }
The nth argument passed to the macro. For example, the first argument would be
${ARG1}, the second ${ARG2}, and so on.

Aswe explained earlier, the way we initially defined our macro was hardcoded for John,
instead of being generic. Let’s change our macro to use ${MACRO_EXTEN} instead of 101
for the mailbox number. That way, if we call the macro from extension 101 the voice-
mail messages will go to mailbox 101, if we call the macro from extension 102 messages
will go to mailbox 102, and so on:

Macros | 205

[macro-voicemail]

exten => s,1,Dial(${JOHN},10)
same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
same => n(unavail),VoiceMail(${MACRO_EXTEN}@default,u)
same => n,Hangup()
same => n(busy),VoiceMail(${MACRO_EXTEN}@default,b)
same => n,Hangup()

Using Arguments in Macros

Okay, now we’re getting closer to having the macro the way we want it, but we still
have one thing left to change: we need to pass in the channel to dial, as it’s currently
still hardcoded for ${JOHN} (remember that we defined the variable JOHN as the channel
to call when we want to reach John). Let’s pass in the channel as an argument, and
then our first macro will be complete:
[macro-voicemail]
exten => s,1,Dial(${ARG1},10)
same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
same => n(unavail),VoiceMail (${MACRO_EXTEN}@default,u)
same => n,Hangup()
same => n(busy),VoiceMail(${MACRO EXTEN}@default,b)
same => n,Hangup()

Now that our macro is done, we can use it in our dialplan. Here’s how we can call our
macro to provide voicemail to John, Jane, and Jack:
exten => 101,1,Macro(voicemail,${JOHN})

exten => 102,1,Macro(voicemail,${JANE})
exten => 103,1,Macro(voicemail, ${JACK})

With 50 or more users, this dialplan will still look neat and organized; we’ll simply
have one line per user, referencing a macro that can be as complicated as required. We

could even have a few different macros for various user types, such as executives,
courtesy phones, call center_agents, analog_sets, sales_department, and so on.

A more advanced version of the macro might look something like this:

[macro-voicemail]
exten => s,1,Dial(${ARG1},20)
same => n,Goto(s-${DIALSTATUS},1)

exten => s-NOANSWER,1,VoiceMail(${MACRO_EXTEN},u)
same => n,Goto(incoming,s,1)

exten => s-BUSY,1,VoiceMail(${MACRO_EXTEN},b)
same => n,Goto(incoming,s,1)

exten => _s-.,1,Goto(s-NOANSWER,1)

206 | Chapter10: Deeperinto the Dialplan

Since we know how to use dialplan functions now as well, here is an-
other way of controlling which voicemail prompt (unavailable vs. busy)
s is played to the caller. In the following example, we’ll be using the
" IF() dialplan function:

[macro-voicemail]
exten => s,1,Dial(${ARG1},20)
same => n,VoiceMail(${MACRO_EXTEN},${IF($[${DIALSTATUS} = BUSY]?b:u)})

This macro depends on a nice side effect of the Dial() application: when you use the
Dial() application, it sets the DIALSTATUS variable to indicate whether the call was suc-
cessful or not. In this case, we’re handling the NOANSWER and BUSY cases, and treating all
other result codes as a NOANSWER.

GoSub()

The GoSub() dialplan application is similar to the Macro() application, in that the pur-
pose is to allow you to call a block of dialplan functionality, pass information to that
block, and return from it (optionally with a return value). GoSub() works in a different
manner from Macro(), though, in that it doesn’t have the stack space requirements, so
it nests effectively. Essentially, GoSub() acts like Goto() with a memory of where it
came from.

In this section we’re going to reimplement what we learned in “Macros” on page 204.
If necessary, you might want to review that section: it explains why we might use a
subroutine, and the goal we’re trying to accomplish.

Defining Subroutines

Unlike with Macro(), there are no special naming requirements when using GoSub() in
the dialplan. In fact, you can use GoSub() within the same context and extension if you
want to. In most cases, however, GoSub() is used in a similar fashion to Macro(), so
defining a new context is common. When creating the context, we like to prepend the
name with sub so we know the context is typically called from the GoSub() application
(of course, there is no requirement that you do so, but it seems a sensible convention).

Here is a simple example of how we might define a subroutine in Asterisk:

[subVoicemail]

Let’s take our example from “Macros” on page 204 and convert it to a subroutine. Here
is how it is defined for use with Macro():

[macro-voicemail]

exten => s,1,Dial(${JOHN},10)
same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
same => n(unavail),VoiceMail(101@default,u)
same => n,Hangup()

GoSub() | 207

same => n(busy),VoiceMail(101@default,b)
same => n,Hangup()

If we were going to convert this to be used for a subroutine, it might look like this:

[subVoicemail]
exten => start,1,Dial(${JOHN},10)

same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
same => n(unavail),VoiceMail(101@default,u)

same => n,Hangup()

same => n(busy),VoiceMail(101@default,b)

same => n,Hangup()

Not much of a change, right? All we’ve altered in this example is the context name,
from [macro-voicemail] to [subVoicemail], and the extension, from s to start (since
there is no requirement that the extension be called anything in particular, unlike with
Macro(), which expects the extension to be s).

Of course, as in the example in the section “Macros” on page 204, we haven’t passed
any arguments to the subroutine, so whenever we call [subVoicemail], ${JOHN} will
always be called, and the voicemail box 101 will get used. In the following sections,
we’ll dig a little deeper. First we’ll look at how we would call a subroutine, and then
we’ll learn how to pass arguments.

Calling Subroutines from the Dialplan

Subroutines are called from the dialplan using the GoSub() application. The arguments
to GoSub() differ slightly than those for Macro(), because GoSub() has no naming re-
quirements for the context or extension (or priority) that gets used. Additionally, no
special channel variables are set when calling a subroutine, other than the passed ar-
guments, which are saved to ${ARGn} (where the first argument is ${ARG1}, the second
argument is ${ARG2}, and so forth).

Now that we’ve updated our voicemail macro to be called as a subroutine, lets take a
look at how we call it using GoSub():

exten => 101,1,GoSub(subVoicemail,start,1())

You’ll notice that we’ve placed a set of opening and closing parentheses
within our GoSub() application. These are the placeholders for any ar-
* Qlsr guments we might pass to the subroutine, and while it is optional for
" them to exist, it’s a programming style we prefer to use.

Next, let’s look at how we can pass arguments to our subroutine in order to make it
more general.

208 | Chapter10: Deeper into the Dialplan

Using Arguments in Subroutines

The ability to use arguments is one of the major features of using Macro() or GoSub(),
because it allows you to abstract out code that would otherwise be duplicated across
your dialplan. Without the need to duplicate the code, we can better manage it, and
we can easily add functionality to large numbers of users by modifying a single location.
You are encouraged to move code into this form whenever you find yourself creating
duplicate code.

Before we start using our subroutine, we need to update it to accept arguments so that
it is generic enough to be used by multiple users:

[subVoicemail]
exten => start,1,Dial(${ARG1},10)

same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
same => n(unavail),VoiceMail(${ARG2}@default,u)

same => n,Hangup()

same => n(busy),VoiceMail(${ARG2}@default,b)

same => n,Hangup()

Recall that previously we had hardcoded the channel variable ${J0HN} as the location
to dial, and mailbox 101 as the voicemail box to be used if ${JOHN} wasn’t available. In
this code, we’ve replaced ${JOHN} and 101 with ${ARG1} and ${ARG2}, respectively. In
more complex subroutines we might even assign the variables ${ARG1} and ${ARG2} to
something like ${DESTINATION} and ${VMBOX}, to make it clear what the ${ARG1} and
${ARG2} represent.

Now that we’ve updated our subroutine, we can use it for several extensions:

[LocalSets]

exten => 101,1,GoSub(subVoicemail,start,1(${JOHN}, ${EXTEN}))
exten => 102,1,GoSub(subVoicemail,start,1(${JANE}, ${EXTEN}))
exten => 103,1,GoSub(subVoicemail,start,1(${JACK},${EXTEN}))

Again, our dialplan is nice and neat. We could even modify our subroutine down to
just three lines:

[subVoicemail]

exten => start,1,Dial(${ARG1},10)

same => n,VoiceMail(${ARG2}@default,${IF($[${DIALSTATUS} = BUSY]?b:u)})
same => n,Hangup()

One difference to note between GoSub() and Macro(), however, is that if we left our
subroutine like this, we’d never return. In this particular example that’s not a problem,
since after the voicemail is left, we would expect the caller to hang up anyway. In
situations where we want to do more after the subroutine has executed, though, we
need to implement the Return() application.

GoSub() | 209

Returning from a Subroutine

Unlike Macro(), the GoSub() dialplan application does not return automatically once it
is done executing. In order to return from whence we came, we need to use the
Return() application. Now that we know how to call a subroutine and pass arguments,
we can look at an example where we might need to return from the subroutine.

Using our previous example, we could break out the dialing portion and the voicemail
portion into separate subroutines:
[subDialer]

exten => start,1,Dial(${ARG1},${ARG2})
same => n,Return()

[subVoicemail]
exten => start,1,VoiceMail(${ARG1}@${ARG2},${ARG3})
same => n,Hangup()

The [subDialer] context created here takes two arguments: ${ARG1}, which contains
the destination to dial; and ${ARG2}, which contains the ring cycle, defined in seconds.
We conclude the [subDialer] context with the dialplan application Return(), which
will return to the priority following the one that called GoSub() (the next line of the
dialplan).

The [subVoicemail] context contains the VoiceMail() application, which is using three
arguments passed to it: ${ARG1} contains the mailbox number, ${ARG2} contains the
voicemail context, and ${ARG3} contains a value to indicate which voicemail message
(unavailable or busy) to play to the caller.

Calling these subroutines might look like this:

exten => 101,1,GoSub(subDialer,start,1(${JOHN},30))
same => n,GoSub(subVoicemail,start,1(${EXTEN},default,u))

Here we’ve used the subDialer subroutine, which attempts to call ${JOHN}, ringing him
for 30 seconds. If the Dial() application returns (e.g., if the line was busy, or there was
no answer for 30 seconds), we Return() from the subroutine and execute the next line
of our dialplan, which calls the subVoicemail subroutine. From there, we pass the ex-
tension that was dialed (e.g., 101) as the mailbox number, and pass the values
default for the voicemail context and the letter u to play the unavailable message.

Our example has been hardcoded to play the unavailable voicemail message, but we

can modify the Return() application to return the ${DIALSTATUS} so that we can play

the busy message if its value is BUSY. To do this, we’ll use the ${GOSUB_RETVAL} channel

variable, which is set whenever we pass a value to the Return() application:
[subDialer]

exten => start,1,Dial(${ARG1},${ARG2})
same => n,Return(${DIALSTATUS})

[subVoicemail]

210 | Chapter10: Deeper into the Dialplan

exten => start,1,VoiceMail(${ARG1}@${ARG2},${ARG3})
same => n,Hangup()

In this version we’ve made just the one change: Return() to Return(${DIALSTATUS}).

Now we can modify extension 101 to use the ${GOSUB_RETVAL} channel variable, which
will be set by Return():
exten => 101,1,GoSub(subDialer,start,1(${JOHN},30))

same => n,Set(VoicemailMessage=${IF($[${GOSUB_RETVAL} = BUSY]?b:u)})
same => n,GoSub(subVoicemail,start,1(${EXTEN},default,${VoicemailMessage}))

Our dialplan now has a new line that sets the ${VoicemailMessage} channel variable to
avalue of u or b, using the IF() dialplan function and the value of ${GOSUB_RETVAL}. We
then pass the value of ${VoicemailMessage} as the third argument to our subVoice
mail subroutine.

Before moving on, you might want to go back and review “Macros” on page 204
and“GoSub()” on page 207. We’ve given you a lot to digest here, but these concepts
will save you a lot of work as you start building your dialplans.

Local Channels

Local channels are a method of executing dialplans from the Dial() application. They
may seem like a bit of a strange concept when you first start using them, but believe us
when we tell you they are a glorious and extremely useful feature that you will almost
certainly want to make use of when you start writing advanced dialplans. The best way
to illustrate the use of Local channels is through an example. Let’s suppose we have a
situation where we need to ring multiple people, but we need to provide delays of
different lengths before dialing each of the members. The use of Local channels is the
only solution to the problem.

With the Dial() application, you can certainly ring multiple endpoints, but all three
channels will ring at the same time, and for the same length of time. Dialing multiple
channels at the same time is done like so:

[LocalSets]

exten => 107,1,Verbose(2,Dialing multiple locations simultaneously)

same => n,Dial(SIP/0000FFFF00018DAHDI/g0/14165551212&SIP/MyITSP/12565551212,30)
same => n,Hangup()

This example dials three destinations for a period of 30 seconds. If none of those lo-
cations answers the call within 30 seconds, the dialplan continues to the next line and
the call is hung up.

However, let’s say we want to introduce some delays, and stop ringing locations at
different times. Using Local channels gives us independent control over each of the
channels we want to dial, so we can introduce delays and control the period of time for
which each channel rings independently. We’re going to show you how this is done in
the dialplan, both within a table that shows the delays visually, and all together in a

Local Channels | 211

box, like we’ve done for other portions of the dialplan. We’ll be building the dialplan
to match the time starts and stops described in Figure 10-1.

Channel1
Channel 2
Channel3
Time
(in seconds) — T T T T T T T T
0 5 10 15 20 25 30 35 40

Figure 10-1. Time delayed dialing with local channels

First we need to call three Local channels, which will all execute different parts of the
dialplan. We do this with the Dial() application, like so:

[LocalSets]
exten => 107,1,Verbose(2,Dialing multiple locations with time delay)

; ¥** This all needs to be on a single line

same => n,Dial(Local/channel 1@TimeDelay8Local/channel 2@TimeDelay
&Local/channel 3@TimeDelay,40)

same => n,Hangup()

Now our Dial() application will dial three Local channels. The destinations will be the
channel_1, channel_2, and channel_3 extensions located within the TimeDelay dialplan
context. Remember that Local channels are a way of executing the dialplan from within
the Dial() application. Our master timeout for all the channels is 40 seconds, which
means any Local channel that does not have a shorter timeout configured will be hung
up if it does not answer the call within that period of time.

As promised, Table 10-1 illustrates the delay configurations.

Table 10-1. Delayed dialing using Local channels

Time period channel_1 channel_2 channel_3
(in seconds)
0 Dial(SIP/ Wait(10) Wait(15)
0000FFFF0001,20)
5
10 Dial(DAHDI/
g0/14165551212)
15 Dial(SIP/MyITSP/
12565551212,15)
20 Hangup()

212 | Chapter10: Deeper into the Dialplan

Time period channel_1 channel_2 channel_3
(in seconds)

25
30 Hangup()
35
40

In this table, we can see that channel 1 started dialing location SIP/0000FFFF0001 im-
mediately and waited for a period of 20 seconds. After 20 seconds, that Local channel
hung up. Our channel 2 waited for 10 seconds prior to dialing the endpoint DAHDI/
g0/14165551212. There was no maximum time associated with thisDial(), so its dialing
period ended when the master time out of 40 seconds (which we set when we initially
called the Local channels) expired. Finally, channel 3 waited 15 seconds prior to dial-
ing, then dialed SIP/MyITSP/12565551212 and waited for a period of 15 seconds prior to
hanging up.

If we put all this together, we end up with the following dialplan:

[LocalSets]
exten => 107,1,Verbose(2,Dialing multiple locations with time delay)

; ¥** This all needs to be on a single line

same => n,Dial(Local/channel_l@TimeDelay&Local/channel_Z@TimeDelay
&Local/channel_3@TimeDe1ay,40)

same => n,Hangup()

[TimeDelay]

exten => channel_1,1,Verbose(2,Dialing the first channel)
same => n,Dial(SIP/0000FFFF0001,20)
same => n,Hangup()

exten => channel_2,1,Verbose(2,Dialing the second channel with a delay)
same => n,Wait(10)
same => n,Dial(DAHDI/g0/14165551212)

exten => channel 3,1,Verbose(2,Dialing the third channel with a delay)
same => n,Wait(15)
same => n,Dial(SIP/MyITSP/12565551212,15)
same => n,Hangup()

You’ll see Local channels used throughout this book, for various purposes. Remember
that the intention is simply to perform some dialplan logic from a location where you
can only dial a location, but require some dialplan logic to be executed prior to dialing
the endpoint you eventually want to get to. A good example of this is with the use of
the Queue() application, which we’ll discuss in “Using Local Channels” on page 293.

Local Channels | 213

Additional scenarios and information about Local channels and the modifier flags
(/n, /3, /m, /b) are available at https://wiki.asterisk.org/wiki/display/AST/Local+Chan
nel. If you will be making any sort of regular use of Local channels, that is a very im-
portant document to read.

Using the Asterisk Database (AstDB)

Having fun yet? It gets even better!

Asterisk provides a powerful mechanism for storing values called the Asterisk database
(AstDB). The AstDB provides a simple way to store data for use within your dialplan.

B
)

For those of you with experience using relational databases such as
PostgreSQL or MySQL, the Asterisk database is not a traditional rela-
wis tional database; it is a Berkeley DB version 1 database. There are several
" ways to store data from Asterisk in a relational database. Check out
Chapter 16 for more about relational databases.

The Asterisk database stores its data in groupings called families, with values identified
by keys. Within a family, a key may be used only once. For example, if we had a family
called test, we could store only one value with a key called count. Each stored value
must be associated with a family.

Storing Data in the AstDB

To store a new value in the Asterisk database, we use the Set () application,! but instead
of using it to set a channel variable, we use it to set an AstDB variable. For example, to
assign the count key in the test family with the value of 1, we would write the following:

exten => 456,1,Set(DB(test/count)=1)

If a key named count already exists in the test family, its value will be overwritten with
the new value. You can also store values from the Asterisk command line, by running
the command database put <family> <key> <value>. For our example, you would type
database put test count 1.

Retrieving Data from the AstDB

To retrieve a value from the Asterisk database and assign it to a variable, we use the
Set() application again. Let’s retrieve the value of count (again, from the test family),
assign it to a variable called COUNT, and then speak the value to the caller:

I Previous versions of Asterisk had applications called DBput () and DBget() that were used to set values in and
retrieve values from the AstDB. If you’re using an old version of Asterisk, you’ll want to use those applications
instead.

214 | Chapter10: Deeper into the Dialplan

https://wiki.asterisk.org/wiki/display/AST/Local+Channel
https://wiki.asterisk.org/wiki/display/AST/Local+Channel

exten => 456,1,Set(DB(test/count)=1)
same => n,Set(COUNT=${DB(test/count)})
same => n,SayNumber (${COUNT})

You may also check the value of a given key from the Asterisk command line by running
the command database get <family> <key>. To view the entire contents of the AstDB,
use the database show command.

Deleting Data from the AstDB

There are two ways to delete data from the Asterisk database. To delete a key, you can
use the DB_DELETE() application. It takes the path to the key as its arguments, like this:

; deletes the key and returns its value in one step
exten => 457,1,Verbose(0, The value was ${DB DELETE(test/count)})

You can also delete an entire key family by using the DBdeltree() application. The
DBdeltree() application takes a single argument: the name of the key family to delete.
To delete the entire test family, do the following:

exten => 457,1,DBdeltree(test)

To delete keys and key families from the AstDB via the command-line interface, use
the database del <key> and database deltree <family> commands, respectively.

Using the AstDB in the Dialplan

There are an infinite number of ways to use the Asterisk database in a dialplan. To
introduce the AstDB, we’ll look at two simple examples. The first is a simple counting
example to show that the Asterisk database is persistent (meaning that it survives sys-
tem reboots). In the second example, we’ll use the BLACKLIST() function to evaluate
whether or not a number is on the blacklist and should be blocked.

To begin the counting example, let’s first retrieve a number (the value of the count key)
from the database and assign it to a variable named COUNT. If the key doesn’t exist,
DB() will return NULL (no value). Therefore, we can use the ISNULL() function to verify
whether or not a value was returned. If not, we will initialize the AstDB with the
Set() application, where we will set the value in the database to 1. The next priority
will send us back to priority 1. This will happen the very first time we dial this extension:
exten => 678,1,Set(COUNT=${DB(test/count)})

same => n,GotoIf($[${ISNULL(${COUNT})}]?:continue)

same => n,Set(DB(test/count)=1)

same => n,Goto(1)

same => n(continue),NoOp()

Next, we’ll say the current value of COUNT, and then increment COUNT:

exten => 678,1,Set(COUNT=${DB(test/count)})
same => n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
same => n,Set(DB(test/count)=1)
same => n,Goto(1)

Using the Asterisk Database (AstDB) | 215

same => n(continue),NoOp()

same => n,SayNumber (${COUNT})

same => n,Set(COUNT=$[${COUNT} + 1])
Now that we’ve incremented COUNT, let’s put the new value back into the database.
Remember that storing a value for an existing key overwrites the previous value:

exten => 678,1,Set(COUNT=${DB(test/count)})

same => n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
same => n,Set(DB(test/count)=1)

same => n,Goto(1)

same => n(continue),NoOp()

same => n,SayNumber (${COUNT})

same => n,Set(COUNT=$[${COUNT} + 1])

same => n,Set(DB(test/count)=${COUNT})

Finally, we’ll loop back to the first priority. This way, the application will continue
counting;:

exten => 678,1,Set(COUNT=${DB(test/count)})

same => n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
same => n,Set(DB(test/count)=1)

same => n,Goto(1)

same => n(continue),NoOp()

same => n,SayNumber (${COUNT})

same => n,Set(COUNT=$[${COUNT} + 1]

same => n,Set(DB(test/count)=${COUNT})

same => n,Goto(1)

Go ahead and try this example. Listen to it count for a while, and then hang up. When
you dial this extension again, it should continue counting from where it left off. The
value stored in the database will be persistent, even across a restart of Asterisk.

In the next example, we’ll create dialplan logic around the BLACKLIST() function, which
checks to see if the current caller ID number exists in the blacklist. (The blacklist is
simply a family called blacklist in the AstDB.) If BLACKLIST() finds the number in the
blacklist, it returns the value 1; otherwise, it will return 0. We can use these values in
combination with a GotoIf() to control whether the call will execute the Dial()
application:

exten => 124,1,GotoIf($[${BLACKLIST()]?blocked,1)
same => n,Dial(${JOHN})

exten => blocked,1,Playback(privacy-you-are-blacklisted)
same => n,Playback(vm-goodbye)
same => n,Hangup()
To add a number to the blacklist, run the database put blacklist <number> 1 command
from the Asterisk command-line interface.

216 | Chapter10: Deeper into the Dialplan

Handy Asterisk Features

Now that we’ve gone over some more of the basics, let’s look at a few popular functions
that have been incorporated into Asterisk.

Zapateller()

Zapateller() is a simple Asterisk application that plays a special information tone at
the beginning of a call, which causes auto-dialers (usually used by telemarketers) to
think that the line has been disconnected. Not only will they hang up, but their systems
will flag your number as out of service, which could help you avoid all kinds of tele-
marketing calls. To use this functionality within your dialplan, simply call the Zapa
teller() application.

We’ll also use the optional nocallerid option so that the tone will be played only when
there is no caller ID information on the incoming call. For example, you might use
Zapateller() in the s extension of your [incoming] context, like this:
[incomimg]
exten => s,1,Zapateller(nocallerid)
same => n,Playback(enter-ext-of-person)

Call Parking

Another handy feature is called call parking. Call parking allows you to place a call on
hold in a “parking lot,” so that it can be taken off hold from another extension. Pa-
rameters for call parking (such as the extensions to use, the number of spaces, and so
on) are all controlled within the features.conf configuration file. The [general] section
of the features.conf file contains four settings related to call parking:

parkext
This is the parking lot extension. Transfer a call to this extension, and the system
will tell you which parking position the call is in. By default, the parking extension
is 700.

parkpos
This option defines the number of parking slots. For example, setting it to
701-720 creates 20 parking positions, numbered 701 through 720.

context
This is the name of the parking context. To be able to park calls, you must include
this context.

parkingtime
If set, this option controls how long (in seconds) a call can stay in the parking lot.
If the call isn’t picked up within the specified time, the extension that parked the

call will be called back.

Handy Asterisk Features | 217

Also note that because the user needs to be able to transfer the calls to the parking lot
extension, you should make sure you’re using the t and/or T options to the Dial()
application.

So, let’s create a simple dialplan to show off call parking:

[incoming]
include => parkedcalls

exten => 103,1,Dial(SIP/Bob,,tT)
exten => 104,1,Dial(SIP/Charlie,,tT)

To illustrate how call parking works, say that Alice calls into the system and dials
extension 103 to reach Bob. After a while, Bob transfers the call to extension 700, which
tells him that the call from Alice has been parked in position 701. Bob then dials Charlie
at extension 104, and tells him that Alice is at extension 701. Charlie then dials exten-
sion 701 and begins to talk to Alice. This is a simple and effective way of allowing callers
to be transferred between users.

Conferencing with MeetMe()

Last but not least, let’s cover setting up an audio conference bridge with the MeetMe()
application.” This application allows multiple callers to converse together, as if they
were all in the same physical location. Some of the main features include:

* The ability to create password-protected conferences
* Conference administration (mute conference, lock conference, kick participants)

* The option of muting all but one participant (useful for company announcements,
broadcasts, etc.)

* Static or dynamic conference creation

Let’s walk through setting up a basic conference room. The configuration options for
the MeetMe conferencing system are found in meetme.conf. Inside the configuration
file, you define conference rooms and optional numeric passwords. (If a password is
defined here, it will be required to enter all conferences using that room.) For our
example, let’s set up a conference room at extension 600. First, we’ll set up the con-
ference room in meetme.conf. We’ll call it 600, and we won’t assign a password at this
time:

[rooms]
conf => 600

Now that the configuration file is complete, we’ll need to restart Asterisk so that it can
reread the meetme.conf file. Next, we’ll add support for the conference room to our
dialplan with the MeetMe() application. MeetMe() takes three arguments: the name of

#1In the world of legacy PBXs, this type of functionality is very expensive. Either you have to pay big bucks for
a dial-in service, or you have to add an expensive conferencing bridge to your proprietary PBX.

218 | Chapter10: Deeper into the Dialplan

the conference room (as defined in meetme.conf), a set of options, and the password
the user must enter to join this conference. Let’s set up a simple conference using room
600, the i option (which announces when people enter and exit the conference), and a
password of 54321:

exten => 600,1,MeetMe(600,1,54321)

That’s all there is to it! When callers enter extension 600, they will be prompted for the
password. If they correctly enter 54321, they will be added to the conference. You can
run core show application MeetMe from the Asterisk CLI for a list of all the options
supported by the MeetMe() application.

Another useful application is MeetMeCount(). As its name suggests, this application
counts the number of users in a particular conference room. It takes up to two
arguments: the conference room in which to count the number of participants, and
optionally a variable name to assign the count to. If the variable name is not passed as
the second argument, the count is read to the caller:

exten => 601,1,Playback(conf-thereare)

same => n,MeetMeCount(600)
same => n,Playback(conf-peopleinconf)

If you pass a variable as the second argument to MeetMeCount(), the count is assigned
to the variable, and playback of the count is skipped. You might use this to limit the
number of participants, like this:

; limit the conference room to 10 participants

exten => 600,1,MeetMeCount(600,CONFCOUNT)

same => n,GotoIf($[${CONFCOUNT} <= 10]?meetme:conf full,1)
same => n(meetme),MeetMe(600,1,54321)

exten => conf_full,1,Playback(conf-full)

Isn’t Asterisk fun?

Conclusion

In this chapter, we’ve covered a few more of the many applications in the Asterisk
dialplan, and hopefully we’ve given you some more tools that you can use to further
explore the creation of your own dialplans. As with other chapters, we invite you to go
back and reread any sections that require clarification.

Conclusion | 219

CHAPTER 11
Parking and Paging

I don’t believe in angels, no. But I do have a wee parking
angel. It’s on my dashboard and you wind it up. The
wings flap and it’s supposed to give you a parking space.
It’s worked so far.

—Billy Connolly

This chapter will focus on two important aspects of a PBX system: parking calls to allow
them to be answered from a location different from where they were originally an-
swered, and paging, which allows the announcement of who the call is for and how it
can be retrieved.

In Asterisk, these two functionalities are exclusive to one another, and can be used
independently of one another. Some businesses that contain large warehouses, or have
employees who move around the office a lot and don’t necessarily sit at a desk all day,
utilize the paging and parking functionality of their systems to direct calls around the
office. In this chapter we’ll show you how to use both parking and paging in the tra-
ditional setting, along with a couple of more modern takes on this commonly used
functionality.

features.conf

There are several features common to most modern PBXs that Asterisk also provides.
Many of these features have optional parameters. The features.conf file is where you
can adjust or define the various feature parameters in Asterisk.

DTMF-Based Features

Many of the parameters in features.conf only apply when invoked on calls that have
been bridged by the dialplan applications Dial() or Queue(), with one or more of the
options K, k, H, h, T, t, W, w, X, or x specified. Features accessed in this way are DTMF-
based (meaning they can’t be accessed via SIP messaging, but only through touch-tone

221

signals in the audio channel triggered by the users dialing the required digits on their

dialpads).’

Transfers on SIP channels (for example from a SIP telephone) can be handled using the
capabilities of the phone itself, and won’t be affected by anything in the features.conf
file.

The [general] section

In the [general] section of features.conf, you can define options that fine-tune the be-
havior of the park and transfer features in Asterisk. These options are listed in
Table 11-1.

Table 11-1. features.conf [general] section

Option Value/Example Notes
parkext 700 Sets the default extension used to park calls.
parkpos 701-720 Sets the range of extensions used as the parking lot. Parked calls may

be retrieved by dialing the numbers in this range.

context parkedcalls Setsthe default dialplan context where the parking extension and the
parking lot extensions are created.

parkinghints no Enables/disables automatic creation of dialplan hints for the parking lot
extensions so that phones can subscribe to the state of extensions in the
parking lot. The default is no.

parkingtime 45 Specifies the number of seconds a call will wait in the parking lot before
timing out.
comebacktoorigin yes Configures the handling of timed-out parked calls. For more information

on the behavior of this option, see the sidebar titled “Handling Timed-
Out Parked Calls with the comebacktoorigin Option” on page 224.

courtesytone beep Specifies the sound file to be played to the parked caller when the parked
call is retrieved from the parking lot.

parkedplay caller Indicates which side of the call to play the courtesytone to when a
parked call is picked up. Valid options include callee, caller,
both, or no. The default is no.

parkedcalltransfers caller Controls which side of a call has the ability to execute a DTMF-based
transferinthe call that results from picking up a parked call. Valid options
include callee, caller, both, or no. The default is no.

parkedcallreparking caller Controls which side of a call has the ability to execute a DTMF-based park
inthe call thatresults from picking upa parked call.? Valid optionsinclude
callee, caller, both, or no. The default is no.

*

Yes, we realize that a SIP INFO message is in fact a SIP message, and is not technically part of the audio
channel, but the point is that you can’t use the “transfer” or “park” button on your SIP phone to access
these features while on a call. You’ll have to send DTMF.

222 | Chapter11: Parking and Paging

Option
parkedcallhangup

parkedcallrecording

parkeddynamic

adsipark

findslot

parkedmusicclass

transferdigittimeout

xfersound

xferfailsound

pickupexten

pickupsound

pickupfailsound

featuredigittimeout

atxfernoanswertimeout

atxferdropcall

atxferloopdelay

atxfercallbackretries

Value/Example

caller

caller

yes

yes

next

default

beep

beeperr

*8
beep

beeperr

1000

15

no

10

2

Notes

Controls which side of a call has the ability to execute a DTMF-based
hangupinthe call that results from picking up a parked call. Valid options
include callee, caller, both, or no. The default is no.

Controls which side of a call has the ability to initiate a DTMF-based one-
touch recording in the call that results from picking up a parked call.
Validoptionsinclude callee, caller, both,orno. Thedefaultis no.

Enables the dynamic creation of parking lotsin the dialplan. The channel
variables PARKINGDYNAMIC, PARKINGDYNCONTEXT, and PAR
KINGDYNPOS need to be set.

Passes ADSlinformation regarding the parked call back to the originating
set.

Configures the parking slot selection behavior. See 777 for more details.

Specifies the class to be used for the music on hold played to a parked
caller. A music class set in the dialplan using the CHANNEL (musi
cclass) dialplan function will override this setting.

Setsthenumberof seconds towait foreach digit from the callerexecuting
atransfer.

Specifies the sound to be played to indicate that an attended transfer is
complete.

Specifies the sound to be played to indicate that an attended transfer
has failed to complete.

Configures the extension used for call pickup.

Specifies the sound to be played to indicate a successful call pickup
attempt. No sound is played by default.

Specifies the sound to be played to indicate a failed call pickup attempt.
No sound is played by default.

Sets the number of milliseconds to waitin between digits pressed during
a bridged call when matching against DTMF activated call features.

Configures the number of seconds to wait for the target of an attended
transfer to answer before considering the attempt timed out.

Configures behavior of attended transfer call handling when the trans-
ferer hangs up before the transfer is complete and the transfer fails. By
default, this option is set to no and a call will be originated to attempt
to connect the transferee back to the caller that initiated the transfer. If
set to yes, the call will be dropped after the transfer fails.

Sets the number of seconds to wait in between callback retries if atx
ferdropcallissettono.

Sets the number of callback attempts to make if atxferdropcall is
set to no. By default, this is set to 2 callback attempts.

2 Read that again. It makes sense

features.conf | 223

Handling Timed-Out Parked Calls with the comebacktoorigin Option

This option configures the behavior of call parking when the parked call times out (see
the parkingtime option). comebacktoorigin can have one of two values:

yes (default)
When the parked call timeout is exceeded, Asterisk will attempt to send the call
back to the peer that parked this call. If the channel is no longer available to
Asterisk, the caller will be disconnected.

no
This option would be used when you want to perform custom dialplan function-
ality on parked calls that have exceeded their timeouts. The caller will be sent into
a specific area of the dialplan where logic can be applied to gracefully handle the
remainder of the call (this may involve simply returning the call to a different ex-
tension, or performing a lookup of some sort).

You also may need to take into account calls where the originating channel cannot
handle a returned parked call. If, for example, the call was parked by a channel that is
also a trunk to another system, there would not be enough information to send the call
back to the correct person on that other system. The actions following a timeout would
be more complex than comebacktoorigin=yes could handle gracefully.

Parked calls that time out with comebacktoorigin=no will always be sent into the par
kedcallstimeout context.

W N

The dialplan (and contexts) were discussed in detail in Chapter 6.

The extension they will be sent to will be built from the name of the channel that parked
the call. For example, if a SIP peer named 0004F2040808 parked this call, the extension
will be SIP_0004F2040808.

If this extension does not exist, the call will be sent to the s extension in the parked
callstimeout context instead. Finally, if the s extension of parkedcallstimeout does not
exist, the call will be sent to the s extension of the default context.

Additionally, for any calls where comebacktoorigin=no, there will be an extension of
SIP_0004F2040808 created in the park-dial context. This extension will be set up to do
aDial() to SIP/0004F2040808.T

T We hope you realize that the actual extension will be related to the channel name that parked the call,
and will not be SIP_0004F2040808 (unless Leif sells you the Polycom phone from his lab).

224 | Chapter11: Parking and Paging

The [featuremap] Section

This section allows you to define specific DTMF sequences, which will trigger various
features on channels that have been bridged via options in the Dial() or Queue() ap-
plication. The options are detailed in Table 11-2.

Table 11-2. features.conf [featuremap] section

Option Value/Example Notes Dial()/Queue()
Flags
blindxfer #1 Invokes a blind (unsupervised) transfer T, t
disconnect *0 Hangs up the call H, h
automon *1 StartsrecordingofthecurrentcallusingtheMonitor () application W, w
(pressing this key sequence a second time stops the recording)
atxfer *2 Performs an automated transfer T, t
parkcall #72 Parks a call K, k
automixmon *3 Starts recording of the current call using the MixMonitor () ap- X, x

plication (pressing this key sequence again stops the recording)

The default blindxfer and disconnect codes are # and *, respectively.
Normally you’ll want to change them from the defaults, as they will
interfere with other things that you might want to do (for example, if
" you use the Tt option in your Dial() command, every time you press
the # key you’ll initiate a transfer).

The [applicationmap] Section

This section of features.conf allows you to map DTMF codes to dialplan applications.
The caller will be placed on hold until the application has completed execution.

The syntax for defining an application map is as follows (it must appear on a single
line; line breaks are not allowed)#:

<FeatureName> => <DTMF_sequence>,<ActivateOn>[/<ActivatedBy>]
,<Application>([<AppArguments>])[,MOH_Class]

What you are doing is the following:

1. Giving your map a name so that it can be enabled in the dialplan through the use
of the DYNAMIC_FEATURES channel variable.

2. Defining the DTMF sequence that activates this feature (we recommend using at
least two digits for this).

1 There is some flexibility in the syntax (you can look at the sample file for details), but our example uses the
style we recommend, since it’s the most consistent with typical dialplan syntax.

features.conf | 225

3. Defining which channel the feature will be activated on, and (optionally) which
participant is allowed to activate the feature (the default is to allow both channels
to use/activate this feature).

4. Giving the name of the application that this map will trigger, and its arguments.

5. Providing an optional music on hold (MOH) class to assign to this feature (which
the opposite channel will hear when the application is executing). If you do not
define any MOH class, the caller will hear only silence.

Here is an example of an application map that will trigger an AGI script:

agi_test => *6,self/callee,AGI(agi-test.agi),default

N

Since applications spawned from the application map are run outside
the PBX core, you cannot execute any applications that trigger the
dialplan (such as Goto(), Macro(), Background(), etc.). If you wish to use
the application map to spawn external processes (including executing
dialplan code), you will need to trigger an external application through
an AGI() call or the System() application. Point being, if you want any-
thing complex to happen through the use of an application map, you
will need to test very carefully, as not all things will work as you
might expect.

oy

To use an application map, you must declare it in the dialplan by setting the
DYNAMIC FEATURES variable somewhere before the Dial() command that connects the
channels. Use the double underscore modifier on the variable name in order to ensure
that the application map is available to both channels throughout the life of the call.
For example:

exten => 101,n,Set(_ DYNAMIC FEATURES=agi test)
exten => 101,n,Dial(SIP/0000FFFF0002)

B
)

If you want to allow more than one application map to be available on
a call, you will need to use the # symbol as a delimiter between multiple
%ls: map names:

Set(__DYNAMIC_FEATURES=agi_testt#my other_map)

The reason why the # character was chosen instead of a simple comma
is that older versions of the Set() application interpreted the comma
differently than more recent versions, and the syntax for application
maps has never been updated.

Don’t forget to reload the features module after making changes to the features.conf file:

*CLI> features reload

You can verify that your changes have taken place through the CLI command features
show. Make sure you test out your application map before you turn it over to your users!

226 | Chapter11: Parking and Paging

Inheriting Channel Variables

Channel variables are always associated with the original channel that set them, and
are no longer available once the channel is transferred.

In order to allow channel variables to follow the channel as it is transferred among the
system, channel variable inheritance must be employed. There are two modifiers that
can allow the channel variable to follow the channel: single underscore and double
underscore.

The single underscore (_) causes the channel variable to be inherited by the channel for
a single transfer, and is no longer available for additional transfers. If you use a double
underscore (_), the channel variable will be inherited throughout the life of that
channel.

Setting channel variables for inheritance simply requires you to prefix the channel name
with a single or double underscore. The channel variables are then referenced exactly
the same as they would be normally (e.g., do not attempt to read the values of channel
variables with the underscores in the variable name).

Here’s an example of setting a channel variable for single transfer inheritance:
exten => example,1,Set(_MyVariable=thisValue)

Here’s an example of setting a channel variable for infinite transfer inheritance:
exten => example,1,Set(__MyVariable=thisValue)

To read the value of the channel variable, do not use underscore(s):

exten => example,1,Verbose(1,Value of MyVariable is: ${MyVariable})

Application Map Grouping

If you have a lot of features that you need to activate for a particular context or exten-
sion, you can group several features together in an application map grouping, so that
one assignment of the DYNAMIC_FEATURES variable will assign all of the designated fea-
tures of that map.

The application map groupings are added at the end of the features.conf file. Each
grouping is given a name, and then the relevant features are listed.

[shifteight]

unpauseMonitor => *1 ; custom key mapping
pauseMonitor => *2 ; custom key mapping
agi_test => ; no custom key mapping

features.conf | 227

If you want to specify a custom key mapping to a feature in an applica-

tion map grouping, simply follow the => with the key mapping you want.

* Qla If you do not specify a key mapping, the default key map for that feature

* will be used (as found in the [featuremap] section). Regardless of
whether you want to assign a custom key mapping or not, the => oper-
ator is required.

In the dialplan, you would assign this application map grouping with the Set()
application:

Set(__DYNAMIC_FEATURES=shifteight) ; use the double underscore if you want to ensure
; both call legs have the variable assigned.

Parking Lots

A parking lot allows a call to be held in the system without being associated with a
particular extension. The call can then be retrieved by anyone who knows the park
code for that call. This feature is often used in conjunction with an overhead paging
system (PA system, or Tannoy, for our UK readers). For this reason, it is often referred
to as park-and-page; however, it should be noted that parking and paging are in fact
separate.

To park a call in Asterisk, you need to transfer the caller to the feature code assigned
to parking, which is assigned in the features.conf file with the parkext directive. By
default, this is 700:

parkext => 700 ; What extension to dial to park (all parking lots)

You have to wait to complete the transfer until you get the number of the parking
retrieval slot from the system, or you will have no way of retrieving the call. By default
the retrieval slots, assigned with the parkpos directive in features.conf, are numbered
from 701-720:

parkpos => 701-720 ; What extensions to park calls on (defafult parking lot)

Once the call is parked, anyone on the system can retrieve it by dialing the number of
the retrieval slot (parkpos) assigned to that call. The call will then be bridged to the
channel that dialed the retrieval code.

There are two common ways to define how retrieval slots are assigned. This is done
with the findslot directive in the features.conf file. The default method (findslot =>
first) always uses the lowest-numbered slot if it is available, and only assigns higher-
numbered codes if required. The second method (findslot => next) will rotate through
the retrieval codes with each successive park, returning to the first retrieval code after
the last one has been used. Which method you choose will depend on how busy your
parking lots are. If you use parking rarely, the default findslot of first will be best
(people will be used to their parked calls always being in the same slot). If you use
parking a lot (for example, in an automobile dealership), on the other hand, it is far

228 | Chapter11: Parking and Paging

better for each successive page to assign the next slot, since you will often have more
than one call parked at a time. Your users will get used to listening carefully to the
actual parking lot number (instead of just always dialing 701), and this will minimize
the chance of people accidentally retrieving the wrong call on a busy system.

If you are using parking, you are probably also going to need a way to announce the
parked calls so that the intended parties know how to retrieve them. While you could
justrun down the hall yelling “Bob, there’s a call for you on 701!,” the more professional
method is to use a paging system (more formally known as a public address system),
which we will discuss in the next section.

Overhead and “Underchin” Paging (a.k.a. Public Address)

In many PBX systems, it is desirable to be able to allow a user to send his voice from a
telephone into a public address system. This normally involves dialing a feature code
or extension that makes a connection to a public address resource of some kind, and
then making an announcement through the handset of the telephone that is broadcast
to all devices associated with that paging resource. Often, this will be an external paging
system consisting of an amplifier connected to overhead speakers; however, paging
through the speakers of office telephones is also popular (mainly for cost reasons). If
you have the budget (or an existing overhead paging system), overhead paging is gen-
erally better, but set paging (a.k.a. “underchin” paging) can work well in many envi-
ronments. What is perhaps most common is to have a mix of set and overhead paging,
where, for example, set-based paging might be in use for offices, but overhead paging
would be used for warehouse, hallway, and public areas (cafeteria, reception, etc.).

In Asterisk, the Page() application is used for paging. This application simply takes a
list of channels as its argument, calls all of the listed channels simultaneously, and, as
they are answered, puts each one into a conference room. With this in mind, it becomes
obvious that one requirement for paging to work is that each destination channel must
be able to automatically answer the incoming connection and place the resultant audio
onto a speaker of some sort (in other words, Page() won’t work if all the phones just
ring).

So, while the Page() application itself is painless and simple to use, getting all the des-
tination channels to handle the incoming pages correctly is a bit trickier. We’ll get to
that shortly.

The Page() application takes three arguments, defining the group of channels the page
is to be connected to, the options, and the timeout:

exten => *724,1,Page(${ChannelsToPage},1,120)

The options (outlined in Table 11-3) give you some flexibility with respect to how
Page() works, but the majority of the configuration is going to have to do with how the
target devices handle the incoming connection. We’ll dive into the various ways you
can configure devices to receive pages in the next section.

Overhead and “Underchin” Paging (a.k.a. Public Address) | 229

Table 11-3. Page() options

Option Description Discussion

d Enables full-duplex audio Sometimesreferredtoas“talkbackpaging,” theuseof thisoptionimplies
that the equipment that receives the page has the ability to transmit
audio backat the sametimeasitisreceiving audio. Generally, you would
not want to use this unless you had a specific need for it.

i Ignores attempts to forward the call You would normally want this option enabled.

q Does not play beep to caller (quietmode) ~ Normally you won't use this, but if you have an external amplifier that
provides its own tone, you may want to set this option.

r Records the page into a file If you intended on using the same page multiple times in the future,
you could record the page and then use it again later by triggering it
using Originate() orusing the A(x) option to Page().

s Dials a channel only if the device stateis This option is likely only useful (and reliable) on SIP-bound channels,
NOT_INUSE and even so may not work if a single line is allowed multiple calls on it.
Therefore, don't rely on this option in all cases.

A(x) Playsannouncement x toall participants You could use a previously recorded file to be played over the paging
system. If you combined this with Originate() andRecord(), you
could implement a delayed paging system.

n Does not play announcement simultane- By default the system will play the paged audio to both the caller and
ously to caller (implies A(x)) the callee. If this option is enabled, the paged audio will not be played
to the caller (the person paging).

Because of how Page() works, it is very resource-intensive. We cannot stress this
enough. Carefully read on, and we’ll cover how to ensure that paging does not cause
performance problems in a production environment (which it is almost certain to do
if not designed correctly).

Places to Send Your Pages

As we stated before, Page() is in and of itself very simple. The trick is how to bring it
all together. Pages can be sent to different kinds of channels, and they all require dif-
ferent configuration.

External paging

If a public address system is installed in the building, it is common to connect the
telephone system to an external amplifier and send pages to it through a call to a chan-
nel. One way of doing this is to plug the sound card of your server into the amplifier
and send calls to the channel named Console/DSP, but this assumes that the sound
drivers on your server are working correctly and the audio levels are normalized cor-
rectly on that channel. Another, potentially simpler, and possibly more robust way to
handle external paging is to use an FXS device of some kind (such as an ATA), which

230 | Chapter11: Parking and Paging

is connected to a paging interface such as a Bogen UTI1,8 which then connects to the
paging amplifier.l

In your dialplan, paging to an external amplifier would look like a simple Dial() to the
device that is connected to the paging equipment. For example, if you had an ATA
configured in sip.conf as [PagingATA], and you plugged the ATA into a Bogen UTII,
you would perform paging by dialing:
exten => *724,1,Verbose(2,Paging to external amplifier) ; note the '*' in the
; extension is part of
; what you actually dial
same => n,Set(PageDevice=SIP/PagingATA)
same => n,Page(${PageDevice},i,120)
Note that for this to work you will have had to register your ATA as a SIP device under
sip.conf, and in this case we named the device [PagingATA]. You can name this device
anything you want (for example, we often use the MAC address as the name of a SIP
device), but for anything that is not a user telephone, it can be helpful to use a name
that makes it stand out from other devices.

If you had an FXS card in your system and you connected the UTI1 to that, you would
Dial() to the channel for that FXS port instead:

same => n,Dial(DAHDI/25)

The UTI1 answers the call and opens a channel to the paging system; you then make
your announcement and hang up.

Set paging

Set-based paging first became popular in key telephone systems, where the speakers of
the office telephones are used as a poor-man’s public address system. Most SIP tele-
phones have the ability to auto-answer a call on handsfree, which accomplishes what
is required on a per-telephone basis. In addition to this, however, it is necessary to pass
the audio to more than one set at the same time. Asterisk uses its built-in conferencing
engine to handle the under-the-hood details. You use the Page() application to make
it happen.

LikeDial(), the Page() application can handle several channels. Since you will generally
want Page() to signal several sets at once (perhaps even all the sets on your system) you
may end up with lengthy device strings that look something like this:

Page(SIP/SET18SIP/SET28SIP/SET38SIP/SETA&SIP/SETS&4SIP/SET64SIP/SETT74.. . .

§ The Bogen UTI1 is useful because it can handle all manner of different kinds of incoming and outgoing
connections, which pretty nearly guarantees that you’ll be able to painlessly connect your telephone system
to any sort of external paging equipment, no matter how old or obscure.

[l In this book we’re assuming that the external paging equipment is already installed and was working with
the old phone system.

Overhead and “Underchin” Paging (a.k.a. Public Address) | 231

Beyond a certain size, your Asterisk system will be unable to page mul-
tiple sets. For example, in an office with 200 telephones, using SIP to
page every set would not be possible; the traffic and CPU load on your

Asterisk server would simply be too much. In cases like this, you should
be looking at either multicast paging or external paging.

Perhaps the trickiest part of SIP-based paging is the fact that you usually have to tell
each set that it must auto-answer, but different manufacturers of SIP telephones use
different SIP messages for this purpose. So, depending on the telephone model you are
using, the commands needed to accomplish SIP-based set paging will be different. Here
are some examples:

e For Aastra:

exten => *724,1,Verbose(2,Paging to Aastra sets)
same => n,SIPAddHeader (Alert-Info: info=alert-autoanswer)
same => n,Set(PageDevice=SIP/00085D000000)
same => n,Page(${PageDevice},i)

* For Polycom:
exten => *724,1,Verbose(2,Paging to Polycom sets)
same => n,SIPAddHeader(Alert-Info: Ring Answer)

same => n,Set(PageDevice=SIP/0004F2000000)
same => n,Page(${PageDevice},i)

e For Snom:

exten => *724,1,Verbose(2,Paging to Snom sets)
same => n,Set(VXML_URL=intercom=true)

; replace 'domain.com' with the domain of your system
same => n,SIPAddHeader(Call-Info: sip:domain.com\;answer-after=0)
same => n,Set(PageDevice=SIP/000413000000)
same => n,Page(${PageDevice},i)

* For Cisco SPA (the former Linksys phones, not the 79XX series):

exten => *724,1,Verbose(2,Paging to Cisco SPA sets -- but not Cisco 79XX sets)
same => n,SIPAddHeader(Call-Info:\;answer-after=0) ; Cisco SPA phones
same => n,Set(PageDevice=SIP/0004F2000000)
same => n,Page(${PageDevice},i)

Assuming you’ve figured that out, what happens if you have a mix of phones in your
environment? How do you control which headers to send to which phones?#

Any way you slice it, it’s not pretty.

#Hint: the local channel will be your friend here.

232 | Chapter11: Parking and Paging

Fortunately, many of these sets support IP multicast, which is a far better way to send
a page to multiple sets (read on for details). Still, if you only have a few phones on your
system and they are all from the same manufacturer, SIP-based paging could be the
simplest, so we don’t want to scare you off it completely.

Multicast paging via the MulticastRTP channel

If you are serious about paging through the sets on your system, and you have more
than a handful of phones, you will need to look at using IP multicast. The concept of
[P multicast has been around for a long time,” but it has not been widely used. Never-
theless, it is ideal for paging within a single location.

Asterisk has a channel (chan_multicast rtp) that is designed to create an RTP multi-
cast. This stream is then subscribed to by the various phones, and the result is that
whenever media appears on the multicast stream, the phones will pass that media to
their speakers.

Since MulticastRTP is a channel driver, it does not have an application, but instead will
work anywhere in the dialplan that you might otherwise use a channel. In our case,
we’ll be using the Page() application to initiate our multicast.

To use the multicast channel, you simply send a call to it the same as you would to any
other channel. The syntax for the channel is as follows:

MulticastRTP/<type>/<ip address:port>[/<linksys address:port>]

The type can be either basic or linksys. The basic syntax of the MulticastRTP channel
looks like this:

exten => *723,1,Page(MulticastRTP/basic/239.0.0.1:1234)

Not all sets support IP multicast, but we have tested it out on Snom,T Linksys/Cisco,
and Aastra, and it works swell.¥

* It even has its own Class D reserved IP address space, from 224.0.0.0 to 239.255.255.255 (but read up on IP
multicast before you just grab one of these and assign it). Parts of this address space are private, parts are
public, and parts are designated for purposes other than what you might want to use them for. For information
about multicast addressing, see hitp://en.wikipedia.org/wiki/IP_multicast#IP_multicast_addressing
_assignments.

t Very loud, and no way to adjust gain.

1 So far as we can tell, Polycom sets do not support multicast. We certainly were not able to find a way to
use it.

Overhead and “Underchin” Paging (a.k.a. Public Address) | 233

http://en.wikipedia.org/wiki/IP_multicast#IP_multicast_addressing_assignments
http://en.wikipedia.org/wiki/IP_multicast#IP_multicast_addressing_assignments

Multicast Paging on Cisco SPA Telephones

The multicast paging feature on Cisco SPA phones is a bit strange, but once configured
it works fine. The trick of it is that the address you put into the phone is not the multicast
address that the page is sent across, but rather a sort of signaling channel.

What we have found is that you can make this address the same as the multicast address,
but simply use a different port number.

The dialplan looks like this:

exten => *724,1,Page(MulticastRTP/linksys/239.0.0.1:1234/239.0.0.1:6061)
In the SPA phone, you need to log into the Administration interface and navigate to
the SIP tab. At the very bottom of the page you will find the section called Linksys Key
System Parameters. You need to set the following parameters:

¢ Linksys Key System: Yes

¢ Multicast Address: 239.0.0.1:6061

Note that the multicast address you assign to the phone is the one that comes second
in the channel definition (in our example, the one using port 6061).

Note that you can write the Page() command in this format in an environment where
there is a mix of SPA phones (FKA Linksys, now Cisco) phones and other types of
phones. The other phones will use the first address and will work the same as if you
had used basic instead of linksys.

VolIP paging adaptors

Recently, there have been some VoIP-based paging speakers introduced to the market.
These devices are addressed in the dialplan in the exact same way as a SIP ATA con-
nected to a UTIL, but they can be installed in the same manner as overhead speakers
would be. Since they auto-answer, there is no need to pass them any extra information,
the way you would need to with a SIP telephone set.

For smaller installations (where no more than perhaps half a dozen speakers are re-
quired), these devices may be cost-effective. However, for anything larger than that,
(orinstallation in a complex environment such as a warehouse or parking lot), you will
get better performance at far less cost with a traditional analog paging system connected
to the phone system by an analog (FXS) interface.

We don’t know if these devices support multicast. Keep this in mind if you are planning
to use a large number of them.

Combination paging

In many organizations, there may be a need for both set-based and external paging. As
an example, a manufacturing facility might want to use set-based paging for the office
area but overhead paging for the plant and warehouse. From Asterisk’s perspective,

234 | Chapter11: Parking and Paging

this is fairly simple to accomplish. When you call the Page() application, you simply
specify the various resources you want to page, separated by the & character, and they
will all be included in the conference that the Page() application creates.

Bringing it all together

At this point you should have a list of the various channel types that you want to page.
Since Page() will nearly always want to signal more than one channel, we recommend
setting a global variable that defines the list of channels to include, and then calling the
Page() application with that string:

[global]

MULTICAST=MulticastRTP/linksys/239.0.0.1:1234

;MULTICAST=MulticastRTP/linksys/239.0.0.1:1234/239.0.0.1:6061 ; if you have SPA
; (Linksys/Cisco)
; phones

BOGEN=SIP/ATAforPaging ; This assumes an ATA in your sip.conf file named
; [ATAforPaging]
;BOGEN=DAHDI /25 ; We could do this too, assuming we have an analog
; FXS card at DAHDI channel 25
PAGELIST=${MULTICAST}&${BOGEN} ; All of these variable names are arbitrary.
; Asterisk doesn't care what you call these strings

[page _context] ; You don't need a page context, so long as the extension you
; assign to paging is dialable by your sets

exten => *724,1,Page(${PAGELIST},1,120)

This example offers several possible configurations, depending on the hardware. While
it is not strictly required to have a PAGELIST variable defined, we have found that this
will tend to simplify the management of multiple paging resources, especially during
the configuration and testing process.

We created a context for paging for the purposes of this example. In order for this to
work, you’ll need to either include this context in the contexts where your sets enter
the dialplan, or code a Goto() in those contexts to take the user to this context and
extension (i.e., Goto(page_context,*724,1)) Alternatively, you could hardcode an ex-
tension for the Page() application in each context that services sets.

Zone Paging

Zone paging is popular in places such as automobile dealerships, where the parts de-
partment, the sales department, and perhaps the used car department all require pag-
ing, but have no need to hear each other’s pages.

In zone paging, the person sending the page needs to select which zone she wishes to
page into. A zone paging controller such as a Bogen PCM2000 is generally used to allow
signaling of the different zones: the Page() application signals the zone controller, the

Overhead and “Underchin” Paging (a.k.a. Public Address) | 235

zone controller answers, and then an additional digit is sent to select which zone the
page is to be sent to. Most zone controllers will allow for a page to all zones, in addition
to combining zones (for example, a page to both the new and used car sales
departments).

You could also have separate extensions in the dialplan going to separate ATAs (or
groups of telephones), but this may prove more complicated and expensive than simply
purchasing a paging controller that is designed to handle this. Zone paging doesn’t
require any significantly different technology, but it does require a little more thought
and planning with respect to both the dialplan and the hardware.

Conclusion

In this chapter we explored the features.conf file, which contains the functionality for
enabling DTMF-based transfers, enabling the recording of calls during a call, and con-
figuring parking lots for one or more companies. We also looked at various ways of
announcing calls and information to people in the office using a multitude of paging
methods, including traditional overhead paging systems and multicast paging to the
phone sets on employees’ desks. This exploration of the various methods of imple-
menting the traditional parking and paging methods in a modern way will hopefully
show you the flexibility Asterisk can offer.

236 | Chapter11: Parking and Paging

CHAPTER 12
Internet Call Routing

There ain’t no such thing as a free lunch (TANSTAAFL).

—Robert Heinlein

One of the attractions of VolIP is the concept of avoiding the use of the PSTN altogether,
and routing all calls directly between endpoints using the Internet at little or no cost.
While the technology to do this has been around for some time, the reality is that most
phone calls still cost money—even those that are routed across VolP services.

From a technology standpoint, there are still many systems out there that cannot handle
routing VoIP calls using anything other than a dialpad on a telephone.

From a cultural standpoint, we are still used to calling each other using a numerical
string (a.k.a., a phone number). With VoIP, the concept of being able to phone some-
body using name@domain (just as we do with email) makes sense, but there are a few
things to consider before we can get there.

So what’s holding everything up?

freenum.org

The first few sections of this chapter may put you off the whole idea entirely, so we
want to start off by saying that freenum.org proposes an interim solution to the whole
mess that is so elegant, we can’t see any reason why everyone in the VolP community
won’t embrace it."

DNS and SIP URIs

The Domain Name System (DNS) is designed to make it easier for humans to locate
resources on the Internet. While ultimately all connections between endpoints are

* Seriously, get your butt over to freenum.org and get your ISN today. It’s simple and free, and soon all the
cool kids will have one.

237

http://www.freenum.org

handled through numerical IP addresses, it can be very helpful to associate a name
(such as www.google.com) with what may in fact be multiple IP addresses.

In the case of VoIP, the use of a domain name can take something like
1000192.168.1.1 (extension@server) and make it available as leif@shifteight.org
(which looks so much sexier on a business card).

The SIP URI

A SIP URI generally looks like sip:endpoint@domain. t1d. Depending on your SIP client,
you may be able to dial a SIP URI as endpoint@domain.tld, or even just as endpoint (if
you have a proxy server and the endpoint you are calling is part of your domain).

For a SIP telephone, which often only has a numerical dialpad, it can be problematic
to dial a SIP URI by name, T so it has become common to use numerical dialing to reach
external resources. We are also used to making “phone calls” using “phone numbers.”
The SIP protocol itself, however, only understands resource@address, so whatever you
dial must ultimately be converted to this format before SIP can do anything with it.
Usually the only reason you can dial something by “phone number” from your SIP
phone is because you are registered to a resource that understands how to convert the
numerical strings you dial into SIP URIs.

In Asterisk, the resource part of the URI (the part before the @ must match an extension
in the dialplan.t The address portion will be the address (or hostname) of the Asterisk
server itself. So, a URI of sip:100@shifteight.org will end up at an extension called
100, somewhere in the dialplan of the server that provides SIP service for
shifteight.org.

What is dialed (100) may not in any way relate to the actual identifier of the endpoint
being connected to. For example, we might have a user named Leif whose phone may
be a device that registers itself by its MAC address, and therefore could be something
like 0000FFFF00010192.168.1.99.8 Much of the purpose of the Asterisk dialplan is to
simplify addressing for users and to handle the complexities of the various protocols
that Asterisk supports.

SRV Records

A Service Record (SRV) is a somewhat new type of DNS record that provides informa-
tion about available services. Defined in RFC 2782, it is often used by newer protocols

1 Do you know where the @ symbol is on your dialpad?
1 Bear in mind that an extension in Asterisk can be any alphanumeric string, such as leif or 100.

§ You could actually dial this URI directly from your phone and bypass the Asterisk server, but you can see
how dialing 100 is going to be a lot more popular than trying to figure out how to type
0004f2a1b2c3@192.168.1.99 into your phone using just the numeric dialpad (it can be done, by the way).

238 | Chapter12: Internet Call Routing

(SIP being one of them). If you want to support SIP lookups on your domain, you will
require a relevant SRV record in order to properly respond.

When a SIP connection does a lookup on leif@shifteight.org, for the purposes of SIP,
the SRV record can respond that the requested service (SIP) is actually found on the
server pbx.shifteight.org (or possibly even on a completely different domain, such as
pbx.tothemoon.net).

Internet hosting providers typically offer a web-based interface for setting up DNS
records, but many of them do not provide a good interface for SRV records (assuming
they offer anything at all). You can generally set up A records and MX records easily
enough, but SRV records can be trickier. If your host does not support SRV records,
you will need to move your DNS hosting to another provider if you want to be able to
support SIP SRV lookups for your domain.

The majority of DNS servers run BIND (Berkeley Internet Name Daemon). The BIND
record for an SRV entry for SIP will look something like this:

_sip._udp.shifteight.org. 86400 IN SRV 0 0 5060 pbx.shifteight.org.
The form of the record is detailed in Table 12-1.

Table 12-1. Components of a SIP SRV record

Name Description Example

Service Symbolic name of service _sip.

Proto Transport protocol _udp.

Name Domain name for this record? shifteight.org.
TTL Time to live (in seconds) 86400

(lass DNS class field (always IN) IN

Priority Target host priority 0

Weight Relative weight of this record 0

Port TCP/UDP port number 5060

Target ~ Hostname of machine providing this service pbx.shifteight.org.

o

Note the trailing dot.

When you configure an SRV record, you can test it with the following Linux command:
dig SRV _sip._udp.shifteight.org

The result will contain several components, but the section you are interested in is:

55 ANSWER SECTION:
_sip._udp.shifteight.org. 14210 IN SRV 0 0 5060 pbx.shifteight.org.

This means that your DNS server is responding correctly to an SRV lookup for
SIP to your domain by responding with the hostname of your PBX (in this case,
pbx.shifteight.org).

DNSand SIPURIs | 239

Any SIP requests to your domain will be referred to your Asterisk server, which will be
responsible for handling incoming SIP connections.|

If your dialplan does not understand the name/resource/endpoint portion of the SIP
URI, calls will fail. This means that if you want to be able to offer resources in your
Asterisk system by name, you will need relevant dialplan entries.

Accepting Calls to Your System

When a SIP URI comes into your Asterisk system, the resource portion of the URI will
arrive in the dialplan as an ${EXTEN}. So, for example, leif@shifteight.org would arrive
in the dialplan as leif within the ${EXTEN} channel variable in whatever context you
use to handle unauthenticated SIP calls (if you are building your dialplan using the
examples in this book, that will be the unauthenticated dialplan context).

Modifying sip.conf

Once you are familiar with the security implications of allowing unauthenticated SIP
connections, you will need to ensure that your sip.conf file allows for them. While
Asterisk allows them by default, in earlier chapters of this book we have instructed you
to disable unauthenticated SIP calls. The logic for this is simple: if you don’t need it,
don’t enable it.

Since we are now interested in allowing calls from the Internet, we will need to allow
unauthenticated SIP calls. We do that by setting a general variable in the /etc/asterisk/
sip.conf file, as follows:

[general]
context=unauthenticated ; default context for incoming calls
allowguest=yes ; enable unauthenticated calls

After making this change, don’t forget to reload SIP, using this command from the
command line:

$ sudo asterisk -rx "sip reload"

or this one from the Asterisk CLI:

*CLI> sip reload

You can verify that the changes have succeeded using the Asterisk CLI command sip
show settings. What you want to see is Allow unknown access: Yes under the Global
Settings section, and Context: unauthenticated under the Default Settings header.

Standard dialplan

In order to handle an incoming name, your dialplan needs to contain an extension that
matches that name.

I 'This could just as easily be a proxy server, or any other server capable of handling incoming SIP connections.

240 | Chapter12: Internet Call Routing

A dialplan entry on the pbx.shifteight.org system might look like this:

[unauthenticated]
exten => leif,1,Goto(PublicExtensions,100,1)

exten => jim,1,Goto(PublicExtensions,101,1)
exten => tilghman,1,Goto(PublicExtensions,102,1)
exten => russell,1,Goto(PublicExtensions,103,1)

This is by far the simplest way to implement name dialing, but it is also complex to
maintain, especially in systems with hundreds of users.

In order to implement name handling in a more powerful way, you could add something
like the following to your extensions.conf file. Note that some lines have been wrapped
in this example due to space restrictions. These lines must appear on a single line in
the dialplan. All lines should start with exten =>, same =>, or a comment indicator (;).

[unauthenticated]
exten => [A-Za-z0-9].,1,Verbose(2,UNAUTHENTICATED REQUEST TO ${EXTEN} FROM
${CALLERID(all)})

same => n,Set(FilteredExtension=${FILTER(A-Za-z0-9,${EXTEN})})

same => n,Set(CheckPublicExtensionResult=${DIALPLAN EXISTS(PublicExtensions,

${FilteredExtension},1)})
same => n,GotoIf($["${CheckPublicExtensionResult}" = "0"]?CheckEmaillLookup)
same => n,Goto(PublicExtensions,${FilteredExtension},1)

; This is our handler for when someone dials a SIP URI with a name

same => n(CheckEmaillookup),GoSub(subEmailToExtensionLookup,start,1
(${TOLOWER(${FilteredExtension})}))

same => n,GotoIf($["${GOSUB_RETVAL}" = "NoResult"]?i,1:PublicExtensions,
${GOSUB_RETVAL},1)

same => n,Goto(i,1)

; This handles invalid numbers/names
exten => i,1,Verbose(2,Incoming call from ${CALLERID(all)} to context ${CONTEXT}
found no result)

same => n,Playback(silence/18invalid)

same => n,Hangup()

; These are explicit extension matches (useful on small systems)
exten => leif,1,Goto(PublicExtensions,100,1)

exten => jim,1,Goto(PublicExtensions,101,1)
exten => tilghman,1,Goto(PublicExtensions,102,1)

exten => russell,1,Goto(PublicExtensions,103,1)

When a call enters the dialplan, it can match in one of two places: it can match our
pattern match at the top, or it can match the explicit named extensions closer to the
bottom of our example (i.e., leif, jim, tilghman, or russell).

DNSandSIPURIs | 241

If the call does not explicitly match our named extensions, the pattern match will be
utilized. Our pattern match of _[A-Za-z0-9]. matches any string starting with an al-
phanumeric character followed by one or more other characters.

The incoming string needs to be made safe, so we utilize the FILTER() function to re-
move nonalphanumeric characters, and assign the result to the FilteredExtension
channel variable.

The DIALPLAN_EXISTS() function will be used to see if the request matches anything in
the PublicExtensions context. This function will return either a 0 (if no match is
found) or a 1 (when a match is found) and assign the result to the
CheckPublicExtensionResult channel variable.

The next line is a GotoIf() that checks the status of the CheckPublicExtensionResult
variable. If the result returned was 0, the dialplan will continue at the CheckEmail
Lookup priority label. If the result was anything other than 0 (in this case, the other result
could have been a 1), the next line of the dialplan will be executed. This line will perform
a Goto() and continue execution in the PublicExtensions context (presumably to dial
our destination endpoint).

Assuming our CheckPublicExtensionResult variable was a 0, our dialplan will continue
at the CheckEmailLookup priority label, where we wuse the subroutine
subEmailToExtensionLookup via a GoSub().# We pass the value contained within the
FilteredExtension channel variable to the subroutine, but you’ll notice that we’ve
wrapped it in the TOLOWER() dialplan function (which expects your email addresses to
be stored in lowercase as opposed to mixed case).

Upon return from the subEmailToExtensionLookup subroutine, we check the
GOSUB_RETVAL channel variable (which was automatically set when the subroutine re-
turned). The result will be one of two things: the extension number that matches the
name that was passed to the subroutine, or the string NoResult. Our dialplan checks
${GOSUB_RETVAL}, and if it contains NoResult, the caller is passed to the i (invalid) ex-
tension, where we inform the caller that the extension dialed is invalid. If all is well,
the call will continue execution in the PublicExtensions context.

File parsing

This little trick will allow you to use the voicemail.conf file to look up valid usernames
against their email address. This could end up being kludgy, and it requires that the
email field in voicemail.conf is filled out and contains a username (before the @ symbol)
that you will support in your dialplan, but it’s simple to code in the dialplan, and if
nothing else it will give you some ideas of how you might handle providing a more
automated way of linking names to extension numbers for the purpose of SIP URI
dialing. Note that this method will not allow you to exclude some people from name
dialing. It’s all or nothing.

#We explain the use of subEmailToExtensionLookup in the following section.

242 | Chapter12: Internet Call Routing

We’ve written this as a subroutine, which is invoked something like this:

; where 'name' is the username as found in the email address
GoSub(subEmailToExtensionLookup,start,1(name))

The subroutine looks like this:

[subEmailToExtensionLookup]
exten => start,1,Verbose(2,Checking for user in voicemail.conf)
same => n,Set(LOCAL(FilteredExtension)=${FILTER(a-z0-9,${ARG1})})
same => n,Set(LOCAL(Result)=${SHELL(grep "${LOCAL(FilteredExtension)}@"
/etc/asterisk/voicemail.conf)})
same => n,GotoIf($[${ISNULL(${LOCAL(Result)})}]?no Result,1)
same => n,Set(LOCAL(ExtensionToDial)=${CUT(${LOCAL(Result)},=,1)})
same => n,Set(LOCAL(ExtensionToDial)=${FILTER(0-9,${LOCAL(ExtensionToDial)})})
same => n,Return(${LOCAL(ExtensionToDial)})

exten => no_Result,1,Verbose(2,No user ${ARG1} found in voicemail.conf)
same => n,Return(NoResult)

Let’s go over this code, because there are some useful actions being performed that you
may be able to apply for other purposes as well.

First, a channel variable named FilteredExtension is created. This variable is local to
the subroutine:
Set(LOCAL(FilteredExtension)=${FILTER(a-20-9,${ARG1})})
The FILTER() function looks at the entire ${ARG1} and removes any nonalphanumeric
characters. This is primarily for security reasons. We are passing this string out to the
shell, so it’s critical to ensure it will only contain characters that we expect.
The next step is where the coolness happens:
Set(LOCAL(Result)=${SHELL(grep "${LOCAL(FilteredExtension)}@" /etc/asterisk/voicemail.conf)})
The shell is invoked in order to run the grep shell application, which will search through

the voicemail.conf file, return any lines that contain name@, and assign the result to the
variable ${Result}:

GotoIf($[${ISNULL(${LOCAL(Result)})}]?no result,1)
If no lines contain the string we’re looking for, we’ll return from the subroutine the
value NoResult (which will be found in the ${GOSUB_RETVAL} channel variable). The
dialplan section that called the subroutine will need to handle this condition.
We’ve created an extension named no_result for this purpose:

exten => no_result,1,Verbose(2,No user ${ARG1} found in voicemail.conf)
same => n,Return(NoResult)

DNSandSIPURIs | 243

If ${Result} is not null, the next steps will clean up ${Result} in order to extract the
extension number” of the user with the name passed in ${ARG1}:

Set (LOCAL (ExtensionToDial)=${CUT(${LOCAL(Result)},=,1)})

The CUT() function will use the = symbol as the field delimiter and will assign the value
from the first field found in ${Result} to the new variable ExtensionToDial. From there,
we simply need to trim any trailing spaces by filtering all nonnumeric characters:

Set (LOCAL (ExtensionToDial)=${FILTER(0-9,${LOCAL(ExtensionToDial)})})

We can now return the extension number of the name we received:

Return(${LOCAL(ExtensionToDial)})

This example was something we whipped up for the purposes of illustrating some
methods you can employ in order to easily match names to extension numbers for the
purposes of SIP URI dialing. This is by no means the best way of doing this, but it is
fairly simple to implement, and in many cases may be all that you need.

Database lookup

Using a database is by far the best way to handle user information on larger, more
complex systems. We will discuss integrating Asterisk with databases in more detail in
Chapter 16, but it is useful to introduce the concept here.

A database is ideal for handling name lookup, as it makes maintenance of user data
(and integration with external systems such as web interfaces) far simpler. However, it
does require a bit more effort to design and implement.

The example we will use in this chapter will work, but for a production environment
it is probably too simplistic. Our goal here is simply to give you enough information to
understand the concept; a tighter integration is part of what is covered in Chapter 16.

First, we’ll need a table to handle our name-to-extension mapping. This could be a
separate table from the main user table, or it could be handled in the main user table,
provided that that table contains a field that will contain the exact strings that users
will publish as their SIP URIs (as an example, some companies have rules regarding
how email addresses look, so Leif might have a URI such as 1madsen@shifteight.org,
or leif.madsen@shifteight.org).

If you are serious about implementing this example in a production
system, make sure you are familiar with the material in Chapter 16, as
some key concepts are covered there that we omit here.

Our sample NameMapping table looks like Table 12-2.

* In actual fact, what we are extracting is the voicemail box number; however, this number is generally going
to be the same as the user’s dialable internal extension number. If it is not the same, this particular technique
will not accomplish name-to-extension lookups, and another way will have to be found.

244 | Chapter12: Internet Call Routing

Table 12-2. NameMapping table

Name Extension Context

leif 100 publicExtensions
leif.madsen 100 publicExtensions
Imadsen 100 publicExtensions
jim 101 publicExtensions
reception 0 Services?
voicemail *98 Services

@ Make sure this context exists on your system.

We believe that having a separate table that only handles name-to-extension/context
mapping is the most useful solution, since this table can be used to handle more than
just users with telephone sets. You are encouraged to come up with other ways to
handle this that may be more suitable to your environment.

In the dialplan, we would refer to this table using Asterisk’s func_odbc function:

[subLookupNameInNameMappingTable]
exten => start,1,Verbose(2,Looking up ${ARG1})

; where 'name' is the username as found in the email address
same => n,Set(ARRAY(CalleeExtension,CalleeContext)=${GET_NAME_LOOKUP(${ARG1})})
same => n,GotoIf($[${ISNULL(${CalleeExtension})}]?no result,1)
same => n,GotoIf($[${ISNULL(${CalleeContext})}]?no_result,1)
same => n,Return() ; You'll need to handle the new CalleeExtension and
; CalleeContext variables in the code that called this
; subroutine

exten => no_result,1,Verbose(2,Name was not found in the database.)
same => n,Return(NoResult)

The /etc/asterisk/func_odbc.conf file will require the following entry:

[NAME_LOOKUP] (DB)
prefix=GET
SELECT Extension,Context FROM NameMapping WHERE Name='${ARG1}'

Keep in mind that there’s nothing to say you can’t reference more than
one datastore to look up names. For example, you might have a table
%" such as the one we’ve described here, but also have a secondary lookup
that goes to, say, an LDAP database to try to resolve names there as well.
This can get complicated to configure and maintain, butif designed right
it can also mean that your Asterisk system can be tightly integrated with
other systems in your enterprise.

DNSandSIPURIs | 245

Details on how to handle all of this in your dialplan are beyond the scope of this book.
Suffice it to say that in your dialplan you will still need to handle the values that your
subroutine creates or assigns.

Dialing SIP URIs from Asterisk

Asterisk can dial a SIP URI as easily as any other sort of destination, but it s the endpoint
(namely, your telephone) that is ultimately going to shoulder the burden of composing
the address, and there lies the difficulty.

Most SIP telephones will allow you to compose a STP URI using the dialpad. This sounds
like a great idea at first, but since there are no typewriter keys on a phone set, in order
to dial something like jim.vanmeggelen@shifteight.org what you would need to ac-
tually input into the phone would be something along the lines of:

5-444-6-*-888-2-66(pause)-6-33-4(pause)-4-33-555-33-66-#-7777-44(pause) -444-333-8-33-
444-(pause)-4(pause)-44-8-*-666-777-4

To support this in your dialplan, you would need something similar to thist:

exten => [0-9a-zA-Z].,1,Verbose()
same => n,Set(FilteredExtension=${FILTER(0-9a-zA-Z@- .,${EXTEN})})
same => n,Dial(SIP/${FilteredExtension})

It’s simple, it’s fun, and it works! ... ?

The reality is that until all phones support complex and flexible address books, as well
as a QWERTY-style keyboard (perhaps via touchscreen), SIP URI dialing is not going
to take off.

If you have a SIP URI that you want to dial on a regular basis (for example, during the
writing of this book there were many calls made between Jim and Leif), you could add
something like this to your dialplan:

exten => 5343,1,Dial(SIP/leif.madsen@shifteight.org)

With this in your dialplan, you could dial 5343 (LEIF) on your phone and the Asterisk
dialplan would translate it into the appropriate SIP URI. It’s not practical for a large
number of URIs, but for a few here and there it can be a helpful shortcut.

Nevertheless, keep reading, because there are some very useful components of DNS
that simplify the process of dialing directly between systems without the use of the
PSTN.

T Technically, the characters ! # $ % & ' *+ /=2~ " { | } ~arealso valid as part of the local-part of an
email address; however, they are uncommon, and we have elected not to allow them in our dialplan examples.

246 | Chapter12: Internet Call Routing

ENUM and E.164

Although the SIP protocol really doesn’t think in terms of phone numbers, the reality
is that phone numbers are not going away any time soon, and if you want to properly
integrate a VoIP system with as many telephone networks as possible, you’re going to
need to handle the PSTN in some way.

ENUM maps telephone numbers onto the Domain Name System (DNS). In theory,
ENUM is a great idea. Why not cut out the PSTN altogether, and simply route phone
calls directly between endpoints using the same numbering plan? We’re not sure this
idea is ever going to become what the emerging telecom community would like it to
be, though. The reason? Nobody really can say who owns phone numbers.

E.164 and the ITU

The International Telecommunication Union (ITU) is a United Nations agency that is
actually older than the UN itself. It was founded in 1865 as the International Telegraph
Union. The ITU-T sector, known for many decades as CCITT (Comité consultatif
international téléphonique et télégraphique), is the standards body responsible for all
of the protocols used by the PSTN, as well as many that are used in VoIP. Prior to the
advent of VoIP, the workings of the ITU-T sector were of little interest to the average
person, and membership was generally limited to industries and institutions that had
a vested interest in telecommunications standards.

ITU standards tend to follow a letter-dot-number format. ITU-T standards you may
have heard of include H.323, H.264, G.711, G.729, and so forth.

E.164 is the ITU-T standard that defines the international numbering plan for the
PSTN. If you’ve ever used a telephone, you’ve used E.164 addressing.

Each country in the world has been assigned a country code,* and control of addressing
in those countries is handled by the local authorities.

E.164 numbers are limited to 15 digits in length (excluding the prefix).

In Asterisk, there is nothing special that needs to be done in order to handle E.164
addressing, other than to make sure your dialplan is suitable to the needs of any PSTN-
compatible channels you may have.

For example, if you’re operating in a NANP country, you will probably need to have
the following pattern matches:

_ NXXNXXXXXX
_ANXXNXXXXXX
_011X.

_N11

1 With the exception of 24 countries and territories in country code 1, which are all part of the North American
Numbering Plan Authority (NANPA).

ENUMandE.164 | 247

In the UK, you might need something more like this:

_0[123789]XXXXXXXXX
_0[123789]XXXXXXXX

And in Australia, your dialplan might have these pattern matches:

_NXXXXXXX
_OXXXXXXXXX

Please don’t just copy and paste these pattern matches into your
% dialplan. The peculiarities of regional dialplans are tricky, and change

constantly. One important item that needs to be carefully considered is
the region-specific number for emergency calling, as discussed in
“Emergency Dialing” on page 154. You don’t want to get this stuff
wrong.

The North American Numbering Plan Authority

In much of North America, the North American Numbering Plan (NANP) is in use. All
countries in the NANP are assigned to country code 1. Canada and the US are the most
well-known of these countries, but the NANP actually includes around 24 different
countries and territories (mostly in the Caribbean).

ENUM

In order to allow the mapping of E.164 numbers onto the DNS namespace, a way of
representing phone numbers as DNS names had to be devised.

This conceptis defined in RFC 3761, helpfully named “The E.164 to Uniform Resource
Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application
(ENUM).” ENUM reportedly stands for Electronic NUmber Mapping.

According to the RFC, converting a phone number into an ENUM-compatible address
requires the following algorithm:

1. Remove all characters with the exception of the digits.
For example, the First Well Known Rule produced the Key
"+442079460148". This step would simply remove the
leading "+", producing "442079460148".

2. Put dots (".") between each digit. Example:
4.4.2.0.7.9.4.6.0.1.4.8

3. Reverse the order of the digits. Example:
8.4.1.0.6.4.9.7.0.2.4.4

4. Append the string ".e164.arpa" to the end. Example:
8.4.1.0.6.4.9.7.0.2.4.4.e164.arpa

Clear as mud?

248 | Chapter12: Internet Call Routing

ENUM has not taken off. The reasons appear to be mostly political in nature. The
problem stems from the fact that there is no one organization that controls numbering
on the PSTN the way that IANA does for the Internet. Since no one entity has a clear
mandate for managing E.164 numbers globally, the challenge of maintaining an accu-
rate and authoritative database for ENUM has proved elusive.

Some countries in Europe have done a good job of delivering reliable ENUM databases,
but in country code 1 (NANP), which contains multiple countries and therefore mul-
tiple regulatory bodies, the situation has become an illogical mess. This is hardly sur-
prising, since the carriers that control E.164 addressing can’t reasonably be expected
to get enthusiastic about allowing you to bypass their networks. The organizations
responsible for implementing ENUM in North America have tended to work toward
creating a PSTN on the Internet, which could save them money, but not you or I.

This is not at all what is wanted. Why would I want to route VoIP calls from my system
to yours across a network that wants to charge me for the privilege? SIP is designed to
route calls between endpoints, and has no real use for the concept of a carrier.

The advantage of all this is supposed to be that when an ENUM lookup is performed,
a valid SIP URT is returned.

Asterisk and ENUM

Asterisk can perform lookups against ENUM databases using either the ENUMLOOKUP()
function or a combination of the ENUMQUERY() and ENUMRESULT() dialplan functions.
ENUMLOOKUP() only returns a single value back from the lookup, and is useful when you
know there is likely to only be one return value (such as the SIP URI you want the
system to dial), or if you simply want to get the number of records available.

Status of ENUM Around the World

In the NANP (and many other) countries, the official el164.arpa zone has not been
formally implemented, and therefore there is no official place to go to perform ENUM
lookups for NANP numbers.

A list of the statuses of various countries’ implementations of ENUM can be found at
http://enumdata.org/. For those countries fortunate enough to have ENUM in produc-
tion, you can perform ENUM lookups directly to their e164.arpa zones of those coun-
tries fortunate enough to have ENUM in production.

For countries without el64.arpa zones, there are several alternative places to perform
lookups, the most popular currently being http:/www.el164.0rg. Note that these or-
ganizations have no formal mandate to maintain the zones they represent. They are
community-based, best-effort projects, and the data contained in them will frequently
be out-of-date.

ENUMandE.164 | 249

http://enumdata.org/
http://www.e164.org

An ENUM lookup in the dialplan might look like this:

exten => X.,1,Set(CurrentExten=${FILTER(0-9,${EXTEN})})
same => n,Set(LookupResult=${ENUMLOOKUP(${CurrentExten},sip,,,el64.arpa)})
same => n,GotoIf($[${EXISTS(${LookupResult})}]?HavelLocation,1)
same => n,Set(LookupResult=${ENUMLOOKUP(${CurrentExten},sip,,,e164.0rg)})
same => n,GotoIf($[${ISNULL(${LookupResult})}]?NormalCall,1:Havelocation,1)

exten => Havelocation,1,Verbose(2,Handle dialing via SIP URI returned)
exten => ...

exten => NormalCall,1,Verbose(2,Handle dialing via standard PSTN route)
exten => ...

The dialplan code we just looked at will take the number dialed and pass it to the
ENUMLOOKUP() function. It requests the method type to be sip (we want the SIP URI
returned) and the lookup to be performed first against the listings in DNS found in the
el64.arpa zone, and next against the records found at http://lwww.el64.org.

Outside the countries that have implemented it, there is little uptake of ENUM. As
such, many ENUM queries will not return any results. This is not expected to change
in the near future, and ENUM will remain a curiosity until more widely implemented.

ISN, ITAD, and freenum.org

Finally we get to the cool part of this chapter.

The biggest shortcoming of ENUM is that it uses a numbering system that is not under
the control of any Internet numbering authorities.§ The freenum.org project solves this
problem by utilizing a numbering scheme that is managed by IANA. This means that
aformal, globally valid, nongeographic numbering system for VoIP can be immediately
and easily implemented without getting mired in the bureaucracy and politics that
burden the E.164 numbering system.

John Todd, who manages the project, notes that “Freenum.org is a DNS service that
uses ENUM-like mapping methods to allow many services to be mapped to a keypad-
friendly string. The most obvious and widely used method for this is connecting VoIP users
together for free by creating an easily-remembered dial string that maps to SIP URIs in
the background. However, anything that can appear in a NAPTR record (email, instant
messenger, web addresses) can be mapped to an ISN-style freenum.org address. The goal
of the project is to provide free numeric pointers to the billions of phones that support only
0-9, *and # characters and allow those devices to communicate via VoIP or other next-
generation protocols. The project is spread out across more than thirty DNS servers
worldwide.”

§ More to the point, perhaps, is that E.164 numbers are controlled by far too many organizations, each one
subjected to different regulations, and having goals that are not always compatible with the concept of global,
free VoIP calling.

250 | Chapter12: Internet Call Routing

http://www.e164.org

Got ISN?

The heart of the freenum.org concept is the ITAD Subscriber Number (ISN). The ISN
is a numeric string that is composed of an extension number on your system, an asterisk
character separator (*¥),l and a number that is unique to your organization called an IP
Telephony Administrative Domain (ITAD) number. The advantage of the ISN is that
it can be dialed from any telephone. An ISN would look something like this:

0%1273

which would represent extension zero at ITAD 1273% and would resolve to sip:0@
shifteight.org.

You control your extension numbers (everything to the left of the *). Your ITAD is
assigned by IANA (the same organization that controls IP and MAC addresses).

Once your ITAD is assigned, you will be able to publish ISNs on your website, or on
business cards, or wherever you would normally publish phone numbers. Any system
capable of dialing ISNs will allow its users to call you by dialing your ISN. Calls will be
routed directly between the two systems using the SIP URI that freenum.org returns.

ITAD Subscriber Numbers (ISNs)

The ISN does not replace a SIP URI, but rather complements it by allowing dialing of
VoIP numbers using only characters found on a standard telephone dialpad. In order
to resolve an ISN into a valid URI, the DNS system will query the ISN against the
freenum.org domain. Any DNS lookup against your ISN will return a URI that defines
how your system expects to receive calls to that ISN."

Management of Internet Numbering

The Internet Assigned Numbers Authority (IANA) is the body responsible for managing
any numbering system that exists as a result of an RFC that requires a numerical da-
tabase of some kind. The most well-known responsibility of IANA is the delegation of
IP addresses to the five Regional Internet Registries that control all of the public IP
addresses on the planet.T These organizations are responsible for the assignment of
IP addresses within their regions.

[l 'This character has nothing to do with the software that is the subject of this book; it simply refers to the *
that is on the dialpad of every telephone. We wonder what might have been if, instead of Asterisk, Mark
Spencer had decided to call his creation Octothorpe.

#ITAD 1273 is assigned to shifteight.org.

* Although freenum.org can handle ITADs that resolve to non-SIP URIs, the handling of multiple protocols is
beyond the scope of this book. For now, we recommend you restrict your ISN to handling SIP URIs.

T AfriNIC, APNIC, ARIN, LACNIC, and RIPE NCC.

ISN, ITAD, and freenum.org | 251

There are many other numbering schemes that have been created as a result of an RFC.
Other IANA-managed numbers include MAC addresses—specifically, the Organiza-
tionally Unique Identifier (OUI) portion of the MAC addressing space.

Several years ago, a protocol named TRIP (Telephony Routing over IP) was created.
While this protocol never took off, and is unlikely to see any future growth, it did offer
us one incredibly useful thing: the ITAD. Since ITADs are part of an RFC, the IANA is
mandated to maintain a database of ITADs. This is what makes freenum.org possible.

IP Telephony Administrative Domains (ITADs)

Freenum.org takes advantage of IANA’s responsibility to maintain a database of ITAD
numbers and allows us to build simple, standards-based, globally relevant, and com-
munity-driven numbering plans for VoIP.# You can find the list of currently assigned
ITAD numbers at http://www.iana.org/assignments/trip-parameters/trip-parameters
xml#trip-parameters-5.

You will want to obtain your own ITAD number by submitting the form located at
http://www.iana.org/cgi-bin/assignments.pl.

This form should be filled out as shown in Figure 12-1.

General Request for Assignments

The IANA hus many registries located at the following:

<hupwww jung orgmumbers itmb=. To help us process your request us quickly as
possible, please complete the follawing template. Tf we have further questions regarding
your request, we will contact you.

. Contact Name:

Name of the person who is
responsible for this application. o
Contact Email:

Email address of said person. o

What type of egistration are you r

“ITAD {Internet Telephony
Administrative Domain)"

Which registry are you requesting this assignment/registration be made in?

“General IANA directory of ITAD number
listings, as found at
http://www.iana.org/assignments/trip-parameters”

If possible, please give a brief description of why you need this
assignment/registration:

“Participation in ISN trial
(http:/fwww.free-num.org/)"

i . o Additional Infermation. Please include a reference to the specification or RFC (if
“TTADs (IPTeIephony_Mmlm;tlatwe I)amalns) are available) that defines this number or name space:

ned in ‘Telephony Routing over IP

(TRIP) ' [RFC3219]”

Also indlude your postal mailing address,

as this is a requirement for [TAD registrations.

Figure 12-1. Request for Assignments form

1 Note that freenum.org has consulted with the folks at IANA in regard to the use of ITADs with protocols
other than TRIP.

252 | Chapter12: Internet Call Routing

http://www.iana.org/assignments/trip-parameters/trip-parameters.xml#trip-parameters-5
http://www.iana.org/assignments/trip-parameters/trip-parameters.xml#trip-parameters-5
http://www.iana.org/cgi-bin/assignments.pl

Your application will be reviewed by a Real Human Being™, and within a few days you
should be assigned an ITAD by IANA. A few days later, you will also receive information
for your freenum.org account (there is currently a simple review process to ensure that
bots and spammers don’t abuse the system). You will then need to log onto the free-
num.org site and define the parameters for your ITAD.

Create a DNS Entry for Your ITAD

In the top-right corner of the freenum.org site, you will see a Sign in here link. Your
username is the email address you registered with IANA, and your password will have
been emailed to you by the freenum.org system.8

You will be presented with a list of your assigned ITADs. In order for your new ITAD
to work, you will need to ensure the DNS records are up-to-date.

W N
o There are two methods of handling DNS for your ITAD. The first (and
"‘ Q) simplest) is to have a NAPTR record inserted into the freenum.org zone.
"% 98¢ The other way is to create a zone for your ITAD, and have free-
" num.org delegate that zone to your name servers. We will only discuss
the first method here, but if you are familiar with NAPTR/ENUM ad-
ministration for a DNS server, you can use the second method.

The freenum.org folks have created the Freenum Automated Self-Service Tool (FASST)
to simplify DNS record entry for you. The essential fields will already be filled out. The
only thing you need to change is under the DNS Setting section of the form: specify the
hostname of your PBX and save the changes. The FASST tool uses a regular expression
to convert an ISN lookup to a SIP URL

In order to specify your hostname, you will need to modify the sample regular expres-
sion provided by FASST, changing the sample hostname sip.yourdomain.com to the
hostname of your PBX. So, for example, in our case we would want to change:

I\ ([M*¥]*) Isip:\\1@sip.yourdomain.com!
to:
PAAN+*([M*]*) Isip:\\1@pbx.shifteight.org!
The other fields in the DNS entry should not be changed unless you know what you

are doing. The rest of the fields in the form are optional, and can be filled out as you
see fit.

§ This may take a few days, so if you’ve received your ITAD from IANA but not yet a password from
freenum.org, give it some time.

ISN, ITAD, and freenum.org | 253

John Todd notes: “For those sites which have extremely complex configurations or geo-
graphically diverse offices with different SIP servers handling different prefixes (for in-
stance: 12xxx goes to the Asterisk server in France, 13xxx to the Asterisk server in Ger-
many, and so on) then there are more sophisticated methods where you run your own
delegated zone out of the freenum.org domain, but those are outside the scope of this book
but can be learned about on the freenum.org site.”

Testing Your ITAD

As is often the case with DNS changes, it can take a few days for your changes to
propagate through the system. To check, you can Google for “online dig tool” to find
a web-based lookup tool, or use the dig tool under Linux:

$ dig NAPTR 4.3.2.1.1273.freenum.org

Once your record is updated in the system, the result will include the following:

;5 ANSWER SECTION:

4.3.2.1.1273.freenum.org. 86400 IN NAPTR 100 10 "u" "E2U+sip"

"IN ([MVE]*) Isip:\\1@shifteight.org!" .
If the answer section does not include the regular expression containing your domain
name, the records have not updated and you should wait a few more hours (or even
leave it for a day).

Using ISNs in Your Asterisk System

So now that you’ve got your own ITAD (you did sign up, right?), you’ll want to make
it available to others, and also configure your dialplan to allow you to dial other ITADs.

Under the [globals] section of your dialplan (/etc/asterisk/extensions.conf), add a global
variable that contains your ITAD:

[globals]
ITAD = 1273 ; replace '1273"' with your own ITAD number

To allow calling to ITADs from your system, you will need something like the following
dialplan codell:

[OutgoingISN]

exten => _X*X!,1,GoSub(subFreenum,start,1(${EXTEN}))

exten => _XX*X!,1,GoSub(subFreenum,start,1(${EXTEN}))

exten => XXX*X!,1,GoSub(subFreenum,start,1(${EXTEN}))

exten => XXXX*X!,1,GoSub(subFreenum,start,1(${EXTEN}))

exten => XXXXX*X!,1,GoSub(subFreenum,start,1(${EXTEN}))

; you may need to add more lines here to handle XXXXXX*X, XXXXXXX*X, and so forth

I If people publish the users’ full DIDs instead of their internal extension numbers, the pattern matches will
need to support up to 15 digits.

254 | Chapter12: Internet Call Routing

[subFreenum]

exten => start,1,Verbose(2,Performing ISN lookup)
same => n,Set(ISN=${FILTER(0-9*,${ARG1})})
same => n,Set(Result=${ENUMLOOKUP(${ISN},sip,s,,freenum.org)})
same => n,GotoIf($[${EXISTS(${Result})}]?call,1:no_result,1)

exten => call,1,Verbose(2,Placing call to ISN --${ISN}-- via ${Result})
same => n,Dial(SIP/${Result})
same => n,Return()

exten => no_result,1,Verbose(2,Lookup for ISN: --${ISN}-- returned no result)
same => n,Playback(silence/18invalid)
same => n,Return()

We have added two new contexts to our dialplan: OutgoingISN and subFreenum. The
OutgoingISN context controls who can dial ISN numbers from within your dialplan. If
you have been following our examples throughout this book, you should have a context
called LocalSets, which is the context where all your telephones enter the dialplan.
Including OutgoingISN within LocalSets enables dialing of ISN numbers:

[LocalSets]

include => OutgoingISN ; include the context that enables ISN dialing
include => CallPlace ; use subroutine to determine what you can dial

LR
)

We have placed the OutgoingISN include above the CallPlace include

because Asterisk will perform extension matching in the order of the

s includes, and since CallPlace has a more general pattern match than

" our OutgoingISN pattern matches, we need to make sure OutgoingISN
appears first.

The magic for dialing ISN numbers is handled in the subFreenum context. Our Outgoin
gISN context will pass the requested extension (e.g., 1234*256) to the subFreenum sub-
routine. After the NoOp() on the first line, the subroutine will filter the request for num-
bers and the asterisk (*) character to make the extension safe. The result will then be
assigned to the ISN channel variable:

exten => start,n,Set(ISN=${FILTER(0-9*,${ARG1})})
The subroutine will then perform a lookup for the ISN via the DNS system using the
ENUMLOOKUP() dialplan function. Options passed to the ENUMLOOKUP() function include:
e The ISN number to look up
* The method type to look up and return (SIP)

* The s option, which tells Asterisk to perform an ISN-style lookup instead of a
standard ENUM lookup

* The zone suffix for performing the lookups (we’ll use freenum.org, but the default
is e164.arpa)

ISN, ITAD, and freenum.org | 255

Our code for performing the lookup then looks like this:
exten => start,n,Set(Result=${ENUMLOOKUP(${ISN},sip,s,,freenum.org)})

Following the lookup and storing the result in the ${Result} channel variable, our
subroutine will verify whether we received a result or not:

exten => start,n,GotoIf($[${EXISTS(${Result})}]?call,1:no result,1)

If no result is received, the call will be handled in the no_result extension. If a result is
received back from our lookup, then execution will continue at the call extension
where the call will be placed using the result stored in the ${Result} channel variable.

Receiving calls to your ITAD

Receiving calls to your ITAD is much simpler. If your system supports incoming SIP
URIs, ISNs will already work for you.# We showed the configuration required to accept
calls to your system in “Accepting Calls to Your System” on page 240.

Security and Identity

Itis a sad fact of the Internet that there are a few selfish, greedy criminal types out there
who think nothing of attempting to take advantage of people for their own gain. In
telecom, this behavior represents several risks to you.

In this section, we will focus on security issues relating to the portions of your system
that you intend to make publicly available through the Internet. While it would be
simple to just refuse to allow any sort of external connections, the reality is that if you
want people to be able to call you for free from the Internet (for example, if you intend
to publish your company’s SIP URIs on your web page), you are going to have to define
a secure place within your system where those calls will arrive. Securing your incoming
public VoIP connections is conceptually similar to implementing a DMZ in traditional
networking.’

In Asterisk, certain contexts in your dialplan cannot be trusted. This means that you
will need to carefully consider what resources are available to channels that enter the
system through these contexts, and ensure that only certain services and features are
available.

#1f you’ve set up your ITAD and ISN correctly, the conversion from ISN dial string to SIP URI will take place
before the call arrives on your doorstep.

* ADMZ is any portion of your network that you expose to the Internet (such as your website), and therefore
cannot completely trust. It is not uncommon for organizations to place the PBX within a DMZ.

256 | Chapter12: Internet Call Routing

Toll Fraud

Toll fraud is by far the biggest risk to your phone system in terms of the potential for
ruinous cost. It is not unheard of for fraudsters to rack up tens of thousands of dollars
in stolen phone calls over the course of a few days.

Toll fraud is not a new thing, having existed prior to VoIP; however, the enabling nature
of VoIP means that it is easier for fraudsters to take advantage of unsecured systems.
Most carriers will not take responsibility for these costs, and thus if your system is
compromised you could be stuck with a very large phone bill. While carriers are getting
better and better at alerting their customers to suspicious activity, that does not absolve
you of responsibility for ensuring your system is hardened against this very real and
very dangerous threat.

Within your Asterisk system, it is vitally important that you know what resources on
your system are exposed to the outside world and ensure that those resources are secure.

The most common form of toll fraud these days is accomplished by brute-force attack.
In this scenario, the thieves will have a script that will contact your system and attempt
to register as a valid user. If they are able to register as a telephone on your system, the
flood of calls will commence, and you will be stuck with the bill. If you are using simple
extension numbers and easy-to-guess passwords, and your system accepts registrations
from outside your firewall, it is certain that you will eventually be the victim of toll fraud.

Brute-force attacks can also cause performance problems with your system, as one of
these scripts can flood your router and PBX with massive numbers of registration at-
tempts.

The following tactics have proven successful in minimizing the risk of toll fraud:

1. Do not use easy-to-guess passwords. Passwords should be at least eight characters
long and contain a mix of digits, letters, and characters. 8a$j03H% is a good pass-
word.T 1234 is not.

2. Do not use extension numbers for your SIP registrations in sip.conf. Instead of
[1000], use something like a MAC address (something like [00042123456] would
be much more difficult for a brute-force script to guess).

3. Use an analysis script such as fail2ban to tweak your internal firewall to block IP
addresses that are displaying abusive behavior, such as massive packet floods.

The fail2ban daemon is emerging as a popular way to automatically
respond to security threats. We’ll discuss it further in Chapter 26.

T Actually, since it’s published in this book, it is no longer a good password, but you get the idea.

Security and Identity | 257

Spam over Internet Telephony (SPIT)

VoIP spam has not yet taken off, but rest assured, it will. Spammers all over the world
are drooling at the prospect of being able to freely assault anyone and everyone with
an Internet-enabled phone system.

Like email, VoIP entails a certain level of trust, in that it assumes that every phone call
is legitimate. Unfortunately, as with email spam, it only takes a few bad apples to spoil
things for the rest of us.

Many organizations and persons are working on ways to address SPIT now, before it
becomes a problem. Some concepts being worked on include certificates and whitelists.
No one method has emerged as the definitive solution.

While it would be easy to simply lock our systems away from the world, the fact is that
Internet telephony is something that every business will be expected to support in the
not-too-distant future. SPIT will increasingly become a problem as more and more
unsavory characters decide that this is the new road to riches.

Solving the SPIT problem will be an ongoing process: a battle between us and The Bad
Guys™.

Distributed Denial of Service Attacks

SIP denial of service attacks are already happening on the Internet. Amazon’s EC2 cloud
has become a popular place to originate these attacks from, and other cloud-based or
compromised systems will become popular for these activities as well. The actual at-
tacks are not strictly denial of service attacks (in the sense that they are not deliberately
trying to choke your system); rather, they are attack campaigns that are typically trying
to use brute force to locate exploitable holes in any systems they can find. As the sheer
number of these attacks increases, the effect on the network will be similar to that of
email spam.

The previously mentioned fail2ban daemon can be useful in minimizing the effects of
these attacks. Refer to Chapter 26 for more details.

Phishing

When a VoIP system has been compromised, one popular use of the compromised
system is to relay fraud campaigns using the identity of the compromised system.
Criminals engaging in so-called phishing expeditions will make random calls to lists of
numbers, attempting to obtain credit card or other sensitive information, while posing
as your organization.

258 | Chapter12: Internet Call Routing

Security Is an Ongoing Process

In contrast to previous editions, throughout this book we have tried to provide exam-
ples and best practices that take security into consideration at all stages. Whatever you
are working on, you should be thinking about security. While implementing good se-
curity requires more design, development, and testing effort, it will save you time and
money in the long run.

Most security holes happen as a result of something that was hastily implemented and
wasn’t locked down later. “I’ll just quickly build this now, and I'll clean it up later” are
words you never want to say (or hear).

Conclusion

One of the dreams of VoIP was that it was going to make phone calls free. Over a decade
later, we’re still paying for our phone calls. The technology has existed for some time,
but the ease of use has not been there.

It costs nothing to register your ITAD and set up your system to handle ISNs. If every
Asterisk system deployed had an ITAD, and people started publishing their ISNs on
websites, vcards, and business cards, the weight of the Asterisk community would drive
industry adoption.

Security considerations for VoIP have to be taken into consideration, but we expect
that the benefits will outweigh the risks.

Our collective dream of free Internet calling may be closer than we think.

Conclusion | 259

CHAPTER 13
Automatic Call Distribution (ACD)
Queues

An Englishman, even if he is alone, forms an orderly
queue of one.

—George Mikes

Automatic Call Distribution (ACD), or call queuing, provides a way for a PBX to queue
up incoming calls from a group of users: it aggregates multiple calls into a holding
pattern and assigns each call a rank that determines the order in which that call should
be delivered to an available agent (typically, first in first out). When an agent becomes
available, the highest-ranked caller in the queue is delivered to that agent, and everyone
else moves up a rank.

If you have ever called an organization and heard “all of our representatives are busy,”
you have experienced ACD. The advantage of ACD to the callers is that they don’t have
to keep dialing back in an attempt to reach someone, and the advantages to the organ-
izations are that they are able to better service their customers and to temporarily handle
situations where there are more callers than there are agents.”

W
o There are two types of call centers: inbound and outbound. ACD refers
to the technology that handles inbound call centers, whereas the term
%s" Predictive Dialer refers to the technology that handles outbound call
centers. In this book we will primarily focus on inbound calling.

* It is a common misconception that a queue can allow you to handle more calls. This is not strictly true, in
that your callers will still want to speak to a live person, and they will only be willing to wait for so long. In
other words, if you are short-staffed, your queue could end up being nothing more than an obstacle to your
callers. The ideal queue is invisible to the callers, since their calls get answered immediately without them
having to hold.

261

We’ve all been frustrated by poorly designed and managed queues: enduring hold mu-
sic from a radio that isn’t in tune, mind-numbing wait times, and pointless messages
that tell you every 20 seconds how important your call is, despite that fact that you’ve
been waiting for 30 minutes and have heard the message so many times you can quote
it from memory. From a customer service perspective, queue design may be one of the
most important aspects of your telephone system. As with an automated attendant,
what must be kept in mind above all else is that your callers are not interested in holding
in a queue. They called because they want to talk to you. All your design decisions must
keep this crucial fact front-and-center in your mind: people want to talk to other people;
not to your phone system.’

The purpose of this chapter is to teach you how to create and design queues that get
callers to their intended destinations as quickly and painlessly as possible.

W
N In this chapter, we may flip back and forth between the usage of the
"‘:\ terms queue members and agents. Unless we are talking about agents
i * logged in via chan_agent (using Agentlogin()), we’re almost certainly

talking about queue members as added via AddQueueMember () or the CLI
commands (which we’ll discuss in this chapter). Just know that there is
a difference in Asterisk between an agent and a queue member, but that
we’ll use the term agent loosely to simply describe an endpoint as called
by a Queue().

Creating a Simple ACD Queue

To start with, we’re going to create a simple ACD queue. It will accept callers and
attempt to deliver them to a member of the queue.

W
og In Asterisk, the term member refers to a peer assigned to a queue that
can be dialed, such as SIP/0000FFFF0001. An agent technically refers to
& the Agent channel also used for dialing endpoints. Unfortunately, the
Agent channel is a deprecated technology in Asterisk, as it is limited in
flexibility and can cause unexpected issues that can be hard to diagnose
and resolve. We will not be covering the use of chan_agent, so be aware
that we will generally use the term member to refer to the telephone
device and agent to refer to the person who handles the call. Since one
isn’t generally effective without the other, either term may refer to both.

We'll create the queue(s) in the queues.conf file, and manually add queue members to
it through the Asterisk console. In the section “Queue Members” on page 266, we’ll

T There are several books available that discuss call center metrics and available queuing strategies, such as
James C. Abbott’s The Executive Guide to Call Center Metrics (Robert Houston Smith).

262 | Chapter13: Automatic Call Distribution (ACD) Queues

look into how to create a dialplan that allows us to dynamically add and remove queue
members (as well as pause and unpause them).

The first step is to create your queues.conf file in the /etc/asterisk configuration directory:

$ cd /etc/asterisk/
$ touch queues.conf

Populate it with the following configuration, which will create two queues named
[sales] and [support]. You can name them anything you want, but we will be using
these names later in the book, so if you use different queue names from what we’ve
recommended here, make note of your choices for future reference:

[general]

autofill=yes distribute all waiting callers to available members

shared lastcall=yes ; respect the wrapup time for members logged into more
than one queue

[

[

[StandardQueue](!)
musicclass=default
strategy=rrmemory
joinempty=no
leavewhenempty=yes
ringinuse=no

template to provide common features

play [default] music

use the Round Robin Memory strategy

do not join the queue when no members available
leave the queue when no members available

don't ring members when already InUse (prevents
multiple calls to an agent)

e e e Wl vl Wl e

[sales](StandardQueue) ; create the sales queue using the parameters in the
StandardQueue template

e

[support](StandardQueue) ; create the support queue using the parameters in the
; StandardQueue template

The [general] section defines the default behavior and global options. We’ve only
specified two options in the [general] section, since the built-in defaults are sufficient
for our needs at this point.

The first option is autofill, which tells the queue to distribute all waiting callers to all
available members immediately. Previous versions of Asterisk would only distribute
one caller at a time, which meant that while Asterisk was signaling an agent, all other
calls were held (even if other agents were available) until the first caller in line had been
connected to an agent (which obviously led to bottlenecks in older versions of Asterisk
where large, busy queues were being used). Unless you have a particular need for back-
ward-compatibility, this option should always be set to yes.

The second option in the [general] section of queues.conf is shared_lastcall. When
we enable shared lastcall, the last call to an agent who is logged into multiple queues
will be the call that is counted for wrapup time? in order to avoid sending a call to an
agent from another queue during the wrap period. If this option is set to no, the wrap
timer will only apply to the queue the last call came from, which means an agent who

1 Wrapup time is used for agents who may need to perform some sort of logging or other function once a call
is done. It gives them a grace period of several seconds in order to perform this task before taking another call.

Creating a Simple ACD Queue | 263

was wrapping up a call from the support queue might still get a call from the sales
queue. This option should also always be set to yes (the default).

The next section, [StandardQueue] is the template we’ll apply to our sales and support
queues (we declared it a template by adding (!)). We’ve defined the musicclass to be
the default music on hold, as configured in the musiconhold.conf file. The strategy
we’ll employ is rrmemory, which stands for Round-Robin with Memory. The rrmemory
strategy works by rotating through the agents in the queue in sequential order, keeping
track of which agent got the last call, and presenting the next call to the next agent.
When it gets to the last agent, it goes back to the top (as agents log in, they are added
to the end of the list). We’ve set joinempty to no since it is generally bad form to put
callers into a queue where there are no agents available to take their calls.

W
N You could set this to yes for ease of testing, but we would not recom-
"‘:\ mend putting it into production unless you are using the queue for some
T Q8 function that is not about getting your callers to your agents. Nobody

" wants to wait in a line that is not going anywhere.

The leavewhenempty option is used to control whether callers should fall out of the
Queue() application and continue on in the dialplan if no members are available to take
their calls. We’ve set this to yes because it makes no sense to wait in a line that’s not
going anywhere.

N

From a business perspective, you should be telling your agents to clear
all calls out of the queue before logging off for the day. If you find that
& there are a lot of calls queued up at the end of the day, you might want
to consider extending someone’s shift to deal with them. Otherwise,
they’ll just add to your stress when they call back the next day, in a worse
mood.

The alternative is to use GotoIfTime() near the end of the day to redirect
callers to voicemail, or some other appropriate location in your dialplan.

Finally, we’ve set ringinuse to no, which tells Asterisk not to ring members when their
devices are already ringing. The purpose of setting ringinuse to no is to avoid multiple
calls to the same member from one or more queues.

It should be mentioned that joinempty and leavewhenempty are looking

for either no members logged into the queue, or all members unavaila-

* 9la¢ ble. Agents that are Ringing or InUse are not considered unavailable, so

" will not block callers from joining the queue or cause them to be kicked
out when joinempty=no and/or leavewhenempty=yes.

264 | Chapter13: Automatic Call Distribution (ACD) Queues

Once you’ve finished configuring your queues.conf file, you can save it and reload the
app_queue.so module from your Asterisk CLI:

$ asterisk -r
*CLI> module reload app_queue.so
-- Reloading module 'app_queue.so' (True Call Queueing)

Then verify that your queues were loaded into memory:

localhost*CLI> queue show

support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, Os talktime), W:0, C:0, A:0, SL:0.0% within Os

No Members

No Callers
sales has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, Os talktime), W:0, C:0, A:0, SL:0.0% within Os

No Members

No Callers

Now that you’ve created the queues, you need to configure your dialplan to allow calls
to enter the queue.

Add the following dialplan logic to the extensions.conf file:

[Queues]

exten => 7001,1,Verbose(2,${CALLERID(all)} entering the support queue)
same => n,Queue(support)

same => n,Hangup()

exten => 7002,1,Verbose(2,${CALLERID(all)} entering the sales queue)
same => n,Queue(sales)
same => n,Hangup()

[LocalSets]
include => Queues ; allow phones to call queues

We’ve included the Queues context in the LocalSets context so that our telephones can
call the queues we’ve set up. In Chapter 15, we’ll define menu items that go to these
queues. Save the changes to your extensidons.conf file, and reload the dialplan with the
dialplan reload CLI command.

If you dial extension 7001 or 7002 at this point, you will end up with output like the
following;:

-- Executing [7001@LocalSets:1] Verbose("SIP/0000FFFF0003-00000001",

"2,"Leif Madsen" <100> entering the support queue") in new stack
== "Leif Madsen" <1--> entering the support queue

-- Executing [7001@LocalSets:2] Queue("SIP/0000FFFF0003-00000001",
"support”) in new stack
[2011-02-14 08:59:39] WARNING[13981]: app_queue.c:5738 queue_exec:
Unable to join queue 'support’

-- Executing [7001@LocalSets:3]
Hangup("SIP/0000FFFF0003-00000001", "") in new stack

== Spawn extension (LocalSets, 7001, 3) exited non-zero on
' SIP/0000FFFF0003-00000001"

Creating a Simple ACD Queue | 265

You don’t join the queue at this point, as there are no agents in the queue to answer
calls. Because we have joinempty=no and leavewhenempty=yes configured in
queues.conf, callers will not be placed into the queue. (This would be a good opportu-
nity to experiment with the joinempty and leavewhenempty options in queues.conf to
better understand their impact on queues.)

In the next section, we’ll demonstrate how to add members to your queue (as well as
other member interactions with the queue, such as pause/unpause).

Queue Members

Queues aren’t very useful without someone to answer the calls that come into them,
so we need a method for allowing agents to be logged into the queues to answer calls.
There are various ways of going about this, and we’ll show you how to add members
to the queue both manually (as an administrator) and dynamically (as the agent). We’ll
start with the Asterisk CLI method, which allows you to easily add members to the
queue for testing and minimal dialplan changes. We’ll then expand upon that, showing
you how to add dialplan logic allowing agents to log themselves into and out of the
queues and to pause and unpause themselves in queues they are logged into.

Controlling Queue Members via the CLI

We can add queue members to any available queue through the Asterisk CLI command
queue add. The format of the queue add command is (all on one line):

*CLI> queue add member <channel> to <queue> [[[penalty <penalty>] as
<membername>] state_interface <interface>]

The <channel> is the channel we want to add to the queue, such as SIP/
0000FFFF0003, and the <queue> name will be something like support or sales—any
queue name that exists in /etc/asterisk/queues.conf. For now we’ll ignore the
<penalty> option, but we’ll discuss it in “Advanced Queues” on page 283 (penalty is
used to control the rank of a member within a queue, which can be important for agents
who are logged into multiple queues). We can define the <membername> to provide
details to the queue-logging engine. The state_interface option is something that we
should delve a bit more into at this junction. Because it is so important for all aspects
of queues and their members in Asterisk, we’ve written a little section about it, so go
ahead and read “An Introduction to Device State” on page 273. Once you’ve set that
up, come back here and continue on. Don’t worry, we’ll wait.

Now that you’ve added callcounter=yes to sip.conf (we’ll be using SIP channels
throughout the rest of our examples), let’s see how to add members to our queues from
the Asterisk CLIL

266 | Chapter13: Automatic Call Distribution (ACD) Queues

Adding a queue member to the support queue can be done with the queue add mem-
ber command:

*CLI> queue add member SIP/0000FFFF0001 to support
Added interface 'SIP/0000FFFF0001' to queue 'support’

A query of the queue will verify that our new member has been added:

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, os talktime), W:0, C:0, A:0, SL:0.0% within 0s
Members:
SIP/0000FFFF0001 (dynamic) (Not in use) has taken no calls yet
No Callers

To remove a queue member, you would use the queue remove member command:

*CLI> queue remove member SIP/0000FFFF0001 from support
Removed interface 'SIP/0000FFFF0001' from queue 'support’

Of course, you can use the queue show command again to verify that your member has
been removed from the queue.

We can also pause and unpause members in a queue from the Asterisk console, with
the queue pause member and queue unpause member commands. They take a similar
format to the previous commands we’ve been using:

*CLI> queue pause member SIP/0000FFFF0001 queue support reason DoingCallbacks
paused interface 'SIP/0000FFFF0001' in queue 'support' for reason 'DoingCallBacks'

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
Members:
SIP/0000FFFF0001 (dynamic) (paused) (Not in use) has taken no calls yet
No Callers

By adding a reason for pausing the queue member, such as lunchtime, you ensure that
your queue logs will contain some additional information that may be useful. Here’s
how to unpause the member:

*CLI> queue unpause member SIP/0000FFFF0001 queue support reason off-break
unpaused interface 'SIP/0000FFFF0001' in queue 'support' for reason 'off-break'

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, os talktime), W:0, C:0, A:0, SL:0.0% within 0s
Members:
SIP/0000FFFF0001 (dynamic) (Not in use) has taken no calls yet
No Callers

In a production environment, the CLI would not normally be the best way to control
the state of agents in a queue. Instead, there are dialplan applications that allow agents
to inform the queue as to their availability.

Queue Members | 267

Controlling Queue Members with Dialplan Logic

In a call center staffed by live agents, it is most common to have the agents themselves
log in and log out at the start and end of their shifts (or whenever they go for lunch, or
to the bathroom, or are otherwise not available to the queue).

To enable this, we will make use of the following dialplan applications:

* AddQueueMember ()

* RemoveQueueMember ()

While logged into a queue, it may be that an agent needs to put herself into a state
where she is temporarily unavailable to take calls. The following applications will allow
this:

* PauseQueueMember ()

* UnpauseQueueMember ()

It may be easier to think of these applications in the following manner: the add and
remove applications are used to log in and log out, and the pause/unpause pair are used
for short periods of agent unavailability. The difference is simply that pause/unpause
set the member as unavailable/available without actually removing them from the
queue. This is mostly useful for reporting purposes (if a member is paused, the queue
supervisor can see that she is logged into the queue, but simply not available to take
calls at that moment). If you’re not sure which one to use, we recommend that the
agents use add/remove whenever they are not going to be available to take calls.

Using Pause and Unpause

The use of pause and unpause is a matter of preference. In some environments, these
options may be used for all activities during the day that render an agent unavailable
(such as during the lunch hour and when performing work that is not queue-related).
In most call centers, however, if an agent is not beside his phone and ready to take a
call at that moment, he should not be logged in at all, even if he is only going to be away
from his desk for a few minutes (such as for a bathroom break).

Some supervisors like to use the add/remove and pause/unpause settings as a sort of
punch clock, so that they can track when their staff arrive for work and leave at the end
of the day, and how long they spend at their desks and on breaks. We do not feel this
is a sound practice, as the purpose of these applications is to inform the queue as to
agent availability, not to enable tracking of employees’ activities.

An important thing to note here relates to the joinempty setting in queues.conf, which
was discussed earlier. If an agent is paused, he is considered as logged into the queue.
Let’s say it is near the end of the day, and one agent put himself into pause a few hours
earlier to work on a project. All the other agents have logged out and gone home. A call
comes in. The queue will note that an agent is logged into the queue, and will therefore
queue the call, even though the reality is that there are no people actually staffing that
queue at that time. This caller may end up holding in an unstaffed queue indefinitely.

268 | Chapter13: Automatic Call Distribution (ACD) Queues

In short, agents who are not sitting at their desks and planning to be available to take
calls in the next few minutes should log out. Pause/unpause should only be used for
brief moments of unavailability (if at all). If you want to use your phone system as a
punch clock, there are lots of great ways to do that in Asterisk, but the queue member
applications are not the way we would recommend.

Let’s build some simple dialplan logic that will allow our agents to indicate their avail-
ability to the queue. We are going to use the CUT() dialplan function to extract the name
of our channel from our call to the system, so that the queue will know which channel
to log into the queue.

We have built this dialplan to show a simple process for logging into and out of a queue,
and changing the paused status of a member in a queue. We are doing this only for a
single queue that we previously defined in the queues.conf file. The status channel var-
iables that the AddQueueMember(), RemoveQueueMember(), PauseQueueMember(), and
UnpauseQueueMember () applications set might be used to Playback() announcements to
the queue members after they’ve performed certain functions to let them know whether
they have successfully logged in/out or paused/unpaused):

[QueueMemberFunctions]

exten => *54,1,Verbose(2,Logging In Queue Member)
same => n,Set(MemberChannel=${CHANNEL (channeltype)}/${CHANNEL (peername)})
same => n,AddQueueMember (support, ${MemberChannel})

; ${AQMSTATUS}

; ADDED

; MEMBERALREADY
; NOSUCHQUEUE

exten => *56,1,Verbose(2,Logging Out Queue Member)
same => n,Set(MemberChannel=${CHANNEL (channeltype)}/${CHANNEL (peername)})
same => n,RemoveQueueMember (support,${MemberChannel})

; ${RQMSTATUS}:
; REMOVED

; NOTINQUEUE
; NOSUCHQUEUE

exten => *72,1,Verbose(2,Pause Queue Member)
same => n,Set(MemberChannel=${CHANNEL (channeltype)}/${CHANNEL (peername)})
same => n,PauseQueueMember (support, ${MemberChannel})

; ${PQMSTATUS}:
; PAUSED
; NOTFOUND

exten => *87,1,Verbose(2,Unpause Queue Member)
same => n,Set(MemberChannel=${CHANNEL (channeltype)}/${CHANNEL (peername)})
same => n,UnpauseQueueMember (support, ${MemberChannel})

Queue Members | 269

; ${UPQMSTATUS}:
; UNPAUSED
; NOTFOUND

Automatically Logging Into and Out of Multiple Queues

It is quite common for an agent to be a member of more than one queue. Rather than
having a separate extension for logging into each queue (or demanding information
from the agents about which queues they want to log into), this code uses the Asterisk
database (astdb) to store queue membership information for each agent, and then loops
through each queue the agents are a member of, logging them into each one in turn.

In order to for this code to work, an entry similar to the following will need to be added
to the AstDB via the Asterisk CLI. For example, the following would store the member
0000FFFF0001 as being in both the support and sales queues:

*CLI> database put queue_agent 0000FFFF0001/available_queues support”sales

You will need to do this once for each agent, regardless of how many queues they are
members of.

If you then query the Asterisk database, you should get a result similar to the following:

pbx*CLI> database show queue_agent
/queue_agent/0000FFFF0001/available_queues : support~sales

The following dialplan code is an example of how to allow this queue member to be
automatically added to both the support and sales queues. We’ve defined a subroutine
that is used to set up three channel variables (MemberChannel, MemberChanType,
AvailableQueues). These channel variables are then used by the login (*54), logout
(*56), pause (*72), and unpause (*87) extensions. Each of the extensions uses the
subSetupAvailableQueues subroutine to set these channel variables and to verify that
the AstDB contains a list of one or more queues for the device the queue member is
calling from:

[subSetupAvailableQueues]

5

; This subroutine is used by the various login/logout/pausing/unpausing routines
; in the [ACD] context. The purpose of the subroutine is centralize the retrieval
; of information easier.

)
exten => start,1,Verbose(2,Checking for available queues)

; Get the current channel's peer name (0000FFFF0001)
same => n,Set(MemberChannel=${CHANNEL (peername)})

; Get the current channel's technology type (SIP, IAX, etc)
same => n,Set(MemberChanType=${CHANNEL (channeltype)})

; Get the list of queues available for this agent
same => n,Set(AvailableQueues=${DB(queue_agent/${MemberChannel}/
available queues)})

; ¥** This should all be on a single line

270 | Chapter13: Automatic Call Distribution (ACD) Queues

; if there are no queues assigned to this agent we'll handle it in the
; no_queues_available extension
same => n,GotoIf($[${ISNULL(${AvailableQueues})}]?no_queues_available,1)

same => n,Return()

exten => no_queues_available,1,Verbose(2,No queues available for agent
${MemberChannel})
; ¥** This should all be on a single line

; playback a message stating the channel has not yet been assigned
same => n,Playback(silence/18channel8not-yet-assigned)
same => n,Hangup()

[ACD]

5

; Used for logging agents into all configured queues per the AstDB

5

5

; Logging into multiple queues via the AstDB system

exten => *54,1,Verbose(2,Logging into multiple queues per the database values)

; get the available queues for this channel
same => n,GoSub(subSetupAvailableQueues,start,1())
same => n,Set(QueueCounter=1) ; setup a counter variable

; using CUT(), get the first listed queue returned from the AstDB
same => n,Set(WorkingQueue=${CUT(AvailableQueues,",${QueueCounter})})

; While the WorkingQueue channel variable contains a value, loop
same => n,While($[${EXISTS(${WorkingQueue})}])

AddQueueMember (queuename[,interface[,penalty[,options[,membername
[,stateinterface]]]]])

Add the channel to a queue, setting the interface for calling

and the interface for monitoring of device state

e e e vl Wl e

*** This should all be on a single line
same => n,AddQueueMember (${WorkingQueue},${MemberChanType}/
${MemberChannel}, , ,${MemberChanType}/${MemberChannel})

same => n,Set(QueueCounter=$[${QueueCounter} + 1]) ; increase our counter

; get the next available queue; if it is null our loop will end
same => n,Set(WorkingQueue=${CUT(AvailableQueues,”,${QueueCounter})})

same => n,Endwhile()
; let the agent know they were logged in okay
same => n,Playback(silence/18agent-loginok)

same => n,Hangup()

exten => no_queues_available,1,Verbose(2,No queues available for ${MemberChannel})

Queue Members | 271

same => n,Playback(silence/18channel8¬-yet-assigned)
same => n,Hangup()

; Used for logging agents out of all configured queues per the AstDB
exten => *56,1,Verbose(2,Logging out of multiple queues)

; Because we reused some code, we've placed the duplicate code into a subroutine
same => n,GoSub(subSetupAvailableQueues,start,1())
same => n,Set(QueueCounter=1)
same => n,Set(WorkingQueue=${CUT(AvailableQueues,”,${QueueCounter})})
same => n,While($[${EXISTS(${WorkingQueue})}])
same => n,RemoveQueueMember (${WorkingQueue},${MemberChanType}/${MemberChannel})
same => n,Set(QueueCounter=$[${QueueCounter} + 1])
same => n,Set(WorkingQueue=${CUT(AvailableQueues,”,${QueueCounter})})
same => n,EndWhile()
same => n,Playback(silence/18agent-loggedoff)
same => n,Hangup()

; Used for pausing agents in all available queues
exten => *72,1,Verbose(2,Pausing member in all queues)
same => n,GoSub(subSetupAvailableQueues,start,1())

; if we don't define a queue, the member is paused in all queues
same => n,PauseQueueMember (,${MemberChanType}/${MemberChannel})
same => n,GotoIf($[${PQMSTATUS} = PAUSED]?agent paused,1:agent not_found,1)

exten => agent_paused,1,Verbose(2,Agent paused successfully)
same => n,Playback(silence/18unavailable)
same => n,Hangup()

; Used for unpausing agents in all available queues
exten => *87,1,Verbose(2,UnPausing member in all queues)
same => n,GoSub(subSetupAvailableQueues,start,1())

; if we don't define a queue, then the member is unpaused from all queues
same => n,UnPauseQueueMember (,${MemberChanType}/${MemberChannel})
same => n,GotoIf($[${PQUSTATUS} = PAUSED]?agent_unpaused,1:agent_not_found,1)

exten => agent_unpaused,1,Verbose(2,Agent paused successfully)
same => n,Playback(silence/18available)
same => n,Hangup()

; Used by both pausing and unpausing dialplan functionality
exten => agent_not_found,1,Verbose(2,Agent was not found)
same => n,Playback(silence/18cannot-complete-as-dialed)

272 | Chapter 13: Automatic Call Distribution (ACD) Queues

You could further refine these login and logout routines to take into account that the
AQMSTATUS and RQMSTATUS channel variables are set each time AddQueueMember() and
RemoveQueueMember () are used. For example, you could set a flag that lets the queue
member know he has not been added to a queue by setting a flag, or even add recordings
or text-to-speech systems to play back the particular queue that is producing the prob-
lem. Or, if you’re monitoring this via the Asterisk Manager Interface, you could have
a screen pop, or use JabberSend() to inform the queue member via instant messaging.
(Sorry, sometimes our brains run away with us.)

An Introduction to Device State

Device states in Asterisk are used to inform various applications as to whether your
device is currently in use or not. This is especially important for queues, as we don’t
want to send callers to an agent who is already on the phone. Device states are controlled
by the channel module, and in Asterisk only chan_sip has the appropriate handling.
When the queue asks for the state of a device, it first queries the channel driver (e.g.,
chan_sip). If the channel cannot provide the device state directly (as is the case with
chan_iax2), it asks the Asterisk core to determine it, which it does by searching through
channels currently in progress.

Unfortunately, simply asking the core to search through active channels isn’t accurate,
so getting device state from channels other than chan_sip is less reliable when working
with queues. We'll explore some methods of controlling calls to other channel types
in “Advanced Queues” on page 283, but for now we’ll focus on SIP channels, which
do not have complex device state requirements. For more information about device
states, see Chapter 14.

In order to correctly determine the state of a device in Asterisk, we need to enable call
counters in sip.conf. By enabling call counters, we’re telling Asterisk to track the active
calls for a device so that this information can be reported back to the channel module
and the state can be accurately reflected in our queues. First, let’s see what happens to
our queue without the callcounter option:

*CLI> queue show support

support has 0 calls (max unlimited) in 'rrmemory' strategy

(0s holdtime, Os talktime), W:0, C:0, A:0, SL:0.0% within Os

Members:

SIP/0000FFFF0001 (dynamic) (Not in use) has taken no calls yet
No Callers

Now suppose we have an extension in our dialplan, 555, that calls MusicOnHold(). If we
dial that extension without having enabled call counters, a query of the support queue
(of which SIP/0000FFFF0001 is a member) from the Asterisk CLI will show something
similar to the following:

-- Executing [555@LocalSets:1] MusicOnHold("SIP/0000FFFF0001-00000000",

"") in new stack
-- Started music on hold, class 'default', on SIP/0000FFFF0001-00000000

Queue Members | 273

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
Members:
SIP/0000FFFF0001 (dynamic) (Not in use) has taken no calls yet
No Callers

Notice that even though our phone should be marked as In Use because it is on a call,
it does not show up that way when we look at the queue status. This is obviously a
problem since the queue will consider this device as available, even though it is already
on a call.

To correct this problem, we need to add callcounter=yes to the [general] section of
our sip.conf file. We can also specifically configure this for any peer (since it is a peer-
level configuration option); however, this is really something you’ll want to set for all
peers that might ever be part of a queue, so it’s normally going to be best to put this
option in the [general] section (it could also be assigned to a template that would be
used with all peers in the queue).

Edit your sip.conf file so it looks similar to the following:

[general]
context=unauthenticated
allowguest=no
srvlookup=yes
udpbindaddr=0.0.0.0
tcpenable=no
callcounter=yes

default context for incoming calls

disable unauthenticated calls

enabled DNS SRV record lookup on outbound calls
listen for UDP request on all interfaces
disable TCP support

enable device states for SIP devices

e e e vl Wl W

Then reload the chan_sip module and perform the same test again:

*CLI> sip reload
Reloading SIP
== Parsing '/etc/asterisk/sip.conf': == Found

The device should now show In use when a call is in progress from that device:

== Parsing '/etc/asterisk/sip.conf': == Found
== Using SIP RTP CoS mark 5
-- Executing [555@LocalSets:1] MusicOnHold("SIP/0000FFFF0001-00000001",
"") in new stack
-- Started music on hold, class 'default', on SIP/0000FFFF0001-00000001

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, os talktime), W:0, C:0, A:0, SL:0.0% within 0s
Members:
SIP/0000FFFF0001 (dynamic) (In use) has taken no calls yet
No Callers

In short, Queue() needs to know the state of a device in order to properly manage call
distribution. The callcounter option in sip.confis an essential component of a properly
functioning queue.

274 | Chapter 13: Automatic Call Distribution (ACD) Queues

The queues.conf File

We’ve mentioned the queues.conf file already, but there are many options in this file,
and we figured it would be right and proper for us to go over some of them with you.

Table 13-1 contains the options available in the [general] section of queues.conf.

Table 13-1. Available options for [general] section of queues.conf

Options Available values

persistentmembers yes,no

autofill yes, no
monitor-type MixMonitor,
<unspecified>
updatecdr yes, no
shared_lastcall yes, no

Description

Set this to yes to store dynamically added members to queues in the
AstDB so that they can be re-added upon Asterisk restart.

With autofill disabled, the queue application will attempt to deliver
calls to agents in a serial manner. This means only one call is attempted
tobe distributed to agents ata time. Additional callers are not distributed
to agents until that caller is connected to an agent. With autofill
enabled, callers are distributed to available agents simultaneously.

If you specify the value MixMonitor the MixMonitor () application
will be used for recording calls within the queue. If you do not specify a
value or comment the option out, the Monitor () application will be
used instead.

Set this to yes to populate the dstchannel field of the CDR records
with the name of a dynamically added member on answer. The value is
set with the AddQueueMembex () application. This option is used to
mimic the behavior of chan_agent channels.

This value is used for members logged into more than one queue to have
their last call be the same across all queues, in order for the queues to
respect the wrap up time of other queues.

Table 13-2 describes the options available for configuring queue contexts.

Table 13-2. Available options for defined queues in queues.conf

Options Available values Description

musicclass Music class as de- Sets the music class to be used by a particular queue. You
fined by musicon- can also override this value with the
hold.conf CHANNEL (musicclass) channel variable.

announce Filename of thean- Used for playing an announcement to the agent that an-
nouncement swered the call, typically to let him know what queue the

caller is coming from. Useful when the agent is in multiple
queues, especially when set to auto-answer the queue.

strategy ringall, « ringall:rings all available callers (default)
leastrecent, - leastrecent:rings the interface that least
fewestcalls, recently received a call

random, rrme

mory, linear,
wrandom

» fewestcalls:rings the interface that has
completed the fewest calls in this queue

The queues.confFile | 275

Options

servicelevel

context

penaltymemberslimit

timeout

retry

timeoutpriority

weight

wrapuptime

autofill

autopause

maxlen

Available values

Value in seconds

Dialplan context

Valueof 0 or greater

Value in seconds

Value in seconds

app, conf

Value of 0 or higher

Value in seconds

yes, no

yes, no,all

Value of 0 or higher

Description
+ random: rings a random interface

+ rrmemoxry:ringsmembersinaround-robinfashion,
remembering where we left offlast for the next caller

+ Llinear:rings members in the order specified,
always starting at the beginning of the list

«wrandom: rings a random member, but uses the
members’ penalties as a weight.

Used in statistics to determine the service level of the queue
(calls answered within the service level time frame).

Allows a caller to exit the queue by pressing a single DTMF
digit. Ifa contextis specified and the caller entersa number,
that digit will attempt to be matched in the context speci-
fied, and dialplan execution will continue there.

Used to disregard penalty values if the number of members
in the queue is lower than the value specified.

Specifies the number of seconds to ring a member’s device.
Also see timeoutpriority.

Specifies the number of seconds to wait before attempting
the next member in the queue if the timeout value is
exhausted while attempting toringamemberof the queue.

Used to control the priority of the two possible timeout
optionsspecified foraqueue. The Queue () application has
atimeout value that can be specified to control the absolute
time a caller can be in the queue. The timeout value in
queues.conf controls the amount of time (along with
retry)toringamember for. Sometime these values con-
flict, so you can control which value takes precedence. The
defaultisapp,asthisisthewayitworksinpreviousversions.

Definesthe weightofaqueue. Aqueuewith ahigherweight
defined will get first priority when members are associated
with multiple queues.

The number of seconds to keep a member unavailable in a
queue after completing a call.

Sameas defined inthe [general] section. This value can
be defined per queue.

Enables/disables the automatic pausing of members who
fail to answer a call. A value of a1l causes this member to
be paused in all queues she is a member of.

Specifies the maximum number of callers allowed to be
waiting in a queue. A value of zero means an unlimited
number of callers are allowed in the queue.

276 | Chapter13: Automatic Call Distribution (ACD) Queues

Options

setinterfacevar

setqueueentryvar

setqueuevar

Available values

yes, no

yes, no

yes, no

Description

If setto yes, the following channel variables will be set just
prior to connecting the caller with the queue member:

MEMBERINTERFACE:the member'sinterface, such
asAgent/1234

MEMBERNAME: the name of the member
MEMBERCALLS: the number of calls the interface
has taken

MEMBERLASTCALL: the last time the member took
aall

MEMBERPENALTY: the penalty value of the
member

MEMBERDYNAMIC: indicates whether the member
was dynamically added to the queue or not

MEMBERREALTIME:indicateswhetherthe member
isincluded from real time or not

If setto yes, the following channel variables will be set just
prior to the call being bridged:

QEHOLDTIME: the amount of time the caller was
held in the queue

QEORIGINALPOS: the position the caller originally
entered the queue at

If setto yes, the following channel variables will be set just
prior to the call being bridged:

QUEUENAME: the name of the queue

QUEUEMAX: the maximum number of calls allowed
in this queue

QUEUESTRATEGY: the strategy method defined for
the queue

QUEUECALLS: the number of calls currently in the
queue

QUEUEHOLDTIME: the current average hold time of
callers in the queue

QUEUECOMPLETED: the number of completed calls
in this queue

QUEUEABANDONED: the number of abandoned calls
QUEUESRVLEVEL: the queue service level

QUEUESRVLEVELPERF: the queue’s service level
performance

The queues.confFile | 277

Options

membermacro

announce-frequency

min-announce-frequency

periodic-announce-frequency

random-periodic-announce

relative-periodic-announce

announce-holdtime

announce-position

announce-position-limit

announce-round-seconds

queue-thankyou

queue-youarenext

queue-thereare

Available values

Name ofamacrode-
fined in the
dialplan

Value in seconds

Value in seconds

Value in seconds

yes, no

yes, no

yes, no, once

yes,no,limit,
more

Number of zero or
greater

Value in seconds

Filename of prompt
to play

Filename of prompt
to play

Filename of prompt
to play

Description

Defines a macro to be executed just prior to bridging the
caller and the queue member.

Defines how often we should announce the caller’s position
and/or estimated hold time in the queue. Set this value to
zero to disable.

Specifies the minimum amount of time that must pass be-
fore we announce the caller’s position in the queue again.
This is used when the caller’s position may change fre-
quently, to prevent the caller hearing multiple updates in
a short period of time.

Indicates how often we should make periodic announce-
ments to the caller.

If set to yes, will play the defined periodic announcements
in a random order. See periodic-announce.

If set to yes, the periodic-announce-frequency
timer will start from when the end of the file being played
back is reached, instead of from the beginning. Defaults to
no.

Defines whether the estimated hold time should be played
along with the periodicannouncements. Can be setto yes,
no, or only once.

Defines whether the caller’s position in the queue should
be announced to her. If set to no, the position will never be
announced. If set to yes, the caller’s position will always
be announced. If the value is set to 1imit, the caller will
hear her position in the queue only if it is within the limit
defined by announce-position-1limit. If the value
issettomore, the caller will hear her position if it is beyond
the number defined by announce-position-1limit.

Used if you've defined announce-position as either
limit ormore.

I this value is nonzero, we'll announce the number of sec-
onds as well, and round them to the value defined.

If not defined, will play the default value (“Thank you for
your patience”). If set to an empty value, the prompt will
not be played at all.

Ifnot defined, will play the default value (“You are now first
in line”). If set to an empty value, the prompt will not be
played at all.

If not defined, will play the default value (“There are”). If
set to an empty value, the prompt will not be played at all.

278 | Chapter 13: Automatic Call Distribution (ACD) Queues

Options

queue-callswaiting

queue-holdtime

queue-minutes

queue-seconds

queue-reporthold

periodic-announce

monitor-format

monitor-type

joinempty

Available values

Filename of prompt
to play

Filename of prompt
to play

Filename of prompt
to play

Filename of prompt
to play

Filename of prompt
to play

A set of periodic an-
nouncements to be
played, separated
by commas

gsm, wav, wav49
<any valid
file format>

MixMonitor,
<unspeci
fied>

paused, pen
alty, inuse,
ringing
unavailable
invalid
unknown,
wrapup

Description

If not defined, will play the default value (“calls waiting”).
If settoan empty value, the prompt will notbe played at all.

If not defined, will play the default value (“The current es-
timated hold time is”). If set to an empty value, the prompt
will not be played at all.

If not defined, will play the default value (“minutes”). If set
to an empty value, the prompt will not be played at all.

If not defined, will play the default value (“seconds”). If set
to an empty value, the prompt will not be played at all.

If not defined, will play the default value (“Hold time”). If
set to an empty value, the prompt will not be played at all.

Prompts are played in the order they are defined. Defaults
to queue-periodic-announce (“All representatives
are currently busy assisting other callers. Please wait for the
next available representative”).

Specifies the file format to use when recording. If
monitor-format is commented out, calls will not be
recorded.

Same asmonitor-type as defined in the [general]
section, but on a per-queue basis.

Controls whether a caller is added to the queue when no
members are available. Comma-separated options can be
included to define how this option determines whether
members are available. The definitions for the values are:

+ paused: members are considered unavailable if
they are paused.

+ penalty: members are considered unavailable if
their penalties are less than
QUEUE_MAX_PENALTY.

« inuse:membersare considered unavailable if their
device status is In Use.

+ ringing: members are considered unavailable if
their device status is Ringing.

+ unavailable:appliesprimarilytoagentchannels;
if the agent is not logged in but is a member of the
queue, it is considered unavailable.

« invalid: members are considered unavailable if
their device status is Invalid. This is typically an
error condition.

«unknown: members are considered unavailable if
device status is unknown.

The queues.confFile | 279

Options

leavewhenempty

eventwhencalled

eventmemberstatus

reportholdtime

ringinuse

memberdelay

timeoutrestart

defaultrule

member

Available values

paused, pen
alty, inuse,
ringing
unavailable
invalid
unknown,
wrapup

yes, no, vars

yes, no

yes, no

yes, no

Value in seconds

yes, no

Rule as defined in
queuerules.conf

Device

Description
+wrapup: members are considered unavailable if
they are currently in the wrapup time after the com-
pletion of a call.

Used to control whether callers are kicked out of the queue
when members are no longer available to take calls. See
joinempty for more information on the assignable
values.

If set to yes, the following manager events will be sent to
the Asterisk Manager Interface (AMI):

« AgentCalled

+ AgentDump

« AgentConnect
+ AgentComplete

If set to vars, all channel variables associated with the
agent will also be sent to the AMI.

If set to yes, the QueueMembexrStatus event will be
sent to AMI. Note that this may generate a lot of manager
events.

Enables reporting of the caller’s hold time to the queue
member prior to bridging.

Used to avoid sending calls to members whose status is In
Use. Recall from our discussion in the preceding section
thatonlytheSIP channeldriveriscurrentlyabletoaccurately
report this status.

Used if you want there to be a delay prior to the caller and
queue member being connected to each other.

If set to yes, resets the timeout for an agent to answer if
either aBUSY or CONGESTION status is received from the
channel. This can be useful if the agent is allowed to reject
or cancel a call.

Associates a queue rule as defined in queuerules.confto this
queue, which is used to dynamically change the minimum
and maximum penalties, which are then used to select an
available agent. See “Changing Penalties Dynamically
(queuerules.conf)” on page 285.

Used to define static members in a queue. To define a static
member, you supply its Technology/Device ID(eq.,
Agent/1234, SIP/0000FFFF0001, DAHDI/
g0/14165551212).

280 | Chapter13: Automatic Call Distribution (ACD) Queues

The agents.conf File

If you’ve browsed through the samples in the ~/src/asterisk-complete/1.8/configs/ di-
rectory, you may have noticed the agents.conf file. It may seem tempting, and it has its
places, but overall the best way to implement queues is through the use of SIP channels.
There are two reasons for this. The first is that SIP channels are the only type that
provide true device state information. The other reason is that agents are always logged
in when using the agent channel, and if you’re using remote agents, the bandwidth
requirements may be greater than you wish. However, in busy call centers it may be
desirable to force agents to answer calls immediately rather than having them press the
answer button on the phone.

The agents.conf file is use to define agents for queues using the agents channel. This
channel is similar in nature to the other channel types in Asterisk (local, SIP, IAX2,
etc.), but it is more of a pseudo-channel in that it is used to connect callers to agents
who have logged into the system using other types of transport channel. For example,
suppose we use our SIP-enabled phone to log in to Asterisk using the AgentLogin()
dialplan application. Once we’re logged in, the channel remains online the entire time
it is available (logged on), and calls are then passed to it through the agent channel.

Let’s take a look at the various options available to us in the agents.conf file to get a
better idea of what it provides us. Table 13-3 shows the single option available in the
[general] section of agents.conf. Table 13-4 shows the available options under the
[agents] header.

Table 13-3. Options available under the [general] header in agents.conf

Options Available values Description

multiplelogin yes, no Ifsettoyes, asingle line onadevice can login as multiple agents. Defaults toyes.

Table 13-4. Options available under the [agents] header in agents.conf

Options Available values Description

maxloginretries Integer value Specifies the maximum number of tries an agent has to log in before the
system considers it a failed attempt and ends the call. Defaults to 3.

autologoff Value in seconds Specifies the number of seconds for which an agent’s device should ring
before the agent is automatically logged off.

autologoffunavail yes,no Ifsetto yes, the agent is automatically logged off when the device being
called returns a status of CHANUNAVAIL.

ackcall yes, no If set to yes, the agent must enter a single DTMF digit to accept the call.
To be used in conjunction with acceptdtmf. Defaults to no.

acceptdtmf Single DTMF Used in conjunction with ackcall, this option defines the DTMF char-

character acter to be used to accept a call. Defaults to #.
endcall yes, no If set to yes, allows an agent to end a call with a single DTMF digit. To

be used in conjunction with enddtmf. Defaults to yes.

The agents.confFile | 281

Options
enddtmf

wrapuptime

musiconhold

goodbye

updatecdr

group

recordagentcalls

recordformat

urlprefix

savecallsin

custom_beep

agent

Available values

Single DTMF
character

Value in milliseconds

Musicclassasdefined
in musiconhold.conf

Name of file (relative
to /var/lib/asterisk/
sounds/<lang>/)

yes, no

Integer value

yes, no
File format (gsm,
wav, etc.)

String (URL)

Filesystem path
(e.q., /var/calls/)

Name of file (relative
to /var/lib/asterisk/
sounds/<lang>/)

Agent definition (see
description)

Description

Used in conjunction with endcall, this option defines the DTMF char-
acter to be used to end a call. Defaults to *,

Specifies the amount of time after disconnection of a caller from an agent
for which the agent will not be available to accept another call. Used in

situations where agents must perform a function after each call (such as
entering call details into a log).

Defines the default music class agents listen to when logged in.

Defines the default goodbye sound played to agents. Defaults to vm-
goodbye.

Used in call detail records to change the source channel field to the agent/
agent_id.

Allows you to define groups for sets of agents. The use of agent groups is
essentially deprecated functionality that we do not recommend you use. If
you define group1, you can use Agent/@1 in queues.confto call that
group of agents. The call will be connected arbitrarily to one of those
agents. Ifno agents are available, it will return back to the queue like any
other unanswered call. If you use Agent/ : 1, it will wait for a member
of the group to become available. The use of strategies has no effect on
agent groups. Do not use these.

Enables/disables the recording of agent calls. Disabled by default.

Defines the format to be used when recording agent calls. Defaultiswav.

Accepts a string as its argument. The string can be formed as a URL and
isappendedtothestartofthetexttobeaddedtothenameoftherecording.

Accepts a filesystem path as its argument. Allows you to override the
default path of /var/spool/asterisk/monitor/ with one of your choosing.?

Accepts a filename as its argument. Can be used to define a custom
notification tone to signal to an always-connected agent that there is an
incoming call.

Defines an agent for use by Queue () and AgentLogin(). These are
agents that will log in and stay connected to the system, waiting for calls
tobe delivered by the Queue () dialplan application. Agents are defined

like so:
agent => agent_id,agent_password,name

An example of a defined agent would be:
agent => 1000,1234,Danielle Roberts

o

Since the storage of calls will require a large amount of hard drive space, you will want to define a strategy to handle storing and managing
these recordings. This location should probably reside on a separate volume, one with very high performance characteristics.

282 | Chapter13: Automatic Call Distribution (ACD) Queues

Advanced Queues

In this section we’ll take a look at some of the finer-grained queue controls, such as
options for controlling announcements and when callers should be placed into (or
removed from) the queue. We’ll also look at penalties and priorities, exploring how we
can control the agents in our queue by giving preference to a pool of agents to answer
the call and increase that pool dynamically based on the wait times in the queue. Finally,
we’ll look at using Local channels as queue members, which gives us the ability to
perform dialplan functionality prior to connecting the caller to an agent.

Priority Queue (Queue Weighting)

Sometimes you need to add people to a queue at a higher priority than that given to
other callers. Perhaps the caller has already spent time waiting in a queue, and an agent
has taken some information but realized the caller needed to be transferred to another
queue. In this case, to minimize the caller’s overall wait time, it might be desirable to
transfer the call to a priority queue that has a higher weight (and thus a higher prefer-
ence), so it will be answered quickly.

Setting a higher priority on a queue is done with the weight option. If you have two
queues with differing weights (e.g., support and support-priority), agents assigned to
both queues will be passed calls from the higher-priority queue in preference to calls
from the lower-priority queue. Those agents will not take any calls from the lower-
priority queue until the higher-priority queue is cleared. (Normally, there will be some
agents who are assigned only to the lower-priority queue, to ensure that those calls are
dealt with in a timely manner.) For example, if we place queue member James Shaw
into both the support and support-priority queues, callers in the support-priority
queue will have a preferred standing with James over callers in the support queue.

Let’s take a look at how we could make this work. First, we need to create two queues
that are identical except for the weight option. We can use a template for this to ensure
that the two queues remain identical if anything should need to change in the future:

[support_template](!)

musicclass=default

strategy=rrmemory

joinempty=no

leavewhenempty=yes

ringinuse=no

[support](support template)
weight=0

[support-priority](support template)
weight=10

With our queues configured (and subsequently reloaded using module reload
app_queue.so from the Asterisk console), we can now create two extensions to transfer

Advanced Queues | 283

callers to. This can be done wherever you would normally place your dialplan logic to
perform transfers. We’re going to use the LocalSets context, which we’ve previously
enabled as the starting context for our devices:

[LocalSets]
include => Queue ; allow direct transfer of calls to queues

[Queues]
exten => 7000,1,Verbose(2,Entering the support queue)
same => n,Queue(support) ; standard support queue available
; at extension 7000
same => n,VoiceMail(7000@queues,u) ; if there are no members in the queue,
; we exit and send the caller to voicemail
same => n,Hangup()

exten => 8000,1,Verbose(2,Entering the priority support queue)
same => n,Queue(support-priority) ; priority queue available at
; extension 8000
same => n,VoiceMail(7000@queues,u) ; if there are no members in the queue,
; we exit and send the caller to voicemail
same => n,Hangup()

There you have it: two queues defined with different weights. We’ve configured our
standard queues to start at extension 7000, and our priority queues to start at 8000. We
can mirror this for several queues by simply matching between the 7XXX and 8XXX ranges.
So, for example, if we have our sales queue at extension 7004, our priority-sales queue
(for returning customers, perhaps?) could be placed in the mirrored queue at 8004,
which has a higher weight.

The only other configuration left to do is to make sure some or all of your queue mem-
bers are placed in both queues. If you have more callers in your 7XXXX queues, you may
want to have more queue members logged into that queue, with a percentage of your
queue members logged into both queues. Exactly how you wish to configure your
queues will depend on your local policy and circumstances.

Queue Member Priority

Within a queue, we can penalize members in order to lower their preference for being
called when there are people waiting in a particular queue. For example, we may pe-
nalize queue members when we want them to be a member of a queue, but to be used
only when the queue gets full enough that all our preferred agents are unavailable. This
means we can have three queues (say, support, sales, and billing), each containing
the same three queue members: James Shaw, Kay Madsen, and Danielle Roberts.

Suppose, however, that we want James Shaw to be the preferred contact in the
support queue, Kay Madsen preferred in sales, and Danielle Roberts preferred in
billing. By penalizing Kay Madsen and Danielle Roberts in support, we ensure that
James Shaw will be the preferred queue member called. Similarly, we can penalize James

284 | Chapter13: Automatic Call Distribution (ACD) Queues

Shaw and Danielle Roberts in the sales queue so Kay Madsen is preferred, and penalize
James Shaw and Kay Madsen in the billing queue so Danielle Roberts is preferred.

Penalizing queue members can be done either in the queues.conffile, if you’re specifying
queue members statically, or through the AddQueueMember () dialplan application. Let’s
look at how our queues would be set up with static members in queues.conf. We’ll be
using the StandardQueue template we defined earlier in this chapter:
[support](StandardQueue)
member => SIP/0000FFFF0001,0,James Shaw ; preferred

member => SIP/0000FFFF0002,10,Kay Madsen ; second preferred
member => SIP/0000FFFF0003,20,Danielle Roberts ; least preferred

[sales](StandardQueue)

member => SIP/0000FFFF0002,0,Kay Madsen
member => SIP/0000FFFF0003,10,Danielle Roberts
member => SIP/0000FFFF0001,20,James Shaw

[billing](StandardQueue)

member => SIP/0000FFFF0003,0,Danielle Roberts
member => SIP/0000FFFF0001,10,James Shaw
member => SIP/0000FFFF0002,20,Kay Madsen

By defining different penalties for each member of the queue, we can help control the
preference for where callers are delivered, but still ensure that other queue members
will be available to answer calls if the preferred member is unavailable. Penalties can
also be defined using AddQueueMember (), as the following example demonstrates:

exten => *54,1,Verbose(2,Logging In Queue Member)
same => n,Set(MemberChannel=${CHANNEL (channeltype)}/${CHANNEL (peername)})

; *CLI> database put queue support/0000FFFF0001/penalty 0
same => n,Set(QueuePenalty=${DB(queue/support/${CHANNEL (peername)}/penalty)})

; *CLI> database put queue support/0000FFFF0001/membername "James Shaw"
same => n,Set(MemberName=${DB(queue/support/${CHANNEL (peername)}/membername)})

; AddQueueMember (queuename[,interface[,penalty[,options[,membername
; [,stateinterface]]]]])
same => n,AddQueueMember (support,${MemberChannel},${QueuePenalty}, ,${MemberName})

Using AddQueueMember (), we’ve shown how you could retrieve the penalty associated
with a given member name for a particular queue and assign that value to the member
when she logs into the queue. Some additional abstraction would need to be done to
make this work for multiple queues; for more information see “Automatically Logging
Into and Out of Multiple Queues” on page 270.

Changing Penalties Dynamically (queuerules.conf)

Using the queuerules.conf file, it is possible to specify rules to change the values of the
QUEUE_MIN_PENALTY and QUEUE_MAX_PENALTY channel variables. The QUEUE_MIN_PENALTY
and QUEUE_MAX_PENALTY channel variables are used to control which members of a queue

Advanced Queues | 285

are to be used for servicing callers. Let’s say we have a queue called support, and we
have five queue members with various penalties ranging from 1 through 5. If prior to a
caller entering the queue the QUEUE_MIN_PENALTY channel variable is set to a value of 2
and the QUEUE_MAX_PENALTY is set to a value of 4, only queue members whose penalties
are set to values ranging from 2 through 4 will be considered available to answer that
call:

[Queues]

exten => 7000,1,Verbose(2,Entering the support queue)

same => n,Set(QUEUE_MIN_PENALTY=2) ; set minimum queue member penalty to be used

same => n,Set(QUEUE_MAX_PENALTY=4) ; set maximum queue member penalty we'll use

same => n,Queue(support) ; entering the queue with minimum and maximum
member penalties to be used

What’s more, during the caller’s stay in the queue, we can dynamically change the
values of QUEUE_MIN_PENALTY and QUEUE_MAX_PENALTY for that caller. This allows either
more or a different set of queue members to be used, depending on how long the caller
waits in the queue. For instance, in the previous example, we could modify the mini-
mum penalty to 1 and the maximum penalty to 5 if the caller has to wait more than 60
seconds in the queue.

The rules are defined using the queuerules.conf file. Multiple rules can be created in
order to facilitate different penalty changes throughout the call. Let’s take a look at
how we’d define the changes described in the previous paragraph:

[more_members]
penaltychange => 60,5,1

W8

If you make changes to the queuerules.conf file and reload
app_queue.so, the new rules will affect only new callers in the queue,
98 not existing callers.

We’ve defined the rule more_members in queuerules.conf and passed the following values

to penaltychange: 60 is the number of seconds to wait before changing the penalty

values, 5 is the new QUEUE_MAX_PENALTY, and 1 is the new QUEUE_MIN_PENALTY. With our

new rule defined, we must reload app_queue.so to make it available to us for use:
*CLI> module reload app_queue.so

-- Reloading module 'app_queue.so' (True Call Queueing)
== Parsing '/etc/asterisk/queuerules.conf': == Found

We can also verify our rules at the console with queue show rules:

*CLI> queue show rules
Rule: more_members
After 60 seconds, adjust QUEUE_MAX_PENALTY to 5 and adjust QUEUE_MIN PENALTY to 1

286 | Chapter13: Automatic Call Distribution (ACD) Queues

With our rule now loaded into memory, we can modify our dialplan to make use of it.
Just modify the Queue() line to include the new rule, like so:

[Queues]

exten => 7000,1,Verbose(2,Entering the support queue)

same => n,Set(QUEUE_MIN_PENALTY=2) ; set minimum queue member penalty
same => n,Set(QUEUE_MAX_PENALTY=4) ; set maximum queue member penalty

; Queue(queuename[,options[,URL[,announceoverride[,timeout[,AGI[,macro

; [,gosub[,rule[,position]]]1]11111)
same => n,Queue(support,,,,,,,,more_members) ; entering queue with minimum and
; maximum member penalties

The queuerules.conf file is quite flexible. We can define our rule using relative instead
of absolute penalty values, and we can define multiple rules:

[more_members]

penaltychange => 30,+1

penaltychange => 45,,-1

penaltychange => 60,+1

penaltychange => 120,+2

Here, we’ve modified our more_members rule to use relative values. After 30 seconds, we
increase the maximum penalty by 1 (which would take us to 5 using our sample
dialplan). After 45 seconds, we decrease the minimum penalty by 1, and so on. We can
verify our new rule changes after a module reload app_queue.so at the Asterisk console:
*CLI> queue show rules
Rule: more_members
After 30 seconds, adjust QUEUE_MAX PENALTY by 1 and adjust QUEUE_MIN_ PENALTY by o
After 45 seconds, adjust QUEUE_MAX_PENALTY by 0 and adjust QUEUE_MIN_PENALTY by -1

After 60 seconds, adjust QUEUE_MAX_PENALTY by 1 and adjust QUEUE_MIN_PENALTY by 0
After 120 seconds, adjust QUEUE_MAX PENALTY by 2 and adjust QUEUE_MIN_PENALTY by 0

Announcement Control

Asterisk has the ability to play several announcements to callers waiting in the queue.
For example, you might want to announce the caller’s position in the queue, the average
wait time, or make periodic announcements thanking your callers for waiting (or what-
ever your audio files say). It’s important to tune the values that control when these
announcements are played to the callers, because announcing their position, thanking
them for waiting, and telling them the average hold time too often may annoy them,
causing them to either hang up or take it out on your agents.

There are several options in the queues.conf file that you can use to fine-tune what and
when announcements are played to your callers. The full list of queue options is avail-
able in “The queues.conf File” on page 275, but we’ll review the relevant ones here.

Table 13-5 lists the options you can use to control when announcements are played to
the caller.

Advanced Queues | 287

Table 13-5. Options related to prompt control timing within a queue

Options Available Description
values

announce-frequency Valuein Defines how often we should announce the caller’s position and/
seconds orestimated hold timeinthe queue. Set thisvaluetozerotodisable.

min-announce-frequency Valuein Indicates the minimum amount of time that must pass before we
seconds announcethe caller's positionin the queue again. Thisis used when

the caller’s position may change frequently, to prevent the caller
hearing multiple updates in a short period of time.

periodic-announce- Valuein Specifies how often we should make periodic announcements to
frequency seconds the caller.
random-periodic-announce yes, no If set to yes, will play the defined periodic announcementsina

random order. See periodic-announce.

relative-periodic-announce yes, no Ifsettoyes, theperiodic-announce-frequencytimerwill
start from when the end of the file being played back is reached,
instead of from the beginning. Defaults to no.

announce-holdtime yes, no, Defines whether the estimated hold time should be played along
once with the periodic announcements. Can be set to yes, no, or only
once.
announce-position yes, no, Defines whether the caller’s position in the queue should be an-
limit, nounced to her. If set to no, the position will never be announced.
more If set to yes, the caller’s position will always be announced. If the

valueis set to 1imit, the caller will hear her position in the queue
only if it is within the limit defined by announce-position-
limit. Ifthevalueisset to more, the caller will hear her position
only if it is beyond the number defined by announce-posi

tion-limit.
announce-position-limit Number of Used if you've defined announce-position as either 1imit
zero or ormore.
greater
announce-round-seconds Valuein If this value is nonzero, we'll announce the number of seconds as
seconds well, and round them to the value defined.

Table 13-6 shows what files will be used when announcements are played to the caller.

Table 13-6. Options for controlling the playback of prompts within a queue

Options Available values Description
musicclass Music class as defined by Sets the music class to be used by a particular queue. You can also
musiconhold.conf override this value with the CHANNEL (musicclass) channel
variable.
queue-thankyou Filename of prompt to If not defined, will play the default value (“Thank you for your pa-
play tience”). Ifsettoanemptyvalue, the promptwill not be played atall.

288 | Chapter13: Automatic Call Distribution (ACD) Queues

Options

queue-youarenext

queue-thereare

queue-callswaiting

queue-holdtime

queue-minutes

queue-seconds

queue-reporthold

periodic-announce

Available values

Filename of prompt to
play
Filename of prompt to
play
Filename of prompt to
play
Filename of prompt to
play

Filename of prompt to
play

Filename of prompt to
play

Filename of prompt to
play

A set of periodic an-
nouncements to be

played, separated by
commas

Description

Ifnot defined, will play the defaultvalue (“Youare nowfirstinline”).
If set to an empty value, the prompt will not be played at all.

If not defined, will play the default value (“There are”). If set to an
empty value, the prompt will not be played at all.

If not defined, will play the default value (“calls waiting”). If set to
an empty value, the prompt will not be played at all.

If not defined, will play the default value (“The current estimated
hold timeis”). If set toan empty value, the prompt will not be played
atall.

If not defined, will play the default value (“minutes”). If set to an
empty value, the prompt will not be played at all.

If not defined, will play the default value (“seconds”). If set to an
empty value, the prompt will not be played at all.

If not defined, will play the default value (“Hold time”). If set to an
empty value, the prompt will not be played at all.

Prompts are played in the order they are defined. Defaults to
queue-periodic-announce (“All representatives are cur-
rently busy assisting other callers. Please wait for the next available
representative”).

If the number of options devoted to playing announcements to callers is any indication
of their importance, it’s probably in our best interest to use them to their fullest po-
tential. The options in Table 13-5 help us define when we’ll play announcements to
callers, and the options in Table 13-6 help us control what we play to our callers. With
those tables in hand, let’s take a look at an example queue where we’ve defined some
values. We’ll use our basic queue template as a starting point:

[general]
autofill=yes
shared_lastcall=ye

[StandardQueue] ()
musicclass=default
strategy=rrmemory
joinempty=yes
leavewhenempty=no
ringinuse=no

[sales](StandardQueue)

[support](StandardQueue) ;

[

S 5

[

e e e e e e we

[

[

distribute all waiting callers to available members
respect the wrapup time for members logged into more
than one queue

template to provide common features

play [default] music

use the Round Robin Memory strategy

do not join the queue when no members available
leave the queue when no members available

don't ring members when already InUse (prevents
multiple calls to an agent)

; create the sales queue using the parameters in the
StandardQueue template

create the support queue using the parameters in the
StandardQueue template

Advanced Queues | 289

We'll now modify the StardardQueue template to control our announcements:

[StandardQueue] (!)
musicclass=default
strategy=rrmemory
joinempty=yes
leavewhenempty=no
ringinuse=no

template to provide common features

play [default] music

use the Round Robin Memory strategy

do not join the queue when no members available
leave the queue when no members available

don't ring members when already InUse (prevents
multiple calls to an agent)

e e e e e e W

HEEEEEEEEE Announcement Control --------

announce-frequency=30 announces caller's hold time and position every 30
seconds

minimum amount of time that must pass before the
caller's position is announced

defines how often to play a periodic announcement to
caller

defines whether to play periodic announcements in

a random order, or serially

defines whether the timer starts at the end of

file playback (yes) or the beginning (no)

defines whether the estimated hold time should be
played along with the periodic announcement

defines if we should announce the caller's position
in the queue

defines the limit value where we announce the
caller's position (when announce-position is set to
limit or more)

rounds the hold time announcement to the nearest
30-second value

min-announce-frequency=30
periodic-announce-frequency=45
random-periodic-announce=no
relative-periodic-announce=yes
announce-holdtime=once
announce-position=1imit

announce-position-limit=10

announce-round-seconds=30

e e Wl W Me We We e e Wl Ml W We We e e Wl Wwe e

Let’s describe what we’ve just set in our StandardQueue template.

We’ll announce the caller’s hold time and position every 30 seconds (announce-
frequency),S and make sure the minimum amount of time that passes before we an-
nounce it again is at least 30 seconds (min-announce-frequency). We do this to limit
how often our announcements are played to the callers, in order to avoid the updates
becoming annoying. Periodically, we’ll play an announcement to the callers that thanks
them for holding and assures them that an agent will be with them shortly. (The an-
nouncement is defined by the periodic-announcement setting. We’re using the default
announcement, but you can define one or more announcements yourself using
periodic-announce.)

These periodic announcements will be played every 45 seconds (periodic-announce-
frequency), in the order they were defined (random-period-announce). To determine
when the periodic-announce-frequency timer should start, we use relative-periodic-
announce. The yes setting means the timer will start after the announcement has finished
playing, rather than when it starts to play. The problem you could run into if you set
this to no is that if your periodic announcement runs for any significant length of time

§ Callers’ positions and hold times are only announced if more than one person is holding in the queue.

290 | Chapter13: Automatic Call Distribution (ACD) Queues

(lets say 30 seconds), it will appear as if it is being played every 15 seconds, rather than
every 45 seconds as may be intended.

How many times we announce the hold time to the caller is controlled via the announce-
holdtime option, which we’ve set to once. Setting the value to yes will announce it every
time, and setting to no will disable it.

We configure how and when we announce the caller’s estimated remaining hold time
via announce-position, which we’ve set to 1limit. Using the value of 1imit for announce-
position lets us announce the caller’s position only if it is within the limit defined by
announce-position-limit. So, in this case we’re only announcing the callers’ positions
if they are in the first 10 positions of the queue. We could also use yes to announce the
position every time the periodic announcement is played, set it to no to never announce
it, or use the value more if we want to announce the position only when it is greater than
the value set for announce-position-limit.

Our last option, announce-round-seconds, controls the value to round to when we an-
nounce the caller’s hold time. In this case, instead of saying “1 minute and 23 seconds,”
the value would be rounded to the nearest 30-second value, which would result in a
prompt of “1 minute and 30 seconds.”

Overflow

Overflowing out of the queue is done either with a timeout value, or when no queue
members are available (as defined by joinempty or leavewhenempty). In this section we’ll
discuss how to control when overflow happens.

Controlling timeouts

The Queue() application supports two kinds of timeout: one is for the maximum period
of time a caller stays in the queue, and the other is how long to ring a device when
attempting to connect a caller to a queue member. We’ll be talking about the maximum
period of time a caller stays in the queue before the call overflows to another location,
such as VoiceMail(). Once the call has fallen out of the queue, it can go anywhere that
a call could normally go when controlled by the dialplan.

The timeouts are specified in two locations. The timeout that indicates how long to
ring queue members for is specified in the queues.conf file. The absolute timeout (how
long the caller stays in the queue) is controlled via the Queue() application. To set a
maximum amount of time for callers to stay in a queue, simply specify it after the queue
name in the Queue() application:
[Queues]
exten => 7000,1,Verbose(2,Joining the support queue for a maximum of 2 minutes)
same => n,Queue(support,120)
same => n,VoiceMail(support@queues,u)
same => n,Hangup()

Advanced Queues | 291

Of course, we could define a different destination, but the VoiceMail() application is
as good as any. Just make sure that if you’re going to send callers to voicemail someone
checks it regularly and calls your customers back.

Now let’s say we have the scenario where we have set our absolute timeout to 10 sec-
onds, our timeout value for ringing queue members to 5 seconds, and our retry timeout
value to 4 seconds. In this scenario, we would ring the queue member for 5 seconds,
then wait 4 seconds before attempting another queue member. That brings us up to
9 seconds of our absolute timeout of 10 seconds. At this point, should we ring the
second queue member for 1 second and then exit the queue, or should we ring this
member for the full 5 seconds before exiting?

We control which timeout value has priority with the timeoutpriority option in
queues.conf. The available values are app and conf. If we want the application timeout
(the absolute timeout) to take priority, which would cause our caller to be kicked out
after exactly 10 seconds, we should set the timeoutpriority value to app. If we want
the configuration file timeout to take priority and finish ringing the queue member,
which will cause the caller to stay in the queue a little longer, we should set timeout
priority to conf. The default value is app (which is the default behavior in previous
versions of Asterisk).

Controlling when to join and leave a queue

Asterisk provides two options that control when callers can join and are forced to leave
queues, based on the statuses of the queue members. The first option, joinempty, is
used to control whether callers can enter a queue. The leavewhenempty option is used
to control when callers already in a queue should be removed from that queue (i.e., if
all of the queue members become unavailable). Both options take a comma-separated
list of values that control this behavior. The factors are listed in Table 13-7.

Table 13-7. Options that can be set for joinempty or leavewhenempty

Value Description

paused Members are considered unavailable if they are paused.

penalty Members are considered unavailable if their penalties are less than QUEUE_MAX_PENALTY.

inuse Members are considered unavailable if their device statusis In Use.

ringing Members are considered unavailable if their device status is Ringing.

unavailable Appliesprimarily toagentchannels;if the agentis notlogged in butis amember of the queueitis considered
unavailable.

invalid Members are considered unavailable if their device status is Invalid. This is typically an error condition.

unknown Members are considered unavailable if device status is unknown.

wrapup Members are considered unavailable if they are currently in the wrapup time after the completion of a call.

292 | Chapter13: Automatic Call Distribution (ACD) Queues

For joinempty, prior to placing a caller into the queue, all the members are checked for
availability using the factors you list as criteria. If all members are deemed to be un-
available, the caller will not be permitted to enter the queue, and dialplan execution
will continue at the next priority.!l For the leavewhempty option, the members’ statuses
are checked periodically against the listed conditions; if it is determined that no
members are available to take calls, the caller is removed from the queue, with dialplan
execution continuing at the next priority.

An example use of joinempty could be:
joinempty=paused, inuse,invalid

With this configuration, prior to a caller entering the queue the statuses of all queue
members will be checked, and the caller will not be permitted to enter the queue unless
at least one queue member is found to have a status that is not paused, inuse, or invalid.

The leavewhenempty example could be something like:
leavewhenempty=inuse,ringing

In this case, the queue members’ statuses will be checked periodically, and callers will
be removed from the queue if no queue members can be found who do not have a status
of either inuse or ringing.

Previous versions of Asterisk used the values yes, no, strict, and loose as the available
values to be assigned. The mapping of those values is shown in Table 13-8.

Table 13-8. Mapping between old and new values for controlling when callers join and leave queues

Value Mapping (joinempty) Mapping (leavewhenempty)
yes (empty) penalty,paused,invalid
no penalty,paused,invalid (empty)

strict penalty,paused,invalid,unavailable penalty,paused,invalid,unavailable

loose penalty,invalid penalty,invalid

Using Local Channels

The use of Local channels as queue members is a popular way of executing parts of the
dialplan and performing checks prior to dialing the actual agent’s device. For example,
it allows us to do things like start recording the call, set up channel variables, write to
alog file, set a limit on the call length (e.g., if it is a paid service), or do any of the other
things we might need to do once we know which location we’re going to call.

When using Local channels for queues, they are added just like any other channels. In
the queues.conf file, adding a Local channel would look like this:

|l If the priority n+1 from where the Queue() application was called is not defined, the call will be hung up.

Advanced Queues | 293

; queues.conf

[support](StandardQueue)

member => Local/SIP-0000FFFF0001@MemberConnector pass the technology to dial over
and the device identifier,
separated by a hyphen. We'll
break it apart inside the

MemberConnector context.

e e e e W

Notice how we passed the type of technology we want to call along with
the device identifier to the MemberConnector context. We’ve simply used
a hyphen (although we could have used nearly anything as a separator
" argument) as the field marker. We’ll use the CUT() function inside the
MemberConnector context and assign the first field (SIP) to one channel
variable and the second field (0000FFFF0001) to another channel variable,
which will then be used to call the endpoint.

Passing information to be later “exploded” in the context used by the
Local channel is a common and useful technique (kind of like the
explode() function in PHP).

Of course, we’ll need the MemberConnector context to actually connect the caller to the
agent:

[MemberConnector]
exten => [A-Za-z0-9].,1,Verbose(2,Connecting ${CALLERID(all)} to Agent at ${EXTEN})

; filter out any bad characters, allowing alphanumeric characters and the hyphen
same => n,Set(QueueMember=${FILTER(A-Za-z0-9\-,${EXTEN})

; assign the first field of QueueMember to Technology using the hyphen separator
same => n,Set(Technology=${CUT(QueueMember,-,1)})

; assign the second field of QueueMember to Device using the hyphen separator
same => n,Set(Device=${CUT(QueueMember,-,2)})

; dial the agent
same => n,Dial(${Technology}/${Device})
same => n,Hangup()

So, now we’ve passed our queue member to the context, and we can dial the device.
However, because we’re using the Local channel as the queue member, the Queue()
won’t necessarily know the state the call is in, especially when the Local channel is
optimized out of the path (see https://wiki.asterisk.org/wiki/display/AST/Local+Channel
+Modifiers for information about the /n modifier, which causes the Local channel to
not be optimized out of the path). The queue will be monitoring the state of the Local
channel, and not that of the device we really want to monitor.

Luckily, we can give the Queue() the actual device to monitor and associate that with
the Local channel, so that the Local channel’s state is always that of the device we’ll
end up calling. Our queue member would be modified in the queues.conf file like so:

294 | Chapter13: Automatic Call Distribution (ACD) Queues

https://wiki.asterisk.org/wiki/display/AST/Local+Channel+Modifiers
https://wiki.asterisk.org/wiki/display/AST/Local+Channel+Modifiers

; queues.conf
[support](StandardQueue)
member => Local/SIP-0000FFFF0001@MemberConnector,,,SIP/0000FFFF0001

Only SIP channels are capable of sending back reliable device state in-
formation, so it is highly recommended that you use only these channels
when using Local channels as queue members.

You can also use the AddQueueMember () and RemoveQueueMember () applications to add
members to and remove members from a queue, just like with any other channel.
AddQueueMember () also has the ability to set the state interface, which we defined stati-
cally in the queues.conf file. An example of how you might do this follows:

[QueueMemberLogin]
exten => 500,1,Verbose(2,Logging in device ${CHANNEL(peername)} into the support queue)

; Save the device's technology to the MemberTech channel variable
same => n,Set(MemberTech=${CHANNEL (channeltype)})

; Save the device's identifier to the MemberIdent channel variable
same => n,Set(MemberIdent=${CHANNEL (peername)})

; Build up the interface name and assign it to the Interface channel variable
same => n,Set(Interface=${MemberTech}/${MemberIdent})

Add the member to the support queue using a Local channel. We're using the same
format as before, separating the technology and the device indentifier with

a hyphen and passing that information to the MemberConnector context. We then
use the IF() function to determine if the member's technology is SIP and, if so,
to pass back the contents of the Interface channel variable as the value to the
state interface field of the AddQueueMember() application.

e e e v we e we we

*** This line should not have any line breaks

same => n,AddQueueMember (support,Local/${MemberTech}-${MemberIdent}
@MemberConnector, , ,${IF($[${MemberTech} = SIP]?${Interface})})

same => n,Playback(silence/1)

; Play back either the agent-loginok or agent-incorrect file, depending on what
; the AQMSTATUS variable is set to.

same => n,Playback(${IF($[${AQMSTATUS} = ADDED]?agent-loginok:agent-incorrect)})
same => n,Hangup()

Now that we can add devices to the queue using Local channels, let’s look at how we
might control the number of calls to either non-SIP channels or devices with more than
one line on them. We can make use of the GROUP() and GROUP_COUNT () functions to track
call counts to an endpoint. We’ll modify our MemberConnector context to take this into
account:

[MemberConnector]
exten => [A-Za-z0-9].,1,Verbose(2,Connecting ${CALLERID(all)} to Agent at ${EXTEN})

; filter out any bad characters, allowing alphanumeric characters and the hyphen
same => n,Set(QueueMember=${FILTER(A-Za-2z0-9\-,${EXTEN})

Advanced Queues | 295

; assign the first field of QueueMember to Technology using the hyphen separator
same => n,Set(Technology=${CUT(QueueMember,-,1)})

; assign the second field of QueueMember to Device using the hyphen separator
same => n,Set(Device=${CUT(QueueMember,-,2)})

; Increase the value of the group inside the queue_members category by one
same => n,Set(GROUP(queue_members)=${Technology}-${Device})

; Check if the group@category is greater than 1, and, if so, return Congestion()
; (too many channels)

; ¥** This line should not have any line breaks
same => n,ExecIf($[${GROUP_COUNT(${Technology}-${Device}@queue members)} > 1]
?Congestion())

; dial the agent
same => n,Dial(${Technology}/${Device})
same => n,Hangup()

The passing back of Congestion() will cause the caller to be returned to the queue (while
this is happening, the caller gets no indication that anything is amiss and keeps hearing
music until we actually connect to the device). While this is not an ideal situation
because the queue will keep trying the member over and over again (or at least include
it in the cycle of agents, depending on how many members you have and their current
statuses), it is better than an agent getting multiple calls at the same time.

We’ve also used this same method to create a type of reservation process. If you want
to call an agent directly (for example, if the caller needs to follow up with a particular
agent), you could reserve that agent by using the GROUP() and GROUP_COUNT() functions
to essentially pause the agent in the queue until the caller can be connected. This is
particularly useful in situations where you need to play some announcements to the
caller prior to connecting her with the agent, but you don’t want the agent to get con-
nected to another caller while the announcements are being played.

Queue Statistics: The queue_log File

The queue_log file located in /var/log/asterisk/ contains information about the queues
defined in your system (when a queue is reloaded, when queue members are added or
removed, etc.) and about calls into the queues (e.g., their status and what channels the
callers were connected to). The queue log is enabled by default, but can be controlled
via the logger.conf file. There are three options related to the queue_log file specifically:

queue_log
Controls whether the queue log is enabled or not. Valid values are yes or no (de-
faults to yes).

296 | Chapter13: Automatic Call Distribution (ACD) Queues

queue_log to file
Controls whether the queue log should be written to a file even when a real time
backend is present. Valid values are yes or no (defaults to no).

queue_log name
Controls the name of the queue log. The default is queue_log.

The queue log is a pipe-separated list of events. The fields in the queue_log file are as
follows:

* Epoch timestamp of the event
* Unique ID of the call

e Name of the queue

* Name of bridged channel

* Type of event

* Zero or more event parameters

The information contained in the event parameters depends on the type of event. A
sample queue_log file might look something like the following:

1292281046 | psy1-1292281041.87|7100 | NONE | ENTERQUEUE | |4165551212 |1

1292281046 | psy1-1292281041.87|7100| Local/9996@MemberConnector |RINGNOANSWER |0
1292281048 | psy1-1292281041.87|7100| Local/9990@MemberConnector | CONNECT |2
|psy1-1292281046.90|0

1292284121 |psy1-1292281041.87|7100 | Local/9990@MemberConnector | COMPLETECALLER|2]3073 |1
1292284222 |[MANAGER| 7100 | Local/9990@MemberConnector | REMOVEMEMBER |

1292284222 |MANAGER| 7200 Local/9990@MemberConnector | REMOVEMEMBER |

1292284491 |MANAGER | 7200 Local/9990@MemberConnector | ADDMEMBER |

1292284491 |MANAGER | 7200 Local/9990@MemberConnector | ADDMEMBER |

1292284519 |psy1-1292284515.93 | 7100 | NONE | ENTERQUEUE | | 4165551212 |1

1292284519 |psy1-1292284515.93 | 7100| Local/9996@MemberConnector | RINGNOANSWER | 0
1292284521 | psy1-1292284515.93 | 7100 | Local/9990@MemberConnector | CONNECT | 2
|psy1-1292284519.96|0

1292284552 | MANAGER | 7100| Local/9990@MemberConnector | REMOVEMEMBER |
1292284552 | MANAGER | 7200| Local/9990@MemberConnector | REMOVEMEMBER |
1292284562 | psy1-1292284515.93 | 7100| Local/9990@MemberConnector | COMPLETECALLER|2|41]1

As you can see from this example, there might not always be a unique ID for the event.
In some cases external services, such as the Asterisk Manager Interface (AMI), perform
actions on the queue; in this case you’ll see something like MANAGER in the Unique ID

field.

The available events and the information they provide are described in Table 13-9.

Queue Statistics: The queue_log File | 297

Table 13-9. Events in the Asterisk queue log

Event

ABANDON

ADDMEMBER

AGENTDUMP

AGENTLOGIN

AGENTLOGOFF

COMPLETEAGENT

COMPLETECALLER

CONFIGRELOAD

CONNECT

ENTERQUEUE

EXITEMPTY

EXITWITHKEY

EXITWITHTIMEOUT

PAUSE
PAUSEALL
UNPAUSE
UNPAUSEALL

Information provided

Written when a caller in a queue hangs up before his call is answered by an agent. Three parameters
are provided for ABANDON: the position of the caller at hangup, the original position of the caller when
entering the queue, and the amount of time the caller waited prior to hanging up.

Written when a member is added to the queue. The bridged channel name will be populated with the
name of the channel added to the queue.

Indicates that the agent hung up on the caller while the queue announcement was being played, prior
to them being bridged together.

Recorded when an agent logs in. The bridged channel field will contain something like Agent/
9994 iflogging in with chan_agent, and the first parameter field will contain the channel logging
in (e.g., SIP/0000FFFF0001).

Logged when an agent logs off, along with a parameter indicating how long the agent was logged in
for.

Recorded when a call is bridged to an agent and the agent hangs up, along with parameters indicating
the amount of time the caller was held in the queue, the length of the call with the agent, and the
original position at which the caller entered the queue.

Same as COMPLETEAGENT, except the caller hung up and not the agent.
Indicates that the queue configuration was reloaded (e.g., via module reload app_queue.so).

Written when the caller and the agent are bridged together. Three parameters are also written: the
amount of time the caller waited in the queue, the unique ID of the queue member’s channel to which
thecallerwasbridged, andtheamountoftimethe queue member'sphonerangpriortobeinganswered.

Written when a caller enters the queue. Two parameters are also written: the URL (if specified) and
the caller ID of the caller.

Written when the caller is removed from the queue due to a lack of agents available to answer the call
(as specified by the 1eavewhenempty parameter). Three parameters are also written: the position
of the caller in the queue, the original position at which the caller entered the queue, and the amount
of time the caller was held in the queue.

Written when the caller exits the queue by pressing a single DTMF key on his phone to exit the queue
and continue in the dialplan (as enabled by the context parameter in queues.conf). Four parameters
are recorded: the key used to exit the queue, the position of the caller in the queue upon exit, the
original position the caller entered the queue at, and the amount of time the caller was waiting in the
queue.

Written when the caller is removed from the queue due to timeout (as specified by the timeout
parameter to Queue ()). Three parameters are also recorded: the position the caller was in when
exiting the queue, the original position of the caller when entering the queue, and the amount of time
the caller waited in the queue.

Written when a queue member is paused.
Written when all members of a queue are paused.
Written when a queue member is unpaused.

Written when all members of a queue are unpaused.

298 | Chapter13: Automatic Call Distribution (ACD) Queues

Event Information provided

PENALTY Written when a member’s penalty is modified. The penalty can be changed through several means,
such as the QUEUE_MEMBER_PENALTY () function, through using Asterisk Manager Interface, or
the Asterisk CLI commands.

REMOVEMEMBER Written when a queue member is removed from the queue. The bridge channel field will contain the
name of the member removed from the queue.

RINGNOANSWER Logged whena queue memberis rung for a period of time, and the timeout value for ringing the queue
member is exceeded. A single parameter will also be written indicating the amount of time the
member’s extension rang.

TRANSFER Written when a caller is transferred to another extension. Additional parameters are also written,

which include: the extension and context the caller was transferred to, the hold time of the caller in
the queue, the amount of time the caller was speaking to a member of the queue, and the original
position of the caller when he entered the queue.?

SYSCOMPAT Recorded if an agent attempts to answer a call, but the call cannot be set up due to incompatibilities
in the media setup.

2 Please note that when the caller is transferred using SIP transfers (rather than the built-in transfers triggered by DTMF and configured in
features.conf), the TRANSFER event may not be reliable.

Conclusion

We started this chapter with a look at basic call queues, discussing what they are, how
they work, and when you might want to use one. After building a simple queue, we
explored how to control queue members through various means (including the use of
Local channels, which provide the ability to perform some dialplan logic just prior to
connecting to a queue member). We also explored all the options available to us in the
queues.conf, agents.conf, and queuerules.conf files, which offer us fine-grained control
over any queues we configure. Of course, we need the ability to monitor what our
queues are doing, so we looked finally at the queue log and the myriad of events and
event parameters written when various things happen in our queues.

With the knowledge provided in this chapter, you should be well on your way to im-
plementing a successful set of queues for your company.

Conclusion | 299

CHAPTER 14
Device States

Out of clutter, find simplicity.

—Albert Einstein

It is often useful to be able to determine the state of the devices that are attached to a
telephone system. For example, a receptionist might require the ability to see the sta-
tuses of all the people in the office in order to determine whether somebody can take
a phone call. Asterisk itself needs this same information. As another example, if you
were building a call queue, as discussed in Chapter 13, Asterisk needs to know when
an agent is available so that another call can be delivered. This chapter discusses device
state concepts in Asterisk, as well as how devices and applications use and access this
information.

Device States

There are two types of devices that device states refer to: real devices and virtual devices.
Real devices are telephony endpoints that can make or receive calls, such as SIP phones.
Virtual devices include things that are inside of Asterisk, but provide useful state in-
formation. Table 14-1 lists the available virtual devices in Asterisk.

Table 14-1. Virtual devices in Asterisk

Virtual device Description
MeetMe: The state of a MeetMe conference bridge. The state will reflect whether or not the conference
<conference bridge> bridge currently has participants called in. More information on using MeetMe () for call

conferencing can be found in “Conferencing with MeetMe()” on page 218.

SLA:<shared line> Shared Line Appearance state information. This state is manipulated by the SLATrunk ()
and SLAStation() applications. More detail can be found in “Shared Line Appearan-
ces” on page 318.

Custom:<custom name> Custom device states. These states have custom names and are modified using the
DEVICE_STATE() function. Example usage can be found in “Using Custom Device
States” on page 307.

301

Virtual device Description

Park:<exten@context> The state of a spot in a call parking lot. The state information will reflect whether or not a
calleris currently parked at that extension. More information about call parking in Asterisk
can be found in “Parking Lots” on page 228.

Calendar:<calendar (alendar state. Asterisk will use the contents of the named calendar to set the state to
name> availableorbusy.Moreinformation about calendarintegration in Asterisk can be found
in Chapter 18.

A device state is a simple one-to-one mapping to a device. Figure 14-1 shows this
mapping.

Device states ; Devices
SIP/phoneA . SIP/phoneA
MeetMe:31337

Figure 14-1. Device state mappings

Checking Device States
The DEVICE_STATE() dialplan function can be used to read the current state of a device.
Here is a simple example of it being used in the dialplan:
exten => 7012,1,Answer()
; *¥** This line should not have any line breaks
same => n,Verbose(3,The state of SIP/0004F2060EB4 is

${DEVICE_STATE(SIP/0004F2060EB4)})
same => n,Hangup()

If we call extension 7012 from the same device that we are checking the state of, the
following verbose message comes up on the Asterisk console:

-- The state of SIP/0004F2060EB4 is INUSE

302 | Chapter14: Device States

Chapter 20 discusses the Asterisk Manager Interface (AMI). The Get
Var manager action can be used to retrieve device state values in an
* Qlar external program. You can use it to get the value of either a normal
" variable or a dialplan function, such as DEVICE_STATE().

The following list includes the possible values that will come back from the
DEVICE_STATE() function:
¢ UNKNOWN

* NOT_INUSE

¢ INUSE

* BUSY

e INVALID

¢ UNAVAILABLE

¢ RINGING

¢ RINGINUSE

¢ ONHOLD

Extension States

Extension states are another important concept in Asterisk. Extension states are what
SIP devices subscribe to for presence information. (SIP presence is discussed in more
detail in “SIP Presence” on page 306). The state of an extension is determined by
checking the state of one or more devices. The list of devices that map to extension
states is defined in the Asterisk dialplan, /etc/asterisk/extensions.conf, using a special
hint directive. Figure 14-2 shows the mapping between devices, device states, and
extension states.

Hints

To define an extension state hint in the dialplan, the keyword hint is used in place of
a priority. Here is a simple example dialplan that relates to Figure 14-2:

[default]
exten => 1234,hint,SIP/phoneA3SIP/phoneB&SIP/phoneC
exten => 5555,hint,DAHDI/1

exten => 31337,hint,MeetMe:31337

Extension States | 303

Extension states Hints Device states Devices

/—— SIP/phoneA

SIP/phoneB SIP/phoneB

SIP/phoneA

006

1234@default -

\—'— SIP/phoneC SIP/phoneC

5555@default —— DAHD/1

31337 @default - MeetMe:31337

Figure 14-2. Extension state mappings

Typically, hints are simply defined along with the rest of the extension. This next ex-
ample adds simple extension entries for what would happen if each of these extensions
were called:

[default]

exten => 1234,hint,SIP/phoneA&SIP/phoneB&SIP/phoneC
exten => 1234,1,Dial(SIP/phoneA&SIP/phoneB&SIP/phoneC)

exten => 5555,hint,DAHDI/1
exten => 5555,1,Dial(DAHDI/1)

exten => 31337,hint,MeetMe:31337
exten => 31337,1,MeetMe(31337,dM)

In our example we’ve made a direct correlation between the hint’s extension number
and the extension number being dialed, although there is no requirement that that be
the case.

Checking Extension States

The easiest way to check the current state of an extension is at the Asterisk CLI. The
core show hints command will show you all currently configured hints. Consider the
following hint definition:

304 | Chapter14: Device States

[phones]

exten => 7001,hint,SIP/0004F2060EB4
When core show hints is executed at the Asterisk CLI, the following output is presented
when the device is currently in use:

*CLI> core show hints

-= Registered Asterisk Dial Plan Hints =-
7001@phones : SIP/0004F2060EB4 State:InUse Watchers o

- 1 hints registered

In addition to showing you the state of the extension, the output of core show hints also
provides a count of watchers. A watcher is something in Asterisk that has subscribed
to receive updates on the state of this extension. If a SIP phone subscribes to the state
of an extension, the watcher count will be increased.

Extension state can also be retrieved with a dialplan function, EXTENSION_STATE(). This
function operates similarly to the DEVICE_STATE() function described in the preceding
section. The following example shows an extension that will print the current state of
another extension to the Asterisk console:

exten => 7013,1,Answer()
same => n,Verbose(3,The state of 7001@phones is ${EXTENSION STATE(7001@phones)})
same => n,Hangup()

When this extension is called, this is the verbose message that shows up on the Asterisk
console:
-- The state of 7001@phones is INUSE

The following list includes the possible values that may be returned back from the
EXTENSION_STATE() function:

¢ UNKNOWN

¢ NOT_INUSE

¢ INUSE

* BUSY

* UNAVAILABLE

¢ RINGING

¢ RINGINUSE

¢ HOLDINUSE

¢ ONHOLD

Extension States | 305

SIP Presence

Asterisk provides the ability for devices to subscribe to extension state using the SIP
protocol. This functionality is often referred to as BLF (Busy Lamp Field)."

Asterisk Configuration

To get this working, hints must be defined in /etc/asterisk/extensions.conf (see
“Hints” on page 303 for more information on configuring hints in the dialplan). Ad-
ditionally, there are some important options that must be set in the configuration file
for the SIP channel driver, which is /etc/asterisk/sip.conf. The following list discusses
these options:

callcounter
Enables/disables call counters. This must be enabled for Asterisk to be able to
provide state information for SIP devices. This option may be set either in the
[general] section or in peer-specific sections of sip.conf.

N

If you would like device states to work for SIP devices, you must at
least set the callcounter option to yes. Otherwise, the SIP channel
* 9lse driver will not bother tracking calls to and from devices and will
" provide no state information about them.

busylevel
Sets the number of calls that must be in progress for Asterisk to report that a device
is busy. This option may only be set in peer-specific sections of sip.conf. By default,
this option is not set. This means that Asterisk will report that a device is in use,
but never busy.

call-limit
This option has been deprecated in favor of using the GROUP() and GROUP_COUNT()
functions in the Asterisk dialplan. You may find older documentation that suggests
that this option is required for SIP presence to work. That used to be the case, but
this option has been replaced by the callcounter option for that purpose.

allowsubscribe
Allows you to disable support for subscriptions. If this option has not been set,
subscriptions will be enabled. To disable subscription support completely, set
allowsubscribe to no in the [general] section of sip.conf.

* Some also like to call these “blinky lamps” or “blinky lights” for their phones. Geeks and their LEDs...

306 | Chapter14: Device States

subscribecontext
Allows you to set a specific context for subscriptions. Without this set, the context
defined by the context option will be used. This option may be set either in the
[general] section or in peer-specific sections of sip.conf.

notifyringing
Controls whether or not a notification will be sent when an extension goes into a
ringing state. This option is set to yes by default. It only has an effect on subscrip-
tions that use the dialog-info event package. This option can only be set globally
in the [general] section of sip.conf.

notifyhold
Allows chan_sip to set SIP devices’ states to ONHOLD. This is set to yes by default.
This option can only be set globally in the [general] section of sip.conf.
notifycid
Enables/disables sending of an inbound call’s caller ID information to an exten-
sion. This option applies to devices that subscribe to dialog-info+xml-based ex-
tension state notifications, such as Snom phones. Displaying caller ID information
can be useful to help an agent decide whether to execute a pickup on an incoming
call. This option is set to no by default.

This magic pickup only works if the extension and context of the
hint are the same as the extension and context of the incoming call.
98 Notably, the usage of the subscribecontext option usually breaks
" this option. This option can also be set to the value ignore-con
text. This will bypass the context issue, but should only be used
in an environment where there is only a single instance of the ex-
tension that has been subscribed to. Otherwise, you might acci-
dentally pick up calls that you did not mean to pick up.

Using Custom Device States

Asterisk provides the ability to create custom device states. This lends itself to the
development of some interesting custom applications. We’ll start by showing the basic
syntax for controlling custom device states, and then we’ll build an example that uses
them.

Custom device states all start with a prefix of Custom:. The text that comes after the
prefix can be anything you want. To set or read the value of a custom device state, use
the DEVICE_STATE() dialplan function. For example, to set a custom device state:

exten => example,1,Set(DEVICE_STATE(Custom:example)=BUSY)

Similarly, to read the current value of a custom device state:

exten => Verbose(1,The state of Custom:example is ${DEVICE_STATE(Custom:example)})

Using Custom Device States | 307

Custom device states can be used as a way to directly control the state shown on a
device that has subscribed to the state of an extension. Just map an extension to a
custom device state using a hint in the dialplan:

exten => example,hint,Custom:example

An Example

There are a number of interesting use cases for custom device states. In this section we
will build an example that implements a custom “do not disturb” (DND) button on a
SIP phone. This same approach could be applied to many other things that you might
like to be able to toggle at the touch of a button. For example, this approach could be
used to let members know if they are currently logged into a queue or not.

The first piece of the example is the hint in the dialplan. This is required so BLF can be
configured on a SIP phone to subscribe to this extension. In this case, the phone must
be configured to subscribe to the state of DND_7015:

exten => DND_7015,hint,Custom:DND_7015

Next, we will create an extension that will be called when the user presses the key
associated with the custom DND feature. It is interesting to note that this extension
does nothing with audio. In fact, the user of the phone most likely will not even know
that a call is placed when he presses the button. As far as the user is concerned, pressing
that key simply turns on or off the light next to the button that reflects whether or not
DND is enabled. The extension should look like this:

exten => DND_7015,1,Answer ()
same => n,GotoIf($["${DEVICE_STATE(Custom:DND_7015)}"="BUSY"]?turn_off:turn_on)

same => n(turn_off),Set(DEVICE_STATE(Custom:DND_7015)=NOT_INUSE)
same => n,Hangup()

same => n(turn_on),Set(DEVICE_STATE(Custom:DND_7015)=BUSY)
same => n,Hangup()

The final part of this example shows how the DND state is used in the dialplan. If DND
is enabled, a message is played to the caller saying that the agent is unavailable. If it is
disabled, a call will be made to a SIP device:

exten => 7015,1,GotoIf($["${DEVICE_STATE(Custom:DND_7015)}"="BUSY"]?busy:available)
same => n(available),Verbose(3,DND is currently off for 7015.)
same => n,Dial(SIP/exampledevice)
same => n,Hangup()

same => n(busy),Verbose(3,DND is on for 7015.)

same => n,Playback(vm-theperson)

same => n,Playback(digits/78&digits/08&digits/18digits/5)
same => n,Playback(vm-isunavail)

same => n,Playback(vm-goodbye)

same => n,Hangup()

308 | Chapter14: Device States

Example 14-1 shows the full example as it would appear in /etc/asterisk/extensions.conf.

Example 14-1. Custom “do not disturb” functionality using custom device states

5
; A hint so a phone can use BLF to signal the DND state.

)
exten => DND_7015,hint,Custom:DND_7015

5
; An extension to dial when the user presses the custom DND

; key on his phone. This will toggle the state and will result
; in the light on the phone turning on or off.
5
e

xten => DND_7015,1,Answer ()
same => n,GotoIf($["${DEVICE_STATE(Custom:DND_7015)}"="BUSY"]?turn_off:turn_on)

same => n(turn_off),Set(DEVICE_STATE(Custom:DND_7015)=NOT_INUSE)
same => n,Hangup()

same => n(turn_on),Set(DEVICE_STATE(Custom:DND_7015)=BUSY)
same => n,Hangup()

J

; Example usage of the DND state.

J

exten => 7015,1,GotoIf($["${DEVICE_STATE(Custom:DND_7015)}"="BUSY"]?busy:available)
same => n(available),Verbose(3,DND is currently off for 7015.)
same => n,Dial(SIP/exampledevice)
same => n,Hangup()

same => n(busy),Verbose(3,DND is on for 7015.)

same => n,Playback(vm-theperson)

same => n,Playback(digits/78digits/08digits/18digits/5)
same => n,Playback(vm-isunavail)

same => n,Playback(vm-goodbye)

same => n,Hangup()

Distributed Device States

Asterisk is primarily designed to run on a single system. However, as requirements for
scalability increase, it is common for deployments to require multiple Asterisk servers.
Since that has become increasingly common, some features have been added to make
it easier to coordinate multiple Asterisk servers. One of those features is distributed
device state support.

What this means is that if a device is on a call on one Asterisk server, the state of that
device on all servers reflects that. To be more specific, the way this works is that every
server knows the state of each device from the perspective of each server. Using this
collection of states, each server will calculate what the overall device state value is to
report to the rest of Asterisk.

Distributed Device States | 309

To accomplish distributed device state, some sort of messaging mechanism must be
used for the servers to communicate with each other. Two such mechanisms are sup-
ported as of Asterisk 1.8: AIS and XMPP.

Using OpenAlS

The Application Interface Specification (AIS) is a standardized set of messaging mid-
dleware APIs. The definition for the APIs is provided by the Service Availability Fo-
rum. The open source implementation of AIS that was used for the development and
testing of this functionality is OpenAlIS, which is built on Corosync.

Corosync, and thus OpenAlS, is built in such a way that nodes must be located on the
same high-speed, low-latency LAN. If your deployment is geographically distributed,
you should use the XMPP-based distributed device state support, which is discussed
in “Using XMPP” on page 314.

Installation

The first step to getting the necessary components installed is to install Corosync and
OpenAlS. Corosync depends on the NSS library. Install the libnss3-dev package on
Ubuntu or the nss-devel package on CentOS.

Next, install Corosync and OpenAlIS. There may be packages available, but they are
also fairly straightforward to install from source. Download the latest releases from the
Corosync and OpenAlIS home pages. Then, execute the following commands to com-
pile and install each package:

$ tar xvzf corosync-1.2.8.tar.gz

$ cd corosync-1.2.8

$./configure

$ make
$ sudo make install

$ tar xvzf openais-1.1.4.tar.gz
$ cd openais-1.1.4

$./configure

$ make

$ sudo make install

If you installed Asterisk prior to installing Corosync and OpenAlS, you will need to re-
compile and reinstall Asterisk to get AIS support. Start by running the Asterisk config-
ure script. The configure script is responsible for inspecting the system to find out which
optional dependencies can be found so that the build system knows which modules
can be built:

$ cd /path/to/asterisk
$./configure

310 | Chapter14: Device States

http://www.saforum.org
http://www.saforum.org
http://www.openais.org
http://www.corosync.org

After running the configure script, run the menuselect tool to ensure that Asterisk has
been told to build the res_ais module (this module can be found in the Resource Mod-
ules section of menuselect):

$ make menuselect
Finally, compile and install Asterisk:

$ make
$ sudo make install

W N
)

This is a pretty quick and crude set of instructions for compiling and
installing Asterisk. For a much more complete set of instructions, please
W' see Chapter 3.

OpenAlS configuration

Now that OpenAlS has been installed, it needs to be configured. There is a configura-
tion file for both OpenAlIS and Corosync that must be put in place. Check to see if /etc/
ais/openais.conf and /etc/corosync/corosync.conf exist. If they do not exist, copy in the
sample configuration files:

$ sudo mkdir -p /etc/ais

$ cd openais-1.1.4
$ sudo cp conf/openais.conf.sample /etc/ais/openais.conf

$ sudo mkdir -p /etc/corosync
$ cd corosync-1.2.8
$ sudo cp conf/corosync.conf.sample /etc/corosync/corosync.conf

Next, you will need to edit both the openais.conf and corosync.conf files. There are a
number of options here, but the most important one that must be changed is the
bindnetaddr option in the totem-interface section. This must be set to the IP address
of the network interface that this node will use to communicate with the rest of the
cluster:

totem {

interface {
ringnumber: 0
bindnetaddr: 10.24.22.144
mcastaddr: 226.94.1.1
mcastport: 5405

}

For detailed documentation on the rest of the options in these configuration files, see
the associated manpages:

$ man openais.conf
$ man corosync.conf

Distributed Device States | 311

To get started with testing out basic OpenAlS connectivity, try starting the aisexec
application in the foreground and watching the output:

$ sudo aisexec -f

For example, if you watch the output of aisexec on the first node while you bring up
the second node, you should see output that reflects that the cluster now has two
connected nodes:

Nov 13 06:55:30 corosync [CLM] CLM CONFIGURATION CHANGE
Nov 13 06:55:30 corosync [CLM] New Configuration:

Nov 13 06:55:30 corosync [CLM] r(0) ip(10.24.22.144)

Nov 13 06:55:30 corosync [CLM] r(0) ip(10.24.22.242)

Nov 13 06:55:30 corosync [CLM] Members Left:

Nov 13 06:55:30 corosync [CLM] Members Joined:

Nov 13 06:55:30 corosync [CLM] r(0) ip(10.24.22.242)

Nov 13 06:55:30 corosync [TOTEM] A processor joined or left the membership and a new
membership was formed.

Nov 13 06:55:30 corosync [MAIN] Completed service synchronization, ready to provide
service.

If you have any trouble getting the nodes to sync up with each other,
one thing to check is that there are no firewall rules on the nodes that
W are blocking the multicast traffic that is used for the nodes to commu-
" nicate with each other.

Asterisk configuration

The res_ais module for Asterisk has a single configuration file, /etc/asterisk/ais.conf.
One short section is required in this file to enable distributed device state in an AIS
cluster. Place the following contents in the /etc/asterisk/ais.conf file:

[device_state]

type = event_channel

publish_event = device_state

subscribe event = device state
There is an Asterisk CLI command that can be used to ensure that this configuration
has been loaded properly:

*CLI> ais evt show event channels

= Event Channels

=== Event Channel Name: device state
=== ==> Publishing Event Type: device state
=== ==> Subscribing to Event Type: device state

312 | Chapter14: Device States

Another useful Asterisk CLI command provided by the res_ais module is used to list
the members of the AIS cluster:

*CLI> ais clm show members

=== (Cluster Members

=== Node Name: 10.24.22.144
=== ==> ID: 0x9016180a

=== ==> Address: 10.24.22.144
==> Member: Yes

=== Node Name: 10.24.22.242
==> ID: 0xf216180a

=> Address: 10.24.22.242
=> Member: Yes

Testing device state changes

Now that you’ve set up and configured distributed device state using OpenAlS, there
are some simple tests that can be done using custom device states to ensure that device
states are being communicated between the servers. Start by creating a test hint in the
Asterisk dialplan, /etc/asterisk/extensions.conf:

[devstate test]
exten => foo,hint,Custom:abc

Now, you can adjust the custom device state from the Asterisk CLI using the dialplan
set global CLI command and then check the state on each server using the core show
hints command. For example, we can use this command to set the state on one server:

pbx1*CLI> dialplan set global DEVICE_STATE(Custom:abc) INUSE
-- Global variable 'DEVICE_STATE(Custom:abc)' set to 'INUSE'

and then, check the state on another server using this command:

*CLI> core show hints

-= Registered Asterisk Dial Plan Hints =-
foo@devstatetest : Custom:abc State:InUse Watchers o

Distributed Device States | 313

If you would like to dive deeper into the processing of distributed device state changes,
there are some useful debug messages that can be enabled. First, enable debug on the
Asterisk console in /etc/asterisk/logger.conf. Then, enable debugging at the Asterisk
CLL

*CLI> core set debug 1

With the debug output enabled, you will see some messages that show how Asterisk
is processing each state change. When the state of a device changes on one server,
Asterisk checks the state information it has for that device on all servers and determines
the overall device state. The following examples illustrate:

*CLI> dialplan set global DEVICE_STATE(Custom:abc) NOT_INUSE
-- Global variable 'DEVICE STATE(Custom:abc)' set to 'NOT_INUSE'

[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:652

handle devstate change: Processing device state change for 'Custom:abc’

[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:602

process_collection: Adding per-server state of 'Not in use' for 'Custom:abc’
[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:602

process_collection: Adding per-server state of 'Not in use' for 'Custom:abc’
[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:609

process_collection: Aggregate devstate result is 'Not in use' for 'Custom:abc’
[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:631

process_collection: Aggregate state for device 'Custom:abc' has changed to
'Not in use'

*CLI> dialplan set global DEVICE_STATE(Custom:abc) INUSE
-- Global variable 'DEVICE_STATE(Custom:abc)' set to 'INUSE'

[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:652 handle devstate change:
Processing device state change for 'Custom:abc'

[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:602 process collection:
Adding per-server state of 'Not in use' for 'Custom:abc'

[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:602 process collection:
Adding per-server state of 'In use' for 'Custom:abc'

[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:609 process_collection:
Aggregate devstate result is 'In use' for 'Custom:abc’

[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:631 process_collection:
Aggregate state for device 'Custom:abc' has changed to 'In use'

Using XMPP

The eXtensible Messaging and Presence Protocol (XMPP), formerly (and still com-
monly) known as Jabber, is an IETF standardized communications protocol. It is most
commonly known as an IM protocol, but it can be used for a number of other interesting
applications as well. The XMPP Standards Foundation (XSF) works to standardize
extensions to the XMPP protocol. One such extension, referred to as PubSub, provides
a publish/subscribe mechanism.

314 | Chapter14: Device States

http://www.xmpp.org

Asterisk has the ability to use XMPP PubSub to distribute device state information. One
of the nice things about using XMPP to accomplish this is that it works very well for
geographically distributed Asterisk servers.

Installation

To distribute device states using XMPP, you will need an XMPP server that supports
PubSub. One such server that has been successtfully tested against Asterisk is Tigase.

The Tigase website has instructions for installing and configuring the Tigase server.
We suggest that you follow those instructions (or the instructions provided for what-
ever other server you may choose to use) and come back to this book when you’re ready
to work on the Asterisk-specific parts.

On the Asterisk side of things, you will need to ensure that you have installed the
res_jabber module. You can check to see if it is already loaded at the Asterisk CLI:

*CLI> module show like jabber

Module Description Use Count
res_jabber.so AJI - Asterisk Jabber Interface 0
1 modules loaded

If you are using a custom /etc/asterisk/modules.conf file that lists only specific modules
to be loaded, you can also check the filesystem to see if the module was compiled and
installed:

$ 1s -1 /usr/lib/asterisk/modules/res_jabber.so
-TWXT-Xr-x 1 root root 837436 2010-11-12 15:33 /usr/lib/asterisk/modules/res_jabber.so

If you do not yet have res_jabber installed, you will need to install the iksemel and
OpenSSL libraries. Then, you will need to recompile and reinstall Asterisk. Start by
running the Asterisk configure script, which is responsible for inspecting the system
and locating optional dependencies, so that the build system knows which modules
can be built:

$ cd /path/to/asterisk
$./configure

After running the configure script, run the menuselect tool to ensure that Asterisk has
been told to build the res_jabber module. This module can be found in the Resource
Modules section of menuselect:

$ make menuselect
Finally, compile and install Asterisk:

$ make
$ sudo make install

Distributed Device States | 315

http://www.tigase.org

This is a pretty quick and crude set of instructions for compiling and
installing Asterisk. For a much more complete set of instructions, please
~ 98 see Chapter 3.

Creating XMPP accounts

Unfortunately, Asterisk is currently not able to register new accounts on an XMPP
server. You will have to create an account for each server via some other mechanism.
The method we used while testing was to use an XMPP client such as Pidgin to complete
the account registration process. After account registration is complete, the XMPP cli-
ent is no longer needed. For the rest of the examples, we will use the following two
buddies, both of which are on the server jabber.shifteight.org:

* serverl@jabber.shifteight.org/astvoip1
* server2@jabber.shifteight.org/astvoip2

Asterisk configuration

The /etc/asterisk/jabber.conf file will need to be configured on each server. We will show
the configuration for a two-server setup here, but the configuration can easily be ex-
panded to more servers as needed. Example 14-2 shows the contents of the configura-
tion file for server 1 and Example 14-3 shows the contents of the configuration file for
server 2. For additional information on the jabber.conf options associated with distrib-
uted device states, see the configs/jabber.conf.sample file that is included in the Asterisk
source tree.

Example 14-2. jabber.conf for serverl

[general]
autoregister = yes

[asterisk]

type = client

serverhost = jabber.shifteight.org

pubsub_node = pubsub.jabber.shifteight.org
username = serverl@jabber.shifteight.org/astvoip1
secret = mypassword

distribute events = yes

status = available

usetls = no

usesasl = yes

buddy = server2@jabber.shifteight.org/astvoip2

Example 14-3. jabber.conf for server2

[general]
autoregister = yes

[asterisk]
type = client

316 | Chapter14: Device States

http://www.pidgin.im

serverhost = jabber.shifteight.org

pubsub_node = pubsub.jabber.shifteight.org
username = server2@jabber.shifteight.org/astvoip2
secret = mypassword

distribute_events = yes

status = available

usetls = no

usesasl = yes

buddy = serveri@jabber.shifteight.org/astvoip1l

Testing

To ensure that everything is working properly, start by doing some verification of the
jabber.conf settings on each server. There are a couple of relevant Asterisk CLI com-
mands that can be used here. The first is the jabber show connected command, which
will verify that Asterisk has successfully logged in with an account on the jabber server.
The output of this command on the first server shows:

*CLI> jabber show connected

Jabber Users and their status:
User: serverl@jabber.shifteight.org/astvoipl - Connected

Number of users: 1

Meanwhile, if jabber show connected is executed on the second server, it shows:

*CLI> jabber show connected

Jabber Users and their status:
User: server2@jabber.shifteight.org/astvoip2 - Connected

Number of users: 1

The next useful command for verifying the setup is jabber show buddies. This command
allows you to verify that the other server is correctly listed on your buddy list. It also
lets you see if the other server is seen as currently connected. If you were to run this
command on the first server without Asterisk currently running on the second server,
the output would look like this:

*CLI> jabber show buddies

Jabber buddy lists
Client: serveri@jabber.shifteight.org/astvoip1
Buddy: server2@jabber.shifteight.org
Resource: None
Buddy: server2@jabber.shifteight.org/astvoip2
Resource: None

Distributed Device States | 317

Next, start Asterisk on the second server and run jabber show buddies on that server.
The output will contain more information, since the second server will see the first
server online:

*CLI> jabber show buddies

Jabber buddy lists
Client: server2@jabber.shifteight.org/astvoip2
Buddy: serveri@jabber.shifteight.org
Resource: astvoipl
node: http://www.asterisk.org/xmpp/client/caps
version: asterisk-xmpp
Jingle capable: yes
Status: 1
Priority: o
Buddy: serveri@jabber.shifteight.org/astvoip1
Resource: None

At this point, you should be ready to test out the distribution of device states. The
procedure is the same as that for testing device states over AIS, which can be found in
“Testing device state changes” on page 313.

Shared Line Appearances

In Asterisk, Shared Line Appearances (SLA)—sometimes also referred to in the industry
as Bridged Line Appearances (BLA)—can be used. This functionality can be used to
satisfy two primary use cases, which include emulating a simple key system and creating
shared extensions on a PBX.

Building key system emulation is the use case for which these applications were pri-
marily designed. In this environment, you have some small number of trunks coming
into the PBX, such as analog phone lines, and each phone has a dedicated button for
calls on that trunk. You may refer to these trunks as line 1, line 2, and line 3, for example.

The second primary use case is for creating shared extensions on your PBX. This use
case seems to be the most common these days. There are many reasons you might want
to do this. One example is that you may want an extension to appear on both the phones
of an executive and her administrative assistant. Another example would be if you want
the same extension to appear on all of the phones in the same lab.

While these use cases are supported to an extent, there are limitations. There is still
more work to be done in Asterisk to make these features work really well for what
people want to do with them. These limitations are discussed in “Limita-
tions” on page 328.

Installing the SLA Applications

The SLA applications are built on two key technologies in Asterisk. The first is device
state processing, and the second is conferencing. Specifically, the conferencing used by

318 | Chapter14: Device States

these applications is the MeetMe() application. The SLA applications come with the
same module as the MeetMe() application, so you must install the app_meetme module.

You can check at the Asterisk CLI to see if you already have the module:

pbx*CLI> module show like app_meetme.so

Module Description Use Count
0 modules loaded

In this case, the module is not present. The most common reason that an Asterisk
system does not have the app_meetme module is because DAHDI has not been installed.
The MeetMe () application uses DAHDI to perform conference mixing. Once DAHDI is
installed (refer to Chapter 3 for installation information), rerun the Asterisk configure
script, recompile, and reinstall. Once the module has been properly installed, you
should be able to see it at the CLI:

*CLI> module show like app meetme.so

Module Description Use Count
app_meetme.so MeetMe conference bridge 0
1 modules loaded

Once the app_meetme module is loaded, you should have both the SLAStation() and
SLATrunk() applications available:

*CLI> core show applications like SLA

-= Matching Asterisk Applications =-
SLAStation: Shared Line Appearance Station.
SLATrunk: Shared Line Appearance Trunk.
-= 2 Applications Matching =-

Configuration Overview

The two main configuration files that must be edited to set up SLA are /etc/asterisk/
extensions.conf and /etc/asterisk/sla.conf. The sla.conf file is used for defining trunks
and stations. A station is any SIP phone that will be using SLA. Trunks are the literal
trunks or shared extensions that will be appearing on two or more stations. The Asterisk
dialplan, extensions.conf, provides some important glue that pulls an SLA configuration
together. The dialplan includes some extension state hints and extensions that define
how calls get into and out of an SLA setup. The next few sections provide detailed
examples of the configuration for a few different use cases.

Key System Example with Analog Trunks

This usage of SLA comes with the simplest configuration.t This scenario would typi-
cally be used for a fairly small installation, where you have a few analog lines and SIP

1 Admittedly, none of the configuration for SLA is simple.

Shared Line Appearances | 319

phones that all have line keys directly associated with the analog lines. For the purposes
of this example, we will say we have two analog lines and four SIP phones. Each SIP
phone will have a button for 1ine1 and a button for line2. This section will assume that
you have done some configuration up front, including:

* Configuring the four SIP phones. For more information on setting up SIP phones,
see Chapter 5.

* Configuring the two analog lines. Fore more information on setting up analog lines
with Asterisk, see Chapter 7.

For this example, we will use the following device names for the SIP phones and analog
lines. Be sure to adapt the examples to match your own configuration:

e SIP/stationi
e SIP/station2
e SIP/station3
e SIP/station4

e DAHDI/1
* DAHDI/2

sla.conf

As mentioned previously, sla.conf contains configuration that maps devices to trunks
and stations. For this example, we will start by defining the two trunks:

[line1]
type = trunk
device = DAHDI/1

[line2]
type = trunk
device = DAHDI/2

Next, we will set up the station definitions. We have four SIP phones, which will each
use both trunks. Note that the section names in sla.conf for stations do not need to
match the SIP device names, but it is done that way here for convenience:

[stationi]

type = station

device = SIP/station1
trunk = linel

trunk = line2

[station2]

type = station

device = SIP/station2
trunk = linel

trunk = line2

320 | Chapter14: Device States

[station3]

type = station

device = SIP/station3
trunk = linel

trunk = line2

[station4]

type = station

device = SIP/stations4
trunk = linel

trunk = line2

The station configuration is a bit repetitive. Asterisk configuration file template sections
come in handy here to collapse the configuration down a bit. Here is the station con-
figuration again, but this time using a template:

[station](!)

type = trunk

trunk = linel
trunk = line2

[station1](station)
device = SIP/station1

[station2](station)
device = SIP/station2

[station3](station)
device = SIP/station3

[station4](station)
device = SIP/station4

extensions.conf

The next configuration file required for this example is /etc/asterisk/extensions.conf.
There are three contexts. First, we have the 1line1 and 1ine2 contexts. When a call comes
in on one of the analog lines, it will come in to one of these contexts in the dialplan and
execute the SLATrunk() application. This application will take care of ringing all of the
appropriate stations:

[line1]
exten => s,1,SLATrunk(1line1)
[line2]
exten => s,1,SLATrunk(1line2)

The next section of the dialplan is the sla_stations context. All calls from the SIP
phones should be sent to this context. Further, the SIP phones should be configured
such that as soon as they go off-hook, they immediately make a call to the station1

Shared Line Appearances | 321

extension (or station2, station3, etc., as appropriate). If the line1 key on the phone is
pressed, a call should be sent to the station1_line1 extension (or station2_line1,etc.).

Any time that a phone goes off-hook or a line key is pressed, the call that is made will
immediately connect it to one of the analog lines. For a line that is not already in use,
the analog line will be providing a dialtone, and the user will be able to send digits to
make a call. If a user presses a line key for a line that is already in use, that user will be
bridged into the existing call on that line. The sla_stations context looks like this:

[sla_stations]

exten => stationi,1,SLAStation(station1)

exten => station1 linei,hint,SLA:station1 line1
exten => stationi line1,1,SLAStation(station1 line1)
exten => station1 line2,hint,SLA:station1 line2
exten => stationi line2,1,SLAStation(station1 line2)

exten => station2,1,SLAStation(station2)

exten => station2 linei,hint,SLA:station2 line1
exten => station2_linei1,1,SLAStation(station2_line1)
exten => station2 line2,hint,SLA:station2 line2
exten => station2_line2,1,SLAStation(station2_line2)

exten => station3,1,SLAStation(station3)

exten => station3_line1,hint,SLA:station3_line1
exten => station3_linei1,1,SLAStation(station3 line1)
exten => station3_line2,hint,SLA:station3_line2
exten => station3_line2,1,SLAStation(station3 line2)

exten => station4,1,SLAStation(station4)

exten => station4 linei,hint,SLA:station4 line1
exten => station4 linei1,1,SLAStation(station4 line1)
exten => station4 line2,hint,SLA:station4_line2
exten => station4 line2,1,SLAStation(station4 line2)

Additional phone configuration tasks

The previous section covered the dialplan for trunks and stations. There are some spe-
cific things to keep in mind when setting up phones for use with this setup. First, each
phone should be configured to send a call as soon as it is taken off-hook.

The other important item is the configuration of the line keys. Asterisk uses extension
state subscriptions to control the LEDs next to the line buttons. Beyond that, each line
key should be configured as a speed-dial. Use the following checklist for your line key
configuration (how you accomplish these tasks will depend on the specific phones you
are using):

* Set the label of the key to be Line 1 (etc.), or whatever you deem appropriate.

* Set up the keys such that the Line 1 key on station1 subscribes to the state of
stationi_line1, and so on. This is required so Asterisk can make the LEDs reflect
the state of the lines.

322 | Chapter14: Device States

* Ensure that if the Line 1 key on stationi is pressed a call is sent to the sta
tion1 linel extension, and so on.

Key System Example with SIP Trunks

This example is intended to be identical in functionality to the previous example. The
difference is that instead of using analog lines as trunks, we will use a connection to a
SIP provider that will terminate the calls to the PSTN. For more information on setting
up Asterisk to connect to a SIP provider, see Chapter 7.

sla.conf

The sla.conf file for this scenario is a bit tricky.* You might expect to see the device line
in the trunk configuration have a SIP channel listed, but instead we’re going to use a
Local channel. This will allow us to use some additional dialplan logic for call pro-
cessing. The purpose of the Local channel will become clearer in the next section, when
the dialplan example is discussed. Here are the trunk configurations:

[line1]

type = trunk

device = Local/disa@line1_outbound

[line2]
type = trunk
device = Local/disa@line2 outbound

The station configuration is identical to the last example, so let’s get right to it:

[station](!)
type = trunk
trunk = linel
trunk = line2

[station1](station)
device = SIP/station1

[station2](station)
device = SIP/station2

[station3](station)
device = SIP/station3

[station4](station)
device = SIP/station4

T Read: a hack.

Shared Line Appearances | 323

extensions.conf

Asin the last example, you will need 1ine1 and line2 contexts to process incoming calls
on these trunks:

[line1]

exten => s,1,SLATrunk(1line1)

5
; If the provider specifies your phone number when sending you

; a call, you will need another rule in the dialplan to match that.
5

e

xten => X.,1,Goto(s,1)
[line2]

exten => s,1,SLATrunk(1line2)
exten => X.,1,Goto(s,1)

This example requires an sla_stations context, as well. This is for all calls coming from
the phones. It’s the same as it was in the last example:

[sla_stations]

exten => stationi,1,SLAStation(station1)

exten => stationi_line1,hint,SLA:station1_line1
exten => station1_line1,1,SLAStation(station1_line1)
exten => stationi_line2,hint,SLA:station1_line2
exten => station1_line2,1,SLAStation(station1_line2)

exten => station2,1,SLAStation(station2)

exten => station2_linei,hint,SLA:station2_line1
exten => station2_line1,1,SLAStation(station2_line1)
exten => station2_line2,hint,SLA:station2_line2
exten => station2_line2,1,SLAStation(station2_line2)

exten => station3,1,SLAStation(station3)

exten => station3_linei,hint,SLA:station3_line1
exten => station3_line1,1,SLAStation(station3_line1)
exten => station3_line2,hint,SLA:station3_line2
exten => station3_line2,1,SLAStation(station3_line2)

exten => station4,1,SLAStation(station4)

exten => station4_linei,hint,SLA:station4_line1
exten => station4_line1,1,SLAStation(station4_line1)
exten => station4_line2,hint,SLA:station4_line2
exten => station4_line2,1,SLAStation(station4_line2)

The last piece of the dialplan that is required is the implementation of the line1_out
bound and line2_outbound contexts. This is what the SLA applications use when they
want to send calls out to a SIP provider. The key to this setup is the usage of the
DISA() application. In the last example, phones were directly connected to an analog
line. This allowed the upstream switch to provide a dialtone, collect digits, and then

324 | Chapter14: Device States

complete the call. In this example, we use the DISA() application locally to provide a
dialtone and collect digits. Once a complete number has been dialed, the call will pro-
ceed to go out to a SIP provider:

[1ine1_outbound]

exten => disa,1,DISA(no-password,linel_outbound)

; Add extensions for whatever numbers you would like to
; allow to be dialed.

)

exten => _INXXNXXXXXX,1,Dial(SIP/${EXTEN}@myprovider)
[1ine2_outbound]

exten => disa,1,DISA(no-password,line2 outbound)

exten => _1INXXNXXXXXX,1,Dial(SIP/${EXTEN}@myprovider)

Shared Extension Example

The previous two examples were for small key system emulation. For this example,
we’ll try something quite different. Many PBX vendors offer the ability to have the same
extension shared across multiple phones. This is not simply a matter of having multiple
phones ring when an extension is called: it is deeper integration than that. The behavior
of the line key for a shared extension is similar to that of a line key on a key system. For
example, you can simply puta call on hold from one phone and pick it up from another.
Also, if multiple phones press the key for the shared extension, they will all be bridged
into the same call. That is why this functionality is often also referred to as Bridged Line
Appearances (BLA).

In the previous two examples, we had two trunks and four stations. For this example,
we’re going to set up a single shared extension on two phones. The shared extension
will be referred to as extension 5001.

sla.conf

Every usage of the SLA applications requires trunk and station definitions. This exam-
ple, like the previous ones, will be making use of the DISA() application and the
sla.conf file will look very similar:

[5001]

type = trunk
device = Local/disa@5001_outbound

[5001_phone1]
device = SIP/5001 phonel
trunk = 5001

[5001_phone2]

Shared Line Appearances | 325

device = SIP/5001_phone2
trunk = 5001

extensions.conf

The first part of the dialplan that is required is what will be executed when extension
5001 is dialed on the PBX. Normally, to call a phone you would use the Dial()
application. In this case, we’re going to use the SLATrunk() application. This will take
care of ringing both phones and keeping them bridged together:

exten => 5001,1,SLATrunk(5001)
Next, we will need a context that will be used for making outbound calls from this

shared extension. This assumes that 5001_phone1 and 5001_phone2 have been configured
with their context options set to 5001 in sip.conf:

[5001]

)

; This extension is needed if you want the shared extension to
; be used by default. In that case, have this extension dialed
; when the phone goes off-hook.
5
e

xten => 5001 phonel,1,SLAStation(5001_phonel)

5
; This is the extension that should be dialed when the 5001 key is
; pressed on 5001 phonel.

)
exten => 5001 _phone1l 5001,hint,SLA:5001 phonel 5001
exten => 5001 phonel 5001,1,SLAStation(5001 phonel 5001)

exten => 5001 phone2,1,SLAStation(5001 phone2)
exten => 5001 phone2_5001,hint,SLA:5001 phone2 5001
exten => 5001_phone2_5001,1,SLAStation(5001_phone2_5001)

Finally, we need an implementation of the 5001_outbound context. This will be used to
provide a dialtone and collect digits on the bridged line:

[5001_outbound]

exten => disa,1,DISA(no-password,5001 outbound)

)

; This context will also need to be able to see whatever

; extensions you would like to be reachable from this extension.
5

include => pbx_extensions

326 | Chapter14: Device States

Additional Configuration

The /etc/asterisk/sla.conf file has some optional configuration parameters that were not
used in any of the examples in this chapter. To give you an idea of what other behavior
can be configured, the options are covered here. This file has a [general] section that
is reserved for global configuration options. Currently, there is only a single option that
can be specified in this section:

attemptcallerid = yes
This option specifies whether or not the SLA applications should attempt to pass
caller ID information. It is set to no by default. If this is enabled, the display of the
phones may not be what you would expect in some situations.

The trunk definitions in the previous examples only specified the type and device. Here
are some additional options that can be specified for a trunk:

autocontext = line1
If this option is set, Asterisk will automatically create a dialplan context using this
name. The context will contain an s extension that executes the SLATrunk() appli-
cation with the appropriate argument for this trunk. By default, all dialplan entries
must be created manually.

ringtimeout = 20
This option allows you to specify the number of seconds to allow an inbound call
on this trunk to ring before the SLATrunk() application will exit and consider it an
unanswered call. By default, this option is not set.

barge = no
The barge option specifies whether or not other stations are allowed to join a call
that is in progress on this trunk by pressing the same line button. Barging into a
call on a trunk is allowed by default.

hold = private
The hold option specifies hold permissions for this trunk. If this option is set to
open, any station can place this trunk on hold and any other station is allowed to
take it back off of hold. If this option is set to private, only the station that placed
the trunk on hold is allowed to take it back off of hold. This option is set to open
by default.

When we defined the stations in the previous examples, we only supplied the type,
device, and a list of trunks. However, station definitions accept some additional con-
figuration options, as well. They are listed here:

autocontext = sla_stations
If this option is specified, Asterisk will automatically create the extensions required
for calls coming from this station in the context specified. This is off by default,
which means that all extensions must be specified manually.

Shared Line Appearances | 327

ringtimeout = 20
A timeout may be specified in seconds for how long this station will ring before
the call is considered unanswered. There is no timeout set by default.

ringdelay = 5
A ring delay in seconds can be specified for a station. If a delay is specified, this
station will not start ringing until this number of seconds after the call first came
in on this shared line. There is no delay set by default.

hold = private
Hold permissions can be specified for a specific station as well. If this option is set
to private, any trunks put on hold by this station can only be picked back up by
this station. By default, this is set to open.

trunk = linel,ringtimeout=20
A ringtimeout can be applied to calls coming from only a specific trunk.

trunk = linel,ringdelay=5
A ringdelay can also be applied to calls from a specific trunk.

Limitations

While Asterisk makes many things easy, SLA is not one of them. Despite this func-
tionality being intended to emulate simple features, the configuration required to make
it work is fairly complex. Someone who is new to Asterisk and only wants a simple key
system setup will have to learn a lot of complex Asterisk and SIP phone concepts to get
it working.

Another feature that still needs some development work before it will work seamlessly
with SLA is caller ID. At the time that this functionality was written, Asterisk did not
have the appropriate infrastructure in place to be able to update caller ID information
throughout the duration of the call. Based on how this functionality is implemented,
this infrastructure is required to make the display on the phones useful. It does exist as
of Asterisk 1.8 but the SLA applications have not yet been updated to use it. The end
result is that you can either have no caller ID information at all, or you can enable it
and understand that the phone displays are not always going to display correctly as
changes happen throughout the duration of a call.

Another limitation, most relevant to usage of shared extensions, is that transfers do not
work. The main reason is that transfers generally involve putting a call on hold for a
short time. Call hold is processed in a special way with SLA, in that the held call is not
controlled by the phone that initiated the hold. This breaks transfer processing.

In summary, SLA is not necessarily simple to set up, and it comes with some significant
limitations. With that said, if what does exist suits your needs, by all means go for it.

328 | Chapter14: Device States

Conclusion

This chapter discussed many aspects of device state handling in Asterisk. We started
by discussing the core concepts of device states and extension states, and built up from
there. We covered how SIP phones can subscribe to states, tools for creating custom
states, and two mechanisms that can be used for distributing states among many serv-
ers. Finally, we covered one of the features in Asterisk, Shared Line Appearances, that
relies heavily on the device state infrastructure in Asterisk to operate.

Conclusion | 329

CHAPTER 15
The Automated Attendant

I don’t answer the phone. I get the feeling whenever I do
that there will be someone on the other end.

—Fred Couples

In many PBXs it is common to have a menuing system in place to answer incoming
calls automatically, and allow the callers to direct themselves to various extensions and
resources in the system through menu choices. This is known in the telecom industry
as an automated attendant (AA). An auto attendant normally provides the following
features:

* Transfer to extension

* Transfer to voicemail

* Transfer to a queue

* Play message (e.g., “our address is...”)

* Connect to a submenu (e.g., “for a listing of our departments...”)
* Connect to reception

* Repeat choices

For anything else—especially if there is external integration required, such as a database
lookup—an Interactive Voice Response (IVR) would normally be needed.

An Auto Attendant Is Not an IVR

In the open source telecom community, you will often hear the term IVR used to de-
scribe an automated attendant. However, in the telecom industry, an IVR is distinct
from an auto attendant. For this reason, when you are talking to somebody about any
sort of telecom menu, you should ensure that you are talking about the same thing. To
a telecom professional, the term IVR implies a relatively complex and involved devel-
opment effort (and subsequent costs), whereas an automated attendant is a simple and
inexpensive thing that is common to most PBXs.

331

In this chapter we talk about building an automated attendant. In Chapter 17 we will
discuss IVR.

Designing Your Auto Attendant

The most common mistake beginners make when designing an AA is needless com-
plexity. While there can be much joy and sense of accomplishment in the creation of
a multilevel AA with dozens of nifty options and oodles of really cool prompts, your
callers have a different agenda. The reason people make phone calls is primarily because
they want to talk to someone. While people have become used to the reality of auto
attendants, and in some cases they can speed things up, for the most part people would
prefer to speak to somebody live. This means that there are two fundamental rules that
every auto attendant should adhere to:

1. Keep it simple.

2. Make sure you always include a handler for the folks who are going to press 0
whenever they hear an auto attendant. If you do not want to have a 0 option, be
aware that many people will be insulted by this, and they will hang up and not call
back. In business, this is generally a bad thing.

Before you start to code your AA, it is wise to design it. You will need to define a call
flow, and you will need to specify the prompts that will play at each step. Software
diagramming tools can be useful for this, but there’s no need to get fancy. Table 15-1
provides a good template for a basic auto attendant that will do what you need.

Table 15-1. A basic automated attendant

Step or choice Sample prompt Notes Filename
Greeting—nbusiness Thankyouforcalling Day greeting. daygreeting.wav
hours ABC company.
Greeting—non-busi- Thankyouforcalling Night greeting. nightgreeting.wav
ness hours ABC company. Our
office is now closed.
Main menu If you know theex- ~ Main menu prompt. mainmenu.wav
tension of the per-
son you wish to

reach, pleaseenterit
now. For sales,
please press 1, for
service, press 2, for
our company direc-
tory, press #. For our

* It should be noted that Asterisk is an excellent IVR-creation tool. It’s not bad for building automated
attendants either.

332 | Chapter15: The Automated Attendant

Step or choice Sample prompt Notes Filename
address and fax in-
formation, please
press 3. To repeat
these choices press
9, oryou can remain
onthelineorpress0
to be connected to
our operator.

1 Please hold while Transfer to sales queues. holdwhileweconnect.wav
we connect your
alls.

2 Please hold while Transfer to support queue. holdwhileweconnect.wav
we connect your
all.

n/a RunDirectory() application n/a

3 Our address is [ad- Play a recording containing address and fax ~ faxandaddress.wav
dress]. Ourfaxnum- information. Return caller to menu prompt
beris [faxnumber]. ~ when done.

etc.
0 Transferringtoour Transfer to reception/operator. transfertoreception.wav
attendant. Please
hold.
9 n/a Repeat. Replay menu prompt (butnot greet- n/a
ing).
t n/a Timeout. If the caller does not make a choice,
treat the call as if caller has dialed o.
i You have made an Caller pressed an invalid digit: replay menu invalid.wav
invalid selection. prompt (but not greeting).

Please try again.

_XXx? n/a Transfer call to dialed extension. holdwhileweconnect.wav

2 This pattern match must be relevant to your extension range.

Let’s go over the various components of this template. Then we’ll show you the dialplan
code required to implement it, as well as how to create prompts for it.

The Greeting
The first thing the caller hears is actually two prompts.

The first prompt is the greeting. The only thing the greeting should do is greet the caller.
Examples of a greeting might be “Thank you for calling Van Meggelen and Associates,”
“Welcome to Leif’s School of Wisdom and T-Shirt Design,” or “You have reached the
offices of Dewey, Cheetum, and Howe, Attorneys.” That’s it—the choices for the caller
will come later. This allows you to record different greetings without having to record

Designing Your Auto Attendant | 333

a whole new menu. For example, for a few weeks each year you might want your
greeting to say “Season’s greetings” or whatever, but your menu will not need to change.
Also, if you want to play a different recording after hours (“Thank you for calling. Our
office is now closed.”), you can use different greetings, but the heart of the menu can
stay the same. Finally, if you want to be able to return callers to the menu from a
different part of the system, you will normally not want them to hear the greeting again.

The Main Menu

The main menu prompt is where you inform your callers of the choices available to
them. You should speak this as quickly as possible (without sounding rushed).t When
you record a choice, always tell the users the action that will be taken before giving them
the digit option to take that action. So, don’t say “press 1 for sales,” but rather say “for
sales, press 1.” The reason for this is that most people will not pay full attention to the
prompt until they hear the choice that s of interest to them. Once they hear their choice,
you will have their full attention and can tell them what button to press to get them to
where they want to go.

Another point to consider is what order to put the choices in. A typical business, for
example, will want sales to be the first menu choice, and most callers will expect this
as well. The important thing is to think of your callers. For example, most people will
not be interested in address and fax information, so don’t make that the first choice.*
Think about the goal of getting the callers to their intended destinations as quickly as
possible when you make your design choices. Ruthlessly cut anything that is not ab-
solutely essential.

Selection 1

Option 1 in our example will be a simple transfer. Normally this would be to a resource
located in another context, and it would typically have an internal extension number
so that internal users could also transfer calls to it. In this example, we are going to use
this option to send callers to the queue called sales that was created in Chapter 13.

Selection 2

Option 2 will be technically identical to option 1. Only the destination will be different.
This selection will transfer callers to the support queue.

T If necessary, you can use an audio editing program such as Audacity to remove silence, and even to speed up
the recording a bit.

1 In fact, we don’t normally recommend this in an AA because it adds to what the caller has to listen to, and
most people will go to a website for this sort of information.

334 | Chapter15: The Automated Attendant

Selection #

It’s good to have the option for the directory as close to the beginning of the recording
as possible. Many people will use a directory if they know it is there, but can’t be
bothered to listen to the whole menu prompt to find out about it. Impatient people will
press 0, so the sooner you tell them about the directory, the more chance you’ll have
that they’ll use it, and thus reduce the workload on your receptionist.

Selection 3

When you have an option that does nothing but play a recording back to the caller
(such as address and fax information), you can leave all the code for that in the same
context as the menu, and simply return the caller to the main menu prompt at the end
of the recording. In general, these sorts of options are not as useful as we would like to
think they are, so in most cases you’ll probably want to leave this out.

Selection 9

[t is very important to give the caller the option to hear the choices again. Many people
will not be paying attention throughout the whole menu, and if you don’t give them
the option to hear the choices again, they will most likely press o.

Note that you do not have to play the greeting again, only the main menu prompt.

Selection 0

As stated before, and whether you like it or not, this is the choice that many (possibly
the majority) of your callers will select. If you really don’t want to have somebody
handle these calls, you can send this extension to a mailbox, but we don’t recommend
it. If you are a business, many of your callers will be your customers. You want to make
it easy for them to get in touch with you. Trust us.

Timeout

Many people will call a number, and not pay too much attention to what is happening.
They know that if they just wait on the line, they will eventually be transferred to the
operator. Or perhaps they are in their cars, and really shouldn’t be pressing buttons on
their phones. Either way, oblige them. If they don’t make any selection, don’t harass
them and force them to do so. Connect them to the operator.

Invalid

People make mistakes. That’s OK. The invalid handler will let them know that whatever
they have chosen is not a valid option and will return them to the menu prompt so that
they can try again. Note that you should not play the greeting again, only the main
menu prompt.

Designing Your Auto Attendant | 335

Dial by Extension

If somebody calls your system and knows the extension she wants to reach, your au-
tomated attendant should have code in place to handle this.

W8

Although Asterisk can handle an overlap between menu choices and

extension numbers (i.e., you can have a menu choice 1 and extensions

s from 100-199), it is generally best to avoid this overlap. Otherwise, the

" dialplan will always have to wait for the interdigit timeout whenever
somebody presses 1, because it won’t know if they are planning to dial
extension 123. The interdigit timeout is the delay the system will allow
between digits before it assumes the entire number has been input. This
timer ensures callers have enough time to dial a multidigit extension,
but it also causes a delay in the processing of single-digit inputs.

Building Your Auto Attendant

After you have designed your auto attendant, there are three things you need to do to
make it work properly:

* Record prompts.

* Build the dialplan for the menu.

* Direct the incoming channels to the auto attendant context.

We will start by talking about recordings.

Recording Prompts

Recording prompts for a telephone system is a critical task. This is what your callers
will hear when they interact with your system, and the quality and professionalism of
these prompts will reflect on your organization.

Asterisk is very flexible in this regard and can work with many different audio formats.
We have found that, in general, the most useful format to use is WAV. Files saved in
this format can be of many different kinds, but only one type of WAV file will work
with Asterisk: files must be encoded in 16-bit, 8000 Hz, mono format.

Recommended Prompt File Format

The WAV file format we have recommended is useful for system prompts because it is
a format that can easily be converted to any other format that your phones might use
without distortion, and one that almost any computer can play without any special
software. Thus, not only can Asterisk handle the file easily, but it is also easy to work
with it on a PC (which can be useful). Asterisk can handle other file formats as well,
and in some cases these may be more suitable to your needs, but in general we find 16-

336 | Chapter15: The Automated Attendant

bit 8-kHz WAV files to be the easiest to work with and, most of the time, the best-
possible quality.

There are essentially two ways to get prompts into a system. One is to record sound
files in a studio or on a PC, and then move those files into the system. A second way is
to record the prompts directly onto the system using a telephone set. We prefer the
second method.

Our advice is this: don’t get hung up on the complexities of recording audio through
aPCorinastudio.S Itis generally not necessary. A telephone set will produce excellent-
quality recordings, and the reasons are simple: the microphone and electronics in a
telephone are carefully designed to capture the human voice in a format that is ideal
for transmission on telephone networks, and therefore a phone set is also ideal for doing
prompts. The set will capture the audio in the correct format, and will filter out back-
ground noise and normalize the decibel level.

N

Yes, a properly produced studio prompt will be superior to a prompt
recorded over a telephone, but if you don’t have the equipment or ex-
W perience, take our advice and use a telephone to do your recordings,
" because a poorly produced studio prompt will be much worse.

Using the dialplan to create recordings

The simplest method of recording prompts is to use the Record() application. For
example:

[context for my handset]

exten => 101,1,Playback(vm-intro)

exten => 101,n,Record(maingreeting.wav)

exten => 101,n,Wait(2)

exten => 101,n,Playback(maingreeting)

exten => 101,n,Hangup

This extension plays a prompt, issues a beep, makes a recording, and plays that re-
cording back.! It’s notable that the Record() application takes the entire filename as its
argument, while the Playback() application excludes the filetype extension
(.wav, .gsm, etc.). This is because the Record() application needs to know which format
the recording should be made in, while the Playback() application does not. Instead,
Playback() automatically selects the best audio format available, based upon the codec
your handset is using and the formats available in the sounds folder (for example, if you

§ Unless you are an expert in these areas, in which case go for it!

[l The vm-intro prompt isn’t perfect (it asks you to leave a message), but it’s close enough for our purposes.
The usage instructions at least are correct: press pound to end the recording. Once you’ve gotten the hang
of recording prompts, you can go back, record a custom prompt, and change priority 1 to reflect more
appropriate instructions for recording your own prompts.

Building Your Auto Attendant | 337

have a maingreeting.wav and a maingreeting.gsm file in your sounds folder, Play
back() will select the one that requires the least CPU to play back to the caller).

You’ll probably want a separate extension for recording each of the prompts, possibly
hidden away from your normal set of extensions, to avoid a mistyped extension from
wiping out any of your current menu prompts. If the number of prompts that you have
is large, repeating this extension with slight modifications for each will get tedious, but
there are ways around that. We’ll show you how to make your prompt recording more
intelligent in Chapter 17, but for now, this method will suffice.

The Dialplan

Here is the code required to create the auto attendant that we designed earlier. We will
often use blank lines before labels within an extension in order to make the dialplan
easier to read, but note that just because there is a blank line does not mean there is a
different extension:

[main_menu]

exten => s,1,Verbose(1, Caller ${CALLERID(all)} has entered the auto attendant)
same => n,Answer()

; this sets the inter-digit timer
same => n,Set(TIMEOUT(digit)=2)

; wait one second to establish audio
same => n,Wait(1)

; If Mon-Fri 9-5 goto label daygreeting
same => n,GotoIfTime(9:00-17:00,mon-fri,*,*?daygreeting:afterhoursgreeting)

same => n(afterhoursgreeting),Background(after-hours) ; AFTER HOURS GREETING
same => n,Goto(menuprompt)

same => n(daygreeting),Background(daytime) ; DAY GREETING
same => n,Goto(menuprompt)

5 MAIN MENU PROMPT

; more than 4 seconds is probably

; too much

; Treat as if caller has pressed '0'

same => n(menuprompt),Background(main-menu)
same => n,WaitExten(4)

same => n,Goto(0,1)

exten => 1,1,Verbose(1,
same => n,Goto(Queues,7002,1) ; Sales Queue - see Chapter 13 for details

exten => 2,1,Verbose(1,
same => n,Goto(Queues,7001,1) ; Service Queue - see Chapter 13 for details

exten => 3,1,Verbose(1,
same => n,Background() ; Address and fax info
same => n,Goto(s,menuprompt) ; Take caller back to main menu prompt

338 | Chapter15: The Automated Attendant

exten => #,1,Verbose(1,
same => n,Directory() ;

exten => 0,1,Verbose(1,
same => n,Dial(SIP/operator) ; Operator extension/queue

exten => i,1,Verbose(1,
same => n,Playback(invalid)
same => n,Goto(s,menuprompt)

exten => t,1,Verbose(1,
same => n,Goto(0,1)

You will want to have a pattern match for the various extensions
that you'll allow external callers to dial

BUT DON'T JUST INCLUDE THE LocalSets CONTEXT

OR EXTERNAL CALLERS WILL BE ABLE TO MAKE CALLS OUT OF YOUR SYSTEM

e e e we

WHATEVER YOU DO HERE, TEST IT CAREFULLY TO ENSURE EXTERNAL CALLERS
WILL NOT BE ABLE TO DO ANYTHING BUT DIAL INTERNAL EXTENSIONS

-

-

exten => 1XX,1,Verbose(1,Call to an extension starting with '1'
same => n,Goto(InternalSets,${EXTEN},1)

Delivering Incoming Calls to the Auto Attendant

Any call coming into the system will enter the dialplan in the context defined for what-
ever channel the call arrives on. In many cases this will be a context named incoming,
or from-pstn, or something similar. The calls will arrive either with an extension (as
would be the case with a DID) or without one (which would be the case with a tradi-
tional analog line).

Whatever the name of the context, and whatever the name of the extension, you will
want to send each incoming call to the menu. Here are a few examples:

[from-pstn] ; an analog line that has context=from-pstn (typically a DAHDI channel)
exten => s,1,Goto(main_menu,s,1)

[incoming] ; a DID coming in on a channel with context=incoming (PRI, SIP, or IAX)
exten => 4169671111,1,Goto(main_menu,s,1)

Depending on how you configure your incoming channels, you will generally want to
use the Goto() application if you want to send the call to an auto attendant. This is far
neater than just coding everything in the incoming context.

Building Your Auto Attendant | 339

IVR

We'll cover Interactive Voice Response (IVR) in more depth in Chapter 17 but before
we do that, we’re going to talk about something that is essential to any IVR: database
integration is the subject of the next chapter.

Conclusion

An automated attendant can provide a very useful service to callers. However, if it is
not designed and implemented well, it can also be a barrier to your callers that may
well drive them away. Take the time to carefully plan out your auto attendant, and keep
it simple.

340 | Chapter15: The Automated Attendant

CHAPTER 16
Relational Database Integration

Few things are harder to put up with than the annoyance
of a good example.

—Mark Twain

In this chapter we are going to explore integrating some Asterisk features and functions
into a database. There are several databases available for Linux, but we have chosen to
limit our discussion to the two most popular: PostgreSQL and MySQL.

We will also explain how to configure Linux to connect to a Microsoft SQL database
via ODBC; however, configuration of the Windows/Microsoft portion is beyond the
scope of this book.

Regardless of which database you use, this chapter focuses primarily on the ODBC
connector, so as long as you have some familiarity with getting your favorite database
ODBC-ready, you shouldn’t have any problems with this chapter.

Integrating Asterisk with databases is one of the fundamental aspects of building a large
clustered or distributed system. The power of the database will enable you to use dy-
namically changing data in your dialplans, for tasks such as sharing information across
an array of Asterisk systems or integrating with web-based services. Our favorite
dialplan function, which we will cover later in this chapter, is func_odbc.

While not all Asterisk deployments will require relational databases, understanding
how to harness them opens a treasure chest full of new ways to design your telecom
solution.

34

Installing and Configuring PostgreSQL and MySQL

In the following sections we will show how to install and configure PostgreSQL and
MySQL on both CentOS and Ubuntu.” It is recommended that you only install one
database at a time while working through this section. Pick the database you are most
comfortable with, as there is no wrong choice.

Installing PostgreSQL for Cent0S

The following command can be used to install the PostgreSQL server and its depend-
encies from the console:

$ sudo yum install -y postgresql-server
Install 3 Package(s)
Upgrade 0 Package(s)

Total download size: 6.9 M
Is this ok [y/N]: vy

Then start the database, which will take a few seconds to initialize for the first time:
$ sudo service postgresql start

Now head to “Configuring PostgreSQL” on page 343 for instructions on how to per-
form the initial configuration.

Installing PostgreSQL for Ubuntu

To install PostgreSQL on Ubuntu, run the following command. You will be prompted
to also install any additional packages that are dependencies of the application. Press
to accept the list of dependencies, at which point the packages will be installed
and PostgreSQL will be automatically started and initialized:

$ sudo apt-get install postgresql

After this operation, 19.1MB of additional disk space will be used.
Do you want to continue [Y/n]? y

Now head to “Configuring PostgreSQL” on page 343 for instructions on how to per-
form the initial configuration.

* On alarge, busy system you will want to install the database on a completely separate box from your Asterisk
system.

342 | Chapter16: Relational Database Integration

Installing MySQL for Cent0S

To install MySQL on CentOS, run the following command. You will be prompted to
install several dependencies. Press to accept, and the MySQL server and de-
pendency packages will be installed:

$ sudo yum install mysql-server

Install 5 Package(s)
Upgrade 0 Package(s)

Total download size: 27 M
Is this ok [y/N]: y

Then start the MySQL database by running;:

$ sudo service mysqld start

Now head to “Configuring MySQL” on page 345 to perform the initial configuration.

Installing MySQL for Ubuntu

To install MySQL on Ubuntu, run the following command. You will be prompted to
install several dependencies. Press to accept, and the MySQL server and its de-
pendency packages will be installed:

$ sudo apt-get install mysql-server

Need to get 24.0MB of archives.

After this operation, 60.6MB of additional disk space will be used.
Do you want to continue [Y/n]? y

During the installation, you will be placed into a configuration wizard to help you
through the initial configuration of the database. You will be prompted to enter a new
password for the root user. Type in a strong password and press . You will then
be asked to confirm the password. Type your strong password again, followed by
[Enter). You will then be returned to the console, where the installation will complete.
The MySQL service will now be running.

Now head to “Configuring MySQL” on page 345 to perform the initial configuration.

Configuring PostgreSQL

Next, create a user called asterisk, which you will use to connect to and manage the
database. You can switch to the postgres user by using the following command:

$ sudo su - postgres

W
- At the time of this writing, PostgreSQL version 8.1.x is utilized on
"‘:\ CentOS, and 8.4.x on Ubuntu.
ANl S
15N

Installing and Configuring PostgreSQL and MySQL | 343

Then run the following commands to create the asterisk user in the database and set
up permissions:

$ createuser -P

Enter name of user to add: asterisk

Enter password for new user:

Enter it again:

Shall the new role be a superuser? (y/n) n

Shall the new user be allowed to create databases? (y/n) y

Shall the new user be allowed to create more new users? (y/n) n

CREATE ROLE

Now, edit the pg_hba.conf file in order to allow the asterisk user you just created to
connect to the PostgreSQL server over the TCP/IP socket.

On CentOS, this file will be located at /var/lib/pgsql/data/pg_hba.conf. On Ubuntu, you
will find it at /etc/postgresql/8.4/main/pg_hba.conf.
At the end of the file, replace everything below this line:

TYPE DATABASE USER CIDR-ADDRESS METHOD

with the following:

TYPE DATABASE USER CIDR-ADDRESS METHOD
host all asterisk 127.0.0.1/32 mds5
local all asterisk trust

Configuring PostgreSQL Database Access via IPv6 localhost
Also, on Ubuntu you will likely need to add the following line:

host all asterisk 1:1/128 md5

Without it, when you get to “Validating the ODBC Connector” on page 351 you may
end up with the following error when connecting:
[28000][unixODBC]FATAL: no pg_hba.conf entry for host "::1", user "asterisk",

database "asterisk", SSL off
[ISQL]ERROR: Could not SQLConnect

Now you can create the database that we will use throughout this chapter. Call the
database asterisk and set the owner to your asterisk user:

$ createdb --owner=asterisk asterisk
CREATE DATABASE

You can set the password for the asterisk user like so:

$ psql -d template1
template1=# "ALTER USER asterisk WITH PASSWORD 'password'"
templatel=# \q

Exit from the postgres user:

$ exit

344 | Chapter16: Relational Database Integration

Then restart the PostgreSQL server. On CentOS:

$ sudo service postgresql restart

N

- You need to restart the PostgreSQL service because you made changes
to pg_hba.conf, not because you added a new user or changed the pass-
[} 2:‘ word.

On Ubuntu:
$ sudo /etc/init.d/postgresql-8.4 restart

On Ubuntu 10.10 and newer the version number seems to be dropped,
so it may just be /etc/init.d/postgresql restart.
N

You can verify your connection to the PostgreSQL server via TCP/IP, like so:

$ psql -h 127.0.0.1 -U asterisk
Password for user asterisk:

Welcome to psql 8.1.21, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
\h for help with SQL commands
\? for help with psql commands
\g or terminate with semicolon to execute query
\q to quit

asterisk=>

You’re now ready to move on to “Installing and Configuring ODBC” on page 346.

Configuring MySQL

With the MySQL database now running, you should secure your installation. Con-
veniently, there is a script you can execute that will allow you to enter a new pass-
wordf for the root user, along with some additional options. The script is pretty
straightforward, and after entering and confirming your root password you can con-
tinue to select the defaults unless you have a specific reason not to.

Execute the following script:

$ sudo /usr/bin/mysql_secure_installation

T If you installed on Ubuntu, you will have already set the root password. You will have to enter that password
while executing the script, at which point it will say you’ve already set a root password, so you don’t need
to change it.

Installing and Configuring PostgreSQL and MySQL | 345

Then connect to the database console so you can create your asterisk user and set up
permissions:

$ mysql -u root -p

Enter password:
After entering the password, you will be presented with the mysql console prompt. You
can now create your asterisk user by executing the CREATE USER command. The % is a
wildcard indicating the asterisk user can connect from any host and is IDENTIFIED BY
the password some_secret_password (which you should obviously change). Note the
trailing semicolon:

mysql> CREATE USER 'asterisk'@'%' IDENTIFIED BY 'some_secret_password';
Query OK, 0 rows affected (0.00 sec)

Let’s also create the initial database you’ll use throughout this chapter:

mysql> CREATE DATABASE asterisk;
Query OK, 1 rows affected (0.00 sec)

Now that you’ve created your user and database, you need to assign permissions for
the asterisk user to access the asterisk database:

mysql> GRANT ALL PRIVILEGES ON asterisk.* TO 'asterisk'@'%';
Query OK, 0 rows affected (0.00 sec)

Finally, exit from the console and verify that your permissions are correct by logging
back into the asterisk database as the asterisk user:

mysql> exit

Bye

mysql -u asterisk -p asterisk

Enter password:

mysql>

You’re now ready to move on to “Installing and Configuring ODBC” on page 346.

Installing and Configuring 0DBC

The ODBC connector is a database abstraction layer that makes it possible for Asterisk
to communicate with a wide range of databases without requiring the developers to
create a separate database connector for every database Asterisk wants to support. This
saves a lot of development effort and code maintenance. There is a slight performance
cost, because we are adding another application layer between Asterisk and the data-
base, but this can be mitigated with proper design and is well worth it when you need
powerful, flexible database capabilities in your Asterisk system.

Before you install the connector in Asterisk, you have to install ODBC into Linux itself.
To install the ODBC drivers, use one of the following commands.

346 | Chapter16: Relational Database Integration

On CentOS:
$ sudo yum install unixODBC unixODBC-devel libtool-1tdl libtool-1tdl-devel

If you’re using a 64-bit installation, remember to add .x86_64 to the end
of your development packages to make sure the 1386 packages are not
Wse also installed, as stability problems can result if Asterisk links against
" the wrong libraries.

On Ubuntu:
$ sudo apt-get install unixODBC unixODBC-dev

See Chapter 3 for the matrix of packages you should have installed.

You’ll also need to install the unixODBC development package, because Asterisk uses
it to build the ODBC modules we will be using throughout this chapter.

The unixODBC drivers shipped with distributions are often a few ver-
‘N—% sions behind the officially released versions on the http://www.unixodbc
.org website. If you have stability issues while using unixODBC, you
may need to install from source. Just be sure to remove the uni-

xODBC drivers via your package manager first, and then update the
paths in your /etc/odbcinst.ini file.

By default, CentOS will install the drivers for connecting to PostgreSQL databases via
ODBC. To install the drivers for MySQL, execute the following command:

$ sudo yum install mysql-connector-odbc
To install the PostgreSQL ODBC connector on Ubuntu:
$ sudo apt-get install odbc-postgresql

Or to install the MySQL ODBC connector on Ubuntu:
$ sudo apt-get install libmyodbc

Configuring ODBC for PostgreSQL
Configuration for the PostgreSQL ODBC driver is done in the /etc/odbcinst.ini file.

On CentOS the default file already contains some data, including that for PostgreSQL,
so just verify that the data exists. The file will look like the following:

[PostgresaqL]
Description = ODBC for PostgreSQL

Installing and Configuring 0DBC | 347

http://www.unixodbc.org
http://www.unixodbc.org

Driver = /usr/lib/1libodbcpsql.so
Setup /usr/1lib/1ibodbcpsqlS.so
FileUsage =1

On Ubuntu, the /etc/odbcinst.ini file will be blank, so you’ll need to add the data to that
configuration file. Add the following to the odbcinst.ini file:

[PostgresaqL]

Description = ODBC for PostgreSQL

Driver = /usr/lib/odbc/psqlodbca.so
Setup = /usr/lib/odbc/libodbcpsqlS.so
FileUsage =1

On 64-bit systems, you will need to change the path of the libraries
from /usr/lib/ to /usr/lib64/ in order to access the correct library files.

In either case, you can use cat > /etc/odbcinst.ini to write a clean configuration file, as
we’ve done in other chapters. Just use +@ to save the file once you’re done.

Verify that the system is able to see the driver by running the following command. It
should return the label name PostgresaL if all is well:

$ odbcinst -q -d

[PostgresaL]
Next, configure the /etc/odbc.ini file, which is used to create an identifier that Asterisk
will use to reference this configuration. If at any point in the future you need to change
the database to something else, you simply need to reconfigure this file, allowing
Asterisk to continue to point to the same placet:

[asterisk-connector]

Description = PostgreSQL connection to 'asterisk' database
Driver = PostgreSQL
Database = asterisk
Servername = localhost
UserName = asterisk
Password = welcome
Port = 5432
Protocol = 8.1
ReadOnly = No
RowVersioning = No
ShowSystemTables = No
Show0idColumn = No
FakeOidIndex = No
ConnSettings =

T Yes, this is excessively verbose. The only entries you really need are Driver, Database, and Servername. Even
the UserName and Password are specified elsewhere, as you’ll see later (although these are required when testing,
as in “Validating the ODBC Connector” on page 351).

348 | Chapter16: Relational Database Integration

Configuring ODBC for MySQL
Configuration for the MySQL ODBC driver is done in the /etc/odbcinst.ini file.

On CentOS the default file already contains some data, including that for MySQL, but
it needs to be uncommented and requires a couple of changes. Replace the existing text
with the following:

[MysQL]

Description = ODBC for MySQL
Driver = /usr/lib/1libmyodbc3.so
Setup = /usr/1ib/1libodbcmyS.so
FileUsage = 1

On Ubuntu, the /etc/odbcinst.ini file will be blank, so you’ll need to add the data to that
configuration file. Add the following to the odbcinst.ini file:

[MysQL]

Description = ODBC for MySQL
Driver = /usr/lib/odbc/libmyodbc.so
Setup = /usr/lib/odbc/libodbcmyS.so
FileUsage = 1

W N
! On 64-bit systems, you will need to change the path of the libraries
from /usr/lib/ to /usr/lib64/ in order to access the correct library files.

In either case, you can use cat > /etc/odbcinst.ini to write a clean configuration file, as
we’ve done in other chapters. Just use [Ctrl+[D] to save the file once you’re done.

Verify that the system is able to see the driver by running the following command. It
should return the label name MysaL if all is well:

odbcinst -q -d

[MySQL]
Next, configure the /etc/odbc.ini file, which is used to create an identifier that Asterisk
will use to reference this configuration. If at any point in the future you need to change
the database to something else, you simply need to reconfigure this file, allowing
Asterisk to continue to point to the same place:

[asterisk-connector]

Description = MySQL connection to 'asterisk' database
Driver = MySQL

Database = asterisk

Server = localhost

UserName = asterisk

Password = welcome

Port = 3306

Socket = /var/lib/mysql/mysql.sock

Installing and Configuring 0DBC | 349

On Ubuntu 10.10, the socket location is /var/run/mysqld/mysqld.sock.

Configuring ODBC for Microsoft SQL

Connecting to Microsoft SQL (MS SQL) is similar to connecting to either MySQL or
PostgreSQL, as we’ve previously discussed. The configuration of MS SQL is beyond
the scope of this book, but the following information will get your Asterisk box con-
figured to connect to your MS SQL database once you’ve enabled the appropriate per-
missions on your database.

To connect to MS SQL, you need to install the FreeTDS drivers using the package
manager (or by compiling via the source files available at http://www.freetds.org).

On CentOS:

$ sudo yum install freetds
On Ubuntu:

$ sudo apt-get install freetds

After installing the drivers, you need to configure the /etc/odbcinst.ini file, which tells
the system where the driver files are located.

Insert the following text into the /etc/odbcinst.ini file with your favorite text editor or
with the following command:

$ sudo cat > /etc/odbcinst.ini

[FreeTDS]

Description = ODBC for Microsoft SQL
Driver = [usr/lib/libtdsodbc.so
UsageCount =1

Threading = 2

[Ctr1}+D]

W

If you compiled via source, the files may be located in /usr/local/lib/ or
(if you compiled on a 64-bit system) /usr/local/lib64/.

Verify that the system is able to see the driver by running the following command. It
should return the label name FreeTDS if all is well:

$ odbcinst -q -d
[FreeTDS]

350 | Chapter16: Relational Database Integration

http://www.freetds.org

Once you’ve configured the drivers, you need to modify the /etc/odbc.ini file to control
how to connect to the database:

[asterisk-connector]

Description = MS SQL connection to 'asterisk' database
Driver = FreeTDS

Database = asterisk

Server = 192.168.100.1

UserName = asterisk

Password = welcome

Trace = No

TDS_Version = 7.0

Port = 1433

In the next section, you will be able to validate your connection to the MS SQL server.

Validating the ODBC Connector

Now, verify that you can connect to your database using the isql application. echo the
select 1 statement and pipe it into isql, which will then connect using the asterisk-
connector section you added to /etc/odbc.ini. You should get the following output (or
at least something similar; we’re looking for a result of 1 rows fetched):

$ echo "select 1" | isql -v asterisk-connector

|
|
| sql-statement

| help [tablename]
|

|

N
|
|
|
|

quit |

|

SQLRowCount returns 1
1 rows fetched
$ exit

With unixODBC installed, configured, and verified to work, you need to recompile
Asterisk so that the ODBC modules are created and installed. Change back to your
Asterisk source directory and run the ./configure script so it knows you have installed
unixODBC:

$ cd ~/src/asterisk-complete/asterisk/1.8
$./configure

$ make menuselect

$ make install

Installing and Configuring 0DBC | 351

Almost everything in this chapter is turned on by default. You will want

to run make menuselect to verify that the ODBC-related modules are

" Qlar enabled. These include cdr odbc, cdr adaptive odbc, func_odbc,

" func_realtime, pbx_realtime, res_config odbc, and res_odbc. For voi-
cemail stored in an ODBC database, be sure to select 0DBC_STORAGE from
the Voicemail Build Options menu. You can verify that the modules exist
in the /usr/lib/asterisk/modules/ directory.

Configuring res_odbc to Allow Asterisk to Connect Through 0DBC

Asterisk ODBC connections are configured in the res_odbc.conf file located in /etc/
asterisk. The res_odbc.conf file sets the parameters that various Asterisk modules will
use to connect to the database.

L)
)

The pooling and limit options are quite useful for MS SQL and Sybase

databases. These permit you to establish multiple connections (up to

s limit connections) to a database while ensuring that each connection

" has only one statement executing at once (this is due to a limitation in
the protocol used by these database servers).

Modify the res_odbc.conf file so it looks like the following:

[asterisk]

enabled => yes

dsn => asterisk-connector
username => asterisk
password => welcome
pooling => no

limit => o

pre-connect => yes

The dsn option points at the database connection you configured in /etc/odbc.ini, and
the pre-connect option tells Asterisk to open up and maintain a connection to the
database when loading the res_odbc.so module. This lowers some of the overhead that

would come from repeatedly setting up and tearing down the connection to the
database.

Once you’ve configured res_odbc.conf, start Asterisk and verify the database connec-
tion with the odbc show CLI command:

*CLI> odbc show

ODBC DSN Settings

Name: asterisk
DSN: asterisk-connector

352 | Chapter16: Relational Database Integration

Last connection attempt: 1969-12-31 19:00:00
Pooled: No
Connected: Yes

Managing Databases

While it isn’t within the scope of this book to teach you about how to manage your
databases, it is worth at least noting briefly some of the applications you could use to
help with database management. Several exist, some of which are local client applica-
tions running from your computer and connecting to the database, and others of which
are web-based applications that could be served from the same computer running the
database itself, thereby allowing you to connect remotely.

Some of the ones we’ve used include:

e phpMyAdmin (http://www.phpmyadmin.net)
* MySQL Workbench (http://wb.mysql.com)
* pgAdmin (http://www.pgadmin.org)

* Navicat (commercial) (http://www.navicat.com)

Troubleshooting Database Issues

When working with ODBC database connections and Asterisk, it is important to re-
member that the ODBC connection abstracts some of the information passed between
Asterisk and the database. In cases where things are not working as expected, you may
need to enable logging on your database platform to see what Asterisk is sending to the
database (e.g., what SELECT, INSERT, or UPDATE statements are being triggered from
Asterisk), what the database is seeing, and why the database may be rejecting the
statements.

For example, one of the most common problems found with ODBC database integra-
tion is an incorrectly defined table, or a missing column that Asterisk expects to exist.
While great strides have been made in the form of adaptive modules, not all parts of
Asterisk are adaptive. In the case of ODBC voicemail storage, you may have missed a
column such as flag, which is a new column not previously found in versions of Asterisk
prior to 1.8.8 In order to debug why your data is not being written to the database as
expected, you should enable statement logging on the database side, and then deter-
mine what statement is being executed and why the database is rejecting it.

§ This was actually an issue one of the authors had while working on this book, and the flag column was found
by looking at the statement logging during PostgreSQL testing.

Managing Databases | 353

http://www.phpmyadmin.net
http://wb.mysql.com
http://www.pgadmin.org
http://www.navicat.com

A Gentle Introduction to func_odbc

The very first use of func_odbc, which occurred while its author was still writing it, is
also a good introduction to its use. A customer of one of the module’s authors noted
that some people calling into his switch had figured out a way to make free calls with
his system. While his eventual intent was to change his dialplan to avoid those prob-
lems, he needed to blacklist certain caller IDs in the meantime, and the database he
wanted to use for this was a Microsoft SQL Server database. With a few exceptions,
this is the actual dialplanll:
[span3pri]
exten => _50054XX,1,No0Op()
same => n,Set(CDR(accountcode)=pricall)
same => n,GotoIf($[${0DBC_ANIBLOCK(${CALLERID(number)})}]?busy)
same => n(dial),Dial(DAHDI/G1/${EXTEN})

same => n(busy),Busy(10)
same => n,Hangup

This dialplan, in a nutshell, passes through all calls to another system for routing pur-
poses, except those calls whose caller IDs are in a blacklist. The calls coming into this
system used a block of 100 7-digit DIDs. There is a mystery function in this dialplan,
though: ODBC_ANIBLOCK(). This function is defined in another configuration file,
func_odbc.conf, at runtime:

[ANIBLOCK]

dsn=telesys
readsql=SELECT IF(COUNT(1)>0, 1, 0) FROM Aniblock WHERE NUMBER='${ARG1}'

So, your ODBC_ANIBLOCK()#* connects to a listing in res_odbc.conf named telesys and
selects a count of records that have the NUMBER specified by the argument, which is,
referring to our dialplan above, the caller ID. Nominally, this function should return
either a 1 (indicating the caller ID exists in the Aniblock table) or a 0 (if it does not).
This value also evaluates directly to true or false, which means we don’t need to use an
expression in our dialplan to complicate the logic.

Getting Funky with func_odbc: Hot-Desking

The func_odbc dialplan function is arguably the coolest and most powerful dialplan
function in Asterisk. It allows you to create and use fairly simple dialplan functions that
retrieve and use information from databases directly in the dialplan. There are all kinds

I This system is unfortunately no longer in service. Thus, any changes have been made for the sake of simplicity,
not to conceal the business for which it was designed.

#We're using the IF() SQL function to make sure we return a value of 0 or 1. This works on MySQL 5.1 or
later. If it does not work on your SQL installation, you could also check the returned result in the dialplan
using the IF() function there.

354 | Chapter16: Relational Database Integration

of ways in which this might be used, such as for managing users or allowing the sharing
of dynamic information within a clustered set of Asterisk machines.

What func_odbc allows you to do is define SQL queries to which you assign function
names. In effect, you are creating custom functions that obtain their results by executing
queries against a database. The func_odbc.conf file is where you specify the relationships
between the function names you create and the SQL statements you wish them to
perform. By referring to the named functions in the dialplan, you can retrieve and
update values in the database.

While using an external script to interact with a database (from which
aflat fileis created that Asterisk will read) has advantages (if the database
goes down, your system will continue to function and the script will
simply not update any files until connectivity to the database is re-
stored), it also has disadvantages. A major disadvantage is that any
changes you make to a user will not be available until you run the update
script. This is probably not a big issue on small systems, but on large
systems waiting for changes to take effect can cause issues, such as
pausing a live call while a large file is loaded and parsed.

You can relieve some of this by utilizing a replicated database system.
Asterisk 1.6.0 and newer provide the ability to fail over to another da-
tabase system. This way, you can cluster the database backend utilizing
a master-master relationship (for PostgreSQL, pgcluster or Postgres-
R;" for MySQL it’s native®), or a master-slave (for PostgreSQL, Slony-I,
for MySQL it’s native) replication system.

In order to get you into the right frame of mind for what follows, we want you to picture
a Dagwood sandwich.¥

Can you relay the total experience of such a thing by showing someone a picture of a
tomato, or by waving a slice of cheese about? Not hardly. That is the conundrum we
faced when trying to give a useful example of why func_odbc is so powerful. So, we
decided to build the whole sandwich for you. It’s quite a mouthful, but after a few bites
of this, peanut butter and jelly is never going to be the same.

For our example, we decided to implement something we think could have some prac-
tical uses. Picture a small company with a sales force of five people who have to share
two desks. This is not as cruel as it seems, because these folks spend most of their time
on the road, and they are each only in the office for at most one day each week.

* pgcluster appears to be a dead project, and Postgres-R appears to be in its infancy, so there may
currently be no good solution for master-master replication using PostgreSQL.

t There are several tutorials on the Web describing how to set up replication with MySQL.

1 And if you don’t know what a Dagwood is, that’s what Wikipedia is for. I am not that old.

Getting Funky with func_odbc: Hot-Desking | 355

http://pgcluster.projects.postgresql.org/
http://postgres-r.org/
http://postgres-r.org/
http://www.slony.info/

Still, when they do get into the office, they’d like the system to know which desks they
are sitting at, so that their calls can be directed there. Also, the boss wants to be able
to track when they are in the office and control calling privileges from those phones
when no one is there.

This need is typically solved by what is called a hot-desking feature, so we have built
one for you in order to show you the power of func_odbc.

Lets start with the easy stuff, and create two desktop phones in the sip.conf file:

; sip.conf

; HOT DESK USERS
[0000FFFF0001]
type=friend

host=dynamic

secret=my special secret
context=hotdesk
qualify=yes

[0000FFFF0002]
type=friend

host=dynamic

secret=my special secret
context=hotdesk
qualify=yes

; END HOT DESK USERS

These two desk phones both enter the dialplan at the hotdesk context in exten-
sions.conf. If you want to have these devices actually work, you will of course need to
set the appropriate parameters in the devices themselves, but we covered all that in
Chapter 5.

That’s all for sip.conf. We’ve got two slices of bread, which is hardly a sandwich yet.

Now let’s get the database part of it set up (we are assuming that you have an ODBC
database created and working, as outlined in the earlier parts of this chapter). First,
connect to the database console.

For PostgreSQL.:

$ sudo su - postgres
$ psql -U asterisk -h localhost asterisk
Password:

Then create the table with the following bit of SQL:

CREATE TABLE ast_hotdesk
(
id serial NOT NULL,
extension int8,
first name text,
last_name text,
cid_name text,
cid number varchar(10),

356 | Chapter16: Relational Database Integration

pin int4,

context text,

status bool DEFAULT false,
"location" text,

CONSTRAINT ast_hotdesk_id pk PRIMARY KEY (id)

WITHOUT 0IDS;
For MySQL:

$ mysql -u asterisk -p asterisk
Enter password:

Then create the table with the following bit of SQL:

CREATE TABLE ast_hotdesk
(
id serial NOT NULL,
extension int8,
first_name text,
last _name text,
cid_name text,
cid number varchar(10),
pin int4,
context text,
status bool DEFAULT false,
location text,

CONSTRAINT ast_hotdesk_id pk PRIMARY KEY (id)

)s

The table information is summarized in Table 16-1.

Table 16-1. Summary of ast_hotdesk table

Columnname Column type

id Serial, auto-incrementing
extension Integer

first name Text

last_name Text

cid_name Text

cid number Varchar10

pin Integer

context Text

status Boolean, default false
location Text

After that, populate the database with the following information (some of the values
that you see actually will change only after the dialplan work is done, but we include

it here by way of example).

Getting Funky with func_odbc: Hot-Desking | 357

At the PostgreSQL console, run the following commands:
asterisk=> INSERT INTO ast_hotdesk ('extension', 'first_name', 'last_name',\
'cid_name','cid_number', 'pin', 'context', 'location') \
VALUES (1101, 'Leif', 'Madsen', 'Leif Madsen', '4165551101', '555',\
'longdistance’, '0000FFFF0001");

At the MySQL console, run the following commands:

mysql> INSERT INTO ast_hotdesk (extension, first_name, last_name, cid_name,
cid_number, pin, context, location)

VALUES (1101, 'Leif', 'Madsen', 'Leif Madsen',

'4165551101"', '555', 'longdistance', '0000FFFF0001');

Repeat these commands, changing the VALUES as needed, for all entries you wish to have
in the database. You can view the data in the ast_hotdesk table by running a simple
SELECT statement from the database console:

mysql> SELECT * FROM ast_hotdesk;

which would give you something like the following output:

| id | extension | first name | last_name | cid_name | cid_number
[==-4mmmm e ommmmmmmooen Hommmmmmm Hommmmmmmmemeen Hommmmmmmooen
| 1] 1101 | "Leif" | "Madsen" | "Leif Madsen" | "4165551101"
| 2| 1102 | "Jim" | "Van Meggelen" | "Jim Van Meggelen" | "4165551102"
| 3] 11203 | "Russell" | "Bryant" | "Russell Bryant" | "4165551103"
| 4] 1104 | "Mark" | "Spencer" | "Mark Spencer" | "4165551104"
| 5 1105 | "Kevin" | "Fleming" | "Kevin Fleming" | "4165551105"
| pin | context | status | location |$

mmmm - o mmmm e dmmmmm e +

| "555" | "longdistance" | "TRUE" | "000OFFFF0001" |

| "556" | "longdistance" | "FALSE" | ""

| "557" | "local" | "FALSE" | ""

| "558" | "international™ | "FALSE" | ""

| "559" | "local" | "FALSE" | ""

We’ve got the condiments now, so let’s get to our dialplan. This is where the magic is
going to happen.

Somewhere in extensions.conf we are going to have to create the hotdesk context. To
start, let’s define a pattern-match extension that will allow the users to log in:

; extensions.conf
; Hot-Desking Feature
[hotdesk]
; Hot Desk Login
exten => #110[1-5],1,NoOp()
same => n,Set(E=${EXTEN:1}) ; strip off the leading hash (#) symbol
same => n,Verbose(1,Hot Desk Extension ${E} is changing status)
same => n,Verbose(1,Checking current status of extension ${E})
same => n,Set(${E}_STATUS=${HOTDESK_INFO(status,${E})})
same => n,Set(${E} PIN=${HOTDESK_INFO(pin,${E})})

358 | Chapter16: Relational Database Integration

We’re not done writing this extension yet, but let’s pause for a moment and see where
we’re at so far.

When a sales agent sits down at a desk, he logs in by dialing hash (#) plus his own
extension number. In this case we have allowed the 1101 through 1105 extensions to
log in with our pattern match of _#110[1-5]. You could just as easily make this less
restrictive by using _#11XX (allowing 1100 through 1199). This extension uses
func_odbc to perform a lookup with the HOTDESK_INFO() dialplan function. This custom
function (which we will define in the func_odbc.conf file) performs an SQL statement
and returns whatever is retrieved from the database.

We would define the new function HOTDESK_INFO() in func_odbc.conf like so:

[INFO]

prefix=HOTDESK

dsn=asterisk

readsql=SELECT ${ARG1} FROM ast_hotdesk WHERE extension = '${ARG2}'

That’s a lot of stuff in just a few lines. Let’s quickly cover them before we move on.

First of all, the prefix is optional. If you don’t configure the prefix, then Asterisk adds
“ODBC” to the name of the function (in this case, INFO), which means this function would
become ODBC_INFO(). This is not very descriptive of what the function is doing, so it
can be helpful to assign a prefix that helps to relate your ODBC functions to the tasks
they are performing. We chose HOTDESK, which means that this custom function will be
named HOTDESK_INFO().

The dsn attribute tells Asterisk which connection to use from res_odbc.conf. Since sev-
eral database connections could be configured in res_odbc.conf, we specify which one
to use here. In Figure 16-1, we show the relationship between the various file config-
urations and how they reference down the chain to connect to the database.

The func_odbc.conf.sample file in the Asterisk source contains addi-

tional information about how to handle multiple databases and control

* Qs the reading and writing of information to different DSN connections.

" Specifically, the readhandle, writehandle, readsql, and writesql argu-
ments will provide you with great flexibility for database integration and
control.

Finally, we define our SQL statement with the readsql attribute. Dialplan functions
have two different formats that they can be called with: one for retrieving information,
and one for setting information. The readsql attribute is used when we call the HOT
DESK_INFO() function with the retrieve format (we could execute a separate SQL state-
ment with the writesql attribute; we’ll discuss the format for that attribute a little bit
later in this chapter).

Reading values from this function would take this format in the dialplan:

exten => s,n,Set(RETURNED_VALUE=${HOTDESK INFO(status,1101)})

Getting Funky with func_odbc: Hot-Desking | 359

func_odbc. conf

[INFO]
prefix=HOTDESK
dsn=asterisk
readsql=..

Asterisk

res_odbc.conf

[asterisk]

enabled=>yes
dsn=>asterisk-connector
pre-connect=>yes

Linux
\J

Jetc/odbc.ini

database

[asterisk-connector]

Description =Asterisk connection
Servername =localhost

Y

o

Figure 16-1. Relationships between func_odbc.conf, res_odbc.conf, letc/odbc.ini (unixODBC), and

the database connection

This would return the value located in the database within the status column where
the extension column equals 1101. The status and 1101 we pass to the
HOTDESK _INFO() function are then placed into the SQL statement we assigned to the
readsql attribute, available as ${ARG1} and ${ARG2}, respectively. If we had passed a

third option, this would have been available as ${ARG3}.

each row.

Multirow Functionality with func_odbc

As of Asterisk branch 1.6.0, a mode exists that allows Asterisk to handle multiple rows
of data returned from the database. For example, if we were to create a dialplan function
in func_odbc.conf that returned all available extensions, we would need to enable mul-
tirow mode for the function. This would cause the function to work a little differently,
returning an ID number that could then be passed to the ODBC_FETCH() function to
return each row in turn.

Prior to the 1.6.0 branch, we needed to use the SQL functions LIMIT and OFFSET in order
to control data being returned to Asterisk for iteration. This was resource-intensive (at
least in relation to multirow mode), as it required multiple queries to the database for

360 | Chapter16: Relational Database Integration

A simple example follows. Suppose we have the following func_odbc.conf:

[ALL_AVAIL_EXTENS]

prefix=GET

dsn=asterisk-connector

mode=multirow

readsql=SELECT extension FROM ast_hotdesk WHERE status = '${ARG1}'

and a dialplan in extensions.conf that looks something like this:

[multirow_example]
exten => start,1,Verbose(1,Looping example)
same => n,Set(ODBC_ID=${GET ALL_AVAIL EXTENS(1)})
same => n,GotoIf($[${ODBCRONS} < 1]?no_rows,1)
same => n,Set(COUNTER=1)
same => n,While($[${COUNTER} <= ${ODBCROWS}])
same => n,Set(AVAIL EXTEN ${COUNTER}=${0DBC_FETCH(${ODBC_ID})})
same => n,Set(COUNTER=$[${COUNTER + 1])
same => n,EndWhile()
same => n,0DBCFinish()

exten => no_rows,1,Verbose(1,No rows returned)
same => n,Playback(silence/18invalid)
same => n,Hangup()

The 0DBC_FETCH() function will essentially treat the information as a stack, and each
call to it with the passed 0DBC_ID will pop the next row of information off the stack. We
also have the option of using the ODBC_FETCH_STATUS channel variable, which is set once
the ODBC_FETCH() function (which returns SUCCESS if additional rows are available or
FAILURE if no additional rows are available) is called. This permits us to write a dialplan
like the following, which does not use a counter, but still loops through the data. This
may be useful if we’re looking for something specific and don’t need to look at all the
data. Once we’re done, the 0DBCFinish() dialplan application should be called to clean
up any remaining data.

Here’s another extensions.conf example:

[multirow_example 2]
exten => start,1,Verbose(1,Looping example with break)
same => n,Set(ODBC_ID=${GET ALL_AVAIL EXTENS(1)})
same => n(loop_start),NoOp()
same => n,Set(ROW_RESULT=${ODBC_FETCH(${ODBC_ID})})
same => n,GotoIf($["${ODBC_FETCH RESULT}" = "FAILURE"]?cleanup,1)
same => n,GotoIf($["${ROW _RESULT}" = "1104"]?good_ exten,1)
same => n,Goto(loop_start)

exten => cleanup,1,Verbose(1,Cleaning up after all iterations)
same => n,Verbose(1,We did not find the extension we wanted)
same => n,0DBCFinish(${ODBC_ID})
same => n,Hangup()

exten => good_exten,1,Verbose(1,Extension we want is available)
same => n,0DBCFinish(${ODBC_ID})
same => n,Verbose(1,Perform some action we wanted)
same => n,Hangup()

We'll be using multirow mode for one of our functions later in this chapter.

Getting Funky with func_odbc: Hot-Desking | 361

After the SQL statement is executed, the value returned (if any) is assigned to the
RETURNED_VALUE channel variable.

Using the ARRAY() Function

In our example, we are utilizing two separate database calls and assigning those values
to a pair of channel variables, ${E} STATUS and ${E} PIN. This was done to simplify the
example:

exten => 110[1-5],n,Set(${E} STATUS=${HOTDESK INFO(status,${E})})
same => n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})

As an alternative, we could have returned multiple columns and saved them to separate
variables utilizing the ARRAY() dialplan function. If we had defined our SQL statement
in the func_odbc.conf file like so:

readsql=SELECT pin,status FROM ast_hotdesk WHERE extension = '${E}

we could have used the ARRAY() function to save each column of information for the
row to its own variable with a single call to the database:
exten => 110[1-5],n,Set(ARRAY(${E} PIN,${E} STATUS)=${HOTDESK INFO(${E})})

Using ARRAY () is handy any time you might get comma-separated values back and want
to assign the values to separate variables, such as with CURL().

So, in the first two lines of the following block of code, we are passing the value
status and the value contained in the ${E} variable (e.g., 1101) to the HOTDESK_INFO()
function. The two values are then replaced in the SQL statement with ${ARG1} and $
{ARG2}, respectively, and the SQL statement is executed. Finally the value returned is
assigned to the ${E} STATUS channel variable.

OK, let’s finish writing the pattern-match extension now:

same => n,Set(${E}_STATUS=${HOTDESK INFO(status,${E})})
same => n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})
same => n,GotoIf($[${ODBCROWS} < 0]?invalid_user,1)
; check if ${E} STATUS is NULL
same => n,GotoIf($[${${E}_STATUS} = 1]?logout,1:login,1)

After assigning the value of the status column to the ${E}_STATUS variable (if the user

dials extension 1101, the variable name will be 1101_STATUS), we check if we’ve received
avalue back from the database (error checking) using the ${0ODBCROWS} channel variable.

The last row in the block checks the status of the phone and, if the agent is currently
logged in, logs him off. If the agent is not already logged in, it will go to extension
login, priority 1 within the same context.

362 | Chapter16: Relational Database Integration

Remember that in a traditional phone system all extensions must be
numbers, but in Asterisk, extensions can have names as well. A possible

advantage of using an extension that’s not a number is that it will be
 much harder for a user to dial it from her phone and, thus, more secure.
We’re going to use several named extensions in this example. If you
want to be absolutely sure that a malicious user cannot access those
named extensions, simply use the trick that the AEL loader uses: start
with a priority other than 1. You can access the first line of the extension
by assigning it a priority label and referencing it via the extension name/
priority label combination.

The login extension runs some initial checks to verify the pin code entered by the agent.
We allow him three tries to enter the correct pin, and if all tries are invalid we send the
call to the login_fail extension (which we will be writing later):

exten => login,1,NoOp() ; set initial counter values
same => n,Set(PIN_TRIES=1) 5 pin tries counter
same => n,Set(MAX_PIN_TRIES=3) ; set max number of login attempts
same => n,Playback(silence/1) ; play back some silence so first prompt is
; not cut off
same => n(get_pin),NoOp()
same => n,Set(PIN_TRIES=$[${PIN TRIES} + 1]) ; increase pin try counter
same => n,Read(PIN_ENTERED,enter-password, ${LEN(${${E} PIN})})
same => n,GotoIf($["${PIN_ENTERED}" = "${${E} PIN}"]?valid login,1)
same => n,Playback(pin-invalid)
same => n,GotoIf($[${PIN_TRIES} <= ${MAX_PIN_TRIES}]?get pin:login_fail,1)

If the pin entered matches, we validate the login with the valid login extension. First
we utilize the CHANNEL variable to figure out which phone device the agent is calling
from. The CHANNEL variable is usually populated with something like SIP/0000FFFF0001-
ab4034c, so we make use of the CUT() function to first pull off the SIP/ portion of the
string and assign that to LOCATION. We then strip off the -ab4034c part of the string,
discard it, and assign the remainder (0000FFFF0001) to the LOCATION variable:

exten => valid_login,1,NoOp()

; CUT off the channel technology and assign it to the LOCATION variable

same => n,Set(LOCATION=${CUT(CHANNEL,/,2)})

; CUT off the unique identifier and save the remainder to the LOCATION variable
same => n,Set(LOCATION=${CUT(LOCATION,-,1)})

We utilize yet another custom function created in the func_odbc.conf file, HOT
DESK_CHECK_PHONE_LOGINS(), to check if any other users were previously logged into this
phone and forgot to log out. If the number of logged-in users is greater than o (it should
never be more than 1, but we check for higher values anyway and reset those, too), it
runs the logic in the logout_login extension:

; func_odbc.conf

[CHECK_PHONE_LOGINS]

prefix=HOTDESK
dsn=asterisk

Getting Funky with func_odbc: Hot-Desking | 363

; ¥** This line should have no line breaks
readsql=SELECT COUNT(status) FROM ast_hotdesk WHERE status = '1' AND
location = '${ARG1}'

If there are no other agents logged into the device, we update the login status for this
user with the HOTDESK_STATUS() function:
; Continuation of the valid _login extension below
same => n,Set(USERS_LOGGED IN=${HOTDESK CHECK_PHONE _
LOGINS(${LOCATION})})
same => n,GotoIf($[${USERS_LOGGED_IN} > 0]?logout_login,1)
same => n(set_login_status),NoOp()

; Set the status for the phone to '1' and where the agent is logged into
same => n,Set(HOTDESK_STATUS(${E})=1,${LOCATION})
same => n,GotoIf($[${ODBCROWS} < 1]?error,1)
same => n,Playback(agent-loginok)
same => n,Hangup()

We create a write function in func_odbc.conf like so:

[STATUS]
prefix=HOTDESK
dsn=asterisk

; *** This line should have no line breaks
writesql=UPDATE ast hotdesk SET status = '${VAL1}',
location = '${VAL2}' WHERE extension = '${ARG1}'

The syntax is very similar to the readsql syntax discussed earlier in the chapter, but
there are a few new things here, so let’s discuss them before moving on.

The first thing you may have noticed is that we now have both ${VALx} and ${ARGx}
variables in our SQL statement. These contain the values we pass to the function from
the dialplan. In this case, we have two VAL variables and a single ARG variable that were
set from the dialplan via this statement:

Set (HOTDESK_STATUS(${E})=1,${LOCATION})

Notice the syntax is slightly different from that of the read-style function. This signals
to Asterisk that you want to perform a write (this is the same syntax as that used for
other dialplan functions).

We are passing the value of the ${E} variable to the HOTDESK_STATUS() function, whose
value is then accessible in the SQL statement within func_odbc.conf with the ${ARG1}
variable. We then pass two values: 1 and ${LOCATION}. These are available to the SQL
statement in the ${VAL1} and ${VAL2} variables, respectively.

As mentioned previously, if we had to log out one or more agents before logging this
one in, we would check this with the logout login extension. This dialplan logic will
utilize the ODBC_FETCH() function to pop information off the information stack returned
by the HOTDESK_LOGGED IN_USER() function. More than likely this will execute only one

364 | Chapter16: Relational Database Integration

loop, but it’s a good example of how you might update or parse multiple rows in the
database.8

The first part of our dialplan returns an ID number that we can use with the
ODBC_FETCH() function to iterate through the values returned. We’re going to assign this
ID to the LOGGED_IN_ID channel variable:

same => n,Set(LOGGED_IN_ID=${HOTDESK_LOGGED IN_USER(${LOCATION})})

Here is the logout_login extension, which could potentially loop through multiple
rows:

exten => logout_login,1,NoOp()
; set all logged-in users on this device to logged-out status

same => n,Set(LOGGED IN ID=${HOTDESK LOGGED IN USER(${LOCATION})})

same => n(start_loop),NoOp()

same => n,Set(WHO=${ODBC_FETCH(${LOGGED IN_ID})})

same => n,GotoIf($["${ODBC_FETCH STATUS}" = "FAILURE"]?cleanup)

same => n,Set(HOTDESK STATUS(${WHO})=0) ; log out phone

same => n,Goto(start loop)

same => n(cleanup),0DBCFinish(${LOGGED IN ID})

same => n,Goto(valid login,set login status) ; return to logging in

We assign the first value returned from the database (e.g., the extension 1101) to the
WHO channel. Before doing anything, though, we check to see if the 0DBC_FETCH() func-
tion was successful in returning data. If the ODBC_FETCH_STATUS channel variable con-
tains FAILURE, we have no data to work with, so we move to the cleanup priority label.

If we have data, we then pass the value of ${WHO} as an argument to the
HOTDESK_STATUS() function, which contains a value of 0. This is the first value passed
to HOTDESK_STATUS() and is shown as ${VAL1} in func_odbc.conf, where the function is
declared.

If you look at the HOTDESK_STATUS() function in func_odbc.conf you will see we could
also pass a second value, but we’re not doing that here since we want to remove any
values from that column in order to log out the user, which setting no value does
effectively.

After using HOTDESK_STATUS() to log out the user, we return to the start_loop priority
label to loop through all values, which simply executes a NoOp(). After attempting to
retrieve a value, we again check ODBC_FETCH_STATUS for FAILURE. If that value is found,
we move to the cleanup priority label, where we execute the 0DBCFinish() dialplan
application to perform cleanup. We then return to the valid login extension at the
set_login_status priority label.

The rest of the context should be fairly straightforward (if some of this doesn’t make
sense, we suggest you go back and refresh your memory with Chapters 6 and 10). The
one trick you may be unfamiliar with could be the usage of the ${0DBCROWS} channel

§ Also see “Multirow Functionality with func_odbc” on page 360 for more information and examples of parsing
multiple rows returned from the database.

Getting Funky with func_odbc: Hot-Desking | 365

variable, which is set by the HOTDESK_STATUS() function. This tells us how many rows
were affected in the SQL UPDATE, which we assume to be 1. If the value of ${0DB
CROWS} is less than 1, we assume an error and handle it appropriately:
exten => logout,1,NoOp()
same => n,Set(HOTDESK_STATUS(${E})=0)
same => n,GotoIf($[${ODBCROWS} < 1]?error,1)

same => n,Playback(silence/18agent-loggedoff)
same => n,Hangup()

exten => login fail,1,NoOp()
same => n,Playback(silence/181login-fail)
same => n,Hangup()

exten => error,1,NoOp()
same => n,Playback(silence/18connection-failed)
same => n,Hangup()

exten => invalid user,1,NoOp()
same => n,Verbose(1,Hot Desk extension ${E} does not exist)
same => n,Playback(silence/28invalid)
same => n,Hangup()

We also include the hotdesk outbound context, which will handle our outgoing calls
after we have logged the agent into the system:

include => hotdesk outbound

The hotdesk_outbound context utilizes many of the same principles discussed previ-
ously, so we won’t approach it quite so thoroughly; essentially, this context will catch
all numbers dialed from the desk phones. We first set our LOCATION variable using the
CHANNEL variable, then determine which extension (agent) is logged into the system and
assign that value to the WHO variable. If this variable is NULL, we reject the outgoing call.
If it is not NULL, then we get the agent information using the HOTDESK_INFO() function
and assign it to several CHANNEL variables, including the context to handle the call with,
where we perform a Goto() to the context we have been assigned (which controls our
outbound access).

We will make use of the HOTDESK_PHONE_STATUS() dialplan function, which you can
define in func_odbc.conf like so:

[PHONE_STATUS]

prefix=HOTDESK

dsn=asterisk

readsql=SELECT extension FROM ast_hotdesk WHERE status = '1'
readsql+= AND location = '${ARG1}'

If we try to dial a number that is not handled by our context (or one of the transitive
contexts—i.e., international contains long distance, which also contains local), the
built-in extension 1 is executed, which plays back a message stating that the action
cannot be performed and hangs up the call:

366 | Chapter16: Relational Database Integration

[hotdesk_outbound]
exten => X.,1,No0Op()
same => n,Set(LOCATION=${CUT(CHANNEL,/,2)})
same => n,Set(LOCATION=${CUT(LOCATION,-,1)})
same => n,Set(WHO=${HOTDESK_PHONE_STATUS (${LOCATION})})
same => n,GotoIf($[${ISNULL(${WHO})}]?no_outgoing,1)
same => n,Set(${WHO} CID NAME=${HOTDESK_INFO(cid_name,${WHO})})
same => n,Set(${WHO} CID NUMBER=${HOTDESK_INFO(cid_number,${WHO})})
same => n,Set(${WHO} CONTEXT=${HOTDESK INFO(context,${WH0})})
same => n,Goto(${${WHO} CONTEXT},${EXTEN},1)

[international]
exten => _011.,1,No0Op()
same => n,Set(E=${EXTEN})
same => n,Goto(outgoing,call,1)

exten => i,1,NoOp()
same => n,Playback(silence/28sorry-cant-let-you-do-that2)
same => n,Hangup()

include => longdistance

[longdistance]

exten => _INXXNXXXXXX,1,NoOp()
same => n,Set(E=${EXTEN})
same => n,Goto(outgoing,call,1)

exten => _NXXNXXXXXX,1,Goto(1${EXTEN},1)

exten => i,1,NoOp()
same => n,Playback(silence/28sorry-cant-let-you-do-that2)
same => n,Hangup()

include => local

[local]
exten => _416NXXXXXX,1,NoOp()
same => n,Set(E=${EXTEN})
same => n,Goto(outgoing,call,1)

exten => i,1,No0p()
same => n,Playback(silence/28sorry-cant-let-you-do-that2)
same => n,Hangup()

If the call is allowed to be executed, it is sent to the [outgoing] context for processing
and the caller ID name and number are set with the CALLERID() function. The call is
then placed via the SIP channel using the service_provider we created in the sip.conf

file:

[outgoing]

exten => call,1,NoOp()
same => n,Set(CALLERID(name)=${${WHO} CID NAME})
same => n,Set(CALLERID(number)=${${WHO} CID NUMBER})
same => n,Dial(SIP/service provider/${E})

Getting Funky with func_odbc: Hot-Desking | 367

same => n,Playback(silence/28pls-try-call-later)
same => n,Hangup()

Our service provider might look something like this in sip.conf:

[service_provider]

type=friend
host=switchi.service_provider.net
defaultuser=my_username
fromuser=my_username
secret=welcome

context=incoming

canreinvite=no

disallow=all

allow=ulaw

Now that we’ve implemented a fairly complex feature in the dialplan with the help of
func_odbc to retrieve and store data in a remote relational database, hopefully you’re
starting to get why we think this is so cool. With a handful of self-defined dialplan
functions in the func_odbc.conf file and a couple of tables in a database, we can create
some fairly rich applications!

How many things have you just thought of that you could apply func_odbc to?

Using Realtime

The Asterisk Realtime Architecture (ARA) enables you to store the configuration files
(that would normally be found in /etc/asterisk) and their configuration options in a
database table. There are two types of realtime: static and dynamic.

The static version is similar to the traditional method of reading a configuration file,
except that the data is read from the database instead.

The dynamic realtime method, which loads and updates the information as it is re-
quired, is used for things such as SIP/IAX2 user and peer objects and voicemail.

Making changes to static information requires a reload, just as if you had changed a
text file on the system, but dynamic information is polled by Asterisk as needed, so no
reload is required when changes are made to this data. Realtime is configured in the
extconfig.conf file located in the /etc/asterisk directory. This file tells Asterisk what to
load from the database and where to load it from, allowing certain files to be loaded
from the database and other files to be loaded from the standard configuration files.

Static Realtime

Static realtime is useful when you want to load from a database the configuration that
you would normally place in the configuration files in /etc/asterisk. The same rules that
apply to flat files on your system still apply when using static realtime. For example,
after making changes to the configuration you must either run the reload command

368 | Chapter16: Relational Database Integration

from the Asterisk CLI, or reload the module associated with the configuration file (e.g.,
using module reload chan_sip.so).

When using static realtime, we tell Asterisk which files we want to load from the da-
tabase using the following syntax in the extconfig.conf file:

; /etc/asterisk/extconfig.conf
filename.conf => driver,database[,table]

W

If the table name is not specified, Asterisk will use the name of the file
as the table name instead.

The static realtime module uses a specifically formatted table to read the configuration
of static files in from the database. Table 16-2 illustrates the columns as they should
be defined in your database:

Table 16-2. Table layout and description of ast_config

Columnname Column type Description
id Serial, auto- An auto-incrementing unique value for each row in the table.
incrementing
cat_metric Integer The weight of the category within the file. A lower metric means it appears higher in

the file (see the sidebar on page 370).

var _metric Integer The weight of anitem within a category. A lower metric meansit appears higherin the
list (see the sidebar on page 370). This is useful for things like codec order in sip.conf, or
iax.confwhere you want disallow=all to appear first (metric of 0), followed by
allow=ulaw (metric of 1), then allow=gsm (metric of 2).

filename Varchar 128 The filename the module would normally read from the hard drive of your system (e.g.,
musiconhold.conf, sip.conf, iax.conf, etc.).

category Varchar 128 The section name within the file, such as [general]. Do not include the square
brackets around the name when saving to the database.

var_name Varchar 128 The option on the left side of the equals sign (e.g., disallowis the var_namein
disallow=all).

var_val Varchar 128 The value of an option on the right side of the equals sign (e.g., allis the var_val
indisallow=all).

commented Integer Any value other than 0 will evaluate as if it were prefixed with a semicolon in the flat

file (commented out).

Using Realtime | 369

A Word About Metrics

The metrics in static realtime are used to control the order in which objects are read
into memory. Think of the cat_metric and var_metric as the original line numbers in
the flat file. A higher cat_metric is processed first, because Asterisk matches categories
from bottom to top. Within a category, through, a lower var_metric is processed first,
because Asterisk processes the options top-down (e.g., disallow=all should be set to
avalue lower than the allow’s value within a category to make sure it is processed first).

A simple file we can load from static realtime is the musiconhold.confl file. Let’s start
by moving this file to a temporary location:

% cd /etc/asterisk
$ mv musiconhold.conf musiconhold.conf.old

In order for the classes to be removed from memory, we need to restart Asterisk. Then
we can verify that our classes are blank by running moh show classes:

*CLI> core restart now
*CLI> moh show classes
*CLI>

Let’s put the [default] class back into Asterisk, but now we’ll load it from the database.
Connect to your database and execute the following INSERT statements:

> INSERT INTO ast_config (filename,category,var_name,var_val)
VALUES ('musiconhold.conf','default','mode','files');

> INSERT INTO ast_config (filename,category,var_name,var_val)
VALUES ('musiconhold.conf','default','directory','/var/lib/asterisk/moh"');

You can verify that your values have made it into the database by running a SELECT
statement:

asterisk=# SELECT filename,category,var_name,var_val FROM ast_config;

filename | category | var_name | var_val
------------------ T e T
musiconhold.conf | default | mode | files

musiconhold.conf | default | directory | /var/lib/asterisk/moh
(2 rows)

There’s one last thing to modify in the extconfig.conf file in the /etc/asterisk directory
to tell Asterisk to get the data for musiconhold.conf from the database using the ODBC
connection. The first column states that we’re using the ODBC drivers to connect
(res_odbc.conf) and that the connection name is asterisk (as defined with [asterisk]
in res_odbc.conf). Add the following line to the end of the extconfig.conf file, and then
save it:

[I'The musiconhold.conf file can also be loaded via dynamic realtime, but we’re using it statically as it’s a simple
file that makes a good example.

370 | Chapter16: Relational Database Integration

musiconhold.conf => odbc,asterisk,ast_config

Then connect to the Asterisk console and perform a reload:

*CLI> module reload res_musiconhold.so

You can now verify that your music on hold classes are loading from the database by
running moh show classes:

*CLI> moh show classes

Class: general

Mode: files
Directory: /var/lib/asterisk/moh

And there you go: musiconhold.conf loaded from the database. If you have issues with
the reload of the module loading the data into memory, try restarting Asterisk. You can
perform the same steps in order to load other flat files from the database, as needed.

Dynamic Realtime

The dynamic realtime system is used to load objects that may change often, such as
SIP/TAX2 users and peers, queues and their members, and voicemail messages. Like-
wise, when new records are likely to be added on a regular basis, we can utilize the
power of the database to let us load this information on an as-needed basis.

All of realtime is configured in the /etc/asterisk/extconfig.conf file, but dynamic realtime
has well-defined configuration names. Defining something like SIP peers is done with
the following format:

; extconfig.conf
sippeers => driver,databasel[,table]

The table name is optional. If it is omitted, Asterisk will use the predefined name (i.e.,
sippeers) to identify the table in which to look up the data.

B
)

Remember that we have both SIP peers and SIP users: peers are end-
points we send calls to, and a user is something we receive calls from.
% A friend is shorthand that defines both.

In our example, we’ll be using the ast_sippeers table to store our SIP peer information.
So, to configure Asterisk to load all SIP peers from our database using realtime, we
would define something like this:

; extconfig.conf
sippeers => odbc,asterisk,ast sipfriends

To also load our SIP users from the database, we would define the sipusers object
like so:

sipusers => odbc,asterisk,ast sipfriends

Using Realtime | 371

You may have noticed we used the same table for both the sippeers and sipusers. This
is because there will be a type field (just as if we were defining the type in the sip.conf
file) that will let us define a type of user, peer, or friend. If you unload chan_sip.so and
then load it back into memory (i.e., using module unload chan_sip.so followed by mod-
ule load chan_sip.so) after configuring extconfig.conf, you will be greeted with some
warnings telling you which columns you’re missing for the realtime table. Since we’ve
enabled sippeers and sipusers in extconfig.conf, we will get the following on the con-
sole (which has been trimmed due to space requirements):

WARNING: Realtime table ast sipfriends@asterisk requires column
'name', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'ipaddr', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'port', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'regseconds’, but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'defaultuser’, but that column does not exist!

WARNING: Realtime table ast sipfriends@asterisk requires column
'fullcontact', but that column does not exist!

WARNING: Realtime table ast sipfriends@asterisk requires column
'regserver', but that column does not exist!

WARNING: Realtime table ast sipfriends@asterisk requires column
'useragent’, but that column does not exist!

WARNING: Realtime table ast sipfriends@asterisk requires column
'lastms', but that column does not exist!

As you can see, we are missing several columns from the table ast_sipfriends, which
we've defined as connecting to the asterisk object as defined in res_odbc.conf. The
next step is to create ourast_sipfriends table with all the columns listed by the warning
messages, in addition to the following: the type column, which is required to define
users, peers, and friends; the secret column, which is used for setting a password; and
the host column, which allows us to define whether the peer is dynamically registering
to us or has a static IP address. Table 16-3 lists all of the columns that should appear
in our table, and their types.

Table 16-3. Minimal sippeers/sipusers realtime table

Columnname Column type
type Varchar 6

name Varchar 128

372 | Chapter16: Relational Database Integration

Columnname Column type

secret Varchar 128
context Varchar 128
host Varchar 128
ipaddr Varchar 128
port Varchar 5

regseconds Bigint
defaultuser Varchar128
fullcontact Varchar128

regserver Varchar 128
useragent Varchar 128
lastms Integer

For each peer you want to register, you need to insert data in the columns type, name,
secret, context, host, and defaultuser. The rest of the columns will be populated au-
tomatically when the peer registers.

The port, regseconds, and ipaddr fields are required to let Asterisk store the registration
information for the peer so it can determine where to send the calls. (Note that if the
peer is static, you will have to populate the ipaddr