

Asterisk™: The Definitive Guide

THIRD EDITION

Asterisk™: The Definitive Guide

Leif Madsen, Jim Van Meggelen, and Russell Bryant

Beijing • Cambridge • Farnham • Köln • Sebastopol • Tokyo

Asterisk™: The Definitive Guide, Third Edition
by Leif Madsen, Jim Van Meggelen, and Russell Bryant

Copyright © 2011 Leif Madsen, Jim Van Meggelen, and Russell Bryant. All rights reserved.
Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions
are also available for most titles (http://my.safaribooksonline.com). For more information, contact our
corporate/institutional sales department: (800) 998-9938 or corporate@oreilly.com.

Editor: Mike Loukides
Production Editor: Teresa Elsey
Copyeditor: Rachel Head
Proofreader: Andrea Fox
Production Services: Molly Sharp

Indexer: Fred Brown
Cover Designer: Karen Montgomery
Interior Designer: David Futato
Illustrator: Robert Romano

Printing History:
June 2005: First Edition.
August 2007: Second Edition.
April 2011: Third Edition.

Nutshell Handbook, the Nutshell Handbook logo, and the O’Reilly logo are registered trademarks of
O’Reilly Media, Inc. Asterisk: The Definitive Guide, the images of starfish, and related trade dress are
trademarks of O’Reilly Media, Inc.

Many of the designations used by manufacturers and sellers to distinguish their products are claimed as
trademarks. Where those designations appear in this book, and O’Reilly Media, Inc., was aware of a
trademark claim, the designations have been printed in caps or initial caps.

While every precaution has been taken in the preparation of this book, the publisher and authors assume
no responsibility for errors or omissions, or for damages resulting from the use of the information con-
tained herein.

ISBN: 978-0-596-51734-2

[LSI]

1302181785

http://my.safaribooksonline.com/?portal=oreilly
mailto:corporate@oreilly.com

Table of Contents

Foreword . xix

Preface . xxiii

1. A Telephony Revolution . 1
Asterisk and VoIP: Bridging the Gap Between Traditional and Network
Telephony 2

The Zapata Telephony Project 2
Massive Change Requires Flexible Technology 3
Asterisk: The Hacker’s PBX 4
Asterisk: The Professional’s PBX 5
The Asterisk Community 5

The Asterisk Mailing Lists 6
Asterisk Wiki Sites 7
The IRC Channels 7
Asterisk User Groups 7
The Asterisk Documentation Project 8

The Business Case 8
Conclusion 8

2. Asterisk Architecture . 9
Modules 10

Applications 12
Bridging Modules 15
Call Detail Recording Modules 15
Channel Event Logging Modules 16
Channel Drivers 17
Codec Translators 18
Format Interpreters 18
Dialplan Functions 19
PBX Modules 21

v

Resource Modules 21
Addon Modules 23
Test Modules 24

File Structure 24
Configuration Files 24
Modules 24
The Resource Library 25
The Spool 25
Logging 25

The Dialplan 25
Hardware 26
Asterisk Versioning 26

Previous Release Methodologies 26
The New Release Methodology 27

Conclusion 28

3. Installing Asterisk . 29
Installation Cheat Sheet 31
Distribution Installation 35

CentOS Server 35
Ubuntu Server 40

Software Dependencies 44
Downloading What You Need 46

Getting the Source via Subversion 47
Getting the Source via wget 47

How to Install It 48
LibPRI 48
DAHDI 49
Asterisk 50
Setting File Permissions 50

Base Configuration 51
Disable SELinux 51
Initial Configuration 52
make menuselect 59

Updating Asterisk 64
Common Issues 66
Upgrading Asterisk 68
Conclusion 69

4. Initial Configuration Tasks . 71
asterisk.conf 71

The [directories] Section 71
The [options] Section 72

vi | Table of Contents

The [files] Section 75
The [compat] Section 75

modules.conf 75
The [modules] Section 76

indications.conf 77
musiconhold.conf 79

Converting Music to a Format That Works Best with Asterisk 79
Conclusion 81

5. User Device Configuration . 83
Telephone Naming Concepts 84
Hardphones, Softphones, and ATAs 86
Configuring Asterisk 87

How Channel Configuration Files Work with the Dialplan 88
sip.conf 89
iax.conf 95
Modifying Your Channel Configuration Files for Your Environment 98

Loading Your New Channel Configurations 98
The Asterisk CLI 99

Testing to Ensure Your Devices Have Registered 99
Analog Phones 100
A Basic Dialplan to Test Your Devices 103
Under the Hood: Your First Call 104
Conclusion 105

6. Dialplan Basics . 107
Dialplan Syntax 107

Contexts 108
Extensions 110
Priorities 111
Applications 113
The Answer(), Playback(), and Hangup() Applications 113

A Simple Dialplan 115
Hello World 115

Building an Interactive Dialplan 116
The Goto(), Background(), and WaitExten() Applications 116
Handling Invalid Entries and Timeouts 119
Using the Dial() Application 119
Using Variables 122
Pattern Matching 125
Includes 129

Conclusion 130

Table of Contents | vii

7. Outside Connectivity . 131
The Basics of Trunking 131
Fundamental Dialplan for Outside Connectivity 132
PSTN Circuits 133

Traditional PSTN Trunks 134
Installing PSTN Trunks 136

VoIP 144
PSTN Termination 144
PSTN Origination 145
VoIP to VoIP 147
Configuring VoIP Trunks 147

Emergency Dialing 154
Conclusion 156

8. Voicemail . 157
Comedian Mail 157

The [general] Section 158
The [zonemessages] Section 166
The Contexts Section 167
An Initial voicemail.conf File 168

Dialplan Integration 169
The VoiceMail() Dialplan Application 169
The VoiceMailMain() Dialplan Application 171
Creating a Dial-by-Name Directory 171
Using a Jitterbuffer 172

Storage Backends 172
Linux Filesystem 172
ODBC 173
IMAP 173

Using Asterisk As a Standalone Voicemail Server 174
Integrating Asterisk into a SIP Environment As a Standalone
Voicemail Server 174
SMDI (Simplified Message Desk Interface) 177

Conclusion 179

9. Internationalization . 181
Devices External to the Asterisk Server 182
PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones 185

DAHDI Drivers 187
Asterisk 189

Caller ID 189
Language and/or Accent of Prompts 190
Time/Date Stamps and Pronunciation 191

viii | Table of Contents

Conclusion—Easy Reference Cheat Sheet 194

10. Deeper into the Dialplan . 195
Expressions and Variable Manipulation 195

Basic Expressions 195
Operators 196

Dialplan Functions 198
Syntax 198
Examples of Dialplan Functions 198

Conditional Branching 199
The GotoIf() Application 199
Time-Based Conditional Branching with GotoIfTime() 202

Macros 204
Defining Macros 204
Calling Macros from the Dialplan 205
Using Arguments in Macros 206

GoSub() 207
Defining Subroutines 207
Calling Subroutines from the Dialplan 208
Using Arguments in Subroutines 209
Returning from a Subroutine 210

Local Channels 211
Using the Asterisk Database (AstDB) 214

Storing Data in the AstDB 214
Retrieving Data from the AstDB 214
Deleting Data from the AstDB 215
Using the AstDB in the Dialplan 215

Handy Asterisk Features 217
Zapateller() 217
Call Parking 217
Conferencing with MeetMe() 218

Conclusion 219

11. Parking and Paging . 221
features.conf 221

The [general] section 222
The [featuremap] Section 225
The [applicationmap] Section 225
Application Map Grouping 227
Parking Lots 228

Overhead and “Underchin” Paging (a.k.a. Public Address) 229
Places to Send Your Pages 230
Zone Paging 235

Table of Contents | ix

Conclusion 236

12. Internet Call Routing . 237
DNS and SIP URIs 237

The SIP URI 238
SRV Records 238
Accepting Calls to Your System 240
Dialing SIP URIs from Asterisk 246

ENUM and E.164 247
E.164 and the ITU 247
ENUM 248
Asterisk and ENUM 249

ISN, ITAD, and freenum.org 250
Got ISN? 251
ITAD Subscriber Numbers (ISNs) 251
Management of Internet Numbering 251
IP Telephony Administrative Domains (ITADs) 252
Create a DNS Entry for Your ITAD 253
Testing Your ITAD 254
Using ISNs in Your Asterisk System 254

Security and Identity 256
Toll Fraud 257
Spam over Internet Telephony (SPIT) 258
Distributed Denial of Service Attacks 258
Phishing 258
Security Is an Ongoing Process 259

Conclusion 259

13. Automatic Call Distribution (ACD) Queues . 261
Creating a Simple ACD Queue 262
Queue Members 266

Controlling Queue Members via the CLI 266
Controlling Queue Members with Dialplan Logic 268
Automatically Logging Into and Out of Multiple Queues 270
An Introduction to Device State 273

The queues.conf File 275
The agents.conf File 281
Advanced Queues 283

Priority Queue (Queue Weighting) 283
Queue Member Priority 284
Changing Penalties Dynamically (queuerules.conf) 285
Announcement Control 287
Overflow 291

x | Table of Contents

Using Local Channels 293
Queue Statistics: The queue_log File 296
Conclusion 299

14. Device States . 301
Device States 301

Checking Device States 302
Extension States 303

Hints 303
Checking Extension States 304

SIP Presence 306
Asterisk Configuration 306

Using Custom Device States 307
An Example 308

Distributed Device States 309
Using OpenAIS 310
Using XMPP 314

Shared Line Appearances 318
Installing the SLA Applications 318
Configuration Overview 319
Key System Example with Analog Trunks 319
Key System Example with SIP Trunks 323
Shared Extension Example 325
Additional Configuration 327
Limitations 328

Conclusion 329

15. The Automated Attendant . 331
An Auto Attendant Is Not an IVR 331
Designing Your Auto Attendant 332

The Greeting 333
The Main Menu 334
Timeout 335
Invalid 335
Dial by Extension 336

Building Your Auto Attendant 336
Recording Prompts 336
The Dialplan 338
Delivering Incoming Calls to the Auto Attendant 339
IVR 340

Conclusion 340

Table of Contents | xi

16. Relational Database Integration . 341
Installing and Configuring PostgreSQL and MySQL 342

Installing PostgreSQL for CentOS 342
Installing PostgreSQL for Ubuntu 342
Installing MySQL for CentOS 343
Installing MySQL for Ubuntu 343
Configuring PostgreSQL 343
Configuring MySQL 345

Installing and Configuring ODBC 346
Configuring ODBC for PostgreSQL 347
Configuring ODBC for MySQL 349
Configuring ODBC for Microsoft SQL 350
Validating the ODBC Connector 351
Configuring res_odbc to Allow Asterisk to Connect Through ODBC 352

Managing Databases 353
Troubleshooting Database Issues 353

A Gentle Introduction to func_odbc 354
Getting Funky with func_odbc: Hot-Desking 354
Using Realtime 368

Static Realtime 368
Dynamic Realtime 371

Storing Call Detail Records (CDRs) 375
ODBC Voicemail 378

Creating the Large Object Type for PostgreSQL 379
ODBC Voicemail Storage Table Layout 381
Configuring voicemail.conf for ODBC Storage 382
Testing ODBC Voicemail 383

Conclusion 387

17. Interactive Voice Response . 389
What Is IVR? 389
Components of an IVR 390
IVR Design Considerations 392

Do 392
Don’t 392

Asterisk Modules for Building IVRs 392
CURL 392
func_odbc 392
AGI 393
AMI 393

A Simple IVR Using CURL 393
Installing the cURL Module 393
The Dialplan 394

xii | Table of Contents

A Prompt-Recording Application 394
Speech Recognition and Text-to-Speech 395

Text-to-Speech 395
Speech Recognition 396

Conclusion 396

18. External Services . 397
Calendar Integration 398

Compiling Calendaring Support into Asterisk 398
Configuring Calendar Support for Asterisk 399
Triggering Calendar Reminders to Your Phone 402
Controlling Calls Based on Calendar Information 407
Writing Call Information to a Calendar 408
Conclusion 411

VoiceMail IMAP Integration 411
Compiling IMAP VoiceMail Support into Asterisk 412

Using XMPP (Jabber) with Asterisk 418
Compiling Jabber Support into Asterisk 419
Jabber Dialplan Commands 419
chan_gtalk 425

Skype Integration 429
Installation of Skype for Asterisk 429
Using Skype for Asterisk 429

LDAP Integration 434
Configuring OpenLDAP 435
Compiling LDAP Support into Asterisk 437
Configuring Asterisk for LDAP Support 437

Text-to-Speech Utilities 440
Festival 440
Cepstral 442

Conclusion 442

19. Fax . 443
What Is a Fax? 443
Ways to Handle Faxes in Asterisk 443
spandsp 444

Obtaining spandsp 444
Compiling and Installing spandsp 444
Adding the spandsp Library to Your libpath 445
Recompiling Asterisk with spandsp Support 445
Disabling spandsp (Should You Want to Test Digium Fax) 446

Digium Fax For Asterisk 446
Obtaining Digium FFA 446

Table of Contents | xiii

Disabling Digium FFA (Should You Want to Test spandsp) 446
Incoming Fax Handling 447

Fax to TIFF 447
Fax to Email 447
Fax Detection 448

Outgoing Fax Handling 449
Transmitting a Fax from Asterisk 450
File Format for Faxing 450
An Experiment in Email to Fax 451

Fax Pass-Through 454
Using Fax Buffers in chan_dahdi.conf 454

Conclusion 455

20. Asterisk Manager Interface (AMI) . 457
Quick Start 457

AMI over TCP 458
AMI over HTTP 459

Configuration 460
manager.conf 460
http.conf 464

Protocol Overview 465
Message Encoding 466
AMI over HTTP 467

Development Frameworks 471
CSTA 471

Interesting Applications 472
AsteriskGUI 472
Flash Operator Panel 473

Conclusion 473

21. Asterisk Gateway Interface (AGI) . 475
Quick Start 475
AGI Variants 477

Process-Based AGI 477
DeadAGI Is Dead 478
FastAGI—AGI over TCP 478
Async AGI—AMI-Controlled AGI 479

AGI Communication Overview 480
Setting Up an AGI Session 480
Commands and Responses 482
Ending an AGI Session 486

Development Frameworks 487
Conclusion 488

xiv | Table of Contents

22. Clustering . 489
Traditional Call Centers 489
Hybrid Systems 490
Pure Asterisk, Nondistributed 492
Asterisk and Database Integration 493

Single Database 493
Replicated Databases 495

Asterisk and Distributed Device States 496
Distributing Device States over a LAN 496
Distributing Device States over a WAN 497

Multiple Queues, Multiple Sites 499
Conclusion 501

23. Distributed Universal Number Discovery (DUNDi) . 503
How Does DUNDi Work? 503
The dundi.conf File 505
Configuring Asterisk for Use with DUNDi 507

General Configuration 507
Initial DUNDi Peer Definition 509
Creating Mapping Contexts 510
Using Mapping Contexts with Peers 512
Allowing Remote Connections 514
Controlling Responses 516
Performing Lookups from the Dialplan 519

Conclusion 522

24. System Monitoring and Logging . 523
logger.conf 523

Reviewing Asterisk Logs 525
Logging to the Linux syslog Daemon 526
Verifying Logging 527

Call Detail Records 527
CDR Contents 527
Dialplan Applications 529
cdr.conf 529
Backends 530
Example Call Detail Records 536
Caveats 537

CEL (Channel Event Logging) 537
Channel Event Types 537
Channel Event Contents 539
Dialplan Applications 540
cel.conf 540

Table of Contents | xv

Backends 540
Example Channel Events 546

SNMP 551
Installing the SNMP Module for Asterisk 551
Configuring SNMP for Asterisk Using OpenNMS 552
Monitoring Asterisk with OpenNMS 558

Conclusion 559

25. Web Interfaces . 561
Flash Operator Panel 562
Queue Status and Reporting 562

Queue Status Display 563
Queue Reporting 563

Call Detail Records 563
A2Billing 564
Conclusion 564

26. Security . 565
Scanning for Valid Accounts 565
Authentication Weaknesses 567
Fail2ban 567

Installation 568
Configuration 569

Encrypted Media 571
Dialplan Vulnerabilities 571
Securing Asterisk Network APIs 572
IAX2 Denial of Service 573
Other Risk Mitigation 574
Resources 575
Conclusion—A Better Idiot 576

27. Asterisk: A Future for Telephony . 577
The Problems with Traditional Telephony 577

Closed Thinking 578
Limited Standards Compliancy 578
Slow Release Cycles 579
Refusing to Let Go of the Past and Embrace the Future 579

Paradigm Shift 580
The Promise of Open Source Telephony 580

The Itch That Asterisk Scratches 580
Open Architecture 581
Standards Compliance 582
Lightning-Fast Response to New Technologies 582

xvi | Table of Contents

Passionate Community 582
Some Things That Are Now Possible 582

The Future of Asterisk 586
Speech Processing 587
High-Fidelity Voice 588
Video 588
Wireless 589
Unified Messaging 590
Peering 590
Challenges 591
Opportunities 594

A. Understanding Telephony . 597

B. Protocols for VoIP . 617

C. Preparing a System for Asterisk . 639

Index . 663

Table of Contents | xvii

Foreword

“There’s more than one way to do it.” I’ve been working with Asterisk for nine years,
and this motto becomes more true with each release, each added feature, and each
clever person who attacks a telecommunications problem with this incredibly flexible
toolkit. I had the fantastic opportunity to work as the community manager for the
Asterisk project at Digium for two years, which gave me one of the best vantage points
for seeing the scope and imagination of the worldwide development effort pushing
Asterisk forward. The depth and breadth of Asterisk is staggering—installations with
hundreds of thousands of users are now commonplace. I see Asterisk making deep
inroads into the financial, military, hospital, Fortune 100 enterprise, service provider,
calling card, and mobile environments. In fact, there really aren’t any areas that I can
think of where Asterisk isn’t now entrenched as the default choice when there is a need
for a generalized voice tool to do “stuff.”

Asterisk has been emblematic of the way that open source software has changed busi-
ness—and changed the world. My favorite part of any Asterisk project overview or
conference talk is answering questions from someone new to Asterisk. As I continue
to answer “Yes, it can do that,” I watch as the person’s eyes grow wide. The person
starts to smile when he really starts to think about new things to do that his old phone
or communication system couldn’t possibly have done. Radio integration? Sure.
Streaming MP3s into or out of phone calls? OK. Emailing recorded conference calls to
the participants? No problem. Integration of voice services into existing Java apps?
Easy. Fax? Instant messages? IVRs? Video? Yes, yes, yes, yes.

The affirmative answers just keep flowing, and at that point, the best thing to do is to
sit the person down and start showing him quick demonstrations of how Asterisk can
be quickly deployed and developed. Then, I typically point the person toward the first
edition of this book, Asterisk: The Future of Telephony, and set him loose. In just a few
hours of development (or longer, of course), companies can change the way they deliver
products to customers, nonprofits can overhaul how their users interact with the serv-
ices they offer, and individuals can learn to build a perfectly customized call-handling
system for their mobile and home phones. Asterisk scales up and down from individual
lines to vast multiserver installations across multiple continents, but the way to start is

xix

http://oreilly.com/catalog/9780596009625

to install the package, open up some of the configuration files, and start looking at
examples.

From the basic beginnings of a PBX that Mark Spencer coded in 1999, the Asterisk
project, with the help of thousands of developers, has moved from simply connecting
phone calls and has matured into a platform that can handle voice, video, and text
across dozens of virtual and physical interface types. The creation and growth of
Asterisk were the inescapable results of the convergence of the four horsemen of the
proprietary hardware apocalypse: open source development ideas, the Internet,
Moore’s Law, and the plummeting costs of telecommunications. Even hardware ven-
dors who may be frightened of Asterisk from a competitive standpoint are using it in
their labs and core networks: almost all devices in the Voice-over-IP world are tested
with Asterisk, making it the most compatible system across vendors.

At a recent communications conference I attended, the question “Who uses Asterisk?”
was posed to the 1000-plus crowd. Nearly 75 percent raised their hands. Asterisk is a
mature, robust software platform that permeates nearly every area of the telecommu-
nications industry and has firmly cemented itself as one of the basic elements in any
open source service delivery system. I tell people that it’s reasonable for anyone deliv-
ering services both via phone and web to want to add an “A” for Asterisk to the LAMP
(Linux, Apache, MySQL, [Perl/Python/PHP]) acronym, making it LAAMP. (LAMA-P
was another option, but for some reason nobody seems to like that version…I don’t
know why.)

The expansion of this book to include more examples is something I’ve been looking
forward to for some time. Asterisk is accessible because of the ease with which a novice
can understand basic concepts. Then it continues to succeed as the novice becomes a
pro and starts tapping the “other ways to do it” with more sophisticated implementa-
tions, using AGI with Java, Perl, or Python (or one of the other dozen or so supported
languages), or even writing her own custom apps that work as compile-time options
in Asterisk. But the first step for anyone, no matter what his or her skill level, is to look
at examples of basic apps others have written. Leif, Jim, and Russell have not only put
together a fantastic compendium of Asterisk methods, but they have also provided an
excellent list of examples that will let the novice or expert quickly learn new techniques
and “more than one way to do it.”

Asterisk 1.x is fantastically powerful and can solve nearly any voice problem you might
have. For those of you building the most complex installations, there is even more
interesting work—which will be realized quite soon—in development. The currently-
in-development Asterisk SCF (Scalable Communications Framework) is being built as
an adjunct open source project to allow Asterisk 1.x systems to scale in even more
powerful ways—stay tuned, or better yet, get involved with the project as a developer.

xx | Foreword

If you’re an experienced Asterisk developer or integrator, I’m sure this book will have
a few “Hey, that’s a neat way to do it!” moments for you, which is one of the joys of
Asterisk. If this is your first project with Asterisk, I’d like to welcome you to the huge
community of users and developers dedicated to making Asterisk better. This book will
take you from a vague idea of doing something with computers and voice communi-
cation to the point where you’re able to stun everyone you know with your phone
system’s sophisticated tricks.

You’re encouraged to participate in the online mailing lists, IRC chatrooms, and yearly
AstriCon conference that provide up-to-the-second news and discussion surrounding
the project. Without your interest, input, and code, Asterisk wouldn’t exist. Open
source projects are hungry for new ideas and excellent contributions: I encourage you
to be a participant in the Asterisk community, and I look forward to seeing your ques-
tions and examples in the next edition of this book.

—John Todd

Foreword | xxi

Preface

This is a book for anyone who uses Asterisk.

Asterisk is an open source, converged telephony platform, which is designed primarily
to run on Linux. Asterisk combines more than 100 years of telephony knowledge into
a robust suite of tightly integrated telecommunications applications. The power of
Asterisk lies in its customizable nature, complemented by unmatched standards com-
pliance. No other PBX can be deployed in so many creative ways.

Applications such as voicemail, hosted conferencing, call queuing and agents, music
on hold, and call parking are all standard features built right into the software. More-
over, Asterisk can integrate with other business technologies in ways that closed, pro-
prietary PBXs can scarcely dream of.

Asterisk can appear quite daunting and complex to a new user, which is why docu-
mentation is so important to its growth. Documentation lowers the barrier to entry and
helps people contemplate the possibilities.

Produced with the generous support of O’Reilly Media, Asterisk: The Definitive
Guide is the third edition of what was formerly called Asterisk: The Future of
Telephony. We decided to change the name because Asterisk has been so wildly suc-
cessful that it is no longer an up-and-coming technology. Asterisk has arrived.

This book was written for, and by, members of the Asterisk community.

Audience
This book is intended to be gentle toward those new to Asterisk, but we assume that
you’re familiar with basic Linux administration, networking, and other IT disciplines.
If not, we encourage you to explore the vast and wonderful library of books that
O’Reilly publishes on these subjects. We also assume you’re fairly new to telecommu-
nications (both traditional switched telephony and the new world of Voice over IP).

However, this book will also be useful for the more experienced Asterisk administrator.
We ourselves use the book as a reference for features that we haven’t used for a while.

xxiii

http://oreilly.com/catalog/9780596517342/
http://oreilly.com/catalog/9780596517342/
http://oreilly.com/catalog/9780596009625/
http://oreilly.com/catalog/9780596009625/

Organization
The book is organized into these chapters:

Chapter 1, A Telephony Revolution
This is where we chop up the kindling and light the fire. Welcome to Asterisk!

Chapter 2, Asterisk Architecture
Discusses the file structure of an Asterisk system.

Chapter 3, Installing Asterisk
Covers obtaining, compiling, and installing Asterisk.

Chapter 4, Initial Configuration Tasks
Describes some initial configuration tasks for your new Asterisk system. This
chapter goes over some of the configuration files required for all Asterisk
installations.

Chapter 5, User Device Configuration
Provides guidance on configuring Asterisk to allow devices such as telephones to
connect and make calls.

Chapter 6, Dialplan Basics
Introduces the heart of Asterisk, the dialplan.

Chapter 7, Outside Connectivity
Discusses how to configure Asterisk to connect to other systems, such as other
Asterisk servers, Internet telephony service providers, or the plain old telephone
network.

Chapter 8, Voicemail
Covers the usage of one of the most popular applications included with Asterisk,
the voicemail system.

Chapter 9, Internationalization
Focuses on issues that an Asterisk administrator should be aware of when deploy-
ing a system outside of North America.

Chapter 10, Deeper into the Dialplan
Goes over some more advanced dialplan concepts.

Chapter 11, Parking and Paging
Describes the usage of two popular telephony features included with Asterisk, call
parking and paging.

Chapter 12, Internet Call Routing
Covers techniques for routing calls between different administrative domains on
the Internet.

Chapter 13, Automatic Call Distribution (ACD) Queues
Discusses how to build call queues in Asterisk.

xxiv | Preface

Chapter 14, Device States
Introduces the concept of device states and how they can be used as presence
indicators.

Chapter 15, The Automated Attendant
Covers how to build a menuing system using the Asterisk dialplan.

Chapter 16, Relational Database Integration
Discusses various ways that Asterisk can be integrated with a database.

Chapter 17, Interactive Voice Response
Goes over how Asterisk can be used to build applications that act on input provided
by a caller.

Chapter 18, External Services
Provides instructions on how to connect to external services including LDAP, cal-
endars, IMAP for voicemail, XMPP, Skype, and text-to-speech.

Chapter 19, Fax
Discusses the various options for integrating sending and receiving faxes with an
Asterisk system.

Chapter 20, Asterisk Manager Interface (AMI)
Introduces a network API for monitoring and controlling an Asterisk system.

Chapter 21, Asterisk Gateway Interface (AGI)
Introduces the Asterisk API that allows call control to be implemented in any pro-
gramming language.

Chapter 22, Clustering
Discusses a number of approaches for clustering multiple Asterisk servers together
once the demands of a deployment exceed the capabilities of a single server.

Chapter 23, Distributed Universal Number Discovery (DUNDi)
Covers a peer-to-peer protocol native to Asterisk that can be used for call routing.

Chapter 24, System Monitoring and Logging
Introduces some of the interfaces available for logging and monitoring an Asterisk
system.

Chapter 25, Web Interfaces
A survey of some of the web interfaces that complement an Asterisk installation.

Chapter 26, Security
Discusses some common security issues that Asterisk administrators should be
aware of.

Chapter 27, Asterisk: A Future for Telephony
In conclusion, we discuss some of the things we expect to see from open source
telephony in the near future.

Appendix A, Understanding Telephony
Explores the technologies in use in traditional telecom networks. This used to be
a chapter in old versions of this book. Although not directly relevant to Asterisk

Preface | xxv

we felt that it might still be useful to some readers, so we’ve left it in the book as
an appendix.

Appendix B, Protocols for VoIP
Delves into all the particularities of Voice over IP. This was also a chapter in old
versions of this book.

Appendix C, Preparing a System for Asterisk
Contains information you should be aware of and take into consideration when
planning an Asterisk deployment.

Software
This book is focused on documenting Asterisk version 1.8; however, many of the con-
ventions and much of the information in this book is version-agnostic. Linux is the
operating system we have run and tested Asterisk on, and we have documented instal-
lation instructions for both CentOS (Red Hat Enterprise Linux–based) and Ubuntu
(Debian-based) where they differ from each other.

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, file extensions, pathnames,
directories, and package names, as well as Unix utilities, commands, options,
parameters, and arguments.

Constant width
Used to display code samples, file contents, command-line interactions, library
names, and database commands.

Constant width bold
Indicates commands or other text that should be typed literally by the user. Also
used for emphasis in code.

Constant width italic
Shows text that should be replaced with user-supplied values.

[Keywords and other stuff]
Indicates optional keywords and arguments.

{ choice-1 | choice-2 }
Signifies either choice-1 or choice-2.

This icon signifies a tip, suggestion, or general note.

xxvi | Preface

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Asterisk: The Definitive Guide, Third Ed-
ition, by Leif Madsen, Jim Van Meggelen, and Russell Bryant (O’Reilly). Copyright
2011 Leif Madsen, Jim Van Meggelen, and Russell Bryant, 978-0-596-51734-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari Books Online
When you see a Safari Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than ebooks. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

Preface | xxvii

mailto:permissions@oreilly.com
http://safari.oreilly.com

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at:

http://oreilly.com/catalog/9780596517342

To comment or ask technical questions about this book, send email to:

bookquestions@oreilly.com

For more information about our books, conferences, Resource Centers, and the
O’Reilly Network, see our website at:

http://www.oreilly.com

Find us on Facebook: http://facebook.com/oreilly

Follow us on Twitter: http://twitter.com/oreillymedia

Watch us on YouTube: http://www.youtube.com/oreillymedia

Acknowledgments
To David Duffett, thanks for the excellent chapter on internationalization, which would
not have been served well by being written by us North Americans.

Next, we want to thank our fantastic editor, Michael Loukides, for your patience with
this third edition, which took too long to get off the ground, and many long months to
finally get written. Mike offered invaluable feedback and found incredibly tactful ways
to tell us to rewrite a section (or chapter) when it was needed, and make us think it was
our idea. Mike built us up when we were down, and brought us back to earth when we
got uppity. You are a master, Mike, and seeing how many books have received your
editorial oversight contributes to an understanding of why O’Reilly Media is the success
that it is.

Thanks also to Rachel Head (nee Rachel Wheeler), our copyeditor, who fixes all our
silly grammar, spelling, and style mistakes (and the many Canadianisms that Leif and
Jim feel compelled to include), and somehow leaves the result reading as if it was what
we wrote in the first place. Copyeditors are the unsung heroes of publishing, and Rachel
is one of the very best.

Also thanks to Teresa Elsey, our production editor, and the rest of the unsung heroes
in O’Reilly’s production department.

These are the folks that take our book and make it an O’Reilly book.

During the course of writing this book, we had the pleasure of being able to consult
with many people with specific experience in various areas. Their generous contribu-
tions of time and expertise were instrumental in our research. Thanks to Randy Resnick,
organizer of the VoIP User Group; Kevin Fleming of Digium; Lee Howard, author of
iaxmodem and hylafax; Joshua Colp of Digium; Phillip Mullis of the Toronto Asterisk
Users Group; Allison Smith, the Voice of Asterisk; Flavio E. Goncalves, author of books

xxviii | Preface

http://oreilly.com/catalog/9780596517342
mailto:bookquestions@oreilly.com
http://www.oreilly.com
http://facebook.com/oreilly
http://twitter.com/oreillymedia
http://www.youtube.com/oreillymedia

on Asterisk, OpenSER, and OpenSIPS; J. Oquendo, Security Guru; Tzafrir Cohen, font
of knowledge about security and lots of other stuff; Jeff Gehlbach, for SNMP; Ovidiu
Sas, for your encyclopedic knowlege of SIP; Tomo Takebe, for some SMDI help; Steve
Underwood, for help with fax and spandsp; and Richard Genthner and John Covert,
for helping with LDAP.

A special thanks should also go to John Todd for being one of the first to write com-
prehensive Asterisk how-tos, all those years ago, and for all the many other things you
do (and have done) for the Asterisk community.

Open Feedback Publishing System (OFPS)
While we were writing this book, O’Reilly introduced its Open Feedback Publishing
System (OFPS), which allowed our book to appear on the Web as we were writing it.
Community members were able to submit feedback and comments, which was of
enormous help to us. The following is a list of their names or handles*:

Matthew McAughan, Matt Pusateri, David Van Ginneken, Asterisk Mania,
Giovanni Vallesi, Mark Petersen, thp4, David Row, tvc123, Frederic Jean, John
Todd, Steven Sokol, Laurent Steffan, Robert Dailey, Howard Harper, Joseph Re-
nsin, Howard White, Jay Eames, Vincent Thomasset, Dave Barnow, Sebastien
Dionne, Igor Nikolaev, Arend van der Kolk, Anwar Hossain, craigesmith, nkabir,
anest, Nicholas Barnes, Alex Neuman, Justin Korkiner, Stefan Schmidt, pabe-
langer, jfinstrom, roderickmontgomery, Shae Erisson, Gaston Draque, Richard
Genthner, Michael S Collins, and Jeff Peeler

Thanks to all of you for your valuable contribution to this book.

Thanks to Sean Bright, Ed Guy, Simon Ditner, and Paul Belanger for assisting us with
clarifying best practices for user and group policies for Asterisk installation. In the past
it was common to just install Asterisk with root permissions, but we have elected to
describe an installation process that is more in keeping with Linux best practices,† and
these fine gents contributed to our discussions on that.

Kudos to all the folks working on the FreeSWITCH, YATE, SER, Kamailio, OpenSIPS,
SER, sipXecs, Woomera, and any other open source telecom projects, for stimulating
new thoughts, and for pushing the envelope.

Everyone in the Asterisk community also needs to thank Jim Dixon for creating the
first open source telephony hardware interfaces, starting the revolution, and giving his
creations to the community at large.

* We tried wherever possible to include the contributors’ names, but in some cases could not, and therefore
included their handles instead.

† Without starting a holy war!

Preface | xxix

Finally, and most importantly, thanks go to Mark Spencer, the original author of
Asterisk and founder of Digium, for Asterisk, for Pidgin (http://www.pidgin.im), and
for contributing his creations to the open source community. Asterisk is your legacy!

Leif Madsen
It sort of amazes me where I started with Asterisk, and where I’ve gone with Asterisk.
In 2002, while attending school, a bunch of my friends and myself were experimenting
with voice over the Internet using Microsoft’s MSN product. It worked quite well, and
allowed us to play video games while conversing with each other—at least, until we
wanted to add a third participant. So, I went out searching for some software that could
handle multiple voices (the word was conferencing, but I didn’t even know that at the
time, having had little exposure to PBX platforms). I searched the Internet but didn’t
find anything in particular I liked (or that was free). I turned to IRC and explained what
I was looking for. Someone (I wish I knew who) mentioned that I should check out
some software called Asterisk (he presumably must have thought I was looking for
MeetMe(), which I was).

Having the name, I grabbed the software and started looking at what it could do. In-
credibly, the functionality I was looking for, which I thought would be the entirety of
the software, was only one component in a sea of functionality. And having run a BBS
for years prior to going to college, the fact that I could install a PCI card and connect
it to the phone network was not lost on me. After a couple of hours of looking at the
software and getting it compiled, I started telling one of my teachers about the PCI
cards and how maybe we could get some for the classroom for labs and such (our
classroom had 30 computers at 10 tables of 3). He liked the idea and started talking to
the program coordinator, and within about 30 minutes an order had been placed for
20 cards. Pretty amazing considering they were TDM400Ps decked out with four
daughter cards, and they had only heard about them an hour prior to that.

Then the obsession began. I spent every extra moment of that semester with a couple
of computers dedicated to Asterisk use. In those two months, I learned a lot. Then we
had a co-op break. I didn’t find any work immediately, so I moved home and continued
working on Asterisk, spending time on IRC, reading through examples posted by John
Todd, and just trying to wrap my head around how the software worked. Luckily I had
a lot of help on IRC (for these were the days prior to any documentation on Asterisk),
and I learned a lot more during that semester.

Seeing that the people who took a great interest in Asterisk at the time had a strong
sense of community and wanted to contribute back, I wanted to do the same. Having
no practical level of coding knowledge, I decided documentation would be something
useful to start doing. Besides, I had been writing a lot of papers at school, so I was
getting better at it. One night I put up a website called The Asterisk Documentation
Assigned (TADA) and started writing down any documentation I could. A couple of
weeks later Jared Smith and I started talking, and started the Asterisk Documentation

xxx | Preface

http://www.pidgin.im

Project (http://www.asteriskdocs.org), with the goal of writing an Asterisk book for the
community. That project became the basis of the first edition of this book, Asterisk:
The Future of Telephony.

Nine years later, I’m still writing Asterisk documentation and have become the primary
bug marshal and release manager for the Asterisk project, spoken at every single
AstriCon since 2004 (at which Jared and I spoke about the Asterisk Documentation
Project; I still have the AsteriskDocs magnet his wife made), and become a consultant
specializing in database integration (thanks Tilghman for func_odbc) and clustering
(thanks Mark Spencer for DUNDi). I really love Asterisk, and all that it’s allowed me
to do.

First, thanks to my parents Rick and Carol, for the understanding and support in ev-
erything I’ve done in my life. From the first computer they purchased for far too much
money when I was in grade 6 (I started taking an interest in computers in grade 2 using
a Commodore 64, and they got me a computer after a parent-teacher interview a few
years later) to letting me use the home phone line for my BBS endeavors (and eventually
getting me my own phone line), and everything else they have ever done for me, I can
never thank them enough. I love you both more than you’ll ever imagine.

Thanks to my Grandma T for letting me use her 286 during the years when I didn’t
have a computer at home, and for taking me shopping every year on my birthday for
15 years. Love lots!

To my beautiful wife, Danielle, for setting the alarm every morning before she left for
work, letting me sleep those extra 10 minutes before starting on this book, and under-
standing when I had to work late because I went past my 9 A.M. stop-writing time,
thank you and I love you so much.

There are so many people who help me and teach me new things every day, but the
most influential on my life in Asterisk are the following: Mark Spencer for writing
software that has given me a fantastic career, John Todd for his early examples, Brian
K. West for his early help and enthusiasm on IRC, Steve Sokol and Olle Johansson for
flying me to my first AstriCon (and subsequent ones!) and letting me be part of the first
Asterisk training classes, Jared Smith for helping start the documentation project and
doing all the infrastructure that I could never have done, Jim Van Meggelen for joining
in early on the project and teaching me new ways to look at life, and Russell Bryant for
being an amazing project leader and easy to work with every day, and for not holding
a grudge about the bush.

Jim Van Meggelen
When we set out to write the very first edition of this book over five years ago, we were
confident that Asterisk was going to be a huge success. Now, a half-decade later, we’ve
written this third edition of what the worldwide Asterisk community calls “The Asterisk
Book,” and we’ve matured from revolutionaries into Asterisk professionals.

Preface | xxxi

http://www.asteriskdocs.org

Asterisk has proven that open source telecom is a lasting idea, and the open source
telecom landscape is nowadays complemented by more than just Asterisk. Projects like
Freeswitch, sipXecs (from SipFoundry), OpenSER/Kamailio/OpenSIPS, and many,
many more (and more to come) help to round out the ecosystem.

I want to take this opportunity to thank my very good friend Leif Madsen, who has
been with me through all three editions. In our daily lives we don’t always have many
opportunities to work with each other (or even grab a pint, these days!), and it’s always
a delight to work with you. I also want to thank Russell Bryant, who joined us for this
edition, and whose dedication to this project and the Asterisk project in general is an
inspiration to me. You’re a Renaissance man, Russell. To Jared Smith, who helped
found the Asterisk Documentation Project and coauthored the first two editions with
Leif and me (but has since moved on to the Fedora project), I can only say: Asterisk’s
loss is Fedora’s gain.

I would like to thank my business partners at Core Telecom Innovations and iCon-
verged LLC, without whom I could not do all the cool things I get to do in my profes-
sional career.

I would like to thank all my friends in the improv community, for helping me to keep
laughing at all the challenges that life presents.

Thanks to all my family, who bring love into my life.

Finally, thanks to you, the Asterisk community. This book is our gift to you. We hope
you enjoy reading it as much as we’ve enjoyed writing it.

Russell Bryant
I started working on Asterisk in 2004. I was a student at Clemson University and was
working as a co-op engineer at ADTRAN in Huntsville, Alabama. My first job at
ADTRAN was working in the Product Qualification department. I remember working
with Keith Morgan to use Asterisk as a VoIP traffic generator for testing QoS across a
router test network. Meanwhile, a fellow co-op and friend, Adam Schreiber, introduced
me to Mark Spencer. Over the next six months, I immersed myself in Asterisk. I learned
as much as I could about Asterisk, telephony, and C programming. When Asterisk 1.0
was released in the fall of 2004, I was named the release maintainer.

At the beginning of 2005, I was hired by Digium to continue my work on Asterisk
professionally. I have spent the past six amazing years working with Digium to improve
Asterisk. I have worked as a software developer, a software team lead, and now as the
engineering manager of the Asterisk development team. I am extremely grateful for the
opportunity to contribute to so many areas of the Asterisk project. There are many
people that deserve thanks for the support they have provided along the way.

xxxii | Preface

To my wife, Julie, I cannot thank you enough for all the love and support you have
given me. Thank you for keeping my life balanced and happy. You are the best. I love
you!

To my parents, thank you for giving me so many great opportunities in my life to explore
different things and find what I really enjoy. You taught me to work hard and never
give up.

To Leif and Jim, thank you for your invitation to contribute to this book. It has been
a fun project, largely due to the pleasure of working with the two of you. Thanks for
the laughs and for your dedication to this book as a team effort.

I have learned a lot from many people at Digium. There are three people who stand out
the most as my mentors: Mark Spencer, Kevin P. Fleming, and David Deaton. Thank
you all for going the extra mile to teach me along the way. I am extremely grateful.

To the software development team at Digium, thank you for being such an amazing
team to work with. Your dedication and brilliance play a huge part in the success of
Asterisk and make Digium a great place to work.

To Travis Axtell, thank you for your help in my early days of learning about Linux and
for being a good friend.

To my dogs, Chloe and Baxter, thanks for keeping me company while I worked on the
book every morning.

To all of my friends and family, thank you for your love, support, and fun times.

To the entire Asterisk community, thank you for using, enjoying, and contributing to
Asterisk. We hope you enjoy the book!

Preface | xxxiii

CHAPTER 1

A Telephony Revolution

First they ignore you, then they laugh at you,
then they fight you, then you win.

—Mahatma Gandhi

When we first set out—nearly five years ago—to write a book about Asterisk, we con-
fidently predicted that Asterisk would fundamentally change the telecommunications
industry. Today, the revolution we predicted is all but complete. Asterisk is now the
most successful private branch exchange (PBX) in the world, and is an accepted (albeit
perhaps not always loved) technology in the telecom industry.

Unfortunately, over the past five years the telecom industry has continued to lose its
way. The methods by which we communicate have changed. Whereas 20 years ago
phone calls were the preferred way to converse across distances, the current trend is to
message via text (email, IM, etc.). The phone call is seen as a bit of a dead thing, espe-
cially by up-and-coming generations.

Asterisk remains pretty awesome technology, and we believe it is still one of the best
hopes for any sort of sensible integration between telecom and all the other technologies
businesses might want to interconnect with.

With Asterisk, no one is telling you how your phone system should work, or what
technologies you are limited to. If you want it, you can have it. Asterisk lovingly em-
braces the concept of standards compliance, while also enjoying the freedom to develop
its own innovations. What you choose to implement is up to you—Asterisk imposes
no limits.

Naturally, this incredible flexibility comes with a price: Asterisk is not a simple system
to configure. This is not because it’s illogical, confusing, or cryptic; on the contrary, it
is very sensible and practical. People’s eyes light up when they first see an Asterisk
dialplan and begin to contemplate the possibilities. But when there are literally thou-
sands of ways to achieve a result, the process naturally requires extra effort. Perhaps it
can be compared to building a house: the components are relatively easy to understand,
but a person contemplating such a task must either a) enlist competent help or

1

b) develop the required skills through instruction, practice, and a good book on
the subject.

Asterisk and VoIP: Bridging the Gap Between Traditional and
Network Telephony
Voice over IP (VoIP) is often thought of as little more than a method of obtaining free
long-distance calling. The real value (and—let’s be honest—challenge as well) of VoIP
is that it allows voice to become nothing more than another application in the data
network.

It sometimes seems that we’ve forgotten that the purpose of the telephone is to allow
people to communicate. It is a simple goal, really, and it should be possible for us to
make it happen in far more flexible and creative ways than are currently available to
us. Technologies such as Asterisk lower the barriers to entry.

The Zapata Telephony Project
When the Asterisk project was started (in 1999), there were other open-source
telephony projects in existence. However, Asterisk, in combination with the Zapata
Telephony Project, was able to provide public switched telephone interface (PSTN)
interfaces, which represented an important milestone in transitioning the software from
something purely network-based to something more practical in the world of telecom
at that time, which was PSTN-centric.

The Zapata Telephony Project was conceived of by Jim Dixon, a telecommunications
consulting engineer who was inspired by the incredible advances in CPU speeds that
the computer industry has now come to take for granted. Dixon’s belief was that far
more economical telephony systems could be created if a card existed that had nothing
more on it than the basic electronic components required to interface with a telephone
circuit. Rather than having expensive components on the card, digital signal processing
(DSP)* would be handled in the CPU by software. While this would impose a tremen-
dous load on the CPU, Dixon was certain that the low cost of CPUs relative to their
performance made them far more attractive than expensive DSPs, and, more impor-
tantly, that this price/performance ratio would continue to improve as CPUs continued
to increase in power.

Like so many visionaries, Dixon believed that many others would see this opportunity,
and that he merely had to wait for someone else to create what to him was an obvious
improvement. After a few years, he noticed that not only had no one created these cards,

* The term DSP also means digital signal processor, which is a device (usually a chip) that is capable of
interpreting and modifying signals of various sorts. In a voice network, DSPs are primarily responsible for
encoding, decoding, and transcoding audio information. This can require a lot of computational effort.

2 | Chapter 1: A Telephony Revolution

but it seemed unlikely that anyone was ever going to. At that point it was clear that if
he wanted a revolution, he was going to have to start it himself. And so the Zapata
Telephony Project was born:

Since this concept was so revolutionary, and was certain to make a lot of waves in the
industry, I decided on the Mexican revolutionary motif, and named the technology and
organization after the famous Mexican revolutionary Emiliano Zapata. I decided to call
the card the “tormenta” which, in Spanish, means “storm,” but contextually is usually
used to imply a big storm, like a hurricane or such.†

Perhaps we should be calling ourselves Asteristas. Regardless, we owe Jim Dixon a debt
of thanks, partly for thinking this up and partly for seeing it through, but mostly for
giving the results of his efforts to the open source community. As a result of Jim’s
contribution, Asterisk’s PSTN engine came to be.

Over the years, the Zapata Telephony interface in Asterisk has been modified and im-
proved. The Digium Asterisk Hardware Device Interface (DAHDI) Telephony interface
in use today is the offspring of Jim Dixon’s contribution.

Massive Change Requires Flexible Technology
Every PBX in existence suffers from shortcomings. No matter how fully featured it is,
something will always be left out, because even the most feature-rich PBX will always
fail to anticipate the creativity of the customer. A small group of users will desire an
odd little feature that the design team either did not think of or could not justify the
cost of building, and, since the system is closed, the users will not be able to build it
themselves.

If the Internet had been thusly hampered by regulation and commercial interests, it is
doubtful that it would have developed the wide acceptance it currently enjoys. The
openness of the Internet meant that anyone could afford to get involved. So, everyone
did. The tens of thousands of minds that collaborated on the creation of the Internet
delivered something that no corporation ever could have.‡

As with many other open source projects, such as Linux and so much of the critical
software running the Internet, the development of Asterisk was fueled by the dreams
of folks who knew that there had to be something more than what traditional industries
were producing. These people knew that if one could take the best parts of various
PBXs and separate them into interconnecting components—akin to a boxful of LEGO
bricks—one could begin to conceive of things that would not survive a traditional

† Jim Dixon, “The History of Zapata Telephony and How It Relates to the Asterisk PBX” (http://www
.asteriskdocs.org/modules/tinycontent/index.php?id=10).

‡ We realize that the technology of the Internet formed out of government and academic institutions, but what
we’re talking about here is not the technology of the Internet so much as the cultural phenomenon of it,
which exploded in the early ’90s.

Massive Change Requires Flexible Technology | 3

http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10
http://www.asteriskdocs.org/modules/tinycontent/index.php?id=10

corporate risk-analysis process. While no one can seriously claim to have a complete
picture of what this thing should look like, there is no shortage of opinions and ideas.§

Many people new to Asterisk see it as unfinished. Perhaps these people can be likened
to visitors to an art studio, looking to obtain a signed, numbered print. They often leave
disappointed, because they discover that Asterisk is the blank canvas, the tubes of paint,
the unused brushes waiting.‖

Even at this early stage in its success, Asterisk is nurtured by a greater number of artists
than any other PBX. Most manufacturers dedicate no more than a few developers to
any one product; Asterisk has scores. Most proprietary PBXs have a worldwide support
team comprising a few dozen real experts; Asterisk has hundreds.

The depth and breadth of the expertise that surrounds this product is unmatched in
the telecom industry. Asterisk enjoys the loving attention of old telco guys who
remember when rotary dial mattered, enterprise telecom people who recall when
voicemail was the hottest new technology, and data communications geeks and coders
who helped build the Internet. These people all share a common belief—that the
telecommunications industry needs a proper revolution.#

Asterisk is the catalyst.

Asterisk: The Hacker’s PBX
Telecommunications companies that choose to ignore Asterisk do so at their peril. The
flexibility it delivers creates possibilities that the best proprietary systems can scarcely
dream of. This is because Asterisk is the ultimate hacker’s PBX.

The term hacker has, of course, been twisted by the mass media into meaning “mali-
cious cracker.” This is unfortunate, because the term actually existed long before the
media corrupted its meaning. Hackers built the networking engine that is the Internet.
Hackers built the Apple Macintosh and the Unix operating system. Hackers are also
building your next telecom system. Do not fear; these are the good guys, and they’ll be
able to build a system that’s far more secure than anything that exists today. Rather
than being constricted by the dubious and easily cracked security of closed systems,

§ Between the releases of Asterisk 1.2 and Asterisk 1.4, over 4,000 updates were made to the code in the SVN
repository. Between the releases of Asterisk 1.4 and 1.8, over 10,000 updates were made.

‖ It should be noted that these folks need not leave disappointed. Several projects have arisen to lower the
barriers to entry for Asterisk. By far the most popular and well known is the FreePBX interface (and the
multitude of projects based on it). These interfaces (check out http://www.voip-info.org/wiki/view/Asterisk
+GUI for an idea of how many there are) do not make it easier to learn Asterisk, because they separate you
from the platform or dialplan configuration, but many of them will deliver a working PBX to you much faster
than the more hands-on approach we employ in this book.

#The telecom industry has been predicting a revolution since before the crash; time will tell how well it
responds to the open source revolution.

4 | Chapter 1: A Telephony Revolution

http://www.voip-info.org/wiki/view/Asterisk+GUI
http://www.voip-info.org/wiki/view/Asterisk+GUI

the hackers will be able to quickly respond to changing trends in security and fine-tune
the telephone system in response to both corporate policy and industry best practices.

Like other open source systems, Asterisk will be able to evolve into a far more secure
platform than any proprietary system, not in spite of its hacker roots, but rather because
of them.

Asterisk: The Professional’s PBX
Never in the history of telecommunications has a system so suited to the needs of
business been available, at any price. Asterisk is an enabling technology, and as with
Linux, it will become increasingly rare to find an enterprise that is not running some
version of Asterisk, in some capacity, somewhere in the network, solving a problem as
only Asterisk can.

This acceptance is likely to happen much faster than it did with Linux, though, for
several reasons:

• Linux has already blazed the trail that led to open source acceptance. Asterisk is
following that lead.

• The telecom industry is crippled, with no leadership being provided by the giant
industry players. Asterisk has a compelling, realistic, and exciting vision.

• End users are fed up with incompatible and limited functionality, and horrible
support. Asterisk solves the first two problems; entrepreneurs and the community
are addressing the latter.

The Asterisk Community
One of the compelling strengths of Asterisk is the passionate community that developed
and supports it. This community, led by the fine folks at Digium, is keenly aware of
the cultural significance of Asterisk and has an optimistic view of the future.

One of the more powerful side effects of the Asterisk community’s energy is the coop-
eration it has spawned among telecommunications, networking, and information tech-
nology professionals who share a love for this phenomenon. While these cadres have
traditionally been at odds with each other, in the Asterisk community they delight in
each others’ skills. The significance of this cooperation cannot be underestimated.

If the dream of Asterisk is to be realized, the community must continue to grow—yet
one of the key challenges that the community currently faces is a rapid influx of new
users. The members of the existing community, having birthed this thing called
Asterisk, are generally welcoming of new users, but they’ve grown impatient with being
asked the kinds of questions whose answers can often be obtained independently, if
one is willing to devote some time to research and experimentation.

The Asterisk Community | 5

Obviously, new users do not fit any particular kind of mold. While some will happily
spend hours experimenting and reading various blogs describing the trials and tribu-
lations of others, many people who have become enthusiastic about this technology
are completely uninterested in such pursuits. They want a simple, straightforward, step-
by-step guide that’ll get them up and running, followed by some sensible examples
describing the best methods of implementing common functionality (such as voicemail,
auto attendants, and the like).

To the members of the expert community, who (correctly) perceive that Asterisk is like
a web development language, this approach doesn’t make any sense. To them, it’s clear
that you have to immerse yourself in Asterisk to appreciate its subtleties. Would one
ask for a step-by-step guide to programming and expect to learn from it all that a lan-
guage has to offer?

Clearly, there’s no one approach that’s right for everyone. Asterisk is a different animal
altogether, and it requires a totally different mind-set. As you explore the community,
though, be aware that it includes people with many different skill sets and attitudes.
Some of these folks do not display much patience with new users, but that’s often due
to their passion for the subject, not because they don’t welcome your participation.

The Asterisk Mailing Lists
As with any community, there are places where members of the Asterisk community
meet to discuss matters of mutual interest. Of the mailing lists you will find at http://
lists.digium.com, these three are currently the most important:

Asterisk-Biz
Anything commercial with respect to Asterisk belongs in this list. If you’re selling
something Asterisk-related, sell it here. If you want to buy an Asterisk service or
product, post here.

Asterisk-Dev
The Asterisk developers hang out here. The purpose of this list is the discussion of
the development of the software that is Asterisk, and its participants vigorously
defend that purpose. Expect a lot of heat if you post anything to this list not spe-
cifically relating to programming or development of the Asterisk code base. General
coding questions (such as queries on interfacing with AGI or AMI) should be di-
rected to the Asterisk-Users list.

The Asterisk-Dev list is not second-level support! If you scroll
through the mailing list archives, you’ll see this is a strict rule. The
Asterisk-Dev mailing list is about discussion of core Asterisk de-
velopment, and questions about interfacing your external pro-
grams via AGI or AMI should be posted on the Asterisk-Users list.

6 | Chapter 1: A Telephony Revolution

http://lists.digium.com
http://lists.digium.com

Asterisk-Users
This is where most Asterisk users hang out. This list generates several hundred
messages per day and has over ten thousand subscribers. While you can go here
for help, you are expected to have done some reading on your own before you post
a query.

Asterisk Wiki Sites
The Asterisk Wiki (which exists in large part due to the tireless efforts of James
Thompson—thanks James!) is a source of much enlightenment and confusion. Another
important resource is the community-maintained repository of VoIP knowledge at http:
//www.voip-info.org, which contains a truly inspiring cornucopia of fascinating, infor-
mative, and frequently contradictory information about many subjects, just one of
which is Asterisk. Since Asterisk documentation forms by far the bulk of the informa-
tion on this website,* and it probably contains more Asterisk knowledge than all other
sources put together (with the exception of the mailing list archives), it is a popular
place to go for Asterisk knowledge.

An important new wiki project is the official Asterisk Wiki, found at http://wiki.asterisk
.org. While not yet as full of content as voip-info.org, this wiki will be more formally
supported and is therefore more likely to contain information that is kept current and
accurate.

The IRC Channels
The Asterisk community maintains Internet Relay Chat (IRC) channels on irc.free-
node.net. The two most active channels are #asterisk and #asterisk-dev.† To cut down
on spam-bot intrusions, both of these channels now require registration to join.‡

Asterisk User Groups
Over the past decade, in many cites around the world, lonely Asterisk users began to
realize that there were other like-minded people in their towns. Asterisk User Groups
(AUGs) began to spring up all over the place. While these groups don’t have any official
affiliation with each other, they generally link to one anothers’ websites and welcome
members from anywhere. Type “Asterisk User Group” into Google to track down one
in your area.

* More than 30%, at last count.

† The #asterisk-dev channel is for the discussion of changes to the underlying code base of Asterisk and is also
not second-tier support. Discussions related to programming external applications that interface with
Asterisk via AGI or AMI are meant to be in #asterisk.

‡ To register, run /msg nickserv help when you connect to the service via your favorite IRC client.

The Asterisk Community | 7

http://www.voip-info.org
http://www.voip-info.org
http://wiki.asterisk.org
http://wiki.asterisk.org

The Asterisk Documentation Project
The Asterisk Documentation Project was started by Leif Madsen and Jared Smith, but
several people in the community have contributed.

The goal of the documentation project is to provide a structured repository of written
work on Asterisk. In contrast with the flexible and ad hoc nature of the Wiki, the
Docs project is passionate about building a more focused approach to various
Asterisk-related subjects.

As part of the efforts of the Asterisk Docs project to make documentation available
online, this book is available at the http://www.asteriskdocs.org website, under a Cre-
ative Commons license.

The Business Case
It is very rare to find businesses these days that do not have to reinvent themselves every
few years. It is equally rare to find a business that can afford to replace its communi-
cations infrastructure each time it goes in a new direction. Today’s businesses need
extreme flexibility in all of their technology, including telecom.

In his book Crossing the Chasm (HarperBusiness), Geoffrey Moore opines, “The idea
that the value of the system will be discovered rather than known at the time of instal-
lation implies, in turn, that product flexibility and adaptability, as well as ongoing
account service, should be critical components of any buyer’s evaluation checklist.”
What this means, in part, is that the true value of a technology is often not known until
it has been deployed.

How compelling, then, to have a system that holds at its very heart the concept of
openness and the value of continuous innovation.

Conclusion
So where to begin? Well, when it comes to Asterisk, there is far more to talk about than
we can fit into one book. This book can only lay down the basics, but from this foun-
dation you will be able to come to an understanding of the concept of Asterisk—and
from that, who knows what you will build?

8 | Chapter 1: A Telephony Revolution

http://www.asteriskdocs.org

CHAPTER 2

Asterisk Architecture

First things first, but not necessarily in that order.

—Doctor Who

Asterisk is very different from other, more traditional PBXs, in that the dialplan in
Asterisk treats all incoming channels in essentially the same manner.

In a traditional PBX, there is a logical difference between stations (telephone sets) and
trunks (resources that connect to the outside world). This means, for example, that
you can’t install an external gateway on a station port and route external calls to it
without requiring your users to dial the extension number first. Also, the concept of
an off-site resource (such as a reception desk) is much more difficult to implement on
a traditional PBX, because the system will not allow external resources any access to
internal features.*

Asterisk, on the other hand, does not have an internal concept of trunks or stations. In
Asterisk, everything that comes into or goes out of the system passes through a channel
of some sort. There are many different kinds of channels; however, the Asterisk dialplan
handles all channels in a similar manner, which means that, for example, an internal
user can exist on the end of an external trunk (e.g., a cell phone) and be treated by the
dialplan in exactly the same manner as that user would be if she were on an internal
extension. Unless you have worked with a traditional PBX, it may not be immediately
obvious how powerful and liberating this is. Figure 2-1 illustrates the differences be-
tween the two architectures.

* To be fair, many traditional PBXs do offer this sort of functionality. However, it is generally kludgy, limited
in features, and requires complex, proprietary software to be installed in the PBX (such as vendor-specific
protocol extensions).

9

Figure 2-1. Asterisk vs. PBX architecture

Modules
Asterisk is built on modules. A module is a loadable component that provides a specific
functionality, such as a channel driver (for example, chan_sip.so), or a resource that
allows connection to an external technology (such as func_odbc.so). Asterisk modules
are loaded based on the /etc/asterisk/modules.conf file. We will discuss the use of many
modules in this book. At this point we just want to introduce the concept of modules,
and give you a feel for the types of modules that are available.

It is actually possible to start Asterisk without any modules at all, although in this state
it will not be capable of doing anything. It is useful to understand the modular nature
of Asterisk in order to appreciate the architecture.

You can start Asterisk with no modules loaded by default and load each
desired module manually from the console, but this is not something
that you’d want to put into production; it would only be useful if you
were performance-tuning a system where you wanted to eliminate ev-
erything not required by your specific application of Asterisk.

The types of modules in Asterisk include the following:

• Applications

• Bridging modules

• Call detail recording (CDR) modules

• Channel event logging (CEL) modules

10 | Chapter 2: Asterisk Architecture

• Channel drivers

• Codec translators

• Format interpreters

• Dialplan functions

• PBX modules

• Resource modules

• Addons modules

• Test modules

In the following sections we will list each module available within these categories,
briefly identify its purpose, and give our opinion on its relative popularity and/or im-
portance (while some modules are proven and deservedly popular, others are quite old,
are barely ever used anymore, and are only maintained for the purpose of backward-
compatibility). The details of how specific modules work will be covered in various
chapters throughout the book, depending on what the module is and what it does.
Some modules will be covered thoroughly; others may not be covered at all.

Regarding the Popularity/Status column in the tables that follow, the following list
contains our opinions with respect to the meanings we have chosen (your mileage may
vary):

Insignificant
This module is ancient history. If you use it, be aware that you are mostly on your
own when it comes to any sort of community support.

Unreliable
This module is new or experimental, and is not suitable for production.

Useful
This module is current, maintained, popular, and recommended.

Usable
This module works but may be incomplete or unpopular, and/or is not recom-
mended by the authors.

New
This module is quite new, and its completeness and popularity are difficult to gauge
at this time.

Deprecated
This module has been replaced by something that is considered superior.

Limited
This module has limitations that may make it unsuitable to your requirements.

Essential
This module is one you’ll never want to be without.

Modules | 11

And now, without further ado, let’s take a look at the modules, grouped by module
type.

Applications
Dialplan applications are used in extensions.conf to define the various actions that can
be applied to a call. The Dial() application, for example, is responsible for making
outgoing connections to external resources and is arguably the most important dialplan
application. The available applications are listed in Table 2-1.

Table 2-1. Dialplan applications

Name Purpose Popularity/Status

app_adsiprog Loads Analog Display Services Interface (ADSI) scripts into
compatible analog phones

Insignificant

app_alarmreceiver Supports receipt of reports from alarm equipment Insignificant

app_amd Detects answering machines Unreliable

app_authenticate Compares dual-tone multi-frequency (DTMF) input against
a provided string (password)

Useful

app_cdr Writes ad hoc record to CDR Useful

app_celgenuserevent Generates user-defined events for CEL New

app_chanisavail Checks the status of a channel Unreliable

app_channelredirect Forces another channel into a different part of the
dialplan

Useful

app_chanspy Allows a channel to listen to audio on another channel Useful

app_confbridge Provides conferencing (new version) New—not fully featured yet

app_controlplayback Plays back a prompt and offers fast forward and rewind
functions

Useful

app_dahdibarge Allows barging in on a DAHDI channel Deprecated—see
app_chanspy

app_dahdiras Creates a RAS server over a DAHDI channel (no modem em-
ulation)

Insignificant

app_db Used to add/change/delete records in Asterisk’s built-in
Berkeley database

Deprecated—see func_db

app_dial Used to connect channels together (i.e., make phone calls) Essential

app_dictate Plays back a recording and offers start/stop functions Useful

app_directed_pickup Answers a call for another extension Useful

app_directory Presents the list of names from voicemail.conf Useful

app_disa Provides dialtone and accepts DTMF input Usefula

app_dumpchan Dumps channel variables to Asterisk command-line
interface (CLI)

Useful

12 | Chapter 2: Asterisk Architecture

Name Purpose Popularity/Status

app_echo Loops received audio back to source channel Useful

app_exec Contains Exec(), TryExec(), and ExecIf(); executes
a dialplan application based on conditions

Useful

app_externalivr Controls Asterisk as with an AGI, only asynchronously Useful

app_fax Provides SendFax() and ReceiveFax() Usefulb

app_festival Enables basic text to speech using Festival TTS engine Usable

app_flash Performs a hook-switch flash on channels (primarily
analog)

Useful

app_followme Performs find me/follow me functionality based on
followme.conf

Useful

app_forkcdr Starts new CDR record on current call Usable

app_getcpeid Gets the ADSI CPE ID Insignificant

app_ices Sends audio to an Icecast server Usable

app_image Transmits an image to supported devices Limited

app_ivrdemo Sample application for developers Insignificant

app_jack Works with JACK Audio Connection Kit to share audio be-
tween compatible applications

Useful

app_macro Triggers dialplan macros Deprecated—see GoSub()

app_meetme Provides multiparty conferencing Useful—fully featured

app_milliwatt Generates 1004-Hz tone for testing loss on analog circuits Useful

app_minivm Provides primitive functions to allow you to build your own
voicemail application in dialplan

Usable

app_mixmonitor Records both sides of a call and mixes them together Useful

app_morsecode Generates Morse code Usable

app_mp3 Uses mpg123 to play an MP3 Insignificant

app_nbscat Streams audio from Network Broadcast Stream (NBS) Insignificant

app_originate Allows origination of a call Useful

app_osplookup Performs Open Settlement Protocol (OSP) lookup Usable

app_page Creates multiple audio connections to specified devices for
public address (paging)

Useful

app_parkandannounce Enables automated announcing of parked calls Usable

app_playback Plays a file to the channel (does not accept input) Useful

app_playtones Plays pairs of tones of specified frequencies Useful

app_privacy Requests input of caller’s phone number if no CallerID is
received

Insignificant

app_queue Provides Automatic Call Distribution (ACD) Useful

Modules | 13

Name Purpose Popularity/Status

app_read Requests input of digits from callers and assigns input to a
variable

Useful

app_readexten Requests input of digits from callers and passes call to a
designated extension and context

Usable

app_readfile Loads contents of a text file into a channel variable Deprecated—see the FILE()
function in func_env

app_record Records received audio to a file Useful

app_rpt Provides a method to interface with an audio board for the
app_rpt project

Limited

app_sayunixtime Plays back time in specified format Useful

app_senddtmf Transmits DTMF to calling party Useful

app_sendtext Sends a text string to compatible channels Insignificant

app_setcallerid Sets CallerID on a channel Deprecated—see func_call
erid

app_skel Sample application for developers Usefulc

app_sms Sends SMS message in compatible countries Limited

app_softhangup Requests hangup of channel Useful

app_speech_utils Provides utilities relating to speech recognition Usefuld

app_stack Provides Gosub(), GoSubIf(), Return(), Stack
Pop(), LOCAL(), and LOCAL_PEEK()

Essential

app_system Executes commands in a Linux shell Useful

app_talkdetect Similar to app_background, but allows for any received
audio to interrupt playback

Useful

app_test Client/server testing application Usable

app_transfer Performs a transfer on the current channel Useful

app_url Passes a URI to the called channel Limited

app_userevent Generates a custom event in the Asterisk Manager
Interface (AMI)

Useful

app_verbose Generates a custom event in the Asterisk CLI Useful

app_voicemail Provides voicemail Essential

app_waitforring Waits for a RING signaling event (not to be confused with
RINGING); most likely unnecessary, as only chan_dahdi
with analog channels where ringing is received (such as an
FXO port) generates the RING signaling event

Insignificant

app_waitforsilence Includes WaitForSilence() and WaitForNoise();
listens to the incoming channel for a specified number of
milliseconds of noise/silence

Useful

app_waituntil Waits until current Linux epoch matches specified epoch Useful

14 | Chapter 2: Asterisk Architecture

Name Purpose Popularity/Status

app_while Includes While(), EndWhile(), ExitWhile(), and
ContinueWhile(); provides while-loop functionality in
the dialplan

Useful

app_zapateller Generates SIT tone to discourage telemarketers Usable
a The use of (DISA) is considered to be a security risk.
b Requires a suitable DSP engine to handle encoding/decoding of fax signaling (see Chapter 19).
c If you are a developer.
d Requires an external speech recognition application.

Bridging Modules
Bridging modules are new in Asterisk 1.8: they perform the actual bridging of channels
in the new bridging API. Each provides different features, which get used in different
situations depending on what a bridge needs. These modules, listed in Table 2-2, are
currently only used for (and are essential to) app_confbridge.

Table 2-2. Bridging modules

Name Purpose Popularity/Status

bridge_builtin_features Performs bridging when utilizing built-in user features (such as
those found in features.conf).

New

bridge_multiplexed Performs complex multiplexing, as would be required in a large
conference room (multiple participants). Currently only used by
app_confbridge.

New

bridge_simple Performs simple channel-to-channel bridging. New

bridge_softmix Performs simple multiplexing, as would be required in a large
conference room (multiple participants). Currently only used by
app_confbridge.

New

Call Detail Recording Modules
The CDR modules, listed in Table 2-3, are designed to facilitate as many methods of
storing call detail records as possible. You can store CDRs to a file (default), a database,
RADIUS, or syslog.

Call detail records are not intended to be used in complex billing ap-
plications. If you require more control over billing and call reporting,
you will want to look at channel event logging, discussed next. The
advantage of CDR is that it just works.

Modules | 15

Table 2-3. Call detail recording modules

Name Purpose Popularity/Status

cdr_adaptive_odbc Allows writing of CDRs through ODBC frame-
work with ability to add custom fields

Useful

cdr_csv Writes CDRs to disk as a comma-separated
values file

Usable

cdr_custom As above, but allows for the addition of custom
fields

Useful

cdr_manager Outputs CDRs to Asterisk Manager Interface
(AMI)

Useful

cdr_odbc Writes CDRs through ODBC framework Usable

cdr_pgsql Writes CDRs to PostgreSQL Useful

cdr_radius Writes CDRs to RADIUS Usable—does not support custom fields

cdr_sqlite Writes CDRs to SQLite2 database Deprecated—use sqlite3_custom

cdr_sqlite3_custom Writes CDRs to SQLite3 with custom fields Useful

cdr_syslog Writes CDRs to syslog Useful

cdr_tds Writes CDRs to Microsoft SQL or Sybase Usable—requires an old version of libtds

We will discuss some reporting packages that you may wish to use with CDR in
Chapter 25.

Channel Event Logging Modules
Channel event logging provides much more powerful control over reporting of call
activity. By the same token, it requires more careful planning of your dialplan, and by
no means will it work automatically. Asterisk’s CEL modules are listed in Table 2-4.

Table 2-4. Channel event logging modules

Name Purpose Popularity/Status

cel_custom CEL to disk/file Useful

cel_manager CEL to AMI Useful

cel_odbc CEL to ODBC Useful

cel_pgsql CEL to PostgreSQL Useful

cel_radius CEL to RADIUS Usable—does not support custom fields

cel_sqlite3_custom CEL to Sqlite3 Useful

cel_tds CEL to Microsoft SQL or Sybase Usable—requires an old version of libtds

16 | Chapter 2: Asterisk Architecture

Channel Drivers
Without channel drivers, Asterisk would have no way to make calls. Each channel
driver is specific to the protocol or channel type it supports (SIP, ISDN, etc.). The
channel module acts as a gateway to the Asterisk core. Asterisk’s channel drivers are
listed in Table 2-5.

Table 2-5. Channel drivers

Name Purpose Popularity/Status

chan_agent Provides agent channel for Queue() Useful

|chan_alsa Provides connection to Advanced Linux Sound
Architecture

Useful

chan_bridge Used internally by the ConfBridge() application;
should not be used directly

Essential a

chan_console Provides connection to portaudio New

chan_dahdi Provides connection to PSTN cards that use DAHDI
channel drivers

Useful

chan_gtalk Provides connection to Google Talk Usable

chan_h323 Provides connection to H.323 endpoints Deprecated—see chan_ooh323 in
Table 2-11

chan_iax2 Provides connection to IAX2 endpoints Useful

chan_jingle Provides connection to Jingle-enabled endpoints Usable

chan_local Provides a mechanism to treat a portion of the dialplan
as a channel

Useful

chan_mgcp Media Gateway Control Protocol channel driver Usable

chan_misdn Provides connection to mISDN supported ISDN cards Limited

chan_multicast_rtp Provides connection to multicast RTP streams Useful

chan_nbs Network Broadcast Sound channel driver Insignificant

chan_oss Open Sound System driver Useful

chan_phone Linux telephony interface driver (very old) Insignificant

chan_sip Session Initiation Protocol channel driver Essential

chan_skinny Cisco Skinny Client Control Protocol (SCCP) channel
driver

Usable

chan_unistim Nortel Unistim protocol channel driver Usable

chan_usbradio Channel driver for CM108 USB cards with
radio interface

Usable

chan_vpb Voicetronix channel driver Insignificantb

a If you are using the ConfBridge() application.
b Some Voicetronix hardware is supported by Zaptel using an addon Zaptel module distributed by Voicetronix. However, Zaptel is no longer

supported by Asterisk and this driver has not been ported to DAHDI.

Modules | 17

Codec Translators
The codec translators (Table 2-6) allow Asterisk to convert audio stream formats be-
tween calls. So if a call comes in on a PRI circuit (using G.711) and needs to be passed
out a compressed SIP channel (e.g., using G.729, one of many codecs that SIP can
handle), the relevant codec translator would perform the conversion.†

If a codec (such as G.729) uses a complex encoding algorithm, heavy
use of transcoding can place a massive burden on the CPU. Specialized
hardware for the decoding/encoding of G.729 is available from hard-
ware manufacturers such as Sangoma and Digium (and likely others).

Table 2-6. Codec translators

Name Purpose Popularity/Status

codec_adpcm Adaptive Differential Pulse Coded Modulation codec Insignificant

codec_alaw A-law PCM codec used all over the world (except Canada/USA) on the PSTN Essential

codec_a_mu A-law to mu-law direct converter Useful

codec_dahdi Utilizes proprietary Digium hardware transcoding card Essentiala

codec_g722 Wideband audio codec Useful

codec_g726 Flavor of ADPCM Insignificant

codec_gsm Global System for Mobile Communications (GSM) codec Useful

codec_ilbc Internet Low Bitrate Codec Insignificant

codec_lpc10 Linear Predictive Coding vocoder (extremely low bandwidth) Insignificant

codec_resample Resamples between 8-bit and 16-bit signed linear Usable

codec_speex Speex codec Usable

codec_ulaw Mu-law PCM codec used in Canada/USA on PSTN Essential
a If you are using a Digium codec transcoder card.

Format Interpreters
Format interpreters (Table 2-7) perform the function of codec translators, but they do
their work on files rather than channels. If you have a recording on a menu that has
been stored as GSM, a format interpreter would need to be used to play that recording
to any channels not using the GSM codec.‡

† More information about what codecs are and how they work is available in “Codecs” on page 625.

‡ It is partly for this reason that we do not recommend the default GSM format for system recordings. WAV
recordings will sound better and use less CPU.

18 | Chapter 2: Asterisk Architecture

If you store a recording in several formats (such as WAV, GSM, etc.), Asterisk will
determine the least costly format§ to use when a channel requires that recording.

Table 2-7. Format interpreters

Name Plays files stored in Popularity/Status

format_g723 G.723 .g723 Insignificant

format_g726 G.726 .g726 Insignificant

format_g729 G.729 .g729 Useful

format_gsm RPE-LTP (original GSM codec) .gsm Usable

format_h263 H.263—video .h263 Usable

format_h264 H.264—video .h264 Usable

format_ilbc Internet Low Bitrate Codec .ilbc Insignificant

format_jpeg Graphic file .jpeg .jpg Insignificant

format_ogg_vorbis Ogg container .ogg Usable

format_pcm Various Pulse-Coded Modulation
formats: .alaw, .al, .alw, .pcm, .ulaw, .ul, .mu, .ulw, .g722, .au

Useful

format_siren14 G.722.1 Annex C (14 kHz) .siren14 New

format_siren7 G.722.1 (7 kHz) .siren7 New

format_sln16 16-bit signed linear .sln16 New

format_sln 8-bit signed linear .sln .raw Useful

format_vox .vox Insignificant

format_wav .wav Useful

format_wav_gsm GSM audio in a WAV container .WAV, .wav49 Usable

Dialplan Functions
Dialplan functions, listed in Table 2-8, complement the dialplan applications (see
“Applications” on page 12). They provide many useful enhancements to things like
string handling, time and date wrangling, and ODBC connectivity.

Table 2-8. Dialplan functions

Name Purpose Popularity/Status

func_aes Encrypts/decrypts an AES string Useful

func_audiohookinherit Allows calls to be recorded after transfer Useful

func_base64 Encodes/decodes a base-64 string Usable

func_blacklist Writes/reads blacklist in astdb Useful

§ Some codecs can impose a significant load on the CPU, such that a system that could support several hundred
channels without transcoding might only be able to handle a few dozen when transcoding is in use.

Modules | 19

Name Purpose Popularity/Status

func_callcompletion Gets/sets call completion configuration parameters for the channel New

func_callerid Gets/sets CallerID Useful

func_cdr Gets/sets CDR variable Useful

func_channel Gets/sets channel information Useful

func_config Includes AST_CONFIG(); reads variables from config file Usable

func_connectedline Changes connected line information on supported handsets New

func_curl Uses cURL to obtain data from a URI Useful

func_cut Slices and dices strings Useful

func_db Provides astdb functions Useful

func_devstate Gets state of device Useful

func_dialgroup Creates a group for simultaneous dialing Useful

func_dialplan Validates that designated target exists in dialplan Useful

func_enum Performs ENUM lookup Useful

func_env Includes FILE(), STAT(), and ENV(); performs operating system
actions

Useful

func_extstate Returns status of a hinted extension Useful

func_global Gets/sets global variables Useful

func_groupcount Gets/sets channel count for members of a group Useful

func_iconv Converts between character sets Usable

func_lock Includes LOCK(), UNLOCK(), and TRYLOCK(); sets a lock that can
be used to avoid race conditions in the dialplan

Useful

func_logic Includes ISNULL(), SET(), EXISTS(), IF(), IFTIME(), and
IMPORT(); performs various logical functions

Useful

func_math Includes MATH(), INC(), and DEC(); performs mathematical
functions

Useful

func_md5 Converts supplied string to an MD5 hash Useful

func_module Checks to see if supplied module is loaded into memory Usable

func_odbc Allows dialplan integration with ODBC resources Useful

func_pitchshift Shifts the pitch of an audio stream Useful

func_rand Returns a random number within a given range Useful

func_realtime Performs lookups within the Asterisk Realtime Architecture (ARA) Useful

func_redirecting Provides access to information about where this call was redirected
from

Useful

func_sha1 Converts supplied string to an SHA1 hash Useful

func_shell Performs Linux shell operations and returns results Useful

func_speex Reduces noise and performs dB gain/loss on an audio stream Useful

20 | Chapter 2: Asterisk Architecture

Name Purpose Popularity/Status

func_sprintf Performs string format functions similar to C function of same name Useful

func_srv Perform SRV lookups in the dialplan Useful

func_strings Includes over a dozen string manipulation functions Useful

func_sysinfo Gets system information such as RAM, swap, load average, etc. Useful

func_timeout Gets/sets timeouts on channel Useful

func_uri Converts strings to URI-safe encoding Useful

func_version Returns Asterisk version information Usable

func_vmcount Returns count of messages in a voicemail folder for a particular user Useful

func_volume Sets volume on a channel Useful

PBX Modules
The PBX modules are peripheral modules that provide enhanced control and configu-
ration mechanisms. For example, pbx_config is the module that loads the traditional
Asterisk dialplan. The currently available PBX modules are listed in Table 2-9.

Table 2-9. PBX modules

Name Purpose Popularity/Status

pbx_ael Asterisk Extension Logic (AEL) offers a dialplan scripting language that looks like a
modern programming language.

Usablea

pbx_config This is the traditional, and most popular, dialplan language for Asterisk. Without
this module, Asterisk cannot read extensions.conf.

Useful

pbx_dundi Performs data lookups on remote Asterisk systems. Useful

pbx_loopback Performs something similar to a dialplan include, but in a deprecated manner. Insignificantb

pbx_lua Allows creation of a dialplan using the Lua scripting language. Useful

pbx_realtime Provides functionality related to the Asterisk Realtime Architecture. Useful

pbx_spool Provides outgoing spool support relating to Asterisk call files. Useful
a We have not found too many people using AEL. We suspect this is because most developers will tend to use AGI/AMI if they do not want

to use traditional dialplans.
b We’ve never heard of this being used in production.

Resource Modules
Resource modules integrate Asterisk with external resources. For example, res_odbc
allows Asterisk to interoperate with ODBC database connections. The currently avail-
able resource modules are listed in Table 2-10.

Modules | 21

Table 2-10. Resource modules

Name Purpose Popularity/Status

res_adsi Provides ADSI Essentiala

res_ael_share Provides shared routines for use with pbx_ael Essential if you’re using AEL

res_agi Provides Asterisk Gateway Interface Useful

res_ais Provides distributed message waiting indication (MWI) and
device state notifications via an implementation of the AIS
standard, such as OpenAIS

Useful

res_calendar Enables base integration to calendaring systems Useful

res_calendar_caldav Provides CalDAV-specific capabilities Useful

res_calendar_exchange Provides MS Exchange capabilities Useful

res_calendar_icalendar Provides Apple/Google iCalendar capabilities Useful

res_clialiases Creates CLI aliases Useful

res_clioriginate Originates a call from the CLI Usable

res_config_curl Pulls configuration information using cURL Useful

res_config_ldap Pulls configuration information using LDAP Usable

res_config_odbc Pulls configuration information using ODBC Useful

res_config_pgsql Pulls configuration information using PostgreSQL Usable

res_config_sqlite Pulls configuration information using SQLite Usable

res_convert Uses the CLI to perform file conversions Usable

res_crypto Provides cryptographic capabilities Useful

res_curl Provides common subroutines for other cURL modules Useful

res_fax Provides common subroutines for other fax modules Useful

res_fax_spandsp Plug-in for fax using the spandsp package Useful

res_http_post Provides POST upload support for the Asterisk HTTP server Usable

res_jabber Provides Jabber/XMPP resources Useful

res_limit Enables adjusting of system limits on the Asterisk process Usable

res_monitor Provides call recording resources Useful

res_musiconhold Provides music on hold (MOH) resources Essential

res_mutestream Allows muting/unmuting of audio streams New

res_odbc Provides common subroutines for other ODBC modules Useful

res_phoneprov Provisions phones from Asterisk HTTP server New

res_pktccops Provides PacketCable COPS resources New

res_realtime Provides CLI commands for the Asterisk Realtime
Architecture (ARA)

Useful

res_rtp_asterisk Provides RTP Essential

res_rtp_multicast Provides multicast-RTP New

22 | Chapter 2: Asterisk Architecture

Name Purpose Popularity/Status

res_security_log Enables security logging New

res_smdi Provides voicemail notification using the SMDI protocol Limited

res_snmp Provides system status information to an SNMP-managed
network

Usable

res_speech Generic speech recognition API Limitedb

res_timing_dahdi Provides timing using the DAHDI kernel interface Useful

res_timing_kqueue Provides timing using a kernel feature in some BSDs, in-
cluding Mac OS X

New

res_timing_pthread Provides timing using only parts of the standard
pthread API; less efficient but more portable than other
timing modules.

Useful

res_timing_timerfd Provides timing using the timerfd API provided by newer
versions of the Linux kernel

Useful

a While most of the ADSI functionality in Asterisk is never used, the voicemail application uses this resource.
b Requires a separately licensed product in order to be used.

Addon Modules
Addon modules are community-developed modules with different usage or distribution
rights from those of the main code. They are kept in a separate directory and are not
compiled and installed by default. To enable these modules, use the menuselect build
configuration utility. Currently available addon modules are listed in Table 2-11.

Table 2-11. Addon modules

Name Purpose Popularity/Status

app_mysql Executes MySQL queries with a
dialplan application

Deprecated—see func_odbc

app_saycountpl Says Polish counting words Deprecated—now integrated in say.conf

cdr_mysql Logs call detail records to a MySQL
database

Usable—we recommend cdr_adaptive_odbc instead

chan_mobile Enables making and receiving
phone calls using cell phones over
Bluetooth

Limiteda

chan_ooh323 Enables making and receiving VoIP
calls using the H.323 protocol

Usable

format_mp3 Allows Asterisk to play MP3 files Usable

res_config_mysql Uses a MySQL database as a real-
time configuration backend

Useful

a While chan_mobile works great with many phones, problems have been reported with some models. When a problem does occur, it
is very difficult for developers to solve unless they have a phone of the same model to test with.

Modules | 23

Test Modules
Test modules are used by the Asterisk development team to validate new code. They
are constantly changing and being added to, and are not useful unless you are devel-
oping Asterisk software.

If you are an Asterisk developer, however, the Asterisk Test Suite may be of interest to
you as you can build automated tests for Asterisk and submit those back to the project,
which runs on several different operating systems and types of machines. By expanding
the number of tests constantly, the Asterisk project avoids the creation of regressions
in code. By submitting your own tests to the project, you can feel more confident in
future upgrades.

More information about installing the Asterisk Test Suite is available in this blog post:
http://blogs.asterisk.org/2010/04/29/installing-the-asterisk-test-suite/. More informa-
tion about building tests is available in this document: http://svn.asterisk.org/svn/test
suite/asterisk/trunk/README.txt or you can join the #asterisk-testing channel on the
Freenode IRC network.

File Structure
Asterisk is a complex system, composed of many resources. These resources make use
of the filesystem in several ways. Since Linux is so flexible in this regard, it is helpful to
understand what data is being stored, so that you can understand where you are likely
to find a particular bit of stored data (such as voicemail messages or log files).

Configuration Files
The Asterisk configuration files include extensions.conf, sip.conf, modules.conf, and
dozens of other files that define parameters for the various channels, resources, mod-
ules, and functions that may be in use.

These files will be found in /etc/asterisk. You will be working in this folder a lot as you
configure and administer your Asterisk system.

Modules
Asterisk modules are usually installed to the /usr/lib/asterisk/modules folder. You will
not normally have to interact with this folder; however, it will be occasionally useful
to know where the modules are located. For example, if you upgrade Asterisk and select
different modules during the menuselect phase of the install, the old (incompatible)
modules from the previous Asterisk version will not be deleted, and you will get a
warning from the install script. Those old files will need to be deleted from the modules
folder. This can be done either manually or with the “uninstall” make (make unin-
stall) target.

24 | Chapter 2: Asterisk Architecture

http://blogs.asterisk.org/2010/04/29/installing-the-asterisk-test-suite/
http://svn.asterisk.org/svn/testsuite/asterisk/trunk/README.txt
http://svn.asterisk.org/svn/testsuite/asterisk/trunk/README.txt

The Resource Library
There are several resources that require external data sources. For example, music on
hold (MOH) can’t happen unless you have some music to play. System prompts also
need to be stored somewhere on the hard drive. The /var/lib/asterisk folder is where
system prompts, AGI scripts, music on hold, and other resource files are stored.

The Spool
The spool is where Linux stores files that are going to change frequently, or will be
processed by other processes at a later time. For example, under Linux print jobs and
pending emails are normally written to the spool until they are processed.

For Asterisk, the spool is used to store transient items such as voice messages, call
recordings,‖ call files, and so forth.

The Asterisk spool will be found under the /var/spool/asterisk directory.

Logging
Asterisk is capable of generating several different kinds of log files. The /var/log/aster-
isk folder is where things such as call detail records (CDRs), channel events from CEL,
debug logs, queue logs, messages, errors, and other output are written.

This folder will be extremely important for any troubleshooting efforts you undertake.
We will talk more about how to make use of Asterisk logs in Chapter 24.

The Dialplan
The dialplan is the heart of Asterisk. All channels that arrive in the system will be passed
through the dialplan, which contains the call-flow script that determines how the in-
coming calls are handled.

A dialplan can be written in one of three ways:

• Using traditional Asterisk dialplan syntax in /etc/asterisk/extensions.conf

• Using asterisk Extension Logic (AEL) in /etc/asterisk/extensions.ael

• Using LUA in /etc/asterisk/extensions.lua

Later in this book, we’ll have devoted several chapters to the subject of how to write a
dialplan using traditional dialplan syntax (by far the most popular choice). Once you
learn this language, it should be fairly easy to transition to AEL or LUA, should you
desire.

‖ Not call detail records (CDRs), but rather audio recordings of calls generated by the MixMonitor() and related
applications.

The Dialplan | 25

Hardware
Asterisk is capable of communicating with a vast number of different technologies. In
general, these connections are made across a network connection; however, connec-
tions to more traditional telecom technologies, such as the PSTN, require specific
hardware.

Many companies produce this hardware, such as Digium (the sponsor, owner, and
primary developer of Asterisk), Sangoma, Rhino, OpenVox, Pika, Voicetronix,
Junghanns, Dialogic, Xorcom, beroNet, and many others. The authors prefer cards
from Digium and Sangoma; however, the products offered by other Asterisk hardware
manufacturers may be more suitable to your requirements.

The most popular hardware for Asterisk is generally designed to work through the
Digium Asterisk Hardware Device Interface (known as DAHDI). These cards will all
have different installation requirements and different file locations.

In Chapter 7, we will discuss DAHDI in more detail; however, we will limit our dis-
cussion to DAHDI only. You will need to refer to the specific documentation provided
by the manufacturers of any cards you install for details on those cards.

Asterisk Versioning
The Asterisk release methodology has gone through a couple of iterations over the last
few years, and this section is designed to help you understand what the version numbers
mean. Of particular relevance is the change in versioning that happened with the
1.6.x series of releases, which followed a different numbering logic than all other
Asterisk releases (1.0 to 1.8 and onward for the foreseeable future).

Previous Release Methodologies
When we had just Asterisk 1.2 and 1.4, all new development was carried out in trunk
(it still is), and only bug fixes went into the 1.2 and 1.4 branches. The Asterisk 1.2
branch has been marked as EOL (End of Life), and is no longer receiving bug fixes or
security updates. Prior to the 1.6.x branches, bug fixes were carried out only in trunk
and in the 1.4 branch.

Because all new development was done in trunk, until the 1.6 branch was created people
were unable to get access to the new features and functionality. This isn’t to say the
new functionality wasn’t available, but with all the changes that can happen in trunk,
running a production server based on it requires a very Asterisk-savvy (and C code–
savvy) administrator.

To try to relieve the pressure on administrators, and to enable faster access to new
features (in the time frame of months, and not years), a new methodology was created.
Branches in 1.6 would actually be marked as 1.6.0, 1.6.1, 1.6.2, etc., with the third

26 | Chapter 2: Asterisk Architecture

number increasing by one each time a new feature release was created. The goal was
to provide new feature releases every 3–4 months (which would be branched from
trunk), providing a shorter and clearer upgrade path for administrators. If you needed
a new feature, you’d only have to wait a few months and could then upgrade to the
next branch.

Tags from these branches look like this:

• 1.6.0.1 -- 1.6.0.2 -- 1.6.0.3 -- 1.6.0.4 -- etc.

• 1.6.1.1 -- 1.6.1.2 -- 1.6.1.3 -- 1.6.1.4 -- etc.

• 1.6.2.1 -- 1.6.2.2 -- 1.6.2.3 -- 1.6.2.4 -- etc.

Figure 2-2 gives a visual representation of the branching and tagging process in relation
to Asterisk trunk.

Figure 2-2. The Asterisk 1.6.x release process

So, so far we have branches, which are 1.2, 1.4, 1.6.0, 1.6.1, and 1.6.2 (there is no 1.6
branch). Within each of those branches, we create tags (releases), which look like
1.2.14, 1.4.30, 1.6.0.12, 1.6.1.12, and 1.6.2.15.

Unfortunately, it ended up not working out that 1.6.x branches were created from trunk
every 3–4 months: the development process has led to a minimum release time of 6–8
months. Not only that, but the 1.6.x numbering methodology adds problems of its
own. People got confused as to what version to run, and that the 1.6.0, 1.6.1, and 1.6.2
branches were all separate major version upgrades. When you increase the number
from 1.2 to 1.4, and then to 1.8, it is obvious that those are distinct branches and major
version changes. With 1.6.0, 1.6.1, and 1.6.2, it is less obvious.

The New Release Methodology
The development team learned a lot of things during the 1.6.x releases. The idea sur-
rounding the releases was noble, but the implementation ended up being flawed when
put into real use. So, with Asterisk 1.8, the methodology has changed again, and will
look a lot more like that used in the 1.2 and 1.4 releases.

Asterisk Versioning | 27

While the development team still wants to provide access to new features and core
changes on a more regular basis (every 12 months being the goal), there is recognition
that it is also good to provide long-term support to a stable, popular version of Asterisk.
You can think of the Asterisk 1.4 branch as being a long-term support (LTS) version.
The 1.6.0, 1.6.1, and 1.6.2 branches can be thought of as feature releases that continue
to receive bug fixes after release, but are supported for a shorter period of time (about
a year). The new LTS version is Asterisk 1.8 (what this book is based on); it will receive
bug fixes for four years and an additional year of security releases after that, providing
five years of support from the Digium development team.

During the long-term support phase of Asterisk 1.8, additional branches will be created
on a semi-regular basis as feature releases. These will be tagged as versions 1.10, 1.12,
and 1.14, respectively. Each of these branches will receive bug fixes for a period of one
year, and security releases will continue to be made for an additional year before the
branches are marked as EOL.

The current statuses of all Asterisk branches, their release dates, when they will go into
security release–only mode, and when they will reach EOL status are all documented
on the Asterisk wiki at https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions.

Conclusion
Asterisk is composed of many different technologies, most of which are complicated
in their own right. As such, the understanding of Asterisk architecture can be over-
whelming. Still, the reality is that Asterisk is well-designed for what it does and, in our
opinion, has achieved remarkable balance between flexibility and complexity.

28 | Chapter 2: Asterisk Architecture

https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions

CHAPTER 3

Installing Asterisk

I long to accomplish great and noble tasks, but it is my
chief duty to accomplish humble tasks as though they
were great and noble. The world is moved along, not

only by the mighty shoves of its heroes, but also by the
aggregate of the tiny pushes of each honest worker.

—Helen Keller

In this chapter we’re going to walk through the installation of Asterisk from the source
code. Many people shy away from this method, claiming that it is too difficult and time-
consuming. Our goal here is to demonstrate that installing Asterisk from source is not
actually that difficult to do. More importantly, we want to provide you with the best
Asterisk platform on which to learn.

In this book we will be helping you build a functioning Asterisk system from scratch.
In this chapter you will build a base platform for your Asterisk system. Given that we
are installing from source, there is potentially a lot of variation in how you can do this.
The process we discuss here is one that we’ve used for many years, and following it will
provide you with a suitable foundation for Asterisk.

As part of this process we will also explain installation of some of the software de-
pendencies on the Linux platform that will be needed for topics covered later in this
book (such as database integration). We will show instructions for installing Asterisk
on both CentOS (a Red Hat–based distribution) and Ubuntu (a Debian-based distri-
bution), which we believe covers the vast majority of Linux distributions being installed
today. We’ll try to keep the instructions general enough that they should be useful on
any distribution of your choice.*

* If you are using another distribution, we’re willing to bet you are quite comfortable with Linux and should
have no trouble installing Asterisk.

29

http://www.centos.org
http://www.ubuntu.com

We have chosen to install on CentOS and Ubuntu because they are the most popular
options, but Asterisk is generally distribution-agnostic. Asterisk will even install on
Solaris, BSD, or OS X† if you like. We won’t be covering them in this book, though, as
Asterisk is most heavily developed on the Linux platform.

Asterisk Packages
There are also packages that exist for Asterisk that can be installed using popular
package-management programs such as yum or apt-get. You are welcome to experiment
with them. Prebuilt packages may not always be kept up-to-date, though, so for the
latest version we always recommend installing from source.

You can find package instructions at http://www.asterisk.org/downloads/yum.

Some commands you see in this chapter will be split into separate rows, each labeled
for the distribution on which the command should be performed. Commands for which
distributions are not specified are for common commands that can be run on both
distributions.

Asterisk-Based Projects
Many projects have been created that use Asterisk as their underlying platform. Some
of these, such as Trixbox, have become so popular that many people mistake them for
the Asterisk product itself. These projects generally will take the base Asterisk product
and add a web-based administration interface, a complex database, and a rigid set of
constraints on how changes can be made to the configuration.

We have chosen not to cover these projects in this book, for several reasons:

1. This book tries, as much as possible, to focus on Asterisk and only Asterisk.

2. Books have already been written about some of these Asterisk-based projects.

3. We believe that if you learn Asterisk in the way that we will teach you, the knowl-
edge will serve you well, regardless of whether you eventually choose to use one
of these prepackaged versions of Asterisk.

4. For us, the power of Asterisk is that it does not attempt to solve your problems for
you. These projects are an excellent example of what can be built with Asterisk.
They are truly amazing. However, if you are looking to build your own Asterisk
application (which is really what Asterisk is all about), these projects will impose
limitations on you, because they are focused on simplifying the process of building
a business PBX, not on making it easier to access the full potential of the Asterisk
platform.

† Leif calls this “Oh-Eh-Sex,” but Jim thinks it should be pronounced “OS Ten.” We wasted several precious
minutes arguing about this.

30 | Chapter 3: Installing Asterisk

http://www.asterisk.org/downloads/yum

Some of the most popular Asterisk-based projects include:

AsteriskNOW http://www.asterisk.org/asterisknow

Trixbox http://www.trixbox.org

Elastix http://www.elastix.org

PBX in a Flash http://www.pbxinaflash.net

We recommend that you check them out.‡

Installation Cheat Sheet
If you just want the nitty-gritty on how to get Asterisk up and running quickly, perform
the following at the shell prompt. We encourage you to read through the entire chapter
at least once, though, in order to better understand the full process.§

The instructions provided here assume you’ve already installed either CentOS or
Ubuntu using the steps outlined in “Distribution Installation” on page 35.

Remember that Ubuntu requires commands to be prefixed with sudo.

1. Perform a system update and reboot:

CentOS yum update -y && reboot

CentOS 64-bit yum remove *.i386 && yum update -y && reboot

Ubuntu sudo apt-get update && sudo apt-get upgrade && sudo reboot

2. Synchronize time and install the NTP (Network Time Protocol) daemon:

CentOS yum install -y ntp && ntpdate pool.ntp.org && chkconfig ntpd \

on && service ntpd start

CentOS 64-bit yum install -y ntp && ntpdate pool.ntp.org && chkconfig ntpd \

on && service ntpd start

Ubuntu sudo apt-get install ntp

‡ After you read our book, of course.

§ Once you have experience with several Asterisk installations, you’ll agree that it’s a quick and painless process.
Nevertheless, this chapter may make the process look complex. This is simply because we have an obligation
to ensure you are provided with all the information you need to accomplish a successful install.

Installation Cheat Sheet | 31

http://www.asterisk.org/asterisknow
http://www.trixbox.org
http://www.elastix.org
http://www.pbxinaflash.net

Some additional configuration of text files is required on Ubuntu.
See “Enable NTP for accurate system time” on page 43.

3. On CentOS, add a new system user:

CentOS (32 and 64 bit) adduser asteriskpbx && passwd asteriskpbx && yum install \

sudo && visudo

See “Adding a system user” on page 39 for specific information.

For an Ubuntu install, we are assuming that the user created during
the installation process is asteriskpbx.

4. Install software dependencies:

CentOS sudo yum install gcc gcc-c++ make wget subversion \

libxml2-devel ncurses-devel openssl-devel \

vim-enhanced

CentOS 64-bit sudo yum install gcc.x86_64 gcc-c++.x86_64 \

make.x86_64 wget.x86_64 subversion.x86_64 \

libxml2-devel.x86_64 ncurses-devel.x86_64 \

openssl-devel.x86_64 vim-enhanced.x86_64

Ubuntu sudo apt-get install build-essential subversion \

libncurses5-dev libssl-dev libxml2-dev vim-nox

5. Create your directory structure:

$ mkdir -p ~/src/asterisk-complete/asterisk
$ cd ~/src/asterisk-complete/asterisk

6. Get the latest source code via Subversion:

$ svn co http://svn.asterisk.org/svn/asterisk/branches/1.8

Or alternatively, you could check out a specific tag:

$ svn co http://svn.asterisk.org/svn/asterisk/tags/1.8.1

7. Build and install the software:

$ cd ~/src/asterisk-complete/asterisk/1.8/
$./configure

32 | Chapter 3: Installing Asterisk

$ make
$ sudo make install
$ sudo make config

8. Install additional sound prompts from menuselect:

$ cd ~/src/asterisk-complete/asterisk/1.8/
$ make menuselect
$ sudo make install

9. Modify the file permissions of the directories Asterisk was installed to:

$ sudo chown -R asteriskpbx:asteriskpbx /usr/lib/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/lib/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/spool/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/log/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/run/asterisk/
$ sudo chown asteriskpbx:asteriskpbx /usr/sbin/asterisk

10. On CentOS, disable SELinux:

$ sudo vim /etc/selinux/config

Change the value of SELINUX from enforcing to disabled, then reboot.

11. Create the /etc/asterisk/ directory and copy the indications.conf sample file into it:

$ sudo mkdir -p /etc/asterisk
$ sudo chown asteriskpbx:asteriskpbx /etc/asterisk
$ cd /etc/asterisk/
$ cp ~/src/asterisk-complete/asterisk/1.8/configs/indications.conf.sample \
./indications.conf

12. Copy the sample asterisk.conf file into /etc/asterisk and change runuser and run
group to have values of asteriskpbx:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/asterisk.conf.sample \
/etc/asterisk/asterisk.conf

$ vim /etc/asterisk/asterisk.conf

See “indications.conf and asterisk.conf” on page 53 for more information.

13. Create the modules.conf file. Enable loading of modules automatically, and disable
extra modules:

$ cat >> /etc/asterisk/modules.conf

; The modules.conf file, used to define which modules Asterisk should load (or
; not load).
;
[modules]
autoload=yes

; Resource modules currently not needed
noload => res_speech.so
noload => res_phoneprov.so
noload => res_ael_share.so
noload => res_clialiases.so
noload => res_adsi.so

Installation Cheat Sheet | 33

; PBX modules currently not needed
noload => pbx_ael.so
noload => pbx_dundi.so

; Channel modules currently not needed
noload => chan_oss.so
noload => chan_mgcp.so
noload => chan_skinny.so
noload => chan_phone.so
noload => chan_agent.so
noload => chan_unistim.so
noload => chan_alsa.so

; Application modules currently not needed
noload => app_nbscat.so
noload => app_amd.so
noload => app_minivm.so
noload => app_zapateller.so
noload => app_ices.so
noload => app_sendtext.so
noload => app_speech_utils.so
noload => app_mp3.so
noload => app_flash.so
noload => app_getcpeid.so
noload => app_setcallerid.so
noload => app_adsiprog.so
noload => app_forkcdr.so
noload => app_sms.so
noload => app_morsecode.so
noload => app_followme.so
noload => app_url.so
noload => app_alarmreceiver.so
noload => app_disa.so
noload => app_dahdiras.so
noload => app_senddtmf.so
noload => app_sayunixtime.so
noload => app_test.so
noload => app_externalivr.so
noload => app_image.so
noload => app_dictate.so
noload => app_festival.so

Ctrl + D

14. Configure musiconhold.conf:

$ cat >> musiconhold.conf

; musiconhold.conf
[default]
mode=files
directory=moh

Ctrl + D

34 | Chapter 3: Installing Asterisk

15. Save your changes and your module configuration is done. Your system is ready
to configure your dialplan and channels.

Distribution Installation
Because Asterisk relies so heavily on having priority access to the CPU, it is essential
that you install Asterisk onto a server without any graphical interface, such as the X
Windowing system (Gnome, KDE, etc.). Both CentOS and Ubuntu ship a GUI-free
distribution designed for server usage. We will cover instructions for both distributions.

CentOS Server
CentOS means “Community Enterprise Operating System,” and it is based on Red Hat
Enterprise Linux (RHEL). For more information about what CentOS is and its history,
see http://www.centos.org.

You will need to download an ISO from the CentOS website, located at http://mirror
.centos.org/centos/5/isos/. Select either the i386 or x86_64 directory for 32-bit or 64-bit
hardware, respectively. You will then be presented with a list of mirrors that appear to
be close to you physically. Choose one of the mirrors, and you will be presented with
a list of files to download. Likely you will want the first available selection, which is the
first ISO file of a set. You will only need the first ISO file of the set as we’ll be installing
additional software with yum.

Once you’ve downloaded the ISO file, burn it to a CD or DVD and start the installation
process. If you’re installing into a virtual machine (which we don’t recommend for
production use,‖ but can be a great way to test out Asterisk), you should be able to
mount the ISO file directly and install from there.

Base system installation

Upon booting from the CD, type linux text and then press Enter .#

At this point the text installation interface will start. You will be asked whether you
want to test the media. These instructions assume you’ve already done so, and therefore
can skip that step.

CentOS will then welcome you to the installation. Press Enter to continue.

‖ Actually, some people have great success running Asterisk inside virtual machines. It does depend what you’re
planning on using it for though, as you’ll have limited access to hardware, for example.

#You should test the media the first time you are using that particular CD/DVD.

Distribution Installation | 35

http://www.centos.org
http://mirror.centos.org/centos/5/isos/
http://mirror.centos.org/centos/5/isos/

Choose your language and make a keyboard selection.* If you’re in North America, you
will probably just select the defaults.

If you’ve previously formatted your hard drive, you will be asked to initialize the drive,
which will erase all data. Select Yes .

The installer will ask if you want to remove the existing partitioning scheme and create
a new one. Select Remove all partitions on selected drives and create default layout. If a
more appropriate option exists, select that instead. In the drive window, verify that the
correct disk drive is selected. (Pressing Tab will cycle through the selections on the
screen.) Once the drive window is selected, you can scroll up and down (presuming
you have multiple drives) and select which hard drive you wish to install to. Toggle the
selections by pressing space bar . Verify that the correct drive is selected, press Tab
until the OK button is highlighted, and press Enter .

A message confirming that you want to remove all Linux partitions and create the new
partition scheme will be presented. Select Yes .

You will be asked to review the partitioning layout. Feel free to modify the partition
scheme if you prefer something different (see the following sidebar for some advice on
this); however, the default answer No is fine for light production use where storage
requirements will be low.†

Separating the /var Mount Point to Its Own Partition
On a system dedicated to Asterisk, the directory with the largest storage requirement
is /var. This is where Asterisk will store recordings, voicemails, log files, prompts, and
a myriad of constantly growing information. In normal operation, it is unlikely that
Asterisk will fill the hard disk. However, if you have extensive logging turned on or are
recording all calls, this could, in theory, occur. (This is likely to happen several months
after you’ve completed the install and to take your entire staff by surprise.)

If the drive the operating system is mounted on fills up, there is the potential for a kernel
panic. By separating /var from the rest of the hard drive, you significantly lower the risk
of a system failure.

Having a full volume is still a major problem; however, you will at
least be able to log into the system to rectify the situation.

* Bear in mind that Asterisk is developed using the US keyboard and language, and we’re not aware of any
testing having been done on anything other than US English.

† Due to the ever-increasing size of hard drives, capacity is becoming less of a problem. A system with a
1 terabyte drive can store somewhere in the range of 2 million minutes of telephony-quality recordings.

36 | Chapter 3: Installing Asterisk

At the Review and modify the partitioning layout screen, you can create a separate vol-
ume for /var. Selecting Yes will bring up the Partitioning tool. To partition the drive
accurately, you need to know what the hard drive size is; this may not jibe with what
is stamped on the outside of the drive because you have to tell the tool how to chop up
the drive. A limitation of the tool is that there is no option to say “use all available
space”; that is, you can’t simply could use 500 MB on the / partition and then say “use
the rest for /var”. The workaround is to make a note of the size it has selected for /
currently, as that is the full space, subtract 500 MB from that, and make that the size
for the / partition. The subtracted amount will then be reserved for /var.

A message will appear asking if you’d like to configure the eth0 network interface on
your system. Select Yes . Be sure the Activate on boot and Enable IPv4 support options
are enabled, then select OK .

If your network provides automatic IP provisioning via DHCP, you can just select
OK . Otherwise, select Manual address configuration, enter the appropriate informa-
tion, and then select OK .

Next, you’ll be asked to provide a hostname. You can either allow the DHCP server to
provide one for you (if your network assigns hostnames automatically) or enter one
manually, then select OK .

You will be presented with a list of time zones. Highlight your local time zone and select
OK .

At this point, you will be asked for a root password. Enter a secure password and type
it again to confirm. After entering your secure password, select OK .

Next up will be the package selection. Several packages that you don’t need to install
(and that require additional ISO files you probably haven’t downloaded) are selected
by default. Deselect all options in the list using the space bar, then select the Customize
software selection option. Once you’ve done that, select OK .

You will then be presented with the Package Group Selection screen. Scroll through the
whole list, deselecting each item. If any packages are selected, you’ll be prompted for
additional CDs that you have not downloaded. We’ll be installing additional packages
with the yum application after the operating system is installed. Once you’ve deselected
all packages, select OK .

A dependency check will then be performed and a confirmation that installation is
ready to begin will be presented. Select OK to start the installation. The filesystem will
then be formatted, the installation image transferred to the hard drive, and installation
of the system packages performed. Upon installation, you will be asked to reboot.
Remove any media in the drives and select the Reboot button.

Distribution Installation | 37

Base system update

Once you’ve rebooted your system, you need to run the yum update command to make
sure you have the latest base packages. To do this, log in using the username root and
the password you created during installation. Once logged in, run the following:

yum update

Is this ok [y/N]: y

When prompted to install the latest packages, press y and wait for the packages to
update. If you’re asked to accept a GPG key, press y . When complete, reboot the system
as it is likely the kernel will have been updated‡:

reboot

If you’re running CentOS Server 64-bit, you’ll need to remove all the
32-bit libraries manually. Once you’ve rebooted, or just prior to reboot,
run the following command:

yum remove *.i386 -y

This will remove all the 32-bit libraries on your 64-bit system, which
can otherwise cause conflicts and issues when compiling Asterisk and
other software.

Congratulations! You’ve successfully installed and updated the base CentOS system.

Enabling NTP for accurate system time

Keeping accurate time is essential on your Asterisk system, both for maintaining accu-
rate call detail records and for synchronization with your other programs. You don’t
want the times of your voicemail notifications to be off by 10 or 20 minutes, as this can
lead to confusion and panic from those who might think their voicemail notifications
are taking took too long to be delivered. The ntpd command can be used to ensure that
the time on your Asterisk server remains in sync with the rest of the world:

yum install ntp
...
Is this ok [y/N]: y
...
ntpdate pool.ntp.org
chkconfig ntpd on
service ntpd start

The defaults shipped with CentOS are sufficient to synchronize the time and keep the
machine’s time in sync with the rest of the world.

‡ This reboot step is essential prior to installing Asterisk.

38 | Chapter 3: Installing Asterisk

Adding a system user

The Ubuntu server install process asks you to add a system user other than root, but
CentOS does not. In order to be consistent in the book and to be more secure, we’re
going to add another system user and provide it sudo access.§ To add the new user,
execute the adduser command:

adduser asteriskpbx
passwd asteriskpbx
Changing password for user asteriskpbx.
New UNIX password:
Retype new UNIX password:

Now we need to provide the asteriskpbx user sudo access. We do this by modifying the
sudoers file with the visudo command. You’ll need to install visudo the first time you
use it:

yum install sudo

With the sudo-related applications and file installed, we can modify the sudoers file.
Execute the visudo command and look for the lines shown below:

visudo

Allows people in group wheel to run all commands
%wheel ALL=(ALL) ALL

With the %wheel line uncommented as shown in our example, save the file by pressing
Esc , then typing :wq and pressing Enter . Now open the /etc/group file in your favorite
editor (nano is easy to use) and find the line that starts with the word wheel. Modify it
like so:

wheel:x:10:root,asteriskpbx

Save the file, log out from root by typing exit, and log in as the asteriskpbx user you
created. Test your sudo access by running the following command:

$ sudo ls /root/
[sudo] password for asteriskpbx:

After typing your password, you should get the output of the /root/ directory. If you
don’t, go back and verify the steps to make sure you didn’t skip or mistype anything.
The rest of the instructions in this chapter will assume that you’re the asteriskpbx user
and that you have sudo access.

One last thing needs to done, which will allow you to enter commands without having
to enter the full path. By default only root has /sbin/ and /usr/sbin/ in the default system
PATH, but we’ll add it to our asteriskpbx user as well since we’ll be running many ap-
plications located in those directories.

§ sudo is an application that allows a user to execute commands as another user, such as root, or the superuser.

Distribution Installation | 39

Start by opening the hidden file .bash_profile located within the asteriskpbx home di-
rectory with an editor. We’re then going to append :/usr/sbin:/sbin to the end of the
line starting with PATH:

$ vim ~/.bash_profile
PATH=$PATH:$HOME/bin:/usr/sbin:/sbin

As previously, save the file by pressing Esc and then typing :wq and pressing Enter .

With the operating system installed, you’re ready to install the dependencies required
for Asterisk. The next section deals with Ubuntu, so you can skip ahead to the section
“Software Dependencies” on page 44, which provides an in-depth review of the in-
stallation process. Alternatively, if you’ve already reviewed the information in that sec-
tion, you may want to refer back to the “Installation Cheat Sheet” on page 31 for a
high-level review of how to install Asterisk.

Ubuntu Server
Ubuntu Server is a popular Linux distribution loosely based on Debian. There is also
a popular desktop version of the software. The Ubuntu Server package contains no GUI
and is ideal for Asterisk installations.

To get the latest version of Ubuntu Server,‖ visit http://www.ubuntu.com and select the
Server tab at the top of the page. You will be provided with a page that contains infor-
mation about Ubuntu Server Edition. Clicking the orange Download button in the
upper-right corner will take you to a page where you can select either the 32-bit or 64-
bit version of Ubuntu Server. After selecting one of the options, you can press the Start
download button.

Once you’ve downloaded the ISO file, burn it to a CD and start the installation process.
If you’re installing into a virtual machine (which we don’t recommend for production
use, but can be a great way to test out Asterisk), you should be able to mount the ISO
file directly and install from there.

Base system installation

Upon booting from the CD, you will be presented with a screen where you can select
your language of choice. By default English is the selected language, and after a timeout
period, it will be automatically selected. After selecting your language, press Enter .

The next screen will give you several options, the first of which is Install Ubuntu
Server. Select it by pressing Enter .

You will then be asked which language to use for the installation (yes, this is slightly
redundant). Select your language of choice (the default is English), and press Enter .

‖ Of course, projects can change their websites whenever they want. Hopefully the instructions we’ve provided
here are accurate enough to help guide you through the site even in the event of changes.

40 | Chapter 3: Installing Asterisk

http://www.ubuntu.com

You will be presented with a list of countries. Once you’ve found your country and
highlighted it, press Enter .

You will then be asked if you would like to use the keyboard layout detector. If you
know which keyboard type you have, you can select No and then pick it from a list of
formats.

If you are utilizing the keyboard layout detector, you will be prompted to press a series
of keys. If you use the keyboard detector and it does not detect your keyboard correctly
(typical when installing into a virtual machine via a remote console), you can go back
and select from a list manually.

Once you’ve picked your keyboard, the installation will continue by attempting to set
up your network automatically. If all goes well, you will be prompted to enter a host-
name for your system. You can pick anything you want here, unless your network
requires your system to a have a specific hostname. Input it now and then press
Enter .

The installer will attempt to contact a Network Time Protocol (NTP) server to syn-
chronize your clock. Ubuntu will then try to autodetect your time zone and present
you with its choice. If correct, select Yes , otherwise, select No and you’ll be presented
with a list of time zones to select from. Select your time zone, or select from the world-
wide list if your time zone is not shown. Once you’ve selected your time zone, press
Enter to continue.

The installer will then ask you some questions about partitioning your system. Typically
the default is fine, which is to use the guided system, utilizing the entire disk, and to
set up the Logical Volume Manager (LVM). Press Enter once you’ve made your selec-
tion. Then you’ll be asked which partition to install to, which likely is the only one on
your system. Press Enter to continue, at which point you’ll be asked to confirm the
changes to the partition table. Select Yes and press Enter to continue.

You will now be asked how much space to use (the default value will be to use the
entire disk). Press Enter once you’ve entered and confirmed the amount of space you
want to use. The installer will then request one last confirmation before making the
changes to the disk. Select Yes to write the changes to disk. The installer will now
format the hard disk, write the partitioning scheme to disk, copy the files, and perform
the file installation.

When the file installation is complete, you’ll be asked to enter the Full name of the new
user, from which a username will be generated. The system will suggest a username,
but you are free to change the username to whatever you like.

Distribution Installation | 41

After entering your username, you’ll be asked to supply a password, and then asked to
confirm the password you’ve entered. Ubuntu does a good job of providing a secure
system by not providing direct access to root, but rather using the sudo application,
which allows you to run commands as root without being the root user. Enter a user-
name,# such as asteriskpbx, and a secure password to continue. You’ll use these to log
into the system once the installer ends. The installer will then ask you if you want to
encrypt your home directory. This is not necessary and will add CPU overhead.

The rest of the installation instructions will assume that asteriskpbx was
chosen as the username.

If your system is behind a web proxy, enter the proxy information now. If you’re not
behind a proxy, or don’t know if you are, simply press Enter .

You will then be asked if you want to install updates automatically. The default is to
perform no automatic updates, which is what we recommend. Should a system reboot
occur, an update to the kernel will render Asterisk nonstartable until you recompile
it* (which won’t make you popular). It is better practice to identify updates on a regular
basis and perform them manually in a controlled manner. Normally, you would want
to advise your users of the expected downtime and schedule the downtime to happen
after business hours (or while a redundant system is running). Select No automatic
updates and press Enter .

Since we’ll be installing our dependencies with apt-get, we only need to select one
package during the install: OpenSSH server. SSH is essential if you wish to perform
remote work on the system. However, if your local policy states that your server needs
to be managed directly, you may not want to install the OpenSSH server.

Pressing the Enter key will accept the current selections and move on
with the install. You need to use space bar to toggle your selections.

After you’ve selected OpenSSH server, press Enter .

If this is the only operating system on the machine (which it likely is), Ubuntu will give
you the option to install the GRUB bootloader on your system. It provides this prompt
in order to give you the option of skipping the GRUB installation, as it will modify the
master boot record (MBR) on your system. If there is another operating system it has

#Ubuntu has reserved the username asterisk internally.

* While we say Asterisk here, specifically it is DAHDI that is the problem. DAHDI is a set of Linux kernel
modules used with Asterisk.

42 | Chapter 3: Installing Asterisk

failed to detect that has information loaded into the MBR, it’s nice to be able to skip
modifying it. If this is the only operating system installed on your server, select Yes .

When the system has finished the install, you’ll be asked to remove any media in the
drives and to reboot the system by selecting Continue, at which point the installation
will be complete and the system will reboot.

Base system update

Now that we’ve completed installing Ubuntu Server, we need to perform a system
update with apt-get to make sure we have the latest packages installed. You’ll be pre-
sented with a login prompt where you’ll log in with the username and password you
created in the installer (e.g., asteriskpbx). Once logged in, run the following command:

$ sudo apt-get update
[sudo] password for asteriskpbx:
...
Reading package lists... Done

$ sudo apt-get upgrade
Reading state information... Done
...
Do you want to continue [Y/n]? y

The password that sudo wants is the password you just logged in with.

Press Enter when prompted to continue, at which point the latest package updates will
be installed. When complete, reboot the system for the changes to take effect as the
kernel has probably been updated.

$ sudo reboot

Congratulations! You’ve successfully installed and updated the base Ubuntu Server
system.

Enable NTP for accurate system time

Keeping accurate time is essential on your Asterisk system, both for maintaining accu-
rate call detail records as well as for synchronization with your other programs. You
don’t want the times of your voicemail notifications to be off by 10 or 20 minutes, as
this can lead to confusion and panic from those who might think their voicemail noti-
fication took too long to be delivered:

$ sudo apt-get install ntp

Distribution Installation | 43

The default on Ubuntu is to run a time sync server without ever changing the time on
your own machine. This won’t work for our needs, so we’ll need to change the
configuration file slightly. Because of this, we need to guide you through using a com-
mand line editor. The nano editor is already installed on your Ubuntu machine and is
remarkably easy to use†:

$ sudo nano /etc/ntp.conf

Your terminal will switch to full-screen output.

Use your arrow keys to move down to the section that looks like

By default, exchange time with everybody, but don't allow configuration.
restrict -4 default kod notrap nomodify nopeer noquery
restrict -6 default kod notrap nomodify nopeer noquery

Add two new lines after this section, to allow ntpd to synchronize your time with the
outside world, such that the above section now looks like

By default, exchange time with everybody, but don't allow configuration.
restrict -4 default kod notrap nomodify nopeer noquery
restrict -6 default kod notrap nomodify nopeer noquery

restrict -4 127.0.0.1
restrict -6 ::1

That’s everything we need to change, so exit the editor by pressing Ctrl + X . When
prompted whether to save the modifications, press Y ; nano will additionally ask you
for the filename. Just hit Enter to confirm the default /etc/ntp.conf.

Now restart the NTP daemon:

$ sudo /etc/init.d/ntp restart

With the operating system installed, you’re ready to install the dependencies required
for Asterisk. The next section provides an in-depth review of the installation process.
If you’ve already reviewed the information in “Software Dependencies” on page 44,
you may want to refer back to “Installation Cheat Sheet” on page 31 for a high-level
review of how to install Asterisk.

Software Dependencies
The first thing you need to do once you’ve completed the installation of your operating
system is to install the software dependencies required by Asterisk. The commands
listed in Table 3-1 have been split into two columns, for Ubuntu Server and CentOS
Server. These packages will allow you to build a basic Asterisk system, along with
DAHDI and LibPRI. Not every module will be available at compile time with these

† If you’re already familiar with another editor, go ahead and use it. The nano editor has been selected for its
ease of use and its handy on-screen instructions. We even know a developer at Digium who uses it while
writing code for Asterisk, though most people tend to use more complex editors such as emacs or vim.

44 | Chapter 3: Installing Asterisk

dependencies; only the most commonly used modules will be built. If additional
dependencies are required for other modules used later in the book, instructions will
be provided as necessary.

Please be aware that the dependency information on CentOS 64-bit does
not take into account that 32-bit libraries should not be installed. If such
libraries are installed, you will end up with additional packages that use
disk space and can cause conflicts if the system attempts to compile
against a 32-bit library instead of its 64-bit counterpart. In order to re-
solve this problem, add .x86_64 to the end of each package name when
installing it. So, for example, instead of executing yum install ncurses-
devel, you will execute yum install ncurses-devel.x86_64. This is not
necessary on a 32-bit platform.

Table 3-1. Software dependencies for Asterisk on Ubuntu Server and CentOS Server

Ubuntu CentOS

sudo apt-get install build-essential \

subversion libncurses5-dev libssl-dev \

libxml2-dev vim-nox

sudo yum install gcc gcc-c++ make wget \

subversion libxml2-devel ncurses-devel \

openssl-devel vim-enhanced

These packages will get you most of what you’ll need to get started with installing
Asterisk, DAHDI, and LibPRI. Note that you will also require the software dependen-
cies for each package that we indicate needs to be installed. These will be resolved
automatically for you when you use either yum or apt-get.

We have also included the OpenSSL development libraries, which are not strictly nec-
essary to compile Asterisk, but are good to have: they enable key support and other
encryption functionality.

We have installed vim as our editor, but you can choose anything you want, such as
nano, joe, or emacs.

Asterisk contains a script that will install the dependencies for all features in Asterisk.
At this time it is complete for Ubuntu but does not list all required packages for CentOS.
Once you have downloaded Asterisk using the instructions in “Downloading What
You Need” on page 46, use the following commands if you would like to run it:

$ cd ~/src/asterisk-complete/asterisk/1.8
$ sudo ./contrib/scripts/install_prereq install
$ sudo ./contrib/scripts/install_prereq install-unpackaged

Software Dependencies | 45

Third-Party Repositories
For certain software dependencies, a third-party repository may be necessary. This
appears to be most often the case when using CentOS. A couple of repositories that
seem to be able to provide all the extra dependencies required are RPMforge (http://dag
.wieers.com/rpm/) and EPEL (Extra Packages for Enterprise Linux, http://fedoraproject
.org/wiki/EPEL).

We may occasionally refer to these third-party repositories when they are required to
obtain a dependency for a module we are trying to build and use.

Downloading What You Need
There are several methods of getting Asterisk: via the Subversion code repository, via
wget from the downloads site, or via a package-management system such as apt-get or
yum. We’re only going to cover the first two methods, since we’re interested in building
the latest version of Asterisk from source. Typically, package-management systems will
have versions that are older than those available from Subversion or the downloads
site, and we want to make sure we have the most recent fixes available to us, so we tend
to avoid them.

The official packages from Digium do tend to stay up to date. There are
currently packages for CentOS/RHEL available at http://www.asterisk
.org/downloads/yum.

Before we start getting the source files, let’s create a directory structure to house the
downloaded code. We’re going to create the directory structure within the home di-
rectory for the asteriskpbx user on the system. Once everything is built, it will be in-
stalled with the sudo command. We’ll then go back and change the permissions and
ownership of the installed files in order to build a secure system. To begin, issue the
following command:

$ mkdir -p ~/src/asterisk-complete/asterisk

Now that we’ve created a directory structure to hold everything, let’s get the source
code. Choose one of the following two methods to get your files:

1. Subversion

2. wget

46 | Chapter 3: Installing Asterisk

http://dag.wieers.com/rpm/
http://dag.wieers.com/rpm/
http://fedoraproject.org/wiki/EPEL
http://fedoraproject.org/wiki/EPEL
http://www.asterisk.org/downloads/yum
http://www.asterisk.org/downloads/yum

Getting the Latest Version
Asterisk is a constantly evolving project, and there are many different versions of the
software that you can implement.

In Chapter 2, we talked about Asterisk versioning. The concept of how Asterisk is
versioned is important to understand because the versioning system for Asterisk has
undergone a few changes of methodology over the years. So, if you’re not up to speed
on Asterisk versioning, we strongly recommend that you go back and read “Asterisk
Versioning” on page 26.

Having said all that, in most cases all you need to do is grab the latest version from the
http://www.asterisk.org/downloads website. We will be installing and using Asterisk 1.8
throughout this book.

Getting the Source via Subversion
Subversion is a version control system that is used by developers to track changes to
code over a period of time. Each time the code is modified, it must first be checked out
of the repository; then it must be checked back in, at which point the changes are
logged. Thus, if a change creates a regression, the developers can go back to that change
and remove it if necessary. This is a powerful and robust system for development work.
It also happens to be useful for Asterisk administrators seeking to retrieve the software.
To download the source code to the latest version of Asterisk 1.8, use these commands:

$ cd ~/src/asterisk-complete/asterisk
$ svn co http://svn.asterisk.org/svn/asterisk/branches/1.8

You can now skip directly to “How to Install It” on page 48.

The preceding commands will retrieve the latest changes to the source
in that particular branch, which are changes that have been made after
the latest release. If you would prefer to use a released version, please
refer to the next section.

Getting the Source via wget
To obtain the latest released versions of DAHDI, LibPRI, and Asterisk using the wget
application, issue the following commands:

$ cd ~/src/asterisk-complete/asterisk
$ wget \
http://downloads.asterisk.org/pub/telephony/asterisk/asterisk-1.8-current.tar.gz
$ tar zxvf asterisk-1.8-current.tar.gz

The next step is to compile and install the software, so onward to the next section.

Downloading What You Need | 47

http://www.asterisk.org/downloads

How to Install It
With the source files downloaded you can compile the software and install it. The order
for installing is:

1. LibPRI‡

2. DAHDI§

3. Asterisk‖

Installing in this order ensures that any dependencies for DAHDI and Asterisk are
installed prior to running the configuration scripts, which will subsequently ensure that
any modules dependent on LibPRI or DAHDI will be built.

So, let’s get started.

LibPRI
LibPRI is a library that adds support for ISDN (PRI and BRI). The use of LibPRI is
optional, but since it takes very little time to install, doesn’t interfere with anything,
and will come in handy if you ever want to add cards to a system at a later point, we
recommend that you install it now.

Check out the latest version of LibPRI and compile it like so:

$ cd ~/src/asterisk-complete/
$ mkdir libpri
$ cd libpri/
$ svn co http://svn.asterisk.org/svn/libpri/tags/1.4.<your version number>
$ cd 1.4.<your version number>
$ make
$ sudo make install

You can also download the source via wget from http://downloads.aster
isk.org/pub/telephony/libpri/.

With LibPRI installed, we can now install DAHDI.

‡ Strictly speaking, if you are not going to be using any ISDN connections (BRI and PRI), you can install Asterisk
without LibPRI. However, we are going to install it for the sake of completeness.

§ This package contains the kernel drivers to allow Asterisk to connect to traditional PSTN circuits. It is also
required for the MeetMe() conferencing application. Again, we will install this for completeness.

‖ If you don’t install this, none of the examples in this book will work, but it could still make a great bathroom
reader. Just sayin’.

48 | Chapter 3: Installing Asterisk

http://downloads.asterisk.org/pub/telephony/libpri/
http://downloads.asterisk.org/pub/telephony/libpri/

DAHDI
The Digium Asterisk Hardware Device Interface, or DAHDI (formerly known as Zaptel),
is the software Asterisk uses to interface with telephony hardware. We recommend that
you install it even if you have no hardware installed, because DAHDI is a dependency
required for building the timing module res_timing_dahdi and is used for Asterisk
dialplan applications such as MeetMe().

DAHDI-tools and DAHDI-linux
DAHDI is actually a combination of two separate code bases: DAHDI-tools, which
provides various administrator tools such as dahdi_cfg, dahdi_scan, etc.; and DAHDI-
linux, which provides the kernel drivers. Unless you’re only updating one or the other,
you’ll be installing both at the same time, which is referred to as DAHDI-linux-com-
plete. The version numbering for DAHDI-linux-complete will look something like
2.4.0+2.4.0, where the number to the left of the plus sign is the version of DAHDI-
linux included, and the version number to the right of the plus sign is the DAHDI-
tools version included.

There are also FreeBSD drivers for DAHDI, which are maintained by the community.
These drivers are available at http://downloads.asterisk.org/pub/telephony/dahdi-freebsd
-complete/.

Another dependency is required for installing DAHDI, and that is the kernel source. It
is important that the kernel version being used match exactly that of the kernel source
being installed. You can use uname -a to verify the currently running kernel version:

• CentOS: sudo yum install kernel-devel-`uname -r`

• Ubuntu: sudo apt-get install linux-headers-`uname -r`

The use of uname -r surrounded by backticks (`) is for filling in the currently running
kernel version so the appropriate package is installed.

The following commands show how to install DAHDI-linux-complete 2.4.0+2.4.0.
There may be a newer version available by the time you are reading this, so check
downloads.asterisk.org first. If there is a newer version available, just replace the version
number in the commands:

$ cd ~/src/asterisk-complete/
$ mkdir dahdi
$ cd dahdi/
$ svn co http://svn.asterisk.org/svn/dahdi/linux-complete/tags/2.4.0+2.4.0
$ cd 2.4.0+2.4.0
$ make
$ sudo make install
$ sudo make config

How to Install It | 49

http://downloads.asterisk.org/pub/telephony/dahdi-freebsd-complete/
http://downloads.asterisk.org/pub/telephony/dahdi-freebsd-complete/

You will need to have Internet access when running the make all com-
mand, as it will attempt to download the latest hardware firmware from
the Digium servers.

After installing DAHDI, we can move on to installing Asterisk.

You can also download the source via wget from http://downloads.aster
isk.org/pub/telephony/dahdi-linux-complete/.

Asterisk
With both DAHDI and LibPRI installed, we can now install Asterisk:

$ cd ~/src/asterisk-complete/asterisk/1.8
$./configure
$ make
$ sudo make install
$ sudo make config

With the files now installed in their default locations, we need to modify the permis-
sions of the directories and their contents.

There is an additional step that is not strictly required, but is quite com-
mon (and arguably important): the make menuselect command, which
provides a graphical interface that allows detailed selection of which
modules and features will be compiled. We will discuss this in “make
menuselect” on page 59.

Setting File Permissions
In order to run our system more securely, we’ll be installing Asterisk and then running
it as the asteriskpbx user. After installing the files into their default locations, we need
to change the file permissions to match those of the user we’re going to be running as.
Execute the following commands after running make install (which we did previously):

$ sudo chown -R asteriskpbx:asteriskpbx /usr/lib/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/lib/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/spool/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/log/asterisk/
$ sudo chown -R asteriskpbx:asteriskpbx /var/run/asterisk
$ sudo chown asteriskpbx:asteriskpbx /usr/sbin/asterisk

In order to use MeetMe() and DAHDI with Asterisk as non-root, you must change
the /etc/udev/rules.d/dahdi.rules so that the OWNER and GROUP fields match the non-root
user Asterisk will be running as. In this case, we’re using the asteriskpbx user.

50 | Chapter 3: Installing Asterisk

http://downloads.asterisk.org/pub/telephony/dahdi-linux-complete/
http://downloads.asterisk.org/pub/telephony/dahdi-linux-complete/

Change the last line of the dahdi.rules file to the following:

SUBSYSTEM=="dahdi", OWNER="asteriskpbx", GROUP="asteriskpbx", MODE="0660"

With that out of the way, we can move on to performing the base configuration that
should be done after all installations.

Base Configuration
Now that we’ve got Asterisk installed, we can get our system up and running. The
purpose here is to get Asterisk loaded up and ready to go, as it isn’t doing anything
useful yet. These are the steps that all system administrators will need to start out with
when installing a new system. If the commands that need to be run differ on CentOS
and Ubuntu, you will see a table with rows labeled for each distribution; otherwise,
you will see a single command that should be run regardless of which Linux distribution
you have chosen.

Disable SELinux

This section applies only to CentOS users, so if you’re using Ubuntu,
you can skip to the next section.

In CentOS, the Security-Enhanced Linux (SELinux) system is enabled by default, and
it often gets in the way of Asterisk. Sometimes the issues are quite subtle, and at least
one of the authors has spent a good number of hours debugging issues in Asterisk that
turned out to be resolved by disabling SELinux. There are many articles on the Internet
that describe the correct configuration of SELinux, but we’re going to disable it for the
sake of simplicity.

While disabling SELinux is not the ideal situation, the configuration of
SELinux is beyond the scope of this book, and frankly, we just don’t
have enough experience with it to configure it correctly.

To temporarily switch off SELinux, perhaps in order to verify whether an issue you’re
having is being caused by SELinux, run the following command as root:

$ sudo echo 0 > /selinux/enforce

You can reenable SELinux by doing the same thing, but replacing the 0 with a 1:

$ sudo echo 1 > /selinux/enforce

Base Configuration | 51

To disable SELinux permanently, modify the /etc/selinux/config file:

$ cd /etc/selinux/
$ sudo vim config

Change the SELINUX option from enforcing to disabled.

Alternatively, you can change the value of enforcing to permissive,
which simply logs the errors instead of enforcing the policy.

When you’re done modifying the configuration file, you’ll have the following:

This file controls the state of SELinux on the system.
SELINUX= can take one of these three values:
enforcing - SELinux security policy is enforced.
permissive - SELinux prints warnings instead of enforcing.
disabled - SELinux is fully disabled.
SELINUX=disabled
SELINUXTYPE= type of policy in use. Possible values are:
targeted - Only targeted network daemons are protected.
strict - Full SELinux protection.
SELINUXTYPE=targeted

SETLOCALDEFS= Check local definition changes
SETLOCALDEFS=0

Since you can’t disable SELinux without rebooting, you’ll need to do that now:

$ sudo reboot

Initial Configuration
In order to get Asterisk up and running cleanly, we need to create some configuration
files. We could potentially install the sample files that come with Asterisk (by executing
the make samples command in our Asterisk source) and then modify those files to suit
our needs, but the make samples command installs many sample files, most of them
for modules that you will never use. We want to limit which modules we are loading,
and we also believe that it’s easier to understand Asterisk configuration if you build
your config files from scratch, so we’re going to create our own minimal set of config-
uration files.#

The first thing we need to do (assuming it does not already exist) is create the /etc/
asterisk/ directory where our configuration files will live:

$ sudo mkdir /etc/asterisk/
$ sudo chown asteriskpbx:asteriskpbx /etc/asterisk/

#If your /etc/asterisk/ folder has files in it already, move those files to another directory, or delete them if you
are sure you don’t need what is there.

52 | Chapter 3: Installing Asterisk

Running make samples on a system that already has configuration files
will overwrite the existing files.

Using make samples to Create Sample
Configuration Files for Future Reference

Even though we are not going to use the sample configuration files that come with
Asterisk, the fact is that they are an excellent reference. If there is a module that you
are not currently using but wish to put into production, the sample file will show you
exactly what syntax to use, and what options are available for that module.

Running the sudo make samples command in your Asterisk source directory* is harmless
on a new system that has just been built, but it is very dangerous to run on a system
that already has configuration files, as this command will overwrite any existing files
(which would be a disaster for you if you do not have a current backup).

If you’ve run the sudo make samples command, you will want to move the files that it
has created in /etc/asterisk/ to another folder. We like to create a folder called /etc/
asterisk/unused/ and put any sample/unused configuration files in there, but feel free
to store them wherever you like.

We’re now going to step through all the files that are required to get a simple Asterisk
system up and running.

indications.conf and asterisk.conf

The first file needed is indications.conf, a file that contains information about how to
detect different telephony tones for different countries. There is a perfectly good sample
file that we can use in the Asterisk source, so let’s copy it into our /etc/asterisk/ directory:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/indications.conf.sample \
/etc/asterisk/indications.conf

Because we’re running Asterisk as non-root, we need to tell Asterisk which user to run
as. This is done with the asterisk.conf file. We can copy a sample version of it from the
Asterisk source to /etc/asterisk:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/asterisk.conf.sample \
/etc/asterisk/asterisk.conf

The asterisk.conf file contains many options that we won’t go over here (they are cov-
ered in “asterisk.conf” on page 71), but we do need to make an adjustment. Near the
end of the [options] section, there are two options we need to enable: runuser and
rungroup.

* /usr/src/asterisk-complete/asterisk/asterisk-1.8.<your version>/

Base Configuration | 53

Open the asterisk.conf file with an editor such as nano or vim: Uncomment the run
user and rungroup lines, and modify them so that they each contain asteriskpbx as the
assigned value. Open the /etc/asterisk/asterisk.conf file with vim:

$ vim /etc/asterisk/asterisk.conf

Then modify the file by uncommenting the two lines starting with runuser and run
group and modifying the value to asteriskpbx.

runuser=asteriskpbx
rungroup=asteriskpbx

We now have all the configuration files required to start a very minimal version of
Asterisk.† Give it a shot by starting Asterisk up in the foreground:

$ /usr/sbin/asterisk -cvvv

We are specifying the full path to the asterisk binary, but if you modify
your PATH system variable to include the /usr/sbin/ directory you don’t
need to specify the full path. See “Adding a system user” on page 39 for
information about modifying the $PATH environment variable.

Asterisk will start successfully without any errors or warnings (although it does warn
you that some files are missing), and present to you the Asterisk command-line interface
(CLI). At this point there are no modules, minimal core functionality, and no channel
modules with which to communicate, but Asterisk is up and running.

Executing the module show command at the Asterisk CLI shows that there are no ex-
ternal modules loaded:

*CLI> module show

Module Description Use Count
0 modules loaded

We’ve done this simply to demonstrate that Asterisk can be run in a very minimal state,
and doesn’t require the dozens of modules that a default install will enable. Let’s stop
Asterisk with the core stop now CLI command:

*CLI> core stop now

† So minimal, in fact, that it’s completely useless at this point. But we digress.

54 | Chapter 3: Installing Asterisk

The Asterisk Shell Command
Asterisk can be run either as a daemon or as an application. In general, you will want
to run it as an application when you are building, testing, and troubleshooting, and as
a daemon when you put it into production.

The command to start Asterisk is the same regardless of whether you’re running it as
a daemon or an application:

asterisk

However, without any arguments, this command will assume certain defaults and start
Asterisk as a background application. In other words, you never want to run the com-
mand asterisk on its own, but rather will want to pass some options to it to better define
the behavior you are looking for. The following list provides some examples of common
usages.

-h
This command displays a helpful list of the options you can use. For a complete
list of all the options and their descriptions, run the command man asterisk.

-c
This option starts Asterisk as an application (in the foreground). This means that
Asterisk is tied to your user session. In other words, if you close your user session
by logging out or losing the connection, Asterisk dies. This is the option you will
typically use when building, testing, and debugging, but you would not want to
use this option in production. If you started Asterisk in this manner, type core stop
now at the CLI prompt to stop Asterisk and exit.

-v, -vv, -vvv, -vvvv, etc.
This option can be used with other options (e.g., -cvvv) in order to increase the
verbosity of the console output. It does exactly the same thing as the CLI command
core set verbose n where n is any integer between 0 and 5 (any integer greater than
5 will work, but will not provide any more verbosity). Sometimes it’s useful to not
set the verbosity at all. For example, if you are looking to see only startup errors,
notices, and warnings, leaving verbosity off will prevent all the other startup mes-
sages from being displayed.

-d, -dd, -ddd, -dddd, etc.
This option can be used in the same way as -v, but instead of normal output, this
will specify the level of debug output (which is primarily useful for developers who
wish to troubleshoot problems with the code). You will also need to enable output
of debugging information in the logger.conf file (which we will cover in more detail
in Chapter 24).

-r
This command is essential if you want to connect to the CLI of an Asterisk process
running as a daemon. You will probably use this option more than any other for
Asterisk systems that are in production. This option will only work if you have a
daemonized instance of Asterisk already running. To exit the CLI when this option
has been used, type exit.

Base Configuration | 55

-T
This option will add a timestamp to CLI output.

-x
This command allows you to pass a string to Asterisk that will be executed as if it
had been typed at the CLI. As an example, to get a quick listing of all the channels
in use without having to start the Asterisk console, simply type asterisk -rx 'core
show channels' from the shell, and you’ll get the output you are looking for.

-g
This option instructs Asterisk to dump a core file if it crashes.

We recommend you try out a few combinations of these commands to see what they do.

safe_asterisk
When you install Asterisk using the make config directive it will create a script called
safe_asterisk, which is run during the init process of Linux each time you boot.

The safe_asterisk script provides the following benefits:

• Restarts Asterisk automatically after a crash

• Can be configured to email the administrator if a crash has occurred

• Defines where crash files are stored (/tmp by default)

• Executes a script if a crash has occurred

You don’t need to know too much about this script, other than to understand that it
should normally be running. In most environments this script works fine in its default
format.

modules.conf

So, we’ve managed to get Asterisk running, but it’s not able to do anything useful for
us yet. To tell Asterisk what modules we expect it to load, we’ll need a modules.conf file.

Create the file modules.conf in your /etc/asterisk/ directory with the following command
(replace the >> with > if you instead want to overwrite an existing file):

$ cat >> /etc/asterisk/modules.conf

Type (or paste) the following lines, and press Ctrl + D on a new line when you’re
finished:

; The modules.conf file, used to define which modules Asterisk should load (or
; not load).
;
[modules]
autoload=yes

56 | Chapter 3: Installing Asterisk

Using cat to Quickly Create Files and Add Content to Them
There are many cases in a Linux system where it is necessary to create a file, and then
add some content to it. This is commonly done by using the touch command to create
the file, and then opening it with an editor to add the content. However, there is a less-
known way of doing this that lets you create the file and add the content all at once:

• Use the cat program to redirect output to the file you want (use >> to append, or
> to overwrite).

• Paste or type the content you want to add to the file.

• Press Ctrl + D to complete your changes.

Presto! File created and content added.

The autoload=yes line will tell Asterisk to automatically load all modules located in
the /usr/lib/asterisk/modules/ directory. If you wanted to, you could leave the file like
this, and Asterisk would simply load any modules it found in the modules folder.

With your new modules.conf file in place, starting Asterisk will cause a whole slew of
modules to be loaded. You can verify this by starting Asterisk and running the module
show command:

$ asterisk -c
*CLI> module show

Module Description Use Count
res_speech.so Generic Speech Recognition API 0
res_monitor.so Call Monitoring Resource 0
...
func_math.so Mathematical dialplan function 0
171 modules loaded

We now have many modules loaded, and many additional dialplan applications and
functions at our disposal. We don’t need all these resources loaded, though, so let’s
filter out some of the more obscure modules that we don’t need at the moment. Modify
your modules.conf file to contain the following noload lines, which will tell Asterisk to
skip loading the identified modules:

; Resource modules
noload => res_speech.so
noload => res_phoneprov.so
noload => res_ael_share.so
noload => res_clialiases.so
noload => res_adsi.so

; PBX modules
noload => pbx_ael.so
noload => pbx_dundi.so

Base Configuration | 57

; Channel modules
noload => chan_oss.so
noload => chan_mgcp.so
noload => chan_skinny.so
noload => chan_phone.so
noload => chan_agent.so
noload => chan_unistim.so
noload => chan_alsa.so

; Application modules
noload => app_nbscat.so
noload => app_amd.so
noload => app_minivm.so
noload => app_zapateller.so
noload => app_ices.so
noload => app_sendtext.so
noload => app_speech_utils.so
noload => app_mp3.so
noload => app_flash.so
noload => app_getcpeid.so
noload => app_setcallerid.so
noload => app_adsiprog.so
noload => app_forkcdr.so
noload => app_sms.so
noload => app_morsecode.so
noload => app_followme.so
noload => app_url.so
noload => app_alarmreceiver.so
noload => app_disa.so
noload => app_dahdiras.so
noload => app_senddtmf.so
noload => app_sayunixtime.so
noload => app_test.so
noload => app_externalivr.so
noload => app_image.so
noload => app_dictate.so
noload => app_festival.so

There are, of course, other modules that you could remove, and others that you may
find extremely useful, so feel free to tweak this file as you wish. Ideally, you should be
loading only the modules that you need for the system you are running. The examples
in this book assume that your modules.conf file looks like our example here.

Additional information about the modules.conf file can be found in the section “mod-
ules.conf” on page 75.

musiconhold.conf

The musiconhold.conf file defines the classes for music on hold in your Asterisk system.
By defining different classes, you can specify different hold music to be used in various
situations, such as different announcements to be played while holding in a queue, or
different hold music if you have multiple PBXs hosted on the same system. For now,

58 | Chapter 3: Installing Asterisk

we’ll just create a default music on hold class so that we have at a minimum some hold
music when placing callers on hold:

$ cd /etc/asterisk/
$ cat >> musiconhold.conf

; musiconhold.conf
[default]
mode=files
directory=moh

Ctrl + D

We’ve created a musiconhold.conf file and defined our [default] hold music class.
We’re also assuming you installed the hold music from the menuselect system; by de-
fault there is at least one music on hold package installed, so unless you disabled it,
you should have music in at least one format.

Additional information about musiconhold.conf can be found in the section “musicon-
hold.conf” on page 79.

make menuselect
menuselect is a text-based menu system in Asterisk used to configure which modules
to compile and install. The modules are what give Asterisk its power and functionality.
New modules are constantly being created.

In the installation sections, we conveniently skipped over using the menuselect system
in order to keep the instructions simple and straightforward. However, it is important
enough that we have given menuselect its own section.

In addition to specifying which modules to install, menuselect also allows you to set
flags that can aid in debugging issues (see Chapter 2), set optimization flags, choose
different sound prompt files and formats, and do various other nifty things.

Uses for menuselect

We would need a whole chapter in order to fully explore menuselect, and for the most
part you won’t need to make many changes to it. However, the following example will
give you an idea of how menuselect works, and is recommend for any installation.

By default Asterisk only installs the core sound prompt files, and only in GSM format.
Also, the three OpSound music on hold files available for download are only selected
in .wav format.‡

‡ A good way to put the final touches on your new system is to install some appropriate sound files to be used
as music on hold. There are only three songs installed by default, and callers will quickly tire of listening to
the same three songs over and over again. We’ll discuss this more in “musiconhold.conf” on page 79.

Base Configuration | 59

http://www.opsound.org/

We’re going to want extra sound prompts installed instead of just the default core sound
prompts, and in a better-sounding format than GSM. We can do this with the menu-
select system by running make menuselect in the Asterisk source directory. Before ex-
ploring that, though, let’s talk about the different menuselect interfaces.

menuselect interfaces

There are two interfaces available for menuselect: curses and newt. If the libnewt libra-
ries are installed, you will get the blue and red interface shown in Figure 3-1. Otherwise,
by default menuselect will use the curses (black and white) interface shown in Figure 3-2.

The minimum screen size for the curses interface is 80x27, which means
it may not load if you’re using the default terminal size for a simple
distribution installation. This is not a problem when you’re using SSH
to reach the server remotely, as typically your terminal can be resized,
but if you’re working at the terminal directly you may need to have
screen buffers installed to enable a higher resolution, which is not rec-
ommended for a system running Asterisk. The solution is to use the
newt-based menuselect system.

Figure 3-1. menuselect using the newt interface

60 | Chapter 3: Installing Asterisk

Figure 3-2. menuselect using the curses interface

Installing Dependencies for newt-Based menuselect
To get the newt-based menuselect working, you need to have the libnewt development
libraries installed:

• CentOS: sudo yum install libnewt-devel

• Ubuntu: sudo apt-get install libnewt-dev

If you’ve previously used menuselect with the curses interface, you need to rebuild. You
can do this with the following commands:

$ cd ~/src/asterisk-complete/asterisk/1.8.<your version>/
$ cd menuselect
$ make clean
$./configure
$ cd ..
$ make menuselect

After that you should have the newt-based interface available to you.

Using menuselect

Run the following commands to start menuselect:

$ cd ~/src/asterisk-complete/asterisk/1.8.<your version>/
$ make menuselect

Base Configuration | 61

You will be presented with a screen such as that in Figure 3-1 or Figure 3-2. You can
use the arrow keys on your keyboard to move up and down. The right arrow key will
take you into a submenu, and the left arrow key will take you back. You can use the
space bar or Enter key to select and deselect modules. Pressing the q key will quit
without saving, while the x key will save your selections and then quit.

Module Dependencies
Modules that have XXX in front of them are modules that cannot be compiled because
the configure script was not able to find the dependencies required (for example, if you
don’t have the unixODBC development package installed, you will not be able to com-
pile func_odbc§). Whenever you install a dependency, you will always need to rerun
configure before you run menuselect, so that the new dependency will be properly lo-
cated. The dependant module will at that point be available in menuselect. If the module
selection still contains XXX, either the configure script is still unable to find the depend-
ency or not all dependencies have been satisfied.

Once you’ve started menuselect, scroll down to Core Sound Packages and press the
right arrow key (or Enter) to open the menu. You will be presented with a list of
available options. These options represent the core sound files in various languages and
formats. By default, the only set of files selected is CORE-SOUNDS-EN-GSM, which is the
English-language Core Sounds package in GSM format.

Select CORE-SOUNDS-EN-WAV and CORE-SOUNDS-EN-ULAW (or ALAW if you’re outside of North
America or Japan‖), and any other sound files that may be applicable in your network.

The reason we have multiple formats for the same files is that Asterisk
can play back the appropriate format depending on which codec is ne-
gotiated by an endpoint. This can lower the CPU load on a system sig-
nificantly.

After selecting the appropriate sound files, press the left arrow key to go back to the
main menu. Then scroll down two lines to the Extra Sound Packages menu and press
the right arrow key (or Enter). You will notice that by default there are no packages
selected. As with the core sound files, select the appropriate language and format to be
installed. A good option is probably to install the English sound files in the WAV, ULAW,
and ALAW formats.

§ Which we will cover in Chapter 16, along with many other cool things.

‖ If you want to understand all about mu-law and A-law, you can read the section “Logarithmic
companding” on page 607. All you need to know here is that outside of North America and Japan, A-law is
used.

62 | Chapter 3: Installing Asterisk

Once you’ve completed selecting the sound files, press the x key to save and exit
menuselect. You then need to install your new prompts by downloading them from the
Asterisk downloads site. This is done simply by running make install again:

$ sudo make install
$ sudo chown -R asteriskpbx:asteriskpbx /var/lib/asterisk/sounds/

The files will be downloaded, extracted, and installed into the appropriate location
(/var/lib/asterisk/sounds/<language>/ by default). Your Asterisk server will need to have
a working Internet connection in order to retrieve the files.

Scripting menuselect

Administrators often build tools when performing installations on several machines,
and Asterisk is no exception. If you need to install Asterisk onto several machines, you
may wish to build a set of scripts to help automate this process. The menuselect system
contains command-line options that you can use to enable or disable the modules that
are built and installed by Asterisk.

If you are starting with a fresh checkout of Asterisk, you must first execute the config-
ure script in order to determine what dependencies are installed on the system. Then
you need to build the menuselect application and run the make menuselect-tree com-
mand to build the initial tree structure:

$ cd ~/src/asterisk-complete/asterisk/1.8.<your version>/
$./configure
$ cd menuselect
$ make menuselect
$ cd ..
$ make menuselect-tree
Generating input for menuselect ...

For details about the options available, run menuselect/menuselect --help from the top
level of your Asterisk source directory. You will be returned output like the following:

Usage: menuselect/menuselect [--enable <option>] [--disable <option>]
 [--enable-category <category>] [--enable-all]
 [--disable-category <category>] [--disable-all] [...]
 [<config-file> [...]]
Usage: menuselect/menuselect { --check-deps | --list-options
 | --list-category <category> | --category-list | --help }
 [<config-file> [...]]

The options displayed can then be used to control which modules are installed via the
menuselect application. For example, if you wanted to disable all modules and install
a base system (which wouldn’t be of much use) you could use the command:

$ menuselect/menuselect --disable-all menuselect.makeopts

If you then look at the menuselect.makeopts file, you will see a large amount of text that
displays all the modules and categories that have been disabled. Let’s say you now want
to enable the SIP channel and the Dial() application. Enabling those modules can be

Base Configuration | 63

done with the following command, but before doing that look at the current menuse-
lect.makeopts (after disabling all the modules) and locate app_dial in the MENUSE
LECT_APPS category and chan_sip in the MENUSELECT_CHANNELS category. After executing
the following command, look at the menuselect.makeopts file again, and you will see
that those modules are no longer listed:

$ menuselect/menuselect --disable-all --enable chan_sip \
--enable app_dial menuselect.makeopts

The modules listed in the menuselect.makeopts file are those that will
not be built—modules that are not listed will be built when the make
application is executed.

You can then build the menuselect.makeopts file in any way you want by utilizing the
other commands, which will allow you to build custom installation scripts for your
system using any scripting language you prefer.

Updating Asterisk
If this is your first installation, you can skip ahead to the section “Base Configura-
tion” on page 51. If you’re in the process of updating your system, however, there are
a couple of things you should be aware of.

When we say updating your system, that is quite different from upgrad-
ing your system. Updating your system is the process of installing new
minor versions of the same branch. For example, if your system is run-
ning Asterisk 1.8.2 and you need to upgrade to the latest bug fix version
for the 1.8 branch, which was version 1.8.3, you’d be updating your
system to 1.8.3. In contrast, we use the term upgrade to refer to changes
between Asterisk branches (major version number increases). So, for
example, an upgrade would be going from Asterisk 1.4.34 to Asterisk
1.8.0.

When performing an update, you follow the same instructions outlined in the section
“How to Install It” on page 48.

Additionally, if you’ve checked out a new directory for this version of
Asterisk (versus running svn up on a checked-out branch), and previ-
ously used menuselect to tweak the modules to be compiled, you can
copy the menuselect.makeopts file from one directory to another prior
to running ./configure. By copying menuselect.makeopts from the old
version to the new version, you save the step of having to (de)select all
your modules again.

64 | Chapter 3: Installing Asterisk

The basic steps are:

$ cd ~/src/asterisk-complete/asterisk/1.8.<your version number>/
$./configure
$ make
$ make install

You don’t need to run sudo make install because we’ve already set the
directory ownership to the asteriskpbx user. You should be able to install
new files directly into the appropriate directories.

Upon installation, however, you may get a message like the following:

 WARNING WARNING WARNING

 Your Asterisk modules directory, located at
 /usr/lib/asterisk/modules
 contains modules that were not installed by this
 version of Asterisk. Please ensure that these
 modules are compatible with this version before
 attempting to run Asterisk.

 chan_mgcp.so
 chan_oss.so
 chan_phone.so
 chan_skinny.so
 chan_skype.so
 codec_g729a.so
 res_skypeforasterisk.so

 WARNING WARNING WARNING

This warning message is indicating that modules installed in the /usr/lib/asterisk/mod-
ules/ directory are not compatible with the version you’ve just installed. This most often
occurs when you have installed modules in one version of Asterisk, and then installed
a new version of Asterisk without compiling those modules (as the installation process
will overwrite any modules that existed previously, replacing them with their upgraded
versions).

To get around the warning message, you can clear out the /usr/lib/asterisk/modules/
directory prior to running make install. There is a caveat here, though: if you’ve installed
third-party modules, such as commercial modules from Digium (including chan_skype,
codec_g729a, etc.), you will need to reinstall those if you’ve cleared out your modules
directory.

It is recommended that you keep a directory with your third-party modules in it that
you can reinstall from upon update of your Asterisk system. So, for example, you might
create the /usr/src/asterisk-complete/thirdparty/1.8 directory as follows:

Updating Asterisk | 65

$ cd ~/src/asterisk-complete/
$ mkdir thirdparty/
$ mkdir thirdparty/1.8/

Downloading third-party modules into this directory allows you to easily reinstall those
modules when you upgrade. Just follow the installation instructions for your module,
many of which will be as simple as rerunning make install from the modules source
directory or copying the precompiled binary to the /usr/lib/asterisk/modules/ directory.

Be sure to change the file permissions to match those of the user running
Asterisk!

Common Issues
In this section we’re going to cover some common issues you may run into while
compiling Asterisk, DAHDI, or LibPRI. Most of the issues you’ll run into have to do
with missing dependencies. If that is the case, please review “Software Dependen-
cies” on page 44 to make sure you’ve installed everything you need.

Any time you install additional packages, you will need to run
the ./configure script in your Asterisk source in order for the new package
to be detected.

-bash: wget: command not found
This message means you have not installed the wget application, which is required for
you to download packages from the Asterisk downloads site, for Asterisk to download
sound files, or for DAHDI to download firmware for hardware.

Ubuntu CentOS

$ sudo apt-get install wget $ sudo yum -y install wget

configure: error: no acceptable C compiler found in $PATH
This means that the Asterisk configure script is unable to find your C compiler, which
typically means you have not yet installed one. Be sure to install the gcc package for
your system.

Ubuntu CentOS

$ sudo apt-get install gcc $ sudo yum install gcc

66 | Chapter 3: Installing Asterisk

make: gcc: command not found
This means that the Asterisk configure script is unable to find your C compiler, which
typically means you have not yet installed one. Be sure to install the gcc package for
your system.

Ubuntu CentOS

$ sudo apt-get install gcc $ sudo yum install gcc

configure: error: C++ preprocessor “/lib/cpp” fails sanity check
This error is presented by the Asterisk configure script when you have not installed the
GCC C++ preprocessor.

Ubuntu CentOS

$ sudo apt-get install g++ $ sudo yum install gcc-c++

configure: error: *** Please install GNU make. It is required to build Asterisk!
This error is encountered when you have not installed the make application, which is
required to build Asterisk.

Ubuntu CentOS

$ sudo apt-get install make $ sudo yum install make

configure: *** XML documentation will not be available because the
‘libxml2’ development package is missing.
You will encounter this error when the XML parser libraries are not installed. These
are required by Asterisk 1.8 and later, since console documentation (e.g., when you
run core show application dial on the Asterisk CLI) is generated from XML.

Ubuntu CentOS

$ sudo apt-get install libxml2-dev $ sudo yum install libxml2-devel

configure: error: *** termcap support not found
This error happens when you don’t have the ncurses development library installed,
which is required by menuselect and for other console output in Asterisk.

Ubuntu CentOS

$ sudo apt-get install ncurses-dev $ sudo yum install ncurses-devel

Common Issues | 67

You do not appear to have the sources for the 2.6.18-164.6.1.el5 kernel
installed.
You will get this error when attempting to build DAHDI without having installed the
Linux headers, which are required for building Linux drivers.

Ubuntu CentOS

$ sudo apt-get install linux-headers-`uname -r` $ sudo yum install kernel-devel

E: Unable to lock the administration directory (/var/lib/dpkg/), are you root?
If you encounter this error it’s likely that you forgot to prepend sudo to the start of the
command you were running, which requires root permissions.

Upgrading Asterisk
Upgrading Asterisk between major versions, such as from 1.2 to 1.4 or from 1.6.2 to
1.8 is akin to upgrading an operating system. Once a phone switch is in production, it
is terribly disruptive for that system to be unavailable for nearly any length of time, and
the upgrade of that phone system needs to be well thought-out, planned, and tested as
much as possible prior to deployment. And because every deployment is different, it is
difficult, if not impossible, for us to walk you through a real system upgrade. However,
we can certainly point you in the right direction for the information you require in order
to perform such an upgrade, thereby giving you the tools you need to be successful.

A production Asterisk system should never be upgraded between major versions with-
out first deploying it into a development environment where the existing configuration
files can be tested and reviewed against new features and syntax changes between ver-
sions. For example, it may be that your dialplan relies on a deprecated command and
should be updated to use a new command that contains more functionality, has a better
code base, and will be updated on a more regular basis. Commands that are deprecated
are typically left in the code for backward-compatibility, but issues reported about these
deprecated commands will be given lower priority than issues to do with the newer
preferred methods.

There exist two files that should be read prior to any system upgrade: CHANGES and
UPGRADE.txt, which are shipped with the Asterisk source code. These files contain
details on changes to syntax and other things to be aware of when upgrading between
major versions. The files are broken into different sections that reference things such
as dialplan syntax changes, channel driver syntax changes, functionality changes, and
deprecation of functionality, with suggestions that you update your configuration files
to use the new methods.

68 | Chapter 3: Installing Asterisk

Another thing to consider when performing an upgrade is whether you really need to
perform the upgrade in the first place. If you’re using a long-term support (LTS)# ver-
sion of Asterisk and that version is happily working along for you, perhaps there is no
reason to upgrade your existing production system. An alternative to upgrading the
entire system is simply to add functionality to your system by running two versions
simultaneously on separate systems. By running separate boxes, you can access the
functionality added to a later version of Asterisk without having to disrupt your existing
production system. You can then perform the migration more gradually, rather than
doing a complete system upgrade instantly.

Two parts of Asterisk should be thoroughly tested when performing an upgrade be-
tween major versions: the Asterisk Manager Interface (AMI) and the Asterisk Gateway
Interface (AGI).

These two parts of Asterisk rely on testing your code to make sure any cleanup of syntax
changes in either the AMI or the AGI, or added functionality, does not interfere with
your existing code. By performing a code audit on what your program is expecting to
send or receive against what actually happens, you can save yourself a headache down
the road.

The testing of call detail records (CDRs) is also quite important, especially if they are
relied upon for billing. The entire CDR structure is really designed for simple call flows,
but it is often employed in complex call flows, and when someone reports an issue to
the tracker and it is fixed, it can sometimes have an effect on others who are relying on
the same functionality for different purposes. Asterisk 1.8 now includes channel event
logging (CEL), which is a system designed to get around some of the limitations of CDR
in more complex call flows (such as those that involve transfers, etc.). More information
about CEL is available in “CEL (Channel Event Logging)” on page 537.

Upgrading Asterisk can be a successful endeavor as long as sufficient planning and
testing are carried out prior to the full rollout. In some cases migrating to a separate
physical machine on which you’ve performed testing is preferred, as it can give you a
system to roll back to in case of some failure that can’t be resolved immediately. It’s
the planning, and particularly having a backup plan, that is the most important aspect
of an Asterisk upgrade.

Conclusion
In this chapter we looked at how to install an operating system (one of Ubuntu or
CentOS) and Asterisk itself. We did this securely by installing via sudo and running
Asterisk as the non-root user asteriskpbx. We are well on our way to building a func-
tional Asterisk system that will serve us well. In the following chapters we will explore

#More information about Asterisk releases and their support schedule is available at https://wiki.asterisk.org/
wiki/display/AST/Asterisk+Versions.

Conclusion | 69

https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions
https://wiki.asterisk.org/wiki/display/AST/Asterisk+Versions

how to connect devices to our Asterisk system in order to start placing calls internally
and how to connect Asterisk to outside services in order to place phone calls to end-
points connected to the PSTN and accept calls from those endpoints.

70 | Chapter 3: Installing Asterisk

CHAPTER 4

Initial Configuration Tasks

Careful. We don’t want to learn from this.

—Calvin & Hobbes

In the last chapter, we covered how to install Asterisk. But where should you get started
with configuration? That is the question this chapter answers. There are a few common
configuration files that are relevant regardless of what you are using Asterisk to ac-
complish. In some cases they may not require any modification, but you need to be
aware of them.

asterisk.conf
The asterisk.conf configuration file allows you to tweak various settings that can affect
how Asterisk runs as a whole.

There is a sample asterisk.conf file included with the Asterisk source. It is not necessary
to have this file in your /etc/asterisk folder in order to have a working system, but you
may find that some of the possible options will be of use to you.

Asterisk will look for asterisk.conf in the default configuration location,
which is usually /etc/asterisk. To specify a different location for aster-
isk.conf, use the -C command-line option:

$ sudo asterisk -C /custom/path/to/asterisk.conf

The [directories] Section
For most installations of Asterisk, changing the directories is not necessary. However,
this can be useful for running more than one instance of Asterisk at the same time, or
if you would like files stored in nonstandard locations.

71

The default directory locations and the options you can use to modify them are listed
in Table 4-1. For additional information about the usage of these directories, see the
File Structure section of Chapter 2.

Table 4-1. asterisk.conf [directories] section

Option Value/Example Notes

astetcdir /etc/asterisk The location where the Asterisk configuration files are stored.

astmoddir /usr/lib/asterisk/
modules

The location where loadable modules are stored.

astvarlibdir /var/lib/asterisk The base location for variable state information used by various parts of Asterisk.
This includes items that are written out by Asterisk at runtime.

astdbdir /var/lib/asterisk Asterisk will store its internal database in this directory as a file called astdb.

astkeydir /var/lib/asterisk Asterisk will use a subdirectory called keys in this directory as the default location
for loading keys for encryption.

astdatadir /var/lib/asterisk This is the base directory for system-provided data, such as the sound files that
come with Asterisk.

astagidir /var/lib/asterisk/
agi-bin

Asterisk will use a subdirectory called agi-bin in this directory as the default
location for loading AGI scripts.

astspooldir /var/spool/asterisk The Asterisk spool directory, where voicemail, call recordings, and the call orig-
ination spool are stored.

astrundir /var/run/asterisk The location where Asterisk will write out its UNIX control socket as well as its
process ID (PID) file.

astlogdir /var/log/asterisk The directory where Asterisk will store its log files.

The [options] Section
This section of the asterisk.conf file configures defaults for global runtime options. The
available options are listed in Table 4-2. Most of these are also controllable via
command-line parameters to the asterisk application. For a complete list of the
command-line options that relate to these options, see the Asterisk manpage:

$ man asterisk

Table 4-2. asterisk.conf [options] section

Option Value/Example Notes

verbose 3 Sets the default verbose setting for the Asterisk logger. This value is also set by
the -v command-line option. The verbose level is 0 by default.

debug 3 Sets the default debug setting for the Asterisk logger. This value is also set by
the -d command-line option. The debug level is 0 by default.

alwaysfork yes Forking forces Asterisk to always run in the background. This option is set to
no by default.

nofork yes Forces Asterisk to always run in the foreground. This option is set to no by default.

72 | Chapter 4: Initial Configuration Tasks

Option Value/Example Notes

quiet yes Quiet mode reduces the amount of output seen at the console when Asterisk is
run in the foreground. This option is set to no by default.

timestamp yes Adds timestamps to all output except output from a CLI command. This option
is set to no by default.

execincludes yes Enables the use of #exec in Asterisk configuration files. This option is set to
no by default.

console yes Runs Asterisk in console mode. Asterisk will run in the foreground and will
present a prompt for CLI commands. This option is set to no by default.

highpriority yes Runs the Asterisk application with real-time priority. This option is set to no by
default.

initcrypto yes Loads keys from the astkeydir at startup. This option is set to no by default.a

nocolor yes Suppresses color output from the Asterisk console. This is useful when saving
console output to a file. This option is set to no by default.

dontwarn yes Disables a few warning messages. This option was put in place to silence warn-
ings that are generally correct, but may be considered to be so obvious that
they become an annoyance. This option is set to no by default.

dumpcore yes Tells Asterisk to generate a core dump in the case of a crash. This option is set
to no by default.b

languageprefix yes Configures how the prompt language is used in building the path for a sound
file. By default, this is yes, which places the language before any subdirectories,
such as en/digits/1.gsm. Setting this option to no causes Asterisk to behave as
it did in previous versions, placing the language as the last directory in the path,
(e.g. digits/en/1.gsm).

internal_timing yes Uses a timing source to synchronize audio that will be sent out to a channel in
cases such as file playback or music on hold. This option is set to yes by default
and should be left that way; its usefulness has greatly diminished over the last
few major versions of Asterisk.

systemname my_system_name Gives this instance of Asterisk a unique name. When this has been set, the system
name will be used as part of the uniqueid field for channels. This is incredibly
useful if more than one system will be logging CDRs to the same database table.
By default, this option is not set.

autosystemname yes Automatically sets the system name by using the hostname of the system. This
option is set to no by default.

maxcalls 100 Sets a maximum number of simultaneous inbound channels. No limit is set by
default.

maxload 0.9 Sets a maximum load average. If the load average is at or above this threshold,
Asterisk will not accept new calls. No threshold is set by default.

maxfiles 1000 Set the maximum number of file descriptors that Asterisk is allowed to have
open. The default limit imposed by the system is commonly 1024, which is not
enough for heavily loaded systems. It is common to set this limit to a very high
number. The default system-imposed limit is used by default.

asterisk.conf | 73

Option Value/Example Notes

minmemfree 1 Sets the minimum number of megabytes of free memory required for Asterisk
to continue accepting calls. If Asterisk detects that there is less free memory
available than this threshold, new calls will not be accepted. This option is not
set by default.

cache_record_files yes When doing recording, stores the file in the record_cache_dir until re-
cording is complete. Once complete, it will be moved into the originally specified
destination. The default for this option is no.

record_cache_dir /tmp Sets the directory to be used when cache_record_files is set to yes. The
default location is a directory called tmp within the astspooldir.

transmit_silence yes Transmits silence to the caller in cases where there is no other audio source.
This includes call recording and the Wait() family of dialplan applications,
among other things. The default for this option is no.c

transcode_via_sln yes When building a codec translation path, forces signed linear to be one of the
steps in the path. The default for this option is yes.

runuser asterisk Sets the system user that the Asterisk application should run as. This option is
not set by default, meaning that the application will continue to run as the user
that executed the application.

rungroup asterisk Sets the system group that the Asterisk application should run as. This option
is not set by default.

lightbackground yes When using colors in the Asterisk console, it will output colors that are com-
patible with a light-colored background. This option is set to no by default, in
which case Asterisk uses colors that look best on a black background.

documenta-
tion_language

en_US The built-in documentation for Asterisk applications, functions, and other things
is included in an external XML document. This option specifies the preferred
language for documentation. If it is not available, the default of en_US will be
used.

hideconnect yes Setting this option to yes causes Asterisk to not display notifications of remote
console connections and disconnections at the Asterisk CLI. This is useful on
systems where there are scripts that use remote consoles heavily. The default
setting is no.

lockconfdir no When this option is enabled, the Asterisk configuration directory will be pro-
tected with a lock. This helps protect against having more than one application
attempting to write to the same file at the same time. The default value is no.

a If any of the keys require a passphrase, this will block the startup process of Asterisk. An alternative is to run keys init at the Asterisk command
line.

b This is critical for debugging crashes. However, Asterisk must be compiled with the DONT_OPTIMIZE option enabled in menuselect for
the core dump to be useful.

c There is an important caveat to note when this option is enabled. The silence is generated in uncompressed signed linear format, which
means that it will have to be transcoded into the format that the caller’s channel expects. The result may be that transcoding is required
for a call that would not normally require it.

74 | Chapter 4: Initial Configuration Tasks

The [files] Section
This section of asterisk.conf includes options related to the Asterisk control socket. It
is primarily used by remote consoles (asterisk -r). The available options are listed in
Table 4-3.

Table 4-3. asterisk.conf [files] section

Option Value/Example Notes

astctlpermissions 0660 Sets the permissions for the Asterisk control socket.

astctlowner root Sets the owner for the Asterisk control socket.

astctlgroup apache Sets the group for the Asterisk control socket.

astctl asterisk.ctl Sets the filename for the Asterisk control socket. The default is asterisk.ctl.

The [compat] Section
Occasionally the Asterisk development team decides that the best way forward involves
making a change that is not backward-compatible. This section contains some options
(listed in Table 4-4) that allow reverting behavior of certain modules back to previous
behavior.

Table 4-4. asterisk.conf [compat] section

Option Value/Example Notes

pbx_realtime 1.6 In versions earlier than Asterisk 1.6.x, the pbx_realtime module would automatically
convert pipe characters into commas for arguments to Asterisk applications. This is no
longer done by default. To enable this previous behavior, set this option to 1.4.

res_agi 1.6 In versions earlier than Asterisk 1.6.x, the EXEC AGI command would automatically convert
pipe characters into commas for arguments to Asterisk applications. This is no longer done
by default. To enable this previous behavior, set this option to 1.4.

app_set 1.6 Starting with the Asterisk 1.6.x releases, the Set() application only allows setting the
value of a single variable. Previously, Set() would allow setting more than one variable
by separating them with a &. This was done to allow any characters in the value of a
variable, including the & character, which was previously used as a separator. MSet() is
a new application that behaves like Set() used to. However, setting this option to
1.4 makes Set() behave like MSet().

modules.conf
This file is not strictly required in an Asterisk installation; however, without any mod-
ules Asterisk won’t really be able to do anything, so for all practical purposes, you need
a modules.conf file in your /etc/asterisk folder. If you simply define autoload=yes in your
modules.conf file, Asterisk will search for all modules in the /usr/lib/asterisk/modules
folder and load them at startup.

modules.conf | 75

Although most modules do not use much in the way of resources, and they all load
very quickly, it just seems cleaner to our minds to load only those modules that you
are planning on using in your system. Additionally, there are security benefits to not
loading modules that accept connections over a network.

In the past we felt that explicitly loading each desired module was the best way to handle
this, but we have since found that this practice creates extra work. After every upgrade
we found ourselves having to edit the modules.conf file to correct all the module dif-
ferences between releases, and the whole process ended up being needlessly compli-
cated. What we prefer to do these days is to allow Asterisk to automatically load the
modules that it finds, but to explicitly tell Asterisk not to load any modules we do not
want loaded by use of the noload directive. A sample modules.conf file can be found in
“modules.conf” on page 56.

Using menuselect to Control Which Modules Are Compiled and Installed
One other way that you can control which modules Asterisk loads is to simply not
compile and install them in the first place. During the Asterisk installation process, the
make menuselect command provides you with a menu interface that allows you to
specify many different directives to the compiler, including which modules to compile
and install. If you never compile and install a module, the effect of this at load time is
that it won’t exist, and therefore won’t be loaded. If you are new to Linux and Asterisk,
this may create confusion for you if you later want to use a module and discover that
it doesn’t exist on your system.

More information about menuselect is available in “make menuselect” on page 59.

The [modules] Section
The modules.conf file contains a single section. The options available in this section are
listed in Table 4-5. With the exception of autoload, all of the options may be specified
more than once.

A list of all loadable modules is available in Chapter 2, with notes on
our opinion regarding the popularity/status of each of them.

76 | Chapter 4: Initial Configuration Tasks

Table 4-5. modules.conf [modules] section

Option Value/Example Notes

autoload yes Instead of explicitly listing which modules to load, you can use this directive to tell Asterisk
to load all modules that it finds in the modules directory, with the exception of modules listed
as not to be loaded using the noload directive. The default, and our recommendation, is to
set this option to yes.

preload res_odbc.so Indicates that a module should be loaded at the beginning of the module load order. This
directive is much less relevant than it used to be; modules now have a load priority built into
them that solves the problems that this directive was previously used to solve.

load chan_sip.so Defines a module that should be loaded. This directive is only relevant if autoload is set to
no.

noload chan_alsa.so Defines a module that should not be loaded. This directive is only relevant if autoload is
set to yes.

require chan_sip.so Does the same thing as load; additionally, Asterisk will exit if this module fails to load for
some reason.

preload-
require

res_odbc.so Does the same thing as preload; additionally, Asterisk will exit if this module fails to load
for some reason.

indications.conf
The sounds that people expect from the telephone network vary in different parts of
the world. Different countries or regions present different sounds for events such as
dialtone, busy signal, ringback, congestion, and so forth.

The indications.conf file defines the parameters for the various sounds that a telephone
system might be expected to produce, and allows you to customize them. In the early
days of Asterisk this file only contained sounds for a limited number of countries, but
it is now quite comprehensive.

To assign the tones common for your region to channels, you can simply assign the
tonezone using the CHANNEL() function, and that tonezone will apply for the duration
of the call (unless changed later):

Set(CHANNEL(tonezone)=[yourcountry]) ; i.e., uk, de, etc.

However, since signaling from a call could come from various places (from the carrier,
from Asterisk, or even from the set itself), you should note that simply setting the
tonezone in your dialplan does not guarantee that those tones will be presented in all
situations.

indications.conf | 77

Hacking indications.conf for Fun and Profit
If you have too much time on your hands, you can do all sorts of pointless but enter-
taining things with your indications. For example, fans of Star Wars can make the
following change to the end of their indications.conf files:

[starwars](us)
description = Star Wars Theme Song
ring = 262/400,392/500,0/100,349/400,330/400,294/400,524/400,392/500,0/100,349/400, \
 330/400,294/400,524/400,392/500,0/100,349/400,330/400,349/400,294/500,0/2000

If you then use the country named 'starwars' in your configuration files or dialplan, any
ringing you pass back will sound quite different from the standard ring you are used
to. Try the following dialplan code to test out your new ringing sound:

exten => 500,1,Answer()
 same => n,Set(CHANNEL(tonezone)=starwars)
 same => n,Dial(SIP/0000FFFF0002) ; or whatever your channel is named in sip.conf

Depending on the type of device used to call into this example, you
may wonder if it will actually work. SIP phones, for example, typi-
cally generate their own tones instead of having Asterisk generate
them. This example was carefully crafted to ensure that Asterisk will
generate a ringback tone to the caller. The key is the Answer() that is
executed first. Later, when an outbound call is made to another de-
vice, the only method Asterisk has available to pass back a ringing
indication to the caller is by generating inband audio, since as far as
the caller’s phone is concerned, this call has already been answered.

While Asterisk will run without an indications.conf file, it is strongly recommended that
you include one: copy the sample over from /usr/src/asterisk-complete/1.8/configs/indi-
cations.conf.sample, modify the country parameter in the [general] section to match
your region, and restart Asterisk.

chan_dahdi Ignores indications.conf
DAHDI does not use the indications.conf file from Asterisk, but rather has the tones
compiled in. For more information, see Chapter 7.

If your system supports multiple countries (for example, if you have a centralized
Asterisk system that has users from different regions), you may not be able to simply
define the default country. In this case, you have a couple of options:

1. Define the country in the channel definition file for the user.

2. Define the country in the dialplan using the CHANNEL(tonezone) function.

78 | Chapter 4: Initial Configuration Tasks

For more information about using Asterisk in different countries, see Chapter 9.

musiconhold.conf
If you plan on selling Asterisk-based telephone systems and you do not change the
default music on hold that ships with Asterisk, you are sending the message, loud and
clear, that you don’t really know what you are doing.*

Part of the problem with music on hold is that while in the past it was common to just
plug a radio or CD player into the phone system, the legal reality is that most music
licenses do not actually allow you to do this. That’s right: if you want to play music on
hold, somebody, somewhere, typically wants you to pay them for the privilege.

So how to deal with this? There are two legal ways: 1) pay for a music on hold license
from the copyright holder, or 2) find a source of music that is released under a license
suitable for Asterisk.

We’re not here to give you legal advice; you are responsible for understanding what is
required of you in order to use a particular piece of music as your music on hold source.
What we will do, however, is show you how to take the music you have and make it
work with Asterisk.

Getting Free Music
There are several websites that offer music that has been released under Creative Com-
mons or other licenses. Lately, we’ve been enjoying music from Jamendo. Each song
may have its own licensing requirements, and just because you can download a song
for free does not mean you have permission to use it as music on hold. Be aware of the
licensing terms for the music you are planning to use for your music on hold.

Converting Music to a Format That Works Best with Asterisk
It’s quite common to have music in MP3 format these days. While Asterisk can use
MP3s as a music source, this method is not at all ideal. MP3s are heavily compressed,
and in order to play them the CPU has to do some serious work to decompress them
in real time. This is fine when you are only playing one song and want to save space on
your iPod, but for music on hold, the proper thing to do is convert the MP3 to a format
that is easier on the CPU.

* Note that Leif uses the default music, but his excuse is that he’s lazy and wants to go and play Forza on his
Xbox. The cobbler’s kids have no shoes.

musiconhold.conf | 79

http://www.jamendo.com

CentOS Prerequisite
Since CentOS does not have MP3 capability installed with sox, you will have to install
mpg123 before you can convert MP3 files for use with Asterisk.

First you will need to install the rpmforge repository. To find out which version you
need, open your web browser and go to http://dag.wieers.com/rpm/FAQ.php#B. Select
the text for the version/architecture you want to install and paste it into your shell:

$ rpm -Uhv http://apt.sw.be/redhat ...

You need to make sure this new repository is used correctly, so run the following:

$ yum install yum-priorities

(If you want to know more about yum priorities, see this site: http://wiki.centos.org/
PackageManagement/Yum/Priorities.)

Once the repository has been added, you can proceed to get mpg123:

$ yum install mpg123

Once that’s done, your CentOS system is ready to convert MP3 files for use with
Asterisk.

If you are familiar with the file formats and have some experience working with audio
engineering software such as Audacity, you can convert the files on your PC and upload
them to Asterisk. We find it is simpler to upload the source MP3 files to the Asterisk
server (say, to the /tmp folder), and then convert them from the command line.

To convert your MP3 files to a format that Asterisk understands, you need to run the
commands outlined here (in this example we are using a file named SilentCity.mp3).

CentOS

First, convert the MP3 file to a WAV file:

$ mpg123 -w SilentCity.wav SilentCity.mp3

Then, downsample the resulting WAV file to a sampling rate that Asterisk understands:

$ sox SilentCity.wav -t raw -r 8000 -s -w -c 1 SilentCity.sln

Ubuntu

If you have not done so already, install sox, and the libsox-fmt-all package:

sudo apt-get install sox libsox-fmt-all

Then, convert your MP3 file directly to the uncompressed SLN format:

$ sox SilentCity.mp3 -t raw -r 8000 -s -w -c 1 SilentCity.sln

80 | Chapter 4: Initial Configuration Tasks

http://dag.wieers.com/rpm/FAQ.php#B
http://wiki.centos.org/PackageManagement/Yum/Priorities
http://wiki.centos.org/PackageManagement/Yum/Priorities

In newer versions of sox (e.g., version 14.3.0, which shipped with
Ubuntu 10.10), the -w option has changed to -2.

Completing file conversion

The resulting file will exist in the /tmp folder (or wherever you uploaded to) and needs
to be copied to the /var/lib/asterisk/moh folder:

$ cp *.sln /var/lib/asterisk/moh

You now need to reload musiconhold in Asterisk in order to have it recognize your new
files:

$ asterisk -rx "module unload res_musiconhold.so"
$ asterisk -rx "module load res_musiconhold.so"

To test that your music is working correctly, add the following to the [UserServices]
context in your dialplan:

exten => 664,1,NoOp()
 same => n,Progress()
 same => n,MusicOnHold()

Dialing 664 from one of your sets should play a random file from your moh directory.

Conclusion
This chapter helped you complete some initial configuration of Asterisk. From here
you can move on to setting up some phones and taking advantage of the many features
Asterisk has to offer.

Conclusion | 81

CHAPTER 5

User Device Configuration

I don’t always know what I’m talking about,
but I know I’m right.

—Muhammad Ali

In this chapter we’ll delve into the user devices that you might want to connect to
Asterisk, typically VoIP telephones of some sort. Configuring a channel in Asterisk for
the device to connect through is relatively straightforward, but you also need to con-
figure the device itself so it knows where to send its calls.* In other words, there are two
parts to configuring a device on Asterisk: 1) telling Asterisk about the device, and
2) telling the device about Asterisk.

How Asterisk Relates to the SIP Protocol
SIP is a peer-to-peer protocol, and while it is common to have a setup where endpoints
act as clients and some sort of gateway acts as a server, the protocol still thinks in terms
of peer-to-peer relationships. What this means is that a SIP telephone expects to make
a direct connection to another SIP telephone, without a PBX in between.

The reality is that many SIP transactions happen through a server, and in the case of
Asterisk, it is common to have the PBX in the middle of all connections. When a SIP
call is made from a telephone to another telephone through Asterisk, there are actually
two calls happening: one from the originating set to Asterisk, and another separate call
from Asterisk to the destination set. Asterisk bridges the two channels together.

From the perspective of the SIP telephone, therefore, you need to configure it to send
all its calls to Asterisk, even though the device is quite capable of directly connecting
to another SIP endpoint without the Asterisk server. The SIP protocol is complex and
very flexible, and configuring endpoints can seem difficult because they have much
more flexibility than we require of them for an Asterisk implementation.

* This has nothing to do with Asterisk configuration, and each hardware manufacturer will have its own tools
to allow you to configure its devices.

83

While most devices will have a web-based interface for defining parameters, if you’re
putting more than one or two phones into production we recommend using a server-
based configuration process, wherein the set is only told the location of a file server.
The set will identify itself and download customized files that define the required pa-
rameters for that telephone. As an example, these could be XML files on an FTP server.
The exact download process and syntax of these files will differ from manufacturer to
manufacturer. In this chapter we will only talk about the configuration of sets from the
perspective of Asterisk.

Telephone Naming Concepts
Before we get started with configuring Asterisk for our telephones, we are going to
recommend some best practices regarding telephone naming, abstracting the concepts
of users, extension numbers, and telephones from each other.

In Asterisk, all the system cares about is the channel name. There is really no concept
of a user at all,† and extensions are simply ways of directing call flow through the system.
For example, your dialplan might inform Asterisk that when extension number 100 is
requested it should call the phone on my desk, but extension 100 could just as easily
call a company voicemail box, play back a prompt, or join a conference room. We can
even specify that extension 100 should ring the device on my desk from Monday to
Friday between 9 A.M. and 5 P.M., but ring a device on someone else’s desk the rest
of the time. Inversely, when a call is made from a device during business hours, the
callerID could show a daytime number, and the rest of the time could show an after-
hours number (many reception desks become security desks at night).

Asterisk Extensions
The concept of an extension in Asterisk is crucial. In most PBXs, an extension is a
number that you dial to cause a phone or service to ring. In Asterisk, an extension is
the name of a grouping of instructions in the dialplan. Think of an Asterisk extension
as a script name, and you’re on the right track. Yes, an Asterisk extension could be a
number (such as 100) that rings a phone, but it could just as easily be a name (such as
voicemail) that runs a sequence of dialplan applications.

We’ll be going into Asterisk extensions in far more detail throughout this book, but
before we do that we want to get some phones set up.

The abstraction between the name of an extension and what that extension does is a
powerful concept in Asterisk, as extension 100 could do a number of things depending

† Actually, Asterisk does try to implement and abstract the concepts of users and devices internally by using
the users.conf file; however, it is typically only used by the Asterisk GUI. Abstracting the concepts logically
using the dialplan is easier to understand and far more flexible.

84 | Chapter 5: User Device Configuration

on any number of variables that are programmed into the system. This is especially
relevant in the context of features such as hot-desking.

Hot-desking is a feature that allows someone to log into a device and receive his calls
at that device. Let’s say we have three sales agents who typically work outside of the
office, but spend a couple of days each month in the office to do paperwork. Since they
are unlikely to be on-site at the same time, instead of having a separate telephone for
each of those three sales agents, they could share a single office phone (or on a larger
scale, a dozen folks could share a pool of, say, three phones). This scenario illustrates
the convenience (and necessity) of allowing the system to separate the concept of a user
and extension from the physical phone.

So what are some examples of bad names for telephone devices? Something like a per-
son’s name, such as [SimonLeBon], would be a poor name for a telephone as the phone
may also be used by Joan Jett and Rick Astley. The same reasoning can be applied to
why you would not want to name a phone based on an extension number: a phone
name of [100] would be a poor choice since you might want to reprovision the device
for extension 160 in the future, or it might be used by several people with different
extensions in a hot-desking solution. Using numeric account names is also very bad
from a security perspective and is discussed in more detail in Chapter 26.

A popular way to name a phone is using the MAC address of the device. This is a unique
identifier specific to the phone that follows it where it goes and doesn’t directly relate
to the user operating the phone or the extension number currently associated with it.
Some corporations have stickers they place on their equipment with a bar code and
other information that allows them to keep stock of provisioned equipment; these
unique codes would also be an acceptable choice to use for phone names as they don’t
provide any logical relation to a particular person, but do provide specific information
about the devices themselves.

The choice is yours as to how you want to name your phones, but we primarily want
to abstract any concept of the telephone being owned by a person, or even its location
in the network, since these concepts are outside the realm of Asterisk and can change
at any time.

Throughout this book, you’ll see us using phone names that look like MAC addresses
(such as 0000FFFF0001 and 0000FFFF0002) to differentiate between devices. You will want
to use phone names that match the hardware you are using (or some other string that
is unique to the device you are registering).

As a final consideration, we should make it clear that what we are suggesting regarding
device names is not a technical requirement. You are free to name your devices anything
you want, as long as they meet the requirements of Asterisk’s naming conventions for
devices (stay with alphanumeric characters with no spaces and you’ll be fine).

Telephone Naming Concepts | 85

Hardphones, Softphones, and ATAs
There are three types of endpoints you would typically provide your users with that
could serve as a telephone set. They are popularly referred to as hardphones, soft-
phones, and Analog Terminal Adaptors (ATAs).

A hardphone is a physical device. It looks just like an office telephone: it has a handset,
numbered buttons, etc. It connects directly to the network, and it’s what people are
referring to when they talk about a VoIP telephone (or a SIP telephone).

A softphone is a software application that runs on a laptop or desktop. The audio must
pass through the PC’s sound system, so you normally need a headset that will work
well with telephony applications. More recently, softphone applications have been
written for smart phones that allow you to connect to other networks other than just
the cellular network. The interface of the softphone is often styled to look like a physical
telephone, but this is not necessary.

An ATA is designed to allow traditional analog telephones (and other analog devices,
such as fax machines, cordless phones, paging amplifiers, and such) to connect to a SIP
network,‡ and will typically be a sandwich-sized box that contains an RJ-11 connector
for the phone (commonly referred to as an FXS port), an RJ-45 connector for the net-
work, and a power connector. Some ATAs may support more than one phone.

Hardphones have the advantage that the handsets have good acoustic properties for
voice communications. Any decent-quality telephone is engineered to pick up the fre-
quencies of the human voice, filter out unwanted background noise, and normalize the
resulting waveform. People have been using telephones for as long as the telephone
network has existed, and we tend to like what is familiar, so having a device that com-
municates with Asterisk using a familiar interface will be attractive to many users. Also,
a hardphone does not require your computer to be running all the time.

Disadvantages to hardphones include that they are nonportable and expensive, relative
to the many quality softphones on the market today that are available for free. Also,
the extra clutter on your desk may not be desirable if you have limited work space, and
if you move around a lot and are not generally at the same location, a hardphone is not
likely to suit your needs (although, one at each location you frequent might be a valid
solution).

Softphones solve the portability issue by being installed on a device that is likely already
moving with you, such as your laptop or smart phone. Also, their minimal cost (typi-
cally free, or around the $30 price range for a fully featured one) is attractive. Because
many softphones are free, it is likely that the first telephone set you connect to Asterisk
will be a softphone. Also, because softphones are just software, they are easy to install
and upgrade, and they commonly have other features that utilize other peripherals, like

‡ Or any other network, for that matter. ATAs could more formally be said to be analog-to-digital gateways,
where the nature of the digital protocol may vary (e.g., proprietary ATAs on traditional PBXs).

86 | Chapter 5: User Device Configuration

a webcam for video calling, or perhaps an ability to load files from your desktop for
faxing.

Some of the disadvantages of softphones are the not-always-on nature of the devices,
the necessity to put on a headset each time you take a call, and the fact that many PCs
will at random times during the day choose to do something other than what the user
wants them to do, which might cause the softphone to stop working while some back-
ground task hogs the CPU.

ATAs have the advantage of allowing you to connect to your SIP network analog de-
vices,§ such as cordless phones (which are still superior in many cases to more advanced
types of wireless phones‖), paging amplifiers, and ringers. ATAs can also sometimes be
used to connect to old wiring, where a network connection might not function
correctly.

The main disadvantage of an ATA is that you will not get the same features through
an analog line as you would from a SIP telephone. This is technology that is over a
century old.

With Asterisk, we don’t necessarily need to make the choice between having a soft-
phone, a hardphone, or an ATA; it’s entirely possible and quite common to have a
single extension number that rings multiple devices at the same time, such as a desk
phone, the softphone on a laptop, a cell phone, and perhaps a strobe light in the back
of the factory (where there is too much noise for a ringer to be heard).

Asterisk will happily allow you to interact with the outside world in ways that were
scarcely dreamed of only a few years ago. As we see more unification of communications
applications with the popularity of social networks, communities such as Skype, and
more focus on network-based services such as those provided by Google, the flexibility
and popularity of software-based endpoints will continue to grow. The blurring of the
lines between voice and applications is constantly evolving, and softphones are well
positioned to rapidly respond to these changes.

We still like a desk phone, though.

Configuring Asterisk
In this section we’ll cover how to create the sip.conf and iax.conf configuration files in
the /etc/asterisk/ directory, which are used for defining the parameters by which SIP
and IAX2 devices can communicate with your system.

§ An ATA is not the only way to connect analog phones. Hardware vendors such as Digium sell cards that go
in the Asterisk server and provide analog telephony ports.

‖ For a really awesome cordless analog phone, you want to check out the EnGenius DuraFon devices, which
are expensive, but impressive.

Configuring Asterisk | 87

Asterisk allows devices using many different protocols to speak to it
(and therefore to each other). However, the SIP and IAX2 protocols are
the most popular and mature VoIP modules, so we will focus our at-
tention on them. For your first Asterisk build, you might be best off not
bothering with the other protocols (such as Skinny/SCCP, Unistim,
H.323, and MGCP), and getting comfortable working with SIP and
IAX2 first. The configuration for the other protocols is similar, and the
sample configuration files are full of information and examples, so once
you have the basics down, other protocols should be fairly easy to
work with.

The channel configuration files, such as sip.conf and iax.conf, contain the configuration
for the channel driver, such as chan_iax2.so or chan_sip.so, along with the information
and credentials required for a telephony device to contact and interact with Asterisk.

Common information about the channel driver is contained at the top of the configu-
ration file, in the [general] section. All section names are encased in square brackets,
including device names. Anything that follows a section name (or device definition,
which for our purposes is essentially the same thing) is applied to that section. The
[general] section can also contain information to define defaults for device configu-
rations, which are overridden in the section for each device, or in a template. Asterisk
also comes with defaults that are hardcoded, so while some settings are mandatory,
many other settings can be ignored as long as you are happy with the defaults.

Asterisk will check for parameters in the following order:

1. Check the specific section for the relevant channel.

2. Check the template for the section.

3. Check the [general] section.

4. Use the hardcoded defaults.

This means that just because you didn’t specify a setting for a particular
parameter doesn’t mean your device isn’t going to have a setting for that
parameter. If you are not sure, set the parameter explicitly in the section
of the configuration file that deals with that specific channel, or in the
relevant template.

This concept should make more sense as you read on.

How Channel Configuration Files Work with the Dialplan
While we haven’t discussed Asterisk dialplans yet, it is useful to be able to visualize the
relationship between the channel configuration files (sip.conf, iax.conf) and the dialplan
(extensions.conf). The dialplan is the heart of an Asterisk system: it controls how call
logic is applied to any connection from any channel, such as what happens when a
device dials extension 101 or an incoming call from an external provider is routed. Both

88 | Chapter 5: User Device Configuration

the relevant channel configuration file and the extensions.conf file play a role in most
calls routed through the system. Figure 5-1 provides a graphical representation of the
relationship between the sip.conf and extensions.conf files.

When a call comes into Asterisk, the identity of the incoming call is matched in the
channel configuration file for the protocol in use (e.g., sip.conf). The channel configu-
ration file also handles authentication and defines where that channel will enter the
dialplan.

Once Asterisk has determined how to handle the channel, it will pass call control to
the correct context in the dialplan. The context parameter in the channel configuration
file tells the channel where it will enter the dialplan (which contains all the information
about how to handle and route the call).

Figure 5-1. Relationship of sip.conf to extensions.conf

Conversely, if the dialplan has been programmed to dial another device when the re-
quest for extension number 101 is being processed, a request to dial telephony device
0000FFFF0002 will use the channel configuration file to determine how to pass the call
back out of the dialplan to the telephone on the network (including such details as
authentication, codec, and so forth).

A key point to remember is that the channel configuration files control not only how
calls enter the system, but also how they leave the system. So, for example, if one set
calls another set, the channel configuration file is used not only to pass the call through
to the dialplan, but also to direct the call from the dialplan to the destination.

sip.conf
The SIP# channel module is arguably the most mature and feature-rich of all the channel
modules in Asterisk. This is due to the enormous popularity of the SIP protocol, which

#The SIP RFC is a long read, but about the first 25 pages are a good introduction. Check it out at http://www
.ietf.org/rfc/rfc3261.txt.

Configuring Asterisk | 89

http://www.ietf.org/rfc/rfc3261.txt
http://www.ietf.org/rfc/rfc3261.txt

has taken over the VoIP/telecom industry and been implemented in thousands of de-
vices and PBXs. If you look through the sip.conf.sample file in the ./configs subdirectory
of your Asterisk source you will notice a wealth of options available. Fortunately, the
default options are normally all you need, and therefore you can create a very simple
configuration file that will allow most standard SIP telephones to connect with Asterisk.

The first thing you need to do is create a configuration file in your /etc/asterisk directory
called sip.conf.

Paste or type the following information into the file:

[general]
context=unauthenticated ; default context for incoming calls
allowguest=no ; disable unauthenticated calls
srvlookup=yes ; enabled DNS SRV record lookup on outbound calls
udpbindaddr=0.0.0.0 ; listen for UDP requests on all interfaces
tcpenable=no ; disable TCP support

[office-phone](!) ; create a template for our devices
type=friend ; the channel driver will match on username first, IP second
context=LocalSets ; this is where calls from the device will enter the dialplan
host=dynamic ; the device will register with asterisk
nat=yes ; assume device is behind NAT
 ; *** NAT stands for Network Address Translation, which allows
 ; multiple internal devices to share an external IP address.
secret=s3CuR#p@s5 ; a secure password for this device -- DON'T USE THIS PASSWORD!
dtmfmode=auto ; accept touch-tones from the devices, negotiated automatically
disallow=all ; reset which voice codecs this device will accept or offer
allow=ulaw ; which audio codecs to accept from, and request to, the device
allow=alaw ; in the order we prefer

; define a device name and use the office-phone template
[0000FFFF0001](office-phone)

; define another device name using the same template
[0000FFFF0002](office-phone)

Open the sip.conf file you’ve just created, and we’ll go over each item.

We’ve created four sections, the first one being the [general] section. This is a standard
section that appears at the top of the configuration file for all channel modules, and
must always be named in this way. The [general] section contains general configura-
tion options for how that protocol relates to your system, and can be used to define
default parameters as well.

For example, we’ve defined the default context as unauthenticated, to ensure that we
have explicitly declared where unauthenticated guest calls will enter the dialplan (rather
than leaving that to chance). We’ve named it unauthenticated to make it obvious that
calls processed in this context are not trusted, and thus should not be able to do things
such as make outbound calls to the PSTN (which could potentially cost money, or
represent identity theft). You should be aware that we could have used any name we

90 | Chapter 5: User Device Configuration

wanted, and also that there needs to be an identically named context in exten-
sions.conf to define the call flow for unauthenticated calls.

The next option is allowguest, which we’ve disabled as we don’t want to accept any
unauthenticated calls at this time. Keep in mind that for some channels you may ac-
tually want to accept unauthenticated calls. A common use for allowing unauthenti-
cated calls is for companies that allow dialing by uniform resource identifiers (URIs),
like email addresses. If we wanted to allow customers to call us from their phones
without having to authenticate, we could enable guest calls and handle them in the
unauthenticated context defined by the previous option.

You may be wondering why you might ever want to allow unauthenti-
cated calls. The reason is that if you publish your SIP URI on your busi-
ness cards (e.g., sip:leif.madsen@shifteight.org), calls to that URI will
fail if your unauthenticated context simply hangs up. What you want
instead is for your unauthenticated context to put incoming calls into a
controlled environment. You may wish to allow the calls, but you won’t
necessarily trust them.*

The srvlookup option is used to enable Asterisk to perform a lookup via a DNS SRV
record, which is typically used for outbound connections to service providers. We’ll
talk more about Asterisk and DNS in Chapter 12.

The udpbindaddr†option takes the value of an IP address or 0.0.0.0 to tell Asterisk which
network interface it should listen to for requests carried by the UDP network transport
protocol (which is the protocol that actually carries the voice channels). By defining
0.0.0.0, we’re instructing the channel driver to listen on all available interfaces. Alter-
natively, we could limit VoIP connections for this protocol to a single interface by
defining the IP address of a specific network interface on our system.

Currently in Asterisk the udpbindaddr and tcpbindaddr options are an
all-or-one proposition. In other words, if you have three NICs in your
system, you can’t restrict VoIP traffic to two of them: it’s either one only,
or all of them.

* The whole concept of security and trust on a VoIP network is something that can become quite
complex. Spammers are already hard at work figuring out this technology, and you need to be
aware of the concepts. We’ll cover this in more depth later in the book, such as in Chapter 7
and Chapter 26.

† The complement to this option is tcpbindaddr, used for listening for requests carried via the TCP network
transport protocol.

Configuring Asterisk | 91

IPv6 in sip.conf
As of version 1.8, Asterisk supports IPv6 for both SIP and RTP traffic. All of the con-
figuration options in /etc/asterisk/sip.conf related to IP addresses can accept either an
IPv4 or an IPv6 address. As an example, consider the different values for the udpbin
daddr option:

udpbindaddr value Description

192.168.100.50 Bind to a specific IPv4 address.

2001:db8::1 Bind to a specific IPv6 address

0.0.0.0 Bind to all IPv4 addresses on the system.

:: Bind to all IPv4 and IPv6 addresses.

The tcpenable option allows us to accept requests via the TCP network transport pro-
tocol. For now we’ve disabled it, as the UDP method is currently more mature (and
more popular) and we’re attempting to eliminate as many barriers as possible. Having
said that, feel free to test TCP support once you’re comfortable configuring your
devices.

There are also tlsenable and tlsbindaddr options for enabling SIP over
TLS (encrypted SIP). We’ll cover the configuration of SIP with TLS in
Chapter 7.

The next section we’ve defined is a template we have chosen to name [office-phone]
(!). We’ve created it as a template so that we can use the values within it for all of our
devices.

Following the section name with (!) tells Asterisk to treat this section
as a template. By doing this we eliminate the need to repetitively add
and change configuration options for every device we choose to define.
Templates are extremely useful and are available in all of Asterisk’s
configuration files. If you want to change something for an individual
device that was previously defined in the template for that device, you
can do that under the section header, and it will override what was de-
fined by the template. It is not necessary to use templates, but they are
extremely handy, and we use them extensively.

92 | Chapter 5: User Device Configuration

In the [office-phone] template we’ve defined several options required for authentica-
tion and control of calls to and from devices that use that template. The first option
we’ve configured is the type, which we’ve set to friend. This tells the channel driver to
attempt to match on name first, and then IP address.

SIP Configuration Matching and the type Option
In the example we have provided, the configuration for SIP phones is set with
type=friend. There are two other type definitions you can use: user and peer. The
difference between them has to do with how Asterisk interprets incoming SIP requests.
The rules are covered in this table:

type = Description

peer Match incoming requests to a configuration entry using the source IP address and port number.

user Match incoming requests to a configuration entry using the username in the From header of the SIP
request. This name is matched to a section in sip.conf with the same name in square brackets.

friend This enables matching rules for both peer and user. This is the setting most commonly used for SIP phones.

When a request from a telephone is received and authenticated by Asterisk, the re-
quested extension number is handled by the dialplan in the context defined in the device
configuration; in our case, the context named LocalSets.

The host option is used when we need to send a request to the telephone (such as when
we want to call someone). Asterisk needs to know where the device is on the network.
By defining the value as dynamic, we let Asterisk know that the telephone will tell us
where it is on the network instead of having its location defined statically. If we wanted
to define the address statically, we could replace dynamic with an IP address such as
192.168.128.30.

The nat option is used to tell Asterisk to enable some tricks to make phone calls work
when a SIP phone may be located behind a NAT. This is important because the SIP
protocol includes IP addresses in messages. If a phone is on a private network, it may
end up placing private addresses in SIP messages, which are often not useful.

The password for the device is defined by the secret parameter. While this is not strictly
required, you should note that it is quite common for unsavory folks to run phishing
scripts that look for exposed VoIP accounts with insecure passwords and simple device
names (such as a device name of 100 with a password of 1234). By utilizing an uncom-
mon device name such as a MAC address, and a password that is a little harder to guess,
we can significantly lower the risk to our system should we need to expose it to the
outside world.

Configuring Asterisk | 93

Name Purpose Popularity/Status

func_sprintf Performs string format functions similar to C function of same name Useful

func_srv Perform SRV lookups in the dialplan Useful

func_strings Includes over a dozen string manipulation functions Useful

func_sysinfo Gets system information such as RAM, swap, load average, etc. Useful

func_timeout Gets/sets timeouts on channel Useful

func_uri Converts strings to URI-safe encoding Useful

func_version Returns Asterisk version information Usable

func_vmcount Returns count of messages in a voicemail folder for a particular user Useful

func_volume Sets volume on a channel Useful

PBX Modules
The PBX modules are peripheral modules that provide enhanced control and configu-
ration mechanisms. For example, pbx_config is the module that loads the traditional
Asterisk dialplan. The currently available PBX modules are listed in Table 2-9.

Table 2-9. PBX modules

Name Purpose Popularity/Status

pbx_ael Asterisk Extension Logic (AEL) offers a dialplan scripting language that looks like a
modern programming language.

Usablea

pbx_config This is the traditional, and most popular, dialplan language for Asterisk. Without
this module, Asterisk cannot read extensions.conf.

Useful

pbx_dundi Performs data lookups on remote Asterisk systems. Useful

pbx_loopback Performs something similar to a dialplan include, but in a deprecated manner. Insignificantb

pbx_lua Allows creation of a dialplan using the Lua scripting language. Useful

pbx_realtime Provides functionality related to the Asterisk Realtime Architecture. Useful

pbx_spool Provides outgoing spool support relating to Asterisk call files. Useful
a We have not found too many people using AEL. We suspect this is because most developers will tend to use AGI/AMI if they do not want

to use traditional dialplans.
b We’ve never heard of this being used in production.

Resource Modules
Resource modules integrate Asterisk with external resources. For example, res_odbc
allows Asterisk to interoperate with ODBC database connections. The currently avail-
able resource modules are listed in Table 2-10.

Modules | 21

Hardphones, Softphones, and ATAs
There are three types of endpoints you would typically provide your users with that
could serve as a telephone set. They are popularly referred to as hardphones, soft-
phones, and Analog Terminal Adaptors (ATAs).

A hardphone is a physical device. It looks just like an office telephone: it has a handset,
numbered buttons, etc. It connects directly to the network, and it’s what people are
referring to when they talk about a VoIP telephone (or a SIP telephone).

A softphone is a software application that runs on a laptop or desktop. The audio must
pass through the PC’s sound system, so you normally need a headset that will work
well with telephony applications. More recently, softphone applications have been
written for smart phones that allow you to connect to other networks other than just
the cellular network. The interface of the softphone is often styled to look like a physical
telephone, but this is not necessary.

An ATA is designed to allow traditional analog telephones (and other analog devices,
such as fax machines, cordless phones, paging amplifiers, and such) to connect to a SIP
network,‡ and will typically be a sandwich-sized box that contains an RJ-11 connector
for the phone (commonly referred to as an FXS port), an RJ-45 connector for the net-
work, and a power connector. Some ATAs may support more than one phone.

Hardphones have the advantage that the handsets have good acoustic properties for
voice communications. Any decent-quality telephone is engineered to pick up the fre-
quencies of the human voice, filter out unwanted background noise, and normalize the
resulting waveform. People have been using telephones for as long as the telephone
network has existed, and we tend to like what is familiar, so having a device that com-
municates with Asterisk using a familiar interface will be attractive to many users. Also,
a hardphone does not require your computer to be running all the time.

Disadvantages to hardphones include that they are nonportable and expensive, relative
to the many quality softphones on the market today that are available for free. Also,
the extra clutter on your desk may not be desirable if you have limited work space, and
if you move around a lot and are not generally at the same location, a hardphone is not
likely to suit your needs (although, one at each location you frequent might be a valid
solution).

Softphones solve the portability issue by being installed on a device that is likely already
moving with you, such as your laptop or smart phone. Also, their minimal cost (typi-
cally free, or around the $30 price range for a fully featured one) is attractive. Because
many softphones are free, it is likely that the first telephone set you connect to Asterisk
will be a softphone. Also, because softphones are just software, they are easy to install
and upgrade, and they commonly have other features that utilize other peripherals, like

‡ Or any other network, for that matter. ATAs could more formally be said to be analog-to-digital gateways,
where the nature of the digital protocol may vary (e.g., proprietary ATAs on traditional PBXs).

86 | Chapter 5: User Device Configuration

http://www.rfc-editor.org/rfc/rfc5456.txt

Running make samples on a system that already has configuration files
will overwrite the existing files.

Using make samples to Create Sample
Configuration Files for Future Reference

Even though we are not going to use the sample configuration files that come with
Asterisk, the fact is that they are an excellent reference. If there is a module that you
are not currently using but wish to put into production, the sample file will show you
exactly what syntax to use, and what options are available for that module.

Running the sudo make samples command in your Asterisk source directory* is harmless
on a new system that has just been built, but it is very dangerous to run on a system
that already has configuration files, as this command will overwrite any existing files
(which would be a disaster for you if you do not have a current backup).

If you’ve run the sudo make samples command, you will want to move the files that it
has created in /etc/asterisk/ to another folder. We like to create a folder called /etc/
asterisk/unused/ and put any sample/unused configuration files in there, but feel free
to store them wherever you like.

We’re now going to step through all the files that are required to get a simple Asterisk
system up and running.

indications.conf and asterisk.conf

The first file needed is indications.conf, a file that contains information about how to
detect different telephony tones for different countries. There is a perfectly good sample
file that we can use in the Asterisk source, so let’s copy it into our /etc/asterisk/ directory:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/indications.conf.sample \
/etc/asterisk/indications.conf

Because we’re running Asterisk as non-root, we need to tell Asterisk which user to run
as. This is done with the asterisk.conf file. We can copy a sample version of it from the
Asterisk source to /etc/asterisk:

$ cp ~/src/asterisk-complete/asterisk/1.8/configs/asterisk.conf.sample \
/etc/asterisk/asterisk.conf

The asterisk.conf file contains many options that we won’t go over here (they are cov-
ered in “asterisk.conf” on page 71), but we do need to make an adjustment. Near the
end of the [options] section, there are two options we need to enable: runuser and
rungroup.

* /usr/src/asterisk-complete/asterisk/asterisk-1.8.<your version>/

Base Configuration | 53

This icon indicates a warning or caution.

Using Code Examples
This book is here to help you get your job done. In general, you may use the code in
this book in your programs and documentation. You do not need to contact us for
permission unless you’re reproducing a significant portion of the code. For example,
writing a program that uses several chunks of code from this book does not require
permission. Selling or distributing a CD-ROM of examples from O’Reilly books does
require permission. Answering a question by citing this book and quoting example
code does not require permission. Incorporating a significant amount of example code
from this book into your product’s documentation does require permission.

We appreciate, but do not require, attribution. An attribution usually includes the title,
author, publisher, and ISBN. For example: “Asterisk: The Definitive Guide, Third Ed-
ition, by Leif Madsen, Jim Van Meggelen, and Russell Bryant (O’Reilly). Copyright
2011 Leif Madsen, Jim Van Meggelen, and Russell Bryant, 978-0-596-51734-2.”

If you feel your use of code examples falls outside fair use or the permission given above,
feel free to contact us at permissions@oreilly.com.

Safari Books Online
When you see a Safari Books Online icon on the cover of your favorite
technology book, that means the book is available online through the
O’Reilly Network Safari Bookshelf.

Safari offers a solution that’s better than ebooks. It’s a virtual library that lets you easily
search thousands of top tech books, cut and paste code samples, download chapters,
and find quick answers when you need the most accurate, current information. Try it
for free at http://safari.oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
(800) 998-9938 (in the United States or Canada)
(707) 829-0515 (international or local)
(707) 829-0104 (fax)

Preface | xxvii

Asterisk™: The Definitive Guide

The Asterisk CLI
The best way to see what is happening with your Asterisk system is through the Asterisk
CLI. This interface provides various levels of output to let you know what is happening
on your system, and offers a wealth of useful utilities to allow you to affect your running
system. Begin by calling up the Asterisk CLI and reloading the configuration files for
your channel modules:

$ sudo asterisk -r
*CLI> module reload chan_sip.so
*CLI> module reload chan_iax2.so

Verify that your new channels have been loaded:

*CLI> sip show peers
*CLI> sip show users
*CLI> iax2 show peers
*CLI> iax2 show users

At this point your Asterisk system should be configured to handle reg-
istrations from the defined devices. Calls to and from the sets will not
work until the configuration on the devices has been completed. Since
each device is different in this regard, detailed configuration instructions
for each model are outside of the scope of this book.

Testing to Ensure Your Devices Have Registered
Once your device has registered to Asterisk, you will be able to query the location and
state of the device from the Asterisk CLI.

It is a common misconception that registration is how a device authen-
ticates itself for the purpose of obtaining permission to make calls. This
is incorrect. The only purpose of registration is to allow a device to
identify its location on the network, so that Asterisk# knows where to
send calls intended for that device.

Authentication for outgoing calls is an entirely separate process and al-
ways happens on a per-call basis, regardless of whether a set has regis-
tered. This means that your set may be able to make calls, but not receive
them. This will normally happen when the set has not registered suc-
cessfully (so Asterisk does not know where it is), and yet has the correct
credentials for making calls (so Asterisk is willing to accept calls from it).

To check the registration status of a device, simply call up the Asterisk CLI:

$ sudo asterisk -r

#Or any other SIP registrar server, for that matter.

Testing to Ensure Your Devices Have Registered | 99

Typing the following command returns a listing of all the peers that Asterisk knows
about (regardless of their state):

*CLI> sip show peers
Name/username Host Dyn Nat ACL Port Status
0000FFFF0001/0000FFFF0001 192.168.1.100 D N 5060 Unmonitored
0000FFFF0002/0000FFFF0002 192.168.1.101 D N 5060 Unmonitored

You may notice that the Name/username field does not always show the
full name of the device. This is because this field is limited to 25
characters.

Note that the Status in our example is set to Unmonitored. This is because we are not
using the qualify=yes option in our sip.conf file.

Analog Phones
There are two popular methods for connecting analog phones to Asterisk. The first is
by using an ATA that most commonly connects to Asterisk using the SIP protocol. The
Asterisk configuration for an ATA is the same as it would be for any other SIP-based
handset. The other method is to directly connect the phones to the Asterisk server using
telephony hardware from a vendor such as Digium. Digium sells telephony cards that
can be added to your server to provide FXS ports for connecting analog phones (or fax
machines). For the purposes of demonstrating the configuration, we’re going to show
the configuration required if you had a Digium AEX440E card, which is an AEX410
half-length PCI-Express with four FXS modules and hardware-based echo cancellation.

Regardless of which hardware you are using, consult your vendor’s
documentation for any hardware-specific configuration requirements.

First, ensure that both Asterisk and DAHDI are installed (refer back to “How to Install
It” on page 48 for instructions). Note that DAHDI must be installed before you install
Asterisk. When you install DAHDI, be sure to install the init script as well. This will
ensure that your hardware is properly initialized when the system boots up. The init
script is installed from the DAHDI-tools package.

100 | Chapter 5: User Device Configuration

The init script uses the /etc/dahdi/modules file to determine which modules should be
loaded to support the hardware in the system. The installation of the init script attempts
to automatically set up this file for you, but you should check it to make sure it is correct:

Autogenerated by tools/xpp/dahdi_genconf (Dahdi::Config::Gen::Modules) on
Tue Jul 27 10:31:46 2010
If you edit this file and execute tools/xpp/dahdi_genconf again,
your manual changes will be LOST.
wctdm24xxp

There is one more configuration file required for DAHDI: /etc/dahdi/system.conf. It
looks like this:

Specify that we would like DAHDI to generate tones that are
used in the United States.
loadzone = us
defaultzone = us

We have 4 FXS ports; configure them to use FXO signaling.
fxoks = 1-4

This configuration assumes the card is being used in the United States.
For some tips on internationalization, see Chapter 9.

If the card you are configuring does not have hardware-based echo cancellation, an-
other line will need to be added to /etc/dahdi/system.conf to enable software-based echo
cancellation:

echocanceller = mg2,1-4

MG2 is the recommended echo canceller that comes with the official
DAHDI package. There is another open source echo canceller out there
that is compatible with DAHDI, called OSLEC (Open Source Line Echo
Canceller). Many people report very good results with the use of
OSLEC. For more information about the installation of OSLEC on your
system, see the website at http://www.rowetel.com/blog/oslec.html.

Now, use the init script to load the proper modules and initialize the hardware:

$ sudo /etc/init.d/dahdi start
Loading DAHDI hardware modules:
 wctdm24xxp: [OK]

Running dahdi_cfg: [OK]

Now that DAHDI has been configured, it is time to move on to the relevant configu-
ration of Asterisk. Once Asterisk is installed, ensure that the chan_dahdi module has
been installed. If it is not loaded in Asterisk, check to see if it exists in /usr/lib/asterisk/

Analog Phones | 101

http://www.rowetel.com/blog/oslec.html

modules/. If it is there, edit /etc/asterisk/modules.conf to load chan_dahdi.so. If the mod-
ule is not present on disk, DAHDI was not installed before installing Asterisk; go back
and install it now (see “DAHDI” on page 49 for details). You can verify its presence
using the following command:

*CLI> module show like chan_dahdi.so
Module Description Use Count
chan_dahdi.so DAHDI Telephony Driver 0
1 modules loaded

Next, you must configure /etc/asterisk/chan_dahdi.conf. This is the configuration file
for the chan_dahdi module, which is the interface between Asterisk and DAHDI. It
should look like this:

[trunkgroups]

; No trunk groups are needed in this configuration.

[channels]

; The channels context is used when defining channels using the
; older deprecated method. Don't use this as a section name.

[phone](!)
;
; A template to hold common options for all phones.
;
usecallerid = yes
hidecallerid = no
callwaiting = no
threewaycalling = yes
transfer = yes
echocancel = yes
echotraining = yes
immediate = no
context = LocalSets
signalling = fxo_ks ; Uses FXO signaling for an FXS channel

[phone1](phone)
callerid = "Mark Michelson" <(256)555-1212>
dahdichan = 1

[phone2](phone)
callerid = "David Vossel" <(256)555-2121>
dahdichan = 2

[phone3](phone)
callerid = "Jason Parker" <(256)555-3434>
dahdichan = 3

[phone4](phone)
callerid = "Matthew Nicholson" <(256)555-4343>
dahdichan = 4

102 | Chapter 5: User Device Configuration

You can verify that Asterisk has loaded your configuration by running the dahdi show
channels CLI command:

*CLI> dahdi show channels
 Chan Extension Context Language MOH Interpret Blocked State
 pseudo default default In Service
 1 LocalSets default In Service
 2 LocalSets default In Service
 3 LocalSets default In Service
 4 LocalSets default In Service

For detailed information on a specific channel, you can run dahdi show channel 1.

A Basic Dialplan to Test Your Devices
We’re not going to dive too deeply into the dialplan just yet, but an initial dialplan that
you can use to test your newly registered devices will be helpful. Place the following
contents in /etc/asterisk/extensions.conf:

[LocalSets]

exten => 100,1,Dial(SIP/0000FFFF0001) ; Replace 0000FFFF0001 with your device name

exten => 101,1,Dial(SIP/0000FFFF0002) ; Replace 0000FFFF0002 with your device name

;
; These will allow you to dial each of the 4 analog phones configured
; in the previous section.
;
exten => 102,1,Dial(DAHDI/1)
exten => 103,1,Dial(DAHDI/2)
exten => 104,1,Dial(DAHDI/3)
exten => 105,1,Dial(DAHDI/4)

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

This basic dialplan will allow you to dial your SIP devices using extensions 100 and
101. The four lines of the analog card can be dialed with extensions 102 through 105,
respectively. You can also listen to the hello-world prompt that was created for this
book by dialing extension 200. All of these extensions are arbitrary numbers, and could
be anything you want. Also, this is by no means a complete dialplan; we’ll develop it
further in later chapters.

You will need to reload your dialplan before changes will take effect in Asterisk. You
can reload it from the Linux shell:

$ sudo asterisk -rx "dialplan reload"

A Basic Dialplan to Test Your Devices | 103

or from the Asterisk CLI:

*CLI> dialplan reload

You should now be able to dial between your two new extensions. Open up the CLI
in order to see the call progression. You should see something like this (and the set you
are calling should ring):

 -- Executing [100@LocalSets:1] Dial("SIP/0000FFFF0001-0000000c",
 "SIP/0000FFFF0001") in new stack
 -- Called 0000FFFF0001
 -- SIP/0000FFFF0001-0000000d is ringing

If this does not happen, you are going to need to review your configuration and ensure
you have not made any typos.

Under the Hood: Your First Call
In order to get you thinking about what is happening under the hood, we’re going to
briefly cover some of what is actually happening with the SIP protocol when two sets
on the same Asterisk system call each other.

Asterisk as a B2BUA
Bear in mind that there are actually two calls going on here: one from
the originating set to Asterisk, and another from Asterisk to the desti-
nation set. SIP is a peer-to-peer protocol, and from the perspective of
the protocol there are two calls happening. The SIP protocol is not aware
that Asterisk is bridging the calls; each set understands its connection
to Asterisk, with no real knowledge of the set on the other side. It is for
this reason that Asterisk is often referred to as a B2BUA (Back to Back
User Agent). This is also why it is so easy to bridge different protocols
together using Asterisk.

For the call you just made, the dialogs shown in Figure 5-2 will have taken place.

For more details on how SIP messaging works, please refer to Appendix B and the SIP
RFC at http://www.ietf.org/rfc/rfc3261.txt.

104 | Chapter 5: User Device Configuration

http://www.ietf.org/rfc/rfc3261.txt

Figure 5-2. SIP dialogs

Conclusion
In this chapter we learned best practices for device naming by abstracting the concepts
of users, extension numbers, and devices, and how to define the device configuration
and authentication parameters in the channel configuration files. Next, we’ll delve into
the magic of Asterisk that is the dialplan, and see how simple things can create
great results.

Conclusion | 105

CHAPTER 6

Dialplan Basics

Everything should be made as simple as possible,
but not simpler.

—Albert Einstein

The dialplan is the heart of your Asterisk system. It defines how calls flow into and out
of the system. A form of scripting language, the dialplan contains instructions that
Asterisk follows in response to external triggers. In contrast to traditional phone sys-
tems, Asterisk’s dialplan is fully customizable.

This chapter introduces the essential concepts of the dialplan. The information pre-
sented here is critical to your understanding of dialplan code and will form the basis of
any dialplan you write. The examples have been designed to build upon one another,
and we recommend that you do not skip too much of this chapter, since it is so fun-
damentally important to Asterisk. Please also note that this chapter is by no means an
exhaustive survey of all the possible things dialplans can do; our aim is to cover just
the essentials. We’ll cover more advanced dialplan topics in later chapters. You are
encouraged to experiment.

Dialplan Syntax
The Asterisk dialplan is specified in the configuration file named extensions.conf.

The extensions.conf file usually resides in the /etc/asterisk/ directory, but
its location may vary depending on how you installed Asterisk. Other
common locations for this file include /usr/local/etc/asterisk/ and /opt/
etc/asterisk/.

The dialplan is made up of four main concepts: contexts, extensions, priorities, and
applications. After explaining the role each of these elements plays in the dialplan, we’ll
have you build a basic but functioning dialplan.

107

Sample Configuration Files
If you installed the sample configuration files when you installed Asterisk, you will most
likely have an existing extensions.conf file. Instead of starting with the sample file, we
suggest that you build your extensions.conf file from scratch. Starting with the sample
file is not the best or easiest way to learn how to build dialplans.

That being said, the sample extensions.conf file remains a fantastic resource, full of
examples and ideas that you can use after you’ve learned the basic concepts. If you
followed our installation instructions, you will find the file extensions.conf.sample in
the folder /usr/src/asterisk-complete/asterisk/1.8/configs (along with many other sample
config files).

Contexts
Dialplans are broken into sections called contexts. Contexts keep different parts of the
dialplan from interacting with one another. An extension that is defined in one context
is completely isolated from extensions in any other context, unless interaction is spe-
cifically allowed. (We’ll cover how to allow interaction between contexts near the end
of the chapter. See “Includes” on page 129 for more information.)

As a simple example, let’s imagine we have two companies sharing an Asterisk server.
If we place each company’s automated attendant in its own context, they will be com-
pletely separated from each other. This allows us to independently define what happens
when, say, extension 0 is dialed: Callers dialing 0 from Company A’s voice menu will
get Company A’s receptionist, while callers dialing 0 at Company B’s voice menu will
get Company B’s receptionist. (This assumes, of course, that we’ve told Asterisk to
transfer the calls to the receptionists when callers press 0.*)

Contexts are defined by placing the name of the context inside square brackets ([]).
The name can be made up of the letters A through Z (upper- and lowercase), the num-
bers 0 through 9, and the hyphen and underscore.† A context for incoming calls might
look like this:

[incoming]

* This is a very important consideration. With traditional PBXs, there are generally a set of defaults for things
like reception, which means that if you forget to define them, they will probably work anyway. In Asterisk,
the opposite is true. If you do not tell Asterisk how to handle every situation, and it comes across something
it cannot handle, the call will typically be disconnected. We’ll cover some best practices later that will help
ensure this does not happen. See “Handling Invalid Entries and Timeouts” on page 119 for more information.

† Please note that the space is conspicuously absent from the list of allowed characters. Don’t use spaces in
your context names—you won’t like the result!

108 | Chapter 6: Dialplan Basics

Context names have a maximum length of 79 characters (80 characters
– 1 terminating null).

All of the instructions placed after a context definition are part of that context, until
the next context is defined. At the beginning of the dialplan, there are two special
contexts named [general] and [globals]. The [general] section contains a list of gen-
eral dialplan settings (which you’ll probably never have to worry about), and we will
discuss the [globals] context in the section “Global variables” on page 123. For now,
it’s just important to know that these two labels are not really contexts. Avoid the use
of [general], [default], and [globals] as context names, but otherwise name your
contexts anything you wish.

When you define a channel (which is not done in the extensions.conf file, but rather in
files such as sip.conf, iax.conf, chan_dahdi.conf, etc.), one of the required parameters
in each channel definition is context. The context is the point in the dialplan where
connections from that channel will begin. The context setting for the channel is how you
plug the channel into the dialplan. Figure 6-1 illustrates the relationship between chan-
nel configuration files and contexts in the dialplan.

Figure 6-1. Relation between channel configuration files and contexts in the dialplan

This is one of the most important concepts to understand when dealing
with channels and dialplans. Once you understand the relationship of
the context definition in a channel to the matching context in the
dialplan, you will find it much easier to troubleshoot the call flow
through an Asterisk system.

An important use of contexts (perhaps the most important use) is to provide security.
By using contexts correctly, you can give certain callers access to features (such as long-
distance calling) that aren’t made available to others. If you do not design your dialplan
carefully, you may inadvertently allow others to fraudulently use your system. Please
keep this in mind as you build your Asterisk system; there are many bots on the Internet
that were specifically written to identify and exploit poorly secured Asterisk systems.

Dialplan Syntax | 109

The Asterisk wiki at https://wiki.asterisk.org/wiki/display/AST/Impor
tant+Security+Considerations outlines several steps you should take to
keep your Asterisk system secure. (Chapter 26 in this book also deals
with security.) It is vitally important that you read and understand this
page. If you ignore the security precautions outlined there, you may end
up allowing anyone and everyone to make long-distance or toll calls at
your expense!

If you don’t take the security of your Asterisk system seriously, you may
end up paying—literally. Please take the time and effort to secure your
system from toll fraud.

Extensions
In the world of telecommunications, the word extension usually refers to a numeric
identifier that, when dialed, will ring a phone (or system resource such as voicemail or
a queue). In Asterisk, an extension is far more powerful, as it defines the unique series
of steps (each step containing an application) through which Asterisk will take that call.

Within each context, we can define as many (or few) extensions as required. When a
particular extension is triggered (by an incoming call or by digits being dialed on a
channel), Asterisk will follow the steps defined for that extension. It is the extensions,
therefore, that specify what happens to calls as they make their way through the
dialplan. Although extensions can, of course, be used to specify phone extensions in
the traditional sense (i.e., extension 153 will cause the SIP telephone set on John’s desk
to ring), in an Asterisk dialplan, they can be used for much more.

The syntax for an extension is the word exten, followed by an arrow formed by the
equals sign and the greater-than sign, like this:

exten =>

This is followed by the name (or number) of the extension. When dealing with tradi-
tional telephone systems, we tend to think of extensions as the numbers you would
dial to make another phone ring. In Asterisk, you get a whole lot more; for example,
extension names can be any combination of numbers and letters. Over the course of
this chapter and the next, we’ll use both numeric and alphanumeric extensions.

Assigning names to extensions may seem like a revolutionary concept,
but when you realize that many VoIP transports support (or even ac-
tively encourage) dialing by name or email address rather than just by
number, it makes perfect sense. This is one of the features that makes
Asterisk so flexible and powerful.

110 | Chapter 6: Dialplan Basics

https://wiki.asterisk.org/wiki/display/AST/Important+Security+Considerations
https://wiki.asterisk.org/wiki/display/AST/Important+Security+Considerations

Each step in an extension is composed of three components:

• The name (or number) of the extension

• The priority (each extension can include multiple steps; the step number is called
the “priority”)

• The application (or command) that will take place at that step

These three components are separated by commas, like this:

exten => name,priority,application()

Here’s a simple example of what a real extension might look like:

exten => 123,1,Answer()

In this example, the extension name is 123, the priority is 1, and the application is
Answer().

Priorities
Each extension can have multiple steps, called priorities. The priorities are numbered
sequentially, starting with 1, and each executes one specific application. As an example,
the following extension would answer the phone (in priority number 1), and then hang
it up (in priority number 2):

exten => 123,1,Answer()
exten => 123,2,Hangup()

It’s pretty obvious that this code doesn’t really do anything useful. We’ll get there. The
key point to note here is that for a particular extension, Asterisk follows the priorities
in order. This style of dialplan syntax is still seen from time to time, although (as you’ll
see momentarily) it is not generally used anymore for new code:

exten => 123,1,Answer()
exten => 123,2,do something
exten => 123,3,do something else
exten => 123,4,do one last thing
exten => 123,5,Hangup()

Unnumbered priorities

In older releases of Asterisk, the numbering of priorities caused a lot of problems.
Imagine having an extension that had 15 priorities, and then needing to add something
at step 2: all of the subsequent priorities would have to be manually renumbered.
Asterisk does not handle missing steps or misnumbered priorities, and debugging these
types of errors was pointless and frustrating.

Beginning with version 1.2, Asterisk addressed this problem: it introduced the use of
the n priority, which stands for “next.” Each time Asterisk encounters a priority named
n, it takes the number of the previous priority and adds 1. This makes it easier to make

Dialplan Syntax | 111

changes to your dialplan, as you don’t have to keep renumbering all your steps. For
example, your dialplan might look something like this:

exten => 123,1,Answer()
exten => 123,n,do something
exten => 123,n,do something else
exten => 123,n,do one last thing
exten => 123,n,Hangup()

Internally, Asterisk will calculate the next priority number every time it encounters an
n.‡ Bear in mind that you must always specify priority number 1. If you accidentally
put an n instead of 1 for the first priority (a common mistake even among experienced
dialplan coders), you’ll find after reloading the dialplan that the extension will not exist.

The 'same =>' operator

In the never-ending effort to simplify coding effort, a new construct was created to make
extension building and management even easier. As long as the extension remains the
same, rather than having to type the full extension on each line, you can simply type
same => , followed by the priority and application:

exten => 123,1,Answer()
 same => n,do something
 same => n,do something else
 same => n,do one last thing
 same => n,Hangup()

The indentation is not required, but it may make for easier reading. This style of dialplan
will also make it easier to copy code from one extension to another. We prefer this style
ourselves, and highly recommend it.

Priority labels

Priority labels allow you to assign a name to a priority within an extension. This is to
ensure that you can refer to a priority by something other than its number (which
probably isn’t known, given that dialplans now generally use unnumbered priorities).
The reason it is important to be able to address a particular priority in an extension is
that you will often want to send calls from other parts of the dialplan to a particular
priority in a particular extension. We’ll talk about that more later. To assign a text label
to a priority, simply add the label inside parentheses after the priority, like this:

exten => 123,n(label),application()

Later, we’ll cover how to jump between different priorities based on dialplan logic.
You’ll see a lot more of priority labels, and you’ll use them often in your dialplans.

‡ Asterisk permits simple arithmetic within the priority, such as n+200, and the priority s (for same), but their
usage is somewhat deprecated due to the existence of priority labels. Please note that extension s and priority
s are two distinct concepts.

112 | Chapter 6: Dialplan Basics

A very common mistake when writing labels is to insert a comma be-
tween the n and the (, like this:

exten => 123,n,(label),application() ;<-- THIS IS NOT GOING TO WORK

This mistake will break that part of your dialplan, and you will get an
error stating that the application cannot be found.

Applications
Applications are the workhorses of the dialplan. Each application performs a specific
action on the current channel, such as playing a sound, accepting touch-tone input,
looking something up in a database, dialing a channel, hanging up the call, and so forth.
In the previous example, you were introduced to two simple applications: Answer() and
Hangup(). You’ll learn more about how these work momentarily.

Some applications, including Answer() and Hangup(), need no other instructions to do
their jobs. Most applications, however, require additional information. These addi-
tional elements, or arguments, are passed on to the applications to affect how they
perform their actions. To pass arguments to an application, place them between the
parentheses that follow the application name, separated by commas.

Occasionally, you may also see the pipe character (|) being used as a
separator between arguments, instead of a comma. Starting in Asterisk
1.6.0, support for the pipe as a separator character has been removed.§

The Answer(), Playback(), and Hangup() Applications
The Answer() application is used to answer a channel that is ringing. This does the initial
setup for the channel that receives the incoming call. As we mentioned earlier,
Answer() takes no arguments. Answer() is not always required (in fact, in some cases it
may not be desirable at all), but it is an effective way to ensure a channel is connected
before performing further actions.

The Progress() Application
Sometimes it is useful to be able to pass information back to the network before an-
swering a call. The Progress() application attempts to provide call progress information
to the originating channel. Some carriers expect this, and thus you may be able to
resolve strange signaling problems by inserting Progress() into the dialplan where your
incoming calls arrive.

§ Except in some parts of voicemail.conf.

Dialplan Syntax | 113

The Playback() application is used for playing a previously recorded sound file over a
channel. Input from the user is ignored, which means that you would not use Play
back() in an auto attendant, for example, unless you did not want to accept input at
that point.‖

Asterisk comes with many professionally recorded sound files, which
should be found in the default sounds directory (usually /var/lib/aster-
isk/sounds/). When you compile Asterisk, you can choose to install
various sets of sample sounds that have been recorded in a variety of
languages and file formats. We’ll be using these files in many of our
examples. Several of the files in our examples come from the Extra
Sound Package, so please take the time to install it (see Chapter 3). You
can also have your own sound prompts recorded in the same voices as
the stock prompts by visiting http://www.theivrvoice.com/. Later in the
book we’ll talk more about how you can use a telephone and the dialplan
to create and manage your own system recordings.

To use Playback(), specify a filename (without a file extension) as the argument. For
example, Playback(filename) would play the sound file called filename.wav, assuming
it was located in the default sounds directory. Note that you can include the full path
to the file if you want, like this:

Playback(/home/john/sounds/filename)

The previous example would play filename.wav from the /home/john/sounds/ directory.
You can also use relative paths from the Asterisk sounds directory, as follows:

Playback(custom/filename)

This example would play filename.wav from the custom/ subdirectory of the default
sounds directory (probably /var/lib/asterisk/sounds/custom/filename.wav). Note that if
the specified directory contains more than one file with that filename but with different
file extensions, Asterisk automatically plays the best file.#

The Hangup() application does exactly as its name implies: it hangs up the active chan-
nel. You should use this application at the end of a context when you want to end the
current call, to ensure that callers don’t continue on in the dialplan in a way you might
not have anticipated. The Hangup() application does not require any arguments, but
you can pass an ISDN cause code if you want (e.g., Hangup(16)).

‖ There is another application called Background() that is very similar to Playback(), except that it does allow
input from the caller. You can read more about this application in Chapter 15 and Chapter 17.

#Asterisk selects the best file based on translation cost—that is, it selects the file that is the least CPU-intensive
to convert to its native audio format. When you start Asterisk, it calculates the translation costs between the
different audio formats (they often vary from system to system). You can see these translation costs by typing
show translation at the Asterisk command-line interface. The numbers shown represent how many
milliseconds it takes Asterisk to transcode one second of audio. We’ll talk more about the different audio
formats (known as codecs) in “Codecs” on page 625.

114 | Chapter 6: Dialplan Basics

http://www.theivrvoice.com/

As we work through the book, we will be introducing you to many more Asterisk
applications.

A Simple Dialplan
OK, enough theory. Open up the file /etc/asterisk/extensions.conf, and let’s take a look
at your first dialplan (which was created in Chapter 5). We’re going to add to that.

Hello World
As is typical in many technology books (especially computer programming books), our
first example is called “Hello World!”

In the first priority of our extension, we answer the call. In the second, we play a sound
file named hello-world, and in the third we hang up the call. The code we are interested
in for this example looks like this:

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

If you followed along in Chapter 5, you’ll already have a channel or two configured, as
well as the sample dialplan that contains this code. If not, what you need is an exten-
sions.conf file in your /etc/asterisk/ directory that contains the following code:

[LocalSets] ; this is the context name
exten => 100,1,Dial(SIP/0000FFFF0001) ; Replace 0000FFFF0001 with your device name

exten => 101,1,Dial(SIP/0000FFFF0002) ; Replace 0000FFFF0002 with your device name

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

If you don’t have any channels configured, now is the time to do so.
There is real satisfaction that comes from passing your first call into an
Asterisk dialplan on a system that you’ve built from scratch. People get
this funny grin on their faces as they realize that they have just created
a telephone system. This pleasure can be yours as well, so please, don’t
go any further until you have made this little bit of dialplan work. If you
have any problems, get back to Chapter 5 and work through the
examples there.

If you don’t have this dialplan code built yet, you’ll need to add it and reload the dialplan
with this CLI command:

*CLI> dialplan reload

A Simple Dialplan | 115

or from the shell with:

$ sudo /usr/sbin/asterisk -rx "dialplan reload"

Calling extension 200 from either of your configured phones should reward you with
the voice of Allison Smith saying “Hello World.”

If it doesn’t work, check the Asterisk console for error messages, and make sure your
channels are assigned to the LocalSets context.

We do not recommend that you move forward in this book until you
have verified the following:

1. Calls between extension 100 and 101 are working

2. Calling extension 200 plays “Hello World”

Even though this example is very short and simple, it emphasizes the core concepts of
contexts, extensions, priorities, and applications. You now have the fundamental
knowledge on which all dialplans are built.

Building an Interactive Dialplan
The dialplan we just built was static; it will always perform the same actions on every
call. Many dialplans will also need logic to perform different actions based on input
from the user, so let’s take a look at that now.

The Goto(), Background(), and WaitExten() Applications
As its name implies, the Goto() application is used to send a call to another part of the
dialplan. The syntax for the Goto() application requires us to pass the destination con-
text, extension, and priority on as arguments to the application, like this:

 same => n,Goto(context,extension,priority)

We’re going to create a new context called TestMenu, and create an extension in our
LocalSets context that will pass calls to that context using Goto():

exten => 201,1,Goto(TestMenu,start,1) ; add this to the end of the
 ; [LocalSets] context

[TestMenu]
exten => start,1,Answer()

Now, whenever a device enters the LocalSets context and dials 201, the call will be
passed to the start extension in the TestMenu context (which currently won’t do any-
thing interesting because we still have more code to write).

116 | Chapter 6: Dialplan Basics

We used the extension start in this example, but we could have used
anything we wanted as an extension name, either numeric or alpha. We
prefer to use alpha characters for extensions that are not directly diala-
ble, as this makes the dialplan easier to read. Point being, we could have
used 123 or xyz123, or 99luftballons, or whatever we wanted instead of
start. The word “start” doesn’t actually mean anything to the dialplan;
it’s just another extension.

One of the most useful applications in an interactive Asterisk dialplan is the Back
ground()* application. Like Playback(), it plays a recorded sound file. Unlike
Playback(), however, when the caller presses a key (or series of keys) on her telephone
keypad, it interrupts the playback and passes the call to the extension that corresponds
with the pressed digit(s). If a caller presses 5, for example, Asterisk will stop playing
the sound prompt and send control of the call to the first priority of extension 5 (as-
suming there is an extension 5 to send the call to).

The most common use of the Background() application is to create voice menus (often
called auto attendants† or phone trees). Many companies use voice menus to direct
callers to the proper extensions, thus relieving their receptionists from having to answer
every single call.

Background() has the same syntax as Playback():

[TestMenu]
exten => start,1,Answer()
 same => n,Background(main-menu)

If you want Asterisk to wait for input from the caller after the sound prompt has finished
playing, you can use WaitExten(). The WaitExten() application waits for the caller to
enter DTMF digits and is used directly following the Background() application, like this:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(main-menu)
 same => n,WaitExten()

If you’d like the WaitExten() application to wait a specific number of seconds for a
response (instead of using the default timeout‡), simply pass the number of seconds as
the first argument to WaitExten(), like this:

 same => n,WaitExten(5) ; We recommend always passing a time argument to WaitExten()

* It should be noted that some people expect that Background(), due to its name, will continue onward through
the next steps in the dialplan while the sound is being played. In reality, its name refers to the fact that it is
playing a sound in the background, while waiting for DTMF in the foreground.

† More information about auto attendants can be found in Chapter 15.

‡ See the dialplan function TIMEOUT() for information on how to change the default timeouts. See Chapter 10
for information on what dialplan functions are.

Building an Interactive Dialplan | 117

Both Background() and WaitExten() allow the caller to enter DTMF digits. Asterisk then
attempts to find an extension in the current context that matches the digits that the
caller entered. If Asterisk finds a match, it will send the call to that extension. Let’s
demonstrate by adding a few lines to our dialplan example:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(main-menu)
 same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)

exten => 2,1,Playback(digits/2)

After making these changes, save and reload your dialplan:

*CLI> dialplan reload

If you call into extension 201, you should hear a sound prompt that says “main menu.”
The system will then wait 5 seconds for you to enter a digit. If the digit you press is
either 1 or 2, Asterisk will match the relevant extension, and read that digit back to you.
Since we didn’t provide any further instructions, your call will then end. You’ll also
find that if you enter a different digit (such as 3), the dialplan will be unable to proceed.

Let’s embellish things a little. We’re going to use the Goto() application to have the
dialplan repeat the greeting after playing back the number:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(main-menu)
 same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)
 same => n,Goto(TestMenu,start,1)

exten => 2,1,Playback(digits/2)
 same => n,Goto(TestMenu,start,1)

These new lines will send control of the call back to the start extension after playing
back the selected number. This is generally considered friendlier than just hanging up.

If you look up the details of the Goto() application, you’ll find that you
can actually pass either one, two, or three arguments to the application.
If you pass a single argument, Asterisk will assume it’s the destination
priority in the current extension. If you pass two arguments, Asterisk
will treat them as the extension and the priority to go to in the current
context.

In this example, we’ve passed all three arguments for the sake of clarity,
but passing just the extension and priority would have had the same
effect, since the destination context is the same as the source context.

118 | Chapter 6: Dialplan Basics

Handling Invalid Entries and Timeouts
Now that our first voice menu is starting to come together, let’s add some additional
special extensions. First, we need an extension for invalid entries. In Asterisk, when a
context receives a request for an extension that is not valid within that context (e.g.,
pressing 9 in the preceding example), the call is sent to the i extension. We also need
an extension to handle situations when the caller doesn’t give input in time (the default
timeout is 10 seconds). Calls will be sent to the t extension if the caller takes too long
to press a digit after WaitExten() has been called. Here is what our dialplan will look
like after we’ve added these two extensions:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(main-menu)
 same => n,WaitExten(5)

exten => 1,1,Playback(digits/1)
 same => n,Goto(TestMenu,start,1)

exten => 2,1,Playback(digits/2)
 same => n,Goto(TestMenu,start,1)

exten => i,1,Playback(pbx-invalid)
 same => n,Goto(TestMenu,start,1)

exten => t,1,Playback(vm-goodbye)
 same => n,Hangup()

Using the i and t extensions makes our menu a little more robust and user-friendly.
That being said, it is still quite limited, because outside callers still have no way of
connecting to a live person. To do that, we’ll need to learn about another application,
called Dial().

Using the Dial() Application
One of Asterisk’s most valuable features is its ability to connect different callers to each
other. This is especially useful when callers are using different methods of communi-
cation. For example, caller A might be communicating over the traditional analog
telephone network, while user B might be sitting in a café halfway around the world
and speaking on an IP telephone. Luckily, Asterisk takes much of the hard work out of
connecting and translating between disparate networks. All you have to do is learn how
to use the Dial() application.

The syntax of the Dial() application is more complex than that of the other applications
we’ve used so far, but don’t let that scare you off. Dial() takes up to four arguments,
which we’ll look at next.

Building an Interactive Dialplan | 119

Argument 1: Destination

The first argument is the destination you’re attempting to call, which (in its simplest
form) is made up of a technology (or transport) across which to make the call, a forward
slash, and the address of the remote endpoint or resource. Common technology types
include DAHDI (for analog and T1/E1/J1 channels), SIP, and IAX2.

For example, let’s assume that we want to call a DAHDI endpoint identified by DAHDI/
1, which is an FXS channel with an analog phone plugged into it. The technology is
DAHDI, and the resource (or channel identifier) is 1. Similarly, a call to a SIP device (as
defined in sip.conf) might have a destination of SIP/0004F2001122, and a call to an IAX
device (defined in iax.conf) might have a destination of IAX2/Softphone.§ If we wanted
Asterisk to ring the DAHDI/1 channel when extension 105 is reached in the dialplan, we’d
add the following extension:

exten => 105,1,Dial(DAHDI/1)

We can also dial multiple channels at the same time, by concatenating the destinations
with an ampersand (&), like this:

exten => 105,1,Dial(DAHDI/1&SIP/0004F2001122&IAX2/Softphone)

The Dial() application will ring all of the specified destinations simultaneously, and
bridge the inbound call with whichever destination channel answers first (the other
channels will immediately stop ringing). If the Dial() application can’t contact any of
the destinations, Asterisk will set a variable called DIALSTATUS with the reason that it
couldn’t dial the destinations, and continue on with the next priority in the extension.‖

The Dial() application also allows you to connect to a remote VoIP endpoint not pre-
viously defined in one of the channel configuration files. The full syntax is:

Dial(technology/user[:password]@remote_host[:port][/remote_extension])

As an example, you can dial into a demonstration server at Digium using the IAX2
protocol by using the following extension:

exten => 500,1,Dial(IAX2/guest@misery.digium.com/s)

The full syntax for the Dial() application is slightly different for DAHDI channels:

Dial(DAHDI/[gGrR]channel_or_group[/remote_extension])

For example, here is how you would dial 1-800-555-1212 on DAHDI channel
number 4#:

exten => 501,1,Dial(DAHDI/4/18005551212)

§ If this were a production environment, this would not actually be a good name for this device. If you have
more than one softphone on your system (or add another in the future), how will you tell them apart?

‖ We’ll cover variables in the upcoming section “Using Variables” on page 122. In future chapters we’ll discuss
how to have your dialplan make decisions based on the value of DIALSTATUS.

#Bear in mind that this assumes that this channel connects to something that knows how to reach external
numbers.

120 | Chapter 6: Dialplan Basics

Argument 2: Timeout

The second argument to the Dial() application is a timeout, specified in seconds. If a
timeout is given, Dial() will attempt to call the specified destination(s) for that number
of seconds before giving up and moving on to the next priority in the extension. If no
timeout is specified, Dial() will continue to dial the called channel(s) until someone
answers or the caller hangs up. Let’s add a timeout of 10 seconds to our extension:

exten => 201,1,Dial(DAHDI/1,10)

If the call is answered before the timeout, the channels are bridged and the dialplan is
done. If the destination simply does not answer, is busy, or is otherwise unavailable,
Asterisk will set a variable called DIALSTATUS and then continue on with the next priority
in the extension.

Let’s put what we’ve learned so far into another example:

exten => 201,1,Dial(DAHDI/1,10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

As you can see, this example will play the vm-nobodyavail.gsm sound file if the call goes
unanswered.

Argument 3: Option

The third argument to Dial() is an option string. It may contain one or more characters
that modify the behavior of the Dial() application. While the list of possible options
is too long to cover here, one of the most popular is the m option. If you place the letter
m as the third argument, the calling party will hear hold music instead of ringing while
the destination channel is being called (assuming, of course, that music on hold has
been configured correctly). To add the m option to our last example, we simply change
the first line:

exten => 201,1,Dial(DAHDI/1,10,m)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

Argument 4: URI

The fourth and final argument to the Dial() application is a URI. If the destination
channel supports receiving a URI at the time of the call, the specified URI will be sent
(for example, if you have an IP telephone that supports receiving a URI, it will appear
on the phone’s display; likewise, if you’re using a softphone, the URI might pop up on
your computer screen). This argument is very rarely used.

Few (if any) phones support URI information being passed to them. If
you’re looking for something like a screen pop, you might want to check
out Chapter 18, and more specifically the section on Jabber in “Using
XMPP (Jabber) with Asterisk” on page 418.

Building an Interactive Dialplan | 121

Updating the dialplan

Let’s modify extensions 1 and 2 in our menu to use the Dial() application:

[TestMenu]
exten => start,1,Answer()
 same => n,Background(main-menu)
 same => n,WaitExten(5)

exten => 1,1,Dial(SIP/0000FFFF0001,10) ; Replace 0000FFFF0001 with your device name
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 2,1,Dial(SIP/0000FFFF0002,10) ; Replace 0000FFFF0002 with your device name
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => i,1,Playback(pbx-invalid)
 same => n,Goto(TestMenu,start,1)

exten => t,1,Playback(vm-goodbye)
 same => n,Hangup()

Blank arguments

Note that the second, third, and fourth arguments may be left blank; only the first
argument is required. For example, if you want to specify an option but not a timeout,
simply leave the timeout argument blank, like this:

exten => 1,1,Dial(DAHDI/1,,m)

Using Variables
Variables can be used in an Asterisk dialplan to help reduce typing, improve clarity, or
add logic. If you have some computer programming experience, you already under-
stand what a variable is. If not, we’ll briefly explain what variables are and how they
are used. They are a vitally important Asterisk dialplan concept (and something you
will not find in the dialplan of any proprietary PBX).

A variable is a named container that can hold a value. The advantage of a variable is
that its contents may change, but its name does not, which means you can write code
that references the variable name and not worry about what the value will be. So, for
example, we might create a variable called JOHN and assign it the value of DAHDI/1. This
way, when we’re writing our dialplan we can refer to John’s channel by name, instead
of remembering that John is using the channel named DAHDI/1. If at some point we
change John’s channel to something else, we don’t have to change any of our code that
references the JOHN variable; we only have to change the value assigned to the variable.

There are two ways to reference a variable. To reference the variable’s name, simply
type the name of the variable, such as LEIF. If, on the other hand, you want to reference
the contents of the value, you must type a dollar sign, an opening curly brace, the name

122 | Chapter 6: Dialplan Basics

of the variable, and a closing curly brace (in the case of LEIF, we would reference the
value of the variable with ${LEIF}). Here’s how we might use a variable inside the
Dial() application:

exten => 301,1,Set(LEIF=SIP/0000FFFF0001)
 same => n,Dial(${LEIF})

In our dialplan, whenever we refer to ${LEIF}, Asterisk will automatically replace it
with whatever value has been assigned to the variable named LEIF.

Note that variable names are case-sensitive. A variable named LEIF is
different than a variable named Leif. For readability’s sake, all our var-
iable names in the examples will be written in uppercase. You should
also be aware that any variables set by Asterisk will be uppercase. Some
variables, such as CHANNEL and EXTEN, are reserved by Asterisk. You
should not attempt to set these variables. It is popular to write global
variables in uppercase and channel variables in Pascal/Camel case.

There are three types of variables we can use in our dialplan: global variables, channel
variables, and environment variables. Let’s take a moment to look at each type.

Global variables

As their name implies, global variables are visible to all channels at all times. Global
variables are useful in that they can be used anywhere within a dialplan to increase
readability and manageability. Suppose for a moment that you had a large dialplan and
several hundred references to the SIP/0000FFFF0001 channel. Now imagine you had to
go through your dialplan and change all of those references to SIP/0000FFFF0002. It
would be a long and error-prone process, to say the least.

On the other hand, if you had defined a global variable that contained the value SIP/
0000FFFF0001 at the beginning of your dialplan and then referenced that instead, you
would have to change only one line of code to affect all places in the dialplan where
that channel was used.

Global variables should be declared in the [globals] context at the beginning of the
extensions.conf file. As an example, we will create a global variable named LEIF with a
value of SIP/0000FFFF0001. This variable is set at the time Asterisk parses the dialplan:

[globals]
LEIF=SIP/0000FFFF0001

Channel variables

A channel variable is a variable that is associated only with a particular call. Unlike
global variables, channel variables are defined only for the duration of the current call
and are available only to the channels participating in that call.

Building an Interactive Dialplan | 123

There are many predefined channel variables available for use within the dialplan,
which are explained in the Asterisk wiki at https://wiki.asterisk.org/wiki/display/AST/
Channel+Variables. Channel variables are set via the Set() application:

exten => 202,1,Set(MagicNumber=42)
 same => n,SayNumber(${MagicNumber})

You’re going to be seeing a lot more channel variables. Read on.

Environment variables

Environment variables are a way of accessing Unix environment variables from within
Asterisk. These are referenced using the ENV() dialplan function.* The syntax looks like
${ENV(var)}, where var is the Unix environment variable you wish to reference. Envi-
ronment variables aren’t commonly used in Asterisk dialplans, but they are available
should you need them.

Adding variables to our dialplan

Now that we’ve learned about variables, let’s put them to work in our dialplan. We’re
going to add three global variables that will associate a variable name to a channel name:

[globals]
LEIF=SIP/0000FFFF0001
JIM=SIP/0000FFFF0002
RUSSELL=SIP/0000FFFF0003

[LocalSets]
exten => 100,1,Dial(${LEIF})
exten => leif,1,Dial(${LEIF})

exten => 101,1,Dial(${JIM})
exten => jim,1,Dial(${JIM})

exten => 102,1,Dial(${RUSSELL})
exten => russell,1,Dial(${RUSSELL})

[TestMenu]
exten => 201,1,Answer()
 same => n,Background(enter-ext-of-person)
 same => n,WaitExten()

exten => 1,1,Dial(DAHDI/1,10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

exten => 2,1,Dial(SIP/Jane,10)
 same => n,Playback(vm-nobodyavail)
 same => n,Hangup()

* We’ll get into dialplan functions later. Don’t worry too much about environment variables right now. They
are not important to understanding the dialplan.

124 | Chapter 6: Dialplan Basics

https://wiki.asterisk.org/wiki/display/AST/Channel+Variables
https://wiki.asterisk.org/wiki/display/AST/Channel+Variables

exten => i,1,Playback(pbx-invalid)
 same => n,Goto(incoming,123,1)

exten => t,1,Playback(vm-goodbye)
 same => n,Hangup()

You’ll notice we’ve added pseudonym extension names for our extension numbers. In
“Extensions” on page 110, we explained that Asterisk does not care which naming
scheme you use to identify an extension. We’ve simply added both numeric and named
extension identifiers for reaching the same endpoint; extensions 100 and leif both
reach the device located at SIP/0000FFFF0001, extensions 101 and jim both reach the
device located at SIP/0000FFFF0002, and both 102 and russell reach the device located
at SIP/0000FFFF0003. The devices are identified with the global variables ${LEIF}, $
{JIM}, and ${RUSSELL}, respectively, and we’re dialing those locations using the
Dial() application.

In our test menu we’ve simply picked a couple of random endpoints to dial, such as
DAHDI/1 and SIP/Jane. These could be replaced with any available endpoints that you
wish. Our TestMenu context has been built to start giving you an idea as to what an
Asterisk dialplan looks like.

Pattern Matching
If we want to be able to allow people to dial through Asterisk and have Asterisk connect
them to outside resources, we need a way to match on any possible phone number that
the caller might dial. For situations like this, Asterisk offers pattern matching. Pattern
matching allows you to create one extension in your dialplan that matches many dif-
ferent numbers. This is enormously useful.

Pattern-matching syntax

When using pattern matching, certain letters and symbols represent what we are trying
to match. Patterns always start with an underscore (_). This tells Asterisk that we’re
matching on a pattern, and not on an explicit extension name.

If you forget the underscore at the beginning of your pattern, Asterisk
will think it’s just a named extension and won’t do any pattern match-
ing. This is one of the most common mistakes people make when start-
ing to learn Asterisk.

After the underscore, you can use one or more of the following characters:

X
Matches any single digit from 0 to 9.

Z
Matches any single digit from 1 to 9.

Building an Interactive Dialplan | 125

N
Matches any single digit from 2 to 9.

[15-7]
Matches a single character from the range of digits specified. In this case, the pat-
tern matches a single 1, as well as any number in the range 5, 6, 7.

. (period)
Wildcard match; matches one or more characters, no matter what they are.

If you’re not careful, wildcard matches can make your dialplans do
things you’re not expecting (like matching built-in extensions such
as i or h). You should use the wildcard match in a pattern only after
you’ve matched as many other digits as possible. For example, the
following pattern match should probably never be used:

_.

In fact, Asterisk will warn you if you try to use it. Instead, if you
really need a catch-all pattern match, use this one to match all
strings that start with a digit:

_X.

Or this one, to match any alphanumeric string:

_[0-9a-zA-Z].

! (bang)
Wildcard match; matches zero or more characters, no matter what they are.

To use pattern matching in your dialplan, simply put the pattern in the place of the
extension name (or number):

exten => _NXX,1,Playback(silence/1&auth-thankyou)

In this example, the pattern matches any three-digit extension from 200 through 999
(the N matches any digit between 2 and 9, and each X matches a digit between 0 and 9).
That is to say, if a caller dialed any three-digit extension between 200 and 999 in this
context, he would hear the sound file auth-thankyou.gsm.

One other important thing to know about pattern matching is that if Asterisk finds
more than one pattern that matches the dialed extension, it will use the most specific
one (going from left to right). Say you had defined the following two patterns, and a
caller dialed 555-1212:

exten => _555XXXX,1,Playback(silence/1&digits/1)
exten => _55512XX,1,Playback(silence/1&digits/2)

In this case the second extension would be selected, because it is more specific.

126 | Chapter 6: Dialplan Basics

Pattern-matching examples

This pattern matches any seven-digit number, as long as the first digit is 2 or higher:

_NXXXXXX

The preceding pattern would be compatible with any North American Numbering Plan
local seven-digit number.

In areas with 10-digit dialing, that pattern would look like this:

_NXXNXXXXXX

Note that neither of these two patterns would handle long-distance calls. We’ll cover
those shortly.

The NANP and Toll Fraud
The North American Numbering Plan (NANP) is a shared telephone numbering
scheme used by 19 countries in North America and the Caribbean. All of these countries
share country code 1.

In the United States and Canada, telecom regulations are similar (and sensible) enough
that you can place a long-distance call to most numbers in country code 1 and expect
to pay a reasonable toll. However, many people don’t realize that 17 other countries,
many of which have very different telecom regulations, share the NANP. (More infor-
mation can be found at http://www.nanpa.com.)

One popular scam using the NANP tries to trick naïve North Americans into calling
expensive per-minute toll numbers in a Caribbean country; the callers believe that since
they dialed 1-NPA-NXX-XXXX to reach the number, they’ll be paying their standard
national long-distance rate for the call. Since the country in question may have regu-
lations that allow for this form of extortion, the caller is ultimately held responsible for
the call charges.

The only way to prevent this sort of activity is to block calls to certain area codes (809,
for example) and remove the restrictions only on an as-needed basis.

Let’s try another:

_1NXXNXXXXXX

This one will match the number 1, followed by an area code between 200 and 999, then
any seven-digit number. In the NANP calling area, you would use this pattern to match
any long-distance number.†

† If you grew up in North America, you may believe that the 1 you dial before a long-distance call is “the long-
distance code.” This is incorrect. The number 1 is the international country code for NANP. Keep this in
mind if you send your phone number to someone in another country. The recipient may not know your
country code, and thus be unable to call you with just your area code and phone number. Your full phone
number with country code is +1 NPA NXX XXXX (where NPA is your area code)―e.g., +1 416 555 1212.

Building an Interactive Dialplan | 127

http://www.nanpa.com

And finally this one:

_011.

Note the period on the end. This pattern matches any number that starts with 011 and
has at least one more digit. In the NANP, this indicates an international phone number.
(We’ll be using these patterns in the next section to add outbound dialing capabilities
to our dialplan.)

Pattern Matches in Other Countries
The examples in this section were NANPA-centric, but the basic logic applies in any
country. Here are some examples for other countries (note that we were not able to test
these, and they are almost certainly incomplete):

; UK, Germany, Italy, China, etc.
_00. ; international dialing code
_0. ; national dialing prefix

; Australia
_0011. ; international dialing code
_0. ; national dialing prefix

This is by no means comprehensive, but it should give you a general idea of the patterns
you’ll want to consider for your own country.

Using the ${EXTEN} channel variable

So what happens if you want to use pattern matching but need to know which digits
were actually dialed? Enter the ${EXTEN} channel variable. Whenever you dial an ex-
tension, Asterisk sets the ${EXTEN} channel variable to the digits that were dialed. We
can use an application called SayDigits() to test this out:

exten => _XXX,1,Answer()
 same => n,SayDigits(${EXTEN})

In this example, the SayDigits() application will read back to you the three-digit ex-
tension you dialed.

Often, it’s useful to manipulate the ${EXTEN} by stripping a certain number of digits off
the front of the extension. This is accomplished by using the syntax ${EXTEN:x}, where
x is where you want the returned string to start, from left to right. For example, if the
value of ${EXTEN} is 95551212, ${EXTEN:1} equals 5551212. Let’s try another example:

exten => _XXX,1,Answer()
 same => n,SayDigits(${EXTEN:1})

In this example, the SayDigits() application would start at the second digit, and thus
read back only the last two digits of the dialed extension.

128 | Chapter 6: Dialplan Basics

More Advanced Digit Manipulation
The ${EXTEN} variable properly has the syntax ${EXTEN:x:y}, where x is the starting po-
sition and y is the number of digits to return. Given the following dial string:

94169671111

we can extract the following digit strings using the ${EXTEN:x:y} construct:

• ${EXTEN:1:3} would contain 416

• ${EXTEN:4:7} would contain 9671111

• ${EXTEN:-4:4} would start four digits from the end and return four digits, giving
us 1111

• ${EXTEN:2:-4} would start two digits in and exclude the last four digits, giving us
16967

• ${EXTEN:-6:-4} would start six digits from the end and exclude the last four digits,
giving us 67

• ${EXTEN:1} would give us everything after the first digit, or 4169671111 (if the num-
ber of digits to return is left blank, it will return the entire remaining string)

This is a very powerful construct, but most of these variations are not very common in
normal use. For the most part, you will be using ${EXTEN} (or perhaps ${EXTEN:1} if you
need to strip off an external access code).

Includes
Asterisk has an important feature that allows extensions from one context to be avail-
able from within another context. This is accomplished through use of the include
directive. The include directive allows us to control access to different sections of the
dialplan.

The include statement takes the following form, where context is the name of the
remote context we want to include in the current context:

include => context

Including one context within another context allows extensions within the included
context to be dialable.

When we include other contexts within our current context, we have to be mindful of
the order in which we are including them. Asterisk will first try to match the dialed
extension in the current context. If unsuccessful, it will then try the first included con-
text (including any contexts included in that context), and then continue to the other
included contexts in the order in which they were included.

We will discuss the include directive more in Chapter 7.

Building an Interactive Dialplan | 129

Conclusion
And there you have it—a basic but functional dialplan. There is still much we have not
covered, but you’ve got all of the fundamentals. In the following chapters, we’ll con-
tinue to build on this foundation.

If parts of this dialplan don’t make sense, you may want to go back and reread a section
or two before continuing on to the next chapter. It’s imperative that you understand
these principles and how to apply them, as the next chapters build on this information.

130 | Chapter 6: Dialplan Basics

CHAPTER 7

Outside Connectivity

You cannot always control what goes on outside. But
you can always control what goes on inside.

—Wayne Dyer

In the previous chapters, we have covered a lot of important information that is essential
to a working Asterisk system. However, we have yet to accomplish the one thing that
is vital to any useful PBX: namely, connecting it to the outside world. In this chapter
we will rectify that situation.

The architecture of Asterisk is significant, due in large part to the fact that it treats all
channel types as equal. This is in contrast to a traditional PBX, where trunks (which
connect to the outside world) and extensions (which connect to users and resources)
are very different. The fact that the Asterisk dialplan treats all channels in a similar
manner means that in an Asterisk system you can accomplish very easily things that
are much more difficult (or impossible) to achieve on a traditional PBX.

This flexibility does come with a price, however. Since the system does not inherently
know the difference between an internal resource (such as a telephone set) and an
external resource (for example, a telco circuit), it is up to you to ensure that your
dialplan handles each type of resource appropriately.

The Basics of Trunking
The purpose of trunking is to provide a shared connection between two entities. For
example, a trunk road would be a highway that connects two towns together. Railroads
used the term “trunk” extensively, to refer to a major line that connected feeder lines
together.

Similarly, in telecom, trunking is used to connect two systems together. Carriers use
telecom trunks to connect their networks together, and in a PBX, the circuits that con-
nect the PBX to the outside world are commonly referred to as trunks (although the
carriers themselves do not generally consider these to be trunks). From a technical

131

perspective, the definition of a trunk is not as clear as it used to be (PBX trunks used
totally different technology from station circuits), but as a concept, trunks are still very
important. For example, with VoIP, everything is actually peer-to-peer (so from a tech-
nology perspective there isn’t really such a thing as a trunk anymore), but it is still useful
to be able to differentiate between VoIP resources that connect to the outside world
and VoIP resources that connect to user endpoints (such as SIP telephones).

It’s probably easiest to think of a trunk as a collection of circuits that service a route.
So, in an Asterisk PBX, you might have trunks that go to your VoIP provider for long-
distance calls, trunks for your PSTN circuits, and trunks that connect your various
offices together. These trunks might actually run across the same network connection,
but in your dialplan you could treat them quite differently.

While we believe that VoIP will eventually completely replace the PSTN, many of the
concepts that are in use on VoIP circuits (such as a “phone number”) owe their existence
more to history than any technical requirement, and thus we feel it will be helpful to
discuss using traditional PSTN circuits with Asterisk before we get into VoIP.

If the system you are installing will use VoIP circuits only, that is not a problem. Go
straight to the VoIP section of this chapter,* and we’ll take you through what you need
to do. We do recommend reading the PSTN sections at your convenience, since there
may be general knowledge in them that could be of use to you, but it is not strictly
required in order to understand and use Asterisk.

Fundamental Dialplan for Outside Connectivity
In a traditional PBX, external lines are generally accessed by way of an access code that
must be dialed before the number.† It is common to use the digit 9 for this purpose.

In Asterisk, it is similarly possible to assign 9 for routing of external calls, but since the
Asterisk dialplan is so much more intelligent, it is not really necessary to force your
users to dial 9 before placing a call. Typically, you will have an extension range for your
system (say, 100–199), and a feature code range (*00 to *99). Anything outside those
ranges that matches the dialing pattern for your country or region can be treated as an
external call.

If you have one carrier providing all of your external routing, you can handle your
external dialing through a few simple pattern matches. The example in this section is
valid for the North American Numbering Plan (NANP). If your country is not within
the NANP (which serves Canada, the US, and several Caribbean countries), you will
need a different pattern match.

* But do not collect $200.

† In a key system, each line has a corresponding button on each telephone, and lines are accessed by pressing
the desired line key.

132 | Chapter 7: Outside Connectivity

The [globals] section contains two variables, named LOCAL and TOLL.‡ The purpose of
these variables is to simplify management of your dialplan should you ever need to
change carriers. They allow you to make one change to the dialplan that will affect all
places where the specified channel is referred to:

[globals]
LOCAL=DAHDI/G0 ; assuming you have a PSTN card in your system
TOLL=SIP/YourVoipCarrier ; as defined in sip.conf

The [external] section contains the actual dialplan code that will recognize the num-
bers dialed and pass them to the Dial() application§:

[external]
exten => _NXXNXXXXXX,1,Dial(${LOCAL}/$EXTEN}) ; 10-digit pattern match for NANP
exten => _NXXXXXX,1,Dial(${LOCAL}/${EXTEN}) ; 7-digit pattern match for NANP
exten => _1NXXNXXXXXX,1,Dial(${TOLL}/${EXTEN}) ; Long-distance pattern match for NANP
exten => _011.,1,Dial(${TOLL}/${EXTEN}) ; International pattern match for
 ; calls made from NANP

; This section is functionally the same as the above section.
; It is for people who like to dial '9' before their calls
exten => _9NXXNXXXXXX,1,Dial(${LOCAL}/${EXTEN:1})
exten => _9NXXXXXX,1,Dial(${LOCAL}/${EXTEN:1})
exten => _91NXXNXXXXXX,1,Dial(${TOLL}/${EXTEN:1})
exten => _9011.,1,Dial(${TOLL}/${EXTEN:1})

In any context that would be used by sets or user devices, you would use an
include=> directive to allow access to the external context:

[LocalSets]
include => external

It is critically important that you do not include access to the external
lines in any context that might process an incoming call. The risk here
is that a phishing bot could eventually gain access to your outgoing
trunks (you’d be surprised at how common these phishing bots are).

We cannot stress enough how important it is that you ensure that no
external resource can access your toll lines.

PSTN Circuits
The Public Switched Telephone Network (PSTN) has existed for over a century. It is
the precursor to many of the technologies that shape our world today, from the Internet
to MP3 players.

‡ You can name these anything you wish. The words “local” and “toll” do not have any built-in meaning to
the Asterisk dialplan.

§ For more information on pattern matches, see Chapter 6.

PSTN Circuits | 133

Traditional PSTN Trunks
There are two types of fundamental technology that phone carriers use to deliver tel-
ephone circuits: analog and digital.

Analog telephony

The first telephone networks were all analog. The audio signal that you generated with
your voice was used to generate an electrical signal that was carried to the other end.
The electrical signal had the same characteristics as the sound being produced.

Analog circuits have several characteristics that differentiate them from other circuits
you might wish to connect to Asterisk:

• No signaling channel exists—most signaling is electromechanical.

• Disconnect supervision is usually delayed by several seconds, and is not completely
reliable.

• Far-end supervision is minimal (for example, answer supervision is lacking).

• Differences in circuits means that audio characteristics will vary from circuit to
circuit, and will require tuning.

Analog circuits that you wish to connect to your Asterisk system will need to connect
to a Foreign eXchange Office (FXO) port. Since there is no such thing as an FXO port
in any standard computer, an FXO card must be purchased and installed in the system
in order to connect traditional analog lines.‖

FXO and FXS
For any analog circuit, there are two ends: the office (typically the central office of the
PSTN), and the station (typically a phone, but could also be a card such as a modem
or line card in a PBX).

The central office is responsible for:

• Power on the line (nominally 48 VDC)

• Ringing voltage (nominally 90 VAC)

• Providing dial tone

• Detecting hook state (off-hook and on-hook)

• Sending supplementary signaling such as caller ID

‖ You would use the exact same card if you wanted to connect a traditional home telephone line to your Asterisk
system.

134 | Chapter 7: Outside Connectivity

The station is responsible for:

• Providing a ringer (or at least being able to handle ringing voltage in some manner)

• Providing a dialpad (or some way of sending DTMF)

• Providing a hook switch to indicate the status of the line

A Foreign eXchange (FX) port is named by what it connects to, not by what it does. So,
for example, a Foreign eXchange Office (FXO) port is actually a station: it connects to
the central office. A Foreign eXchange Station (FXS) port is actually a port that provides
the services of a central office (in other words, you would plug an analog set into an
FXS port).

It is for this reason that the signaling settings in the Asterisk config files seem backwards:
FXO ports use FXS signaling; FXS ports use FXO signaling. When you understand that
the name of the physical port type is based on what it connects to, the signaling names
in Asterisk make a bit more sense: if an FXO port connects to the central office, it needs
to be able to behave as a station, and therefore needs FXS signaling.

Note that changing from FXO to FXS is not something you can simply do with a settings
change. FXO and FXS ports require completely different electronics. Most analog cards
available for Asterisk use some form of daughter card that connects to the main card
and provides the correct channel type, meaning that you have some flexibility in de-
fining what types of ports you have on your card.

Analog ports are not generally used in medium to large systems. They are most com-
monly used in smaller offices (less than 10 lines; less than 30 phones). Your decision
to use analog might be based on some of the following factors:

• Availability of digital trunks in your area

• Cost (analog is less expensive at smaller densities, but more expensive at higher
densities)

• Logistics (if you already have analog lines installed, you may wish to keep them)

From a technical perspective, you would normally want to have digital rather than
analog circuits. Reality does not always accommodate, though, so analog will likely be
around for a few more years yet.

Digital telephony

Digital telephony was developed in order to overcome many of the limitations of analog.
Some of the benefits of digital circuits include:

• No loss of amplitude over long distances

• Reduced noise on circuits (especially long-distance circuits)

• Ability to carry more than one call per circuit

• Faster call setup and teardown

PSTN Circuits | 135

• Richer signaling information (especially if using ISDN)

• Lower cost for carriers

• Lower cost for customers (at higher densities)

In an Asterisk system (or any PBX, for that matter), there are several types of digital
circuits you might want to connect:

T1 (24 channels)
Used in Canada and the United States (mostly for ISDN-PRI)

E1 (32 channels)
Used in the rest of the world (ISDN-PRI or MFC/R2)

BRI (2 channels)
Used for ISDN-BRI circuits (Euro-ISDN)

Note that the physical circuit can be further defined by the protocol running on the
circuit. For example, a T1 could be used for either ISDN-PRI, or CAS, and an E1 could
be used for ISDN-PRI, CAS, or MFC/R2. We’ll discuss the different protocols in the
next section.

Installing PSTN Trunks
Depending on the hardware you have installed, the process for installing your PSTN
cards will vary. We will discuss installation in general terms, which will apply to all
Digium PSTN cards. Other manufacturers tend to provide installation scripts with their
hardware, which will automate much of this for you.

Downloading and installing DAHDI

The Digium Asterisk Hardware Device Interface, a.k.a. DAHDI (DAW-dee)# is the
software framework required to enable communication between PSTN cards and
Asterisk. Even if you do not have any PSTN hardware, we recommend installing
DAHDI since it is a simple, reliable way to get a valid timing source.* Complete DAHDI
installation instructions can be found in Chapter 3.

Disable Loading Extra DAHDI Modules
By default DAHDI will load all compiled modules into memory. As this is unnecessary,
let’s disable loading any of the hardware modules for now. If no modules are loaded in
the configuration files, DAHDI will load the dahdi_dummy driver, which provides an
interface for Asterisk to get timing from the kernel so that timing-dependent modules
such as MeetMe and IAX2 trunking work correctly.

#Don’t ask.

* There are other ways of getting a timing source, and if you want a really tight system it is possible to run
Asterisk without DAHDI, but it’s not something we’re going to cover here.

136 | Chapter 7: Outside Connectivity

As of DAHDI 2.3.0, the requirement to load dahdi_dummy for a timing
interface no longer exists. The same functionality has now been in-
tegrated into the main dahdi kernel module.

The configuration file defining which modules DAHDI will load is in /etc/dahdi/mod-
ules. To disable loading of extra modules, all we need to do is edit the modules file and
comment out all the modules by placing a hash (#) at the start of each line. When you’re
done, your modules configuration file should look similar to the following:

Contains the list of modules to be loaded / unloaded by /etc/init.d/dahdi.

NOTE: Please add/edit /etc/modprobe.d/dahdi or /etc/modprobe.conf if you
would like to add any module parameters.

Format of this file: list of modules, each in its own line.
Anything after a '#' is ignored, likewise trailing and leading
whitespace and empty lines.
Digium TE205P/TE207P/TE210P/TE212P: PCI dual-port T1/E1/J1
Digium TE405P/TE407P/TE410P/TE412P: PCI quad-port T1/E1/J1
Digium TE220: PCI-Express dual-port T1/E1/J1
Digium TE420: PCI-Express quad-port T1/E1/J1
#wct4xxp
Digium TE120P: PCI single-port T1/E1/J1
Digium TE121: PCI-Express single-port T1/E1/J1
Digium TE122: PCI single-port T1/E1/J1
#wcte12xp
Digium T100P: PCI single-port T1
Digium E100P: PCI single-port E1
#wct1xxp
Digium TE110P: PCI single-port T1/E1/J1
#wcte11xp
Digium TDM2400P/AEX2400: up to 24 analog ports
Digium TDM800P/AEX800: up to 8 analog ports
Digium TDM410P/AEX410: up to 4 analog ports
#wctdm24xxp
X100P - Single port FXO interface
X101P - Single port FXO interface
#wcfxo
Digium TDM400P: up to 4 analog ports
#wctdm
Digium B410P: 4 NT/TE BRI ports
#wcb4xxp
Digium TC400B: G729 / G723 Transcoding Engine
#wctc4xxp
Xorcom Astribank Devices
#xpp_usb

You can also use dahdi_genconf modules to generate a proper empty
configuration file. The dahdi_genconf application will search your
system for hardware and, if none is found, create a modules file that
does not load any hardware modules.

PSTN Circuits | 137

You can then restart your DAHDI process to unload any existing drivers that were
loaded, and load just the dahdi_dummy module with the init script:

$ sudo /etc/init.d/dahdi restart
Unloading DAHDI hardware modules: done
Loading DAHDI hardware modules:
No hardware timing source found in /proc/dahdi, loading dahdi_dummy
Running dahdi_cfg: [OK]

Before you can start using your hardware, though, you’ll need to configure the /etc/
dahdi/system.conf file; this process is described in “Configuring digital cir-
cuits” on page 138 and “Configuring analog circuits” on page 142.

Configuring digital circuits

Digital telephony was developed by carriers as a way to reduce the cost of long-distance
circuits, as well as improve transmission quality. The entire PSTN backbone has been
fully digital for many years now. The essence of a digital circuit is the digitization of
the audio, but digital trunks also allow for more complex and reliable signaling. Several
standards have been developed and deployed, and for each standard there may be
regional differences as well.

You can use dahdi_hardware and lsdahdi to help you determine what
telephony hardware your system contains. You can also use dahdi_gen-
conf modules to build an /etc/asterisk/modules file for you based on the
found hardware.

Primary Rate Interface ISDN (commonly known as PRI) is a protocol designed
to run primarily on a DS1 circuit (a T1 or E1, depending on where you are in the world)
between a carrier and a customer. PRI uses one of the DS0 channels as a signaling
channel (referred to as the D-channel). A typical PRI circuit is therefore broken down
into a group of B-channels (the bearer channels that actually carry the calls), and a
D-channel for signaling. Although it is most common to find a PRI circuit being carried
across a single physical circuit (such as a T1 or E1), it is possible to have a PRI circuit
span multiple DS1s, and even to have multiple D-channels.†

While there are many different ways to configure PRI circuits, we are hoping to avoid
confusing you with all of the options (many of which are obsolete or at least no longer
in common use), and instead provide examples of the more common configurations.

PRI ISDN.

† Sometimes circuits are referenced by the number of B- and D-channels they contain, so a single T1 running
the PRI protocol in North America might be referred to as 23B+D, and a dual T1 circuit with a backup
D-channel would be a 46B+2D. We’ve even seen PRI referenced as nB+nD, although this can get a little bit
pedantic.

138 | Chapter 7: Outside Connectivity

When installing telephony hardware, be sure you update the /etc/dahdi/
modules file to enable the appropriate modules for your hardware and
then reload DAHDI with the init script (/etc/init.d/dahdi). You can use
the dahdi_genconf modules command to generate the modules file for
your system as well.

Most PRI circuits in North America will use a T1 with the following characteristics:

• Line code: B8ZS (bipolar with 8-zeros substitution)

• Framing: ESF (extended superframe)

You will need to configure two files. The /etc/dahdi/system.conf file should look some-
thing like this:

loadzone = us
defaultzone = us

span = 1,1,0,esf,b8zs
bchan = 1-23
echocanceller = mg2,1-23
hardhdlc = 24

And the /etc/asterisk/chan_dahdi.conf file should look like this:

[trunkgroups]

[channels]

usecallerid = yes
hidecallerid = no
callwaiting = yes
usecallingpres = yes
callwaitingcallerid = yes
threewaycalling = yes
transfer = yes
canpark = yes
cancallforward = yes
callreturn = yes
echocancel = yes
echocancelwhenbridged = yes
relaxdtmf = yes
rxgain = 0.0
txgain = 0.0
group = 1
callgroup = 1
pickupgroup = 1
immediate = no

switchtype = national ; commonly referred to as NI2
context = from-pstn
group = 0
echocancel = yes

PSTN Circuits | 139

signalling = pri_cpe
channel => 1-23

Some carriers will use Nortel’s DMS switch, which commonly uses the DMS100 pro-
tocol instead of National ISDN 2. In this case you would set the switchtype to DMS100:

switchtype = dms100

Outside of Canada and the US, PRI circuits will be carried on an E1 circuit.

In Europe, an E1 circuit used for PRI will normally have the following characteristics:

• Line code: CCS

• Framing: HDB3 (high-density bipolar)

The /etc/dahdi/system.conf file might look something like this:

span = 1,0,0,ccs,hdb3,crc4
bchan = 1-15,17-31
hardhdlc = 16

And the /etc/asterisk/chan_dahdi.conf file should look something like this:

[trunkgroups]

[channels]

usecallerid = yes
hidecallerid = no
callwaiting = yes
usecallingpres = yes
callwaitingcallerid = yes
threewaycalling = yes
transfer = yes
canpark = yes
cancallforward = yes
callreturn = yes
echocancel = yes
echocancelwhenbridged = yes
relaxdtmf = yes
rxgain = 0.0
txgain = 0.0
group = 1
callgroup = 1
pickupgroup = 1
immediate = no

switchtype = qsig
context = pri_incoming
group = 0
signalling = pri_cpe
channel => 1-15,17-31

Basic Rate Interface ISDN (commonly known as BRI, or sometimes even just
ISDN) was intended to be the smaller sibling to PRI. BRI only provides two 64K
B-channels and a 16K D-channel. The use of BRI has been somewhat limited in North

BRI ISDN.

140 | Chapter 7: Outside Connectivity

America (we don’t recommend using it for any reason), but in some countries in Europe
it is widely used and has almost completely replaced analog.

BRI support under Asterisk will be different depending on the BRI card you are instal-
ling. The manufacturer of your BRI card will provide specific installation instructions
for its hardware.

When installing telephony hardware, be sure you update the /etc/dahdi/
modules file to enable the appropriate modules for your hardware and
then reload DAHDI with the init script (/etc/init.d/dahdi). You can use
the dahdi_genconf modules command to generate the modules file for
your system as well.

The MFC/R2 protocol could be thought of as a precursor to ISDN. It was at
first used on analog circuits, but it is now mostly deployed on the same E1 circuits that
also carry ISDN-PRI. This protocol is not typically found in Canada, the US, or Western
Europe, but it is very popular in some parts of the world (especially Latin America and
Asia), mostly because it tends to be a less expensive service offering from the carriers.

There are many different flavors of this protocol, each country having a different re-
gional variant.

The OpenR2 project provides the libopenr2 library, which needs to be installed on your
system in order for Asterisk to support your R2 circuits. Before installing libopenr2,
however, you need to have DAHDI installed.

The compilation and installation order, therefore, is:

1. DAHDI

2. libopenr2

3. Asterisk

Once OpenR2 has been installed, you can use the r2test application to see a list of
variants that are supported:

$ r2test -l
Variant Code Country
AR Argentina
BR Brazil
CN China
CZ Czech Republic
CO Colombia
EC Ecuador
ITU International Telecommunication Union
MX Mexico
PH Philippines
VE Venezuela

For additional information on configuring R2 support in Asterisk, see the configs/
chan_dahdi.conf.sample file included in the Asterisk source tree (search for “mfcr2”).

MFC/R2.

PSTN Circuits | 141

Additionally, OpenR2 contains some sample configuration files for connecting Asterisk
to networks in various countries. To read information about some of the country var-
iants, search the /doc/asterisk folder and refer to the documents inside the appropriate
subdirectory:

$ ls doc/asterisk/
ar br ec mx ve

As an example, OpenR2 provides a sample configuration for connecting to Telmex or
Axtel in Mexico. We’ll step you through this to give you an idea of the process. First,
you must configure DAHDI by modifying /etc/dahdi/system.conf as shown here:

loadzone = us
defaultzone = us

span = 1,1,0,cas,hdb3
cas = 1-15:1101
cas = 17-31:1101

span = 2,1,0,cas,hdb3
cas = 32-46:1101
cas = 48-62:1101

Next, you must configure Asterisk by modifying /etc/asterisk/chan_dahdi.conf as
follows:

signalling = mfcr2
mfcr2_variant = mx
mfcr2_get_ani_first = no
mfcr2_max_ani = 10
mfcr2_max_dnis = 4
mfcr2_category = national_subscriber
mfcr2_mfback_timeout = -1
mfcr2_metering_pulse_timeout = -1
; this is for debugging purposes
mfcr2_logdir = log
mfcr2_logging = all
; end debugging configuration
channel => 1-15
channel => 17-31

Configuring analog circuits

There are many companies producing PSTN cards for Asterisk. The card will need to
have its drivers installed so that Linux can recognize it (DAHDI ships with these drivers
for Digium cards). From that point, configuration is handled by the Asterisk module
chan_dahdi.

You can use dahdi_hardware and lsdahdi to determine what telephony
hardware your system contains.

142 | Chapter 7: Outside Connectivity

When installing telephony hardware, be sure you update the /etc/dahdi/
modules file to enable the appropriate modules for your hardware and
then reload DAHDI with the init script (/etc/init.d/dahdi). You can use
the dahdi_genconf modules command to generate the modules file for
your system as well.

In order to configure an FXO card to work with Asterisk, two files are required.

The first is not an Asterisk configuration file, and is thus located in the /etc/dahdi folder
on your system.‡ This file, system.conf allows you to define some basic parameters, as
well as specify the channels that will be available to your system. Our example assumes
a four-port FXO card, but many different combinations are possible, depending on
your hardware.

loadzone = us ; tonezone defines sounds the interface must produce
 ; (dialtone, busy signal, ringback, etc.)
defaultzone = us ; define a default tonezone
fxsks = 1-4 ; which channels on the card will have these parameters

Once your card and channels are known to the operating system, you must configure
them for Asterisk by means of the file /etc/asterisk/chan_dahdi.conf:

[channels]

;
; To apply other options to these channels, put them before "channel".
;
signalling = fxs_ks ; in Asterisk, FXO channels use FXS signaling
 ; (and yes, FXS channels use FXO signaling)
channel => 1-4 ; apply all the previously defined settings to this channel

In this example, we have told Asterisk that the first four DAHDI channels in the system
are FXO ports.

If you are connecting to the PSTN using analog channels, we need to
explain extension s. When calls enter a context without a specific destination extension
(for example, a ringing FXO line from the PSTN), they are passed to the s extension.
(The s stands for “start,” as this is where a call will start if no extension information
was passed with the call). This extension can also be useful for accepting calls that have
been redirected from other parts of the dialplan. For example, if we had a list of DID
numbers that were all going to the same place, we might want to point each DID to the
s extension, rather than having to code duplicate dialplan logic for each DID.

Since this is exactly what we need for our dialplan, let’s begin to fill in the pieces. We
will be performing three actions on the call (answer it, play a sound file, and hang it
up), so our s extension will need three priorities. We’ll place the three priorities below

The s extension.

‡ In theory, these cards could be used for any software that supports DAHDI; therefore, the basic card
configuration is not a part of Asterisk.

PSTN Circuits | 143

[incoming], because we have decided that all incoming calls should start in this
context§:

[incoming]
exten => s,1,Answer()
 same => n,Playback(tt-weasels)
 same => n,Hangup()

Obviously, you would not normally want to answer a call and then hang up. Typically,
an incoming call will either be answered by an automated attendant, or ring directly to
a phone (or group of phones).

VoIP
In the world of telecom, VoIP is still a relatively new concept. For the century or so
prior to VoIP, the only way to connect your site to the PSTN was through the use of
circuits provided for that purpose by your local telephone company. VoIP now allows
for connections between endpoints without the PSTN having to be involved at all (al-
though in most VoIP scenarios, there will still be a PSTN component at some point,
especially if there is a traditional E.164 phone number involved).

PSTN Termination
Until VoIP totally replaces the PSTN, there will be a need to connect calls from VoIP
networks to the public telephone network. This process is referred to as termination.
What it means is that at some point a gateway connected to the PSTN needs to accept
calls from the VoIP network and connect them to the PSTN network. From the per-
spective of the PSTN, the call will appear to have originated at the termination point.

Asterisk can be used as a PSTN termination point. In fact, given that Asterisk handles
protocol conversion with ease, this can be an excellent use for an Asterisk system.

In order to provide termination, an Asterisk box will need to be able to handle all of
the protocols you wish to connect to the PSTN. In general, this means that your Asterisk
box will need a PRI circuit to handle the PSTN connection, and SIP channels to handle
the calls coming from the VoIP network. The underlying principle is the same regardless
of whether you’re running a small system providing PSTN trunks to an office full of
VoIP telephones, or a complex network of gateway machines deployed in strategic
locations, offering termination to thousands of subscribers.

§ There is nothing special about any context name. We could have named this context
[stuff_that_comes_in], and as long as that was the context assigned in the channel definition in sip.conf,
iax.conf, chan_dahdi.conf, et al., the channel would enter the dialplan in that context. Having said that, it is
strongly recommended that you give your contexts names that help you to understand their purpose. Some
good context names might include [incoming], [local_calls], [long_distance], [sip_telephones],
[user_services], [experimental], [remote_locations], and so forth. Always remember that a context
determines how a channel enters the dialplan, so name accordingly.

144 | Chapter 7: Outside Connectivity

Calls from the VoIP network will arrive in the dialplan in whatever context you assigned
to the incoming SIP channels, and the dialplan will relay the calls out through the PSTN
interface. At its very simplest, a portion of a dialplan that supports termination could
look like this:

[from-voip-network]
exten => _X.,1,Verbose(2, Call from VoIP network to ${EXTEN})
 same => n,Dial(DAHDI/g0/${EXTEN})

In reality, though, you will often have to handle a more complex routing plan that takes
into consideration things like geography, corporate policy, cost, available resources,
and so forth.

Given that most PSTN circuits will allow you to dial any number, any-
where in the world, and given that you will be expected to pay for all
incurred charges, we cannot stress enough the importance of security
on any gateway machine that is providing PSTN termination. Criminals
put a lot of effort into cracking phone systems (especially poorly secured
Asterisk systems), and if you do not pay careful attention to all aspects
of security, you will be the victim of toll fraud. It’s only a matter of time.

Do not allow any unsecured VoIP connections into any context that
contains PSTN termination.

PSTN Origination
Obviously, if you want to pass calls from your VoIP network to the PSTN, you might
also want to be able to accept calls from the PSTN into your VoIP network. The process
of doing this is commonly referred to as origination. This simply means that the call
originated in the PSTN.

In order to provide origination, a phone number is required. You will therefore need
to obtain a circuit from your local phone company, which you will connect to your
Asterisk system. Depending on where you are in the world, there are several different
types of circuits that could provide this functionality, from a basic analog POTS line to
a carrier-grade SS7 circuit.

Phone numbers as used for the purpose of origination are commonly
called direct inward dialing numbers (DIDs). This is not strictly the case
in all situations (for example, the phone number on a traditional analog
line would not be considered a DID), but the term is useful enough that
it has caught on. Historically, a DID referred to a phone number asso-
ciated with a trunk connected to customer premise equipment (CPE).

Since phone numbers are controlled by the traditional telecom industry, you will need
to obtain the number either from a carrier directly, or from one of the many companies
that purchase numbers in bulk and resell them in smaller blocks. If you obtain a circuit

VoIP | 145

such as a PRI circuit, you will normally be able to order DID numbers to be delivered
with that circuit.

In order to accept a call from a circuit you are using for origination, you will normally
need to handle the passing of the phone number that was called. This is because PSTN
trunks can typically handle more than one phone number, and thus the carrier needs
to identify which number was called so that your Asterisk system will know how to
route the call. The number that was dialed is commonly referred to as the Dialed Num-
ber Identification Service (DNIS) number. The DNIS number and the DID do not have
to match,‖ but typically they will. If you are ordering a circuit from the carrier, you will
want to ask that they send the DNIS (if they don’t understand that, you may want to
consider another carrier).

In the dialplan, you associate the incoming circuit with a context that will know how
to handle the incoming digits. As an example, it could look something like this:

[from-pstn]
; This is the context that would be listed in the config file
; for the circuit (i.e. chan_dahdi.conf)

exten => _X.,1,Verbose(2,Incoming call to ${EXTEN})
 same => n,Goto(number-mapping,${EXTEN},1)

[number-mapping]
; This context is not strictly required, but will make it easier
; to keep track of your DIDs in a single location in your dialplan.
; From here you can pass the call to another part of the dialplan
; where the actual dialplan work will take place.

exten => 4165551234,1,Dial(SIP/0000FFFF0001)
exten => 4165554321,1,Goto(autoattendant-context,start,1)
exten => 4165559876,1,VoiceMailMain() ; a handy back door for listening
 ; to voice messages

exten => i,1,Verbose(2,Incoming call to invalid number)

In the number-mapping context you explicitly list all of the DIDs that you expect to
handle, plus an invalid handler for any DIDs that are not listed (you could send invalid
numbers to reception, or to an automated attendant, or to some context that plays an
invalid prompt).

‖ In traditional PBXs, the purpose of DIDs was to allow connection directly to an extension in the office. Many
PBXs could not support concepts such as number translation or flexible digit lengths, and thus the carrier
had to pass the extension number as the DID digits, rather than the number that was dialed (the DNIS
number). For example, the phone number 416-555-1234 might have been mapped to extension 100, and
thus the carrier would have sent the digits 100 to the PBX instead of the DNIS of 4165551234. If you ever
replace an old PBX with an Asterisk system, you may find this translation in place, and you’ll need to obtain
a list of mappings between the numbers that the caller dials and the numbers that are sent to the PBX. It is
also common to see the carrier only pass the last four digits of the DNIS number, which the PBX then translates
into an internal number.

146 | Chapter 7: Outside Connectivity

VoIP to VoIP
Eventually, the need for the PSTN will likely vanish, and most voice communications
will take place over network connections.

The original thinking behind the SIP protocol was that it was to be a peer-to-peer
protocol. Technically, this is still the case. What has happened, however, is that things
have gotten a bit more complicated. Issues such as security, privacy, corporate policies,
integration, centralization, and so forth have made things a bit more involved than
simply putting a URI into a SIP phone and having a SIP phone somewhere else ring in
response.

The SIP protocol has become bloated and complex. Implementing SIP-based systems
and networks has arguably become even more complicated than implementing tradi-
tional phone PBXs and networks.#

We are not going to get into the complexities of designing and implementing VoIP
networks in this book, but we will discuss some of the ways you can configure Asterisk
to support VoIP connectivity to other VoIP systems.

Configuring VoIP Trunks
In Asterisk, there is no need to explicitly install your VoIP modules (unless for some
reason you did not compile Asterisk with the required modules). There are several VoIP
protocols that you can choose to use with Asterisk, but we will focus on the two most
popular: SIP and IAX.

Configuring SIP trunks between Asterisk systems

SIP is far and away the most popular of the VoIP protocols—so much so that many
people would consider other VoIP protocols to be obsolete (they are not, but it cannot
be denied that SIP has dominated VoIP for several years now).

The SIP protocol is peer-to-peer and does not really have a formal trunk specification.
This means that whether you are connecting a single phone to your server or connecting
two servers together, the SIP connections will be similar.

The need to be able to connect two Asterisk
systems together to allow calls to be sent between them is a fairly common requirement.
Perhaps you have a company with two physical locations and want to have a PBX at
each location, or maybe you’re the administrator of the company PBX and you like
Asterisk so much that you would also like to install it at home. This section provides a
quick guide on configuring two Asterisk servers to be able to pass calls to each other

Connecting two Asterisk systems together with SIP.

#There are many proprietary PBX systems in the market that have a basic configuration that will work right
out of the box. Asterisk deployments are far more flexible, but seldom as simple.

VoIP | 147

over SIP. In our example, we will creatively refer to the two servers as serverA and
serverB.

The first file that must be modified is /etc/asterisk/sip.conf. This is the main configura-
tion file for setting up SIP accounts. First, this entry must be added to sip.conf on
serverA. It defines a SIP peer for the other server:

[serverB]

;
; Specify the SIP account type as 'peer'. This means that incoming
; calls will be matched on IP address and port number. So, when Asterisk
; receives a call from 192.168.1.102 and the standard SIP port of 5060,
; it will match this entry in sip.conf. It will then request authentication
; and expect the password to match the 'secret' specified here.
;
type = peer
;
; This is the IP address for the remote box (serverB). This option can also
; be provided a hostname.
;
host = 192.168.1.102
;
; When we send calls to this SIP peer and must provide authentication,
; we use 'serverA' as our username.
;
username = serverA
;
; This is the shared secret with serverB. It will be used as the password
; when either receiving a call from serverB, or sending a call to serverB.
;
secret = apples
;
; When receiving a call from serverB, match it against extensions
; in the 'incoming' context of extensions.conf.
;
context = incoming
;
; Start by clearing out the list of allowed codecs.
;
disallow = all
;
; Only allow the ulaw codec.
;
allow = ulaw

Be sure to change the host option to match the appropriate IP address
for your own setup.

148 | Chapter 7: Outside Connectivity

Now put the following entry in /etc/asterisk/sip.conf on serverB. It is nearly identical to
the contents of the entry we put on serverA, but the name of the peer and the IP address
were changed:

[serverA]

type = peer
host = 192.168.1.101
username = serverB
secret = apples
context = incoming
disallow = all
allow = ulaw

At this point you should be able to verify that the configuration has been successfully
loaded into Asterisk using some CLI commands. The first command to try is sip show
peers. As the name implies, it will show all SIP peers that have been configured:

*CLI> sip show peers
Name/username Host Dyn Forcerport ACL Port Status
serverB/serverA 192.168.1.101 5060 Unmonitored
1 sip peers [Monitored: 0 online, 0 offline Unmonitored: 1 online, 0 offline]

You can also try sip show peer serverB. That command will show much
more detail.

The last step in setting up SIP calls between two Asterisk servers is to modify the dialplan
in /etc/asterisk/extensions.conf. For example, if you wanted any calls made on serverA
to extensions 6000 through 6999 to be sent over to serverB, you would use this line in
the dialplan:

exten => _6XXX,1,Dial(SIP/${EXTEN}@serverB)

When you sign up for a SIP provider, you may
have service for sending and/or receiving phone calls. The configuration will differ
slightly depending on your usage of the SIP provider. Further, the configuration will
differ between each provider. Ideally, the SIP provider that you sign up with will provide
Asterisk configuration examples to help get you connected as quickly as possible. In
case they do not, though, we will attempt to give you a common setup that will help
you get started.

If you will be receiving calls from your service provider, the service provider will most
likely require your server to register with one of its servers. To do so, you must add a
registration line to the [general] section of /etc/asterisk/sip.conf:

[general]
...
register => username:password@your.provider.tld
...

Connecting an Asterisk system to a SIP provider.

VoIP | 149

Next, you will need to create a peer entry in sip.conf for your service provider. Here is
a sample peer entry:

[myprovider]

type = peer
host = your.provider.tld
username = username
secret = password
; Most providers won't authenticate when they send calls to you,
; so you need this line to just accept their calls.
insecure = invite
dtmfmode = rfc2833
disallow = all
allow = ulaw

Now that the account has been defined, you must add some extensions in the dialplan
to allow you to send calls to your service provider:

exten => _1NXXNXXXXXX,1,Dial(SIP/${EXTEN}@myprovider)

Asterisk supports TLS for encryption of the SIP signaling and SRTP
for encryption of the media streams of a phone call. In this section we will set up calls
using SIP TLS and SRTP between two Asterisk severs. The first step is to ensure the
proper dependencies have been installed. Ensure that you have both OpenSSL and
LibSRTP installed. If either one of these was not installed, reinstall Asterisk after in-
stalling these dependencies to ensure that support for TLS and SRTP are included. Once
complete, make sure that the res_srtp module was compiled and installed. To install
OpenSSL, the package is openssl-devel on CentOS and libssl-dev on Ubuntu. To
install LibSRTP, the package is libsrtp-devel on CentOS and libsrtp0-dev on Ubuntu.

Next we will configure SIP TLS. You must enable TLS using the global tlsenable option
in the [general] section of /etc/asterisk/sip.conf on both servers. You can optionally
specify an address to bind to if you would like to limit listening for TLS connections to
a single IP address on the system. In this example, we have the IPv6 wildcard address
specified to allow TLS connections on all IPv4 and IPv6 addresses on the system:

[general]

tlsenable = yes
tlsbindaddr = ::

The next step is to get certificates in place. For the purposes of demonstrating the
configuration and functionality, we are going to generate self-signed certificates using
a helper script distributed with Asterisk. If you were setting this up in a production
environment, you might not want to use self-signed certificates. However, if you do,
there are a number of applications out there that help make it easier to manage your
own certificate authority (CA), such as TinyCA.

The script that we are going to use is ast_tls_cert, which is in the contrib/scripts/ direc-
tory of the Asterisk source tree. We need to generate a CA certificate and two server

Encrypting SIP calls.

150 | Chapter 7: Outside Connectivity

certificates. The first invocation of ast_tls_cert will generate the CA cert and the server
cert for serverA. The second invocation of ast_tls_cert will generate the server cert for
serverB:

$ cd contrib/scripts
$ mkdir certs
$./ast_tls_cert -d certs -C serverA -o serverA
$./ast_tls_cert -d certs -C serverB -o serverB -c certs/ca.crt -k certs/ca.key
$ ls certs
ca.cfg ca.crt ca.key serverA.crt serverA.csr serverA.key serverA.pem
serverB.crt serverB.csr serverB.key serverB.pem tmp.cfg

Now that the certificates have been created, they need to be moved to the appropriate
locations on serverA and serverB. We will use the /var/lib/asterisk/keys/ directory to
hold the certificates. Move the following files to serverA:

• ca.crt

• serverA.pem

And move these files to serverB:

• ca.crt

• serverB.pem

With the certificates in place, we can complete the Asterisk configuration. We need to
point Asterisk to the server certificate that we just created. Since we’re using self-signed
certificates, we also need to point to the CA certificate. In the [general] section of /etc/
asterisk/sip.conf on serverA, add these options:

[general]

tlscertfile = /var/lib/asterisk/keys/serverA.pem
tlscafile = /var/lib/asterisk/keys/ca.crt

Make the same changes to sip.conf on serverB:

[general]

tlscertfile = /var/lib/asterisk/keys/serverB.pem
tlscafile = /var/lib/asterisk/keys/ca.crt

When you create the server certificates, the Common Name field must
match the hostname of the server. If you use the ast_tls_cert script, this
is the value given to the -C option. If there is a problem verifying the
server certificate when you make a call, you may need to fix the Common
Name field. Alternatively, for the sake of testing you can set the tlsdont
verifyserver option to yes in the [general] section of /etc/asterisk/
sip.conf, and Asterisk will allow the call to proceed even if it fails veri-
fication of the server certificate.

In “Connecting two Asterisk systems together with SIP” on page 147, we created the
configuration necessary to pass calls between serverA and serverB. We are now going

VoIP | 151

to modify that configuration so that Asterisk knows that the calls between the two
servers should be encrypted. The only change required is to add the transport = tls
option to the peer entry for the other server.

On serverA:

[serverB]

type = peer
host = 192.168.1.102
username = serverA
secret = apples
context = incoming
disallow = all
allow = ulaw
transport = tls

On serverB:

[serverA]

type = peer
host = 192.168.1.101
username = serverB
secret = apples
context = incoming
disallow = all
allow = ulaw
transport = tls

Now when you make a call using Dial(SIP/serverA) or Dial(SIP/serverB), the SIP
signaling will be encrypted. You can modify the dialplan to force outgoing calls to have
encrypted signaling by setting the CHANNEL(secure_bridge_signaling) function to 1:

[default]

exten => 1234,1,Set(CHANNEL(secure_bridge_signaling)=1)
 same => n,Dial(SIP/1234@serverB)

On the side receiving the call, you can check whether the signaling on an incoming call
is encrypted using the CHANNEL(secure_signaling) dialplan function. Consider the fol-
lowing example dialplan:

[incoming]

exten => _X.,1,Answer()
 same => n,GotoIf($["${CHANNEL(secure_signaling)}" = "1"]?secure:insecure)
 same => n(secure),NoOp(Signaling is encrypted.)
 same => n,Hangup()
 same => n(insecure),NoOp(Signaling is not encrypted.)
 same => n,Hangup()

When a call is sent from serverA to serverB using this configuration, you can see from
the output on the Asterisk console that the dialplan determines that the signaling of
the incoming call is encrypted:

152 | Chapter 7: Outside Connectivity

 -- Executing [1234@incoming:1] Answer("SIP/serverA-00000000", "") in new stack
 -- Executing [1234@incoming:2] GotoIf("SIP/serverA-00000000",
 "1?secure:insecure") in new stack
 -- Goto (incoming,1234,3)
 -- Executing [1234@incoming:3] NoOp("SIP/serverA-00000000",
 "Signaling is encrypted.") in new stack
 -- Executing [1234@incoming:4] Hangup("SIP/serverA-00000000", "") in new stack

Now that SIP TLS has been set up for calls between serverA and serverB, we will set
up SRTP so that the media streams associated with the call are encrypted as well.
Luckily, it is quite easy to configure, compared to what was required to get SIP TLS
working. First, make sure that you have the res_srtp module loaded in Asterisk:

*CLI> module show like res_srtp.so
Module Description Use Count
res_srtp.so Secure RTP (SRTP) 0
1 modules loaded

To enable SRTP, set the CHANNEL(secure_bridge_media) function to 1:

[default]

exten => 1234,1,Set(CHANNEL(secure_bridge_signaling)=1)
 same => n,Set(CHANNEL(secure_bridge_media)=1)
 same => n,Dial(SIP/1234@serverB)

This indicates that encrypted media is required for an outbound call. When the call is
sent out via SIP, Asterisk will require that SRTP be used, or the call will fail.

With all of these tools in place, you can ensure that calls between two Asterisk servers
are fully encrypted. The same techniques should be applied for encrypting calls between
Asterisk and a SIP phone.

The dialplan functions provide a mechanism for verifying the encryption status of an
incoming call and forcing encryption on an outgoing call. However, keep in mind that
these tools only provide the means for controlling encryption for one hop of the call
path. If the call goes through multiple servers, these tools do not guarantee that the call
is encrypted through the entire call path. It is important to carefully consider what your
requirements are for secure calls and take all of the necessary steps to ensure that those
requirements are respected throughout the entire call path. Security is complicated,
hard work.

Configuring IAX trunks between Asterisk systems

The Inter-Asterisk eXchange protocol, version 2 (most commonly known as IAX*) is
Asterisk’s own VoIP protocol. It is different from SIP in that the signaling and media
are carried in the same connection. This difference is one of the advantages of the IAX
protocol, as it makes getting IAX to work across NAT connections much simpler.

* Pronounced “eeks.”

VoIP | 153

One of the more unique features of the IAX protocol is IAX trunking.
Trunking an IAX connection could be useful on any network link that will often be
carrying multiple simultaneous VoIP calls between two systems. By encapsulating mul-
tiple audio streams in one packet, IAX trunking cuts down on the overhead on the data
connection, which can save bandwidth on a heavily used network link.

The principal advantage of IAX encryption is that it requires one simple
change to the /etc/asterisk/iax.conf file:

[general]
encryption = yes

For extra protection, you can set the following option to ensure that no IAX connection
can happen without encryption:

forceencryption = yes

Both of these options can be specified in the [general] section, as well as in peer/user/
friend sections in iax.conf.

Emergency Dialing
In North America, people are used to being able to dial 911 in order to reach emergency
services. Outside of North America, well-known emergency numbers are 112 and
999. If you make your Asterisk system available to people, you are obligated (in many
cases regulated) to ensure that calls can be made to emergency services from any tele-
phone connected to the system (even those phones that otherwise are restricted from
making calls).

One of the essential pieces of information the emergency response organization needs
to know is where the emergency is (i.e., where to send the fire trucks). In a traditional
PSTN trunk this information is already known by the carrier and is subsequently passed
along to the Public Safety Answering Point (PSAP). With VoIP circuits things can get
a bit more complicated, by virtue of the fact that VoIP circuits are not physically tied
to any geographical location.

You need to ensure that your system will properly handle 911 calls from any phone
connected to it, and you need to communicate what is available to your users. As an
example, if you allow users to register to the system from softphones on their laptops,
what happens if they are in a hotel room in another country, and they dial 911?†

The dialplan for handling emergency calls does not need to be complicated. In fact, it’s
far better to keep it simple. People are often tempted to implement all sorts of fancy
functionality in the emergency services portions of their dialplans, but if a bug in one
of your fancy features causes an emergency call to fail, lives could be at risk. This is no

IAX trunking.

IAX encryption.

† Don’t assume this can’t happen. When somebody calls 911 it’s because they have an emergency, and it’s not
safe to assume that they’re going to be in a rational state of mind.

154 | Chapter 7: Outside Connectivity

place for playing around. The [emergency-services] section of your dialplan might look
something like this:

[emergency-services]
exten => 911,Goto(dialpsap,1)
exten => 9911,Goto(dialpsap,1) ; some people will dial '9' because
 ; they're used to doing that from the PBX
exten => 999,Goto(dialpsap,1)
exten => 112,Goto(dialpsap,1)

exten => dialpsap,1,Verbose(1,Call initiated to PSAP!)
 same => n,Dial(${LOCAL}/911) ; REPLACE 911 HERE WITH WHATEVER
 ; IS APPROPRIATE TO YOUR AREA

[internal]
include => emergency-services ; you have to have this in any context
 ; that has users in it

In contexts where you know the users are not on-site (for example, remote users with
their laptops), something like this might be best instead:

[no-emergency-services]
exten => 911,Goto(nopsap,1)
exten => 9911,Goto(nopsap,1) ; for people who dial '9' before external calls
exten => 999,Goto(nopsap,1)
exten => 112,Goto(nopsap,1)

exten => nopsap,1,Verbose(1,Call initiated to PSAP!)
 same => n,Playback(no-emerg-service) ; you'll need to record this prompt

[remote-users]
include => no-emergency-services

In North America, regulations have obligated many VoIP carriers to offer what is pop-
ularly known as E911.‡ When you sign up for their services, they will require address
information for each DID that you wish to associate with outgoing calls. This address
information will then be sent to the PSAP appropriate to that address, and your emer-
gency calls should be handled the same as they would be if they were dialed on a
traditional PSTN circuit.

Handling emergency calls does not have to be complicated (in fact, it is best to keep
this as simple as possible). The bottom line is that you need to make sure that the phone
system you create allows emergency calls.

‡ It’s not actually the carrier that’s offering this; rather it’s a capability of the PSAP. E911 is also used on PSTN
trunks, but since that happens without any involvement on your part (the PSTN carriers handle the paperwork
for you), you are generally not aware that you have E911 on your local lines.

Emergency Dialing | 155

Conclusion
Eventually, we believe that the PSTN will disappear entirely. Before that happens,
however, a distributed mechanism that is widely used and trusted will be needed to
allow organizations and individuals to publish addressing information so that they can
be found. We’ll explore some of the ways this is already possible in Chapter 12.

156 | Chapter 7: Outside Connectivity

CHAPTER 8

Voicemail

Just leave a message, maybe I’ll call.

—Joe Walsh

Before email and instant messaging became ubiquitous, voicemail was a popular
method of electronic messaging. Even though most people prefer text-based messaging
systems, voicemail remains an essential component of any PBX.

Comedian Mail
One of the most popular (or, arguably, unpopular) features of any modern telephone
system is voicemail. Asterisk has a reasonably flexible voicemail system named Come-
dian Mail.* Some of the features of Asterisk’s voicemail system include:

• Unlimited password-protected voicemail boxes, each containing mailbox folders
for organizing voicemail

• Different greetings for busy and unavailable states

• Default and custom greetings

• The ability to associate phones with more than one mailbox and mailboxes with
more than one phone

• Email notification of voicemail, with the voicemail optionally attached as a sound
file†

• Voicemail forwarding and broadcasts

• Message-waiting indicator (flashing light or stuttered dialtone) on many types of
phones

• Company directory of employees, based on voicemail boxes

* This name was a play on words, inspired in part by Nortel’s voicemail system Meridian Mail.

† No, you really don’t have to pay for this—and yes, it really does work.

157

And that’s just the tip of the iceberg!

The default version of the /etc/asterisk/voicemail.conf file requires a few tweaks in order
to provide a configuration that will be suitable to most situations.

We’ll begin by going through the various options you can define in voicemail.conf, and
then we’ll provide a sample configuration file with the settings we recommend for most
deployments.

The voicemail.conf file contains several sections where parameters can be defined. The
following sections detail all the options that are available.

The [general] Section
The first section, [general], allows you to define global settings for your voicemail
system. The available options are listed in Table 8-1.

Table 8-1. [general] section options for voicemail.conf

Option Value/Example Notes

format wav49|gsm|wav For each format listed, Asterisk will create a separate recording in
that format whenever a message is left. The benefit of this is that
some transcoding steps may be saved if the stored format is the same
as the codec used on the channel. We like wav because it is the
highest quality, and wav49 because it is nicely compressed and easy
to email. We don’t like gsm due to it’s scratchy sound, but it enjoys
some popularity.a

serveremail user@domain When an email is sent from Asterisk, this is the email address that it
will appear to come from.b

attach yes,no If an email address is specified for a mailbox, this determines whether
the messages is attached to the email (if not, a simple message
notification is sent).

maxmsg 9999 By default Asterisk will only allow a maximum of 100 messages to
be stored per user. For users who delete messages, this is no problem.
For people who like to save their messages, this space can get eaten
up quickly. With the size of hard drives these days, you could easily
store thousands of messages for each user, so our current thinking
is to set this to the maximum and let the users manage things from
there.

maxsecs 0 This type of setting was useful back in the days when a large voicemail
system might have only 40 MBc of storage: it was necessary to limit
the system because it was easy to fill up the hard drive. This setting
can be annoying to callers (although it does force them to get to the
point, so some people like it). Nowadays, with terabyte drives be-
coming common, there is no reason not to set this to a high value.
Two considerations are: 1) if a channel gets hung in a mailbox, it’s
good to set some sort of value so it doesn’t stay there for days, but
2) if a user wants to use her mailbox to record notes to herself, she

158 | Chapter 8: Voicemail

Option Value/Example Notes
won’t appreciate it if you cut her off after three minutes. A setting
somewhere between 600 seconds (10 minutes) and 3600 seconds
(1 hour) will probably be about right.

minsecs 4 Many folks will hang up instead of leaving a message when they call
somebody and get voicemail. Sometimes this hangup happens after
recording has started, so the mailbox owner gets an annoying two-
second message of somebody hanging up. This setting ensures that
Asterisk will ignore messages that are shorter than the configured
minimum length. You should take care not to set this to a value that
is too high, though, because then a message like “Hey it’s me give
me a call” (which can be said in less than one second) will get lost,
and you’ll get complaints of messages disappearing. Three seconds
seems to be about right. To discourage people from leaving ultra-
short messages that might be discarded, you can request callers to
identify themselves and leave some information about why they
called.

maxgreet 1800 You can define the maximum greeting length if you want. Again,
since storage is not a problem and setting this too low will annoy
your more verbose users, we suggest setting this to a high value and
letting your users figure it out an appropriate length for themselves.

skipms 3000 When listening to messages, users can skip ahead or backwards by
pressing (by default) * and #. This setting indicates the length of
the jump (in milliseconds).

maxsilence 5 This setting defines the maximum time for which the caller can
remain silent before the recording is stopped. We like to set this
setting to one second longer than minsecs (if you set it equal to
or less than minsecs, you will get a warning).

silencethreshold 128 You can fine-tune the silence sensitivity of Asterisk to better define
what qualifies as silence. In practice, this is seldom a good idea, since
you cannot control the volumes of all the calls you’ll be getting from
different places. It’s best to leave this at the default.

maxlogins 3 This little security feature is intended to make brute-force attacks
on your mailbox passwords more time-consuming. If a bad password
is received this many times, voicemail will hang up and you’ll have
to call back in to try again. Note that this will not lock up the mailbox.
Patient snoopers can continue to try to log into your mailbox as many
times as they like, they’ll just have to call back every third attempt.
If you have a lot of ham-fingered users, you can set this to something
like 5.

moveheard yes This setting will move listened-to messages to the Old folder. We
recommend leaving this at the default.

forward_urgent_auto no Setting this to yes will preserve the original urgency setting of any
messages the user receives and then forwards on. If you leave it at
no, users can set the urgency level themselves on messages that
they forward.

Comedian Mail | 159

Option Value/Example Notes

userscontext default If you use the users.conf file (we don’t), you can define here the
context where entries are registered.

externnotify /path/to/script If you wish to run an external app whenever a message is left, you
can define it here.

smdienable no If you are using Asterisk as a voicemail server on a PBX that supports
SMDI, you can enable it here.

smdiport /dev/ttyS0 Here is where you would define the SMDI port that messages be-
tween Asterisk and the external PBX would pass across.

externpass /path/to/script Any time the password on a mailbox is changed, the script you define
here will be notified of the context, mailbox, and new pass
word. The script will then be responsible for updating voice-
mail.conf (the Asterisk voicemail app will not update the password
if this parameter is defined).

externpassnotify /path/to/script Any time the password on a mailbox is changed, the script you define
here will be notified of the context, mailbox, and new pass
word. Asterisk will handle updating the password in voice-
mail.conf. If you have defined externpass, this option will be
ignored.

externpasscheck /usr/local/bin/voice-
mailpwcheck.py

See the sidebar following this table for a description of this option.

directoryintro dir-intro The Directory() dialplan application uses the voicemail.conf file
to search by name from an auto attendant. There is a default prompt
that plays, called dir-intro. If you want, you can specify a dif-
ferent file to play instead.

charset ISO-8859-1 If you need a character set other than ISO-8859-1 (a.k.a Latin 1) to
be supported, you can specify it here.

adsifdn 0000000F Use this option to configure the Feature Descriptor Number.d

adsisec 9BDBF7AC Use this option to configure the security lock code.

adsiver 1 This specifies the ADSI voicemail application version number.

pbxskip yes If you do not want emails from your voicemail to have the string
[PBX] added to the subject, you can set this to yes.

fromstring The Asterisk PBX You can use this setting to configure the From: name that will
appear in emails from your PBX.

usedirectory yes This option allows users composing messages from their mailboxes
to take advantage of the Directory.

odbcstorage <item from
res_odbc.conf>

If you want to store voice messages in a database, you can do that
using the Asterisk res_odbc connector. Here, you would set the
name of the item in the res_odbc file. For details, see Chapter 22.

odbctable <table name> This setting specifies the table name in the database that the odbc
storage setting refers to. For details, see Chapter 22.

160 | Chapter 8: Voicemail

Option Value/Example Notes

emailsubject [PBX]: New
message $
{VM_MSGNUM} in
mailbox $
{VM_MAILBOX}

When Asterisk sends an email, you can use this setting to define
what the Subject: line of the email will look like. See the voice-
mail.conf.sample file for more details.

emailbody Dear $
{VM_NAME}:\n\n
\tjust wanted to
let you know you
were just left a
${VM_DUR} long
message (number
${VM_MSGNUM})
\nin mailbox $
{VM_MAILBOX u
might\nwant to
check it when
you get a
chance. Thanks!
\n\n\t\t\t\t--
Asterisk\n

When Asterisk sends an email, you can use this setting to define
what the body of the email will look like. See the voicemail.conf.sam-
ple file for more details.

pagerfromstring The Asterisk PBX We don’t actually know anybody who uses pagers anymore (nor can
we recall having seen one in many years), but if you have one of
these historical oddities and you want to customize what Asterisk
sends with its pager notification, presumably you can do that with
this. A very practical usage of this feature for short message voicemail
notifications is to send a message to an email to SMS gateway.

pagersubject New VM As above.

pagerbody New ${VM_DUR}
long msg in box
${VM_MAILBOX}
\nfrom $
{VM_CALLERID},
on ${VM_DATE}

The formatting for this uses the same rules as emailbody.

emaildateformat %A, %d %B %Y at
%H:%M:%S

This option allows you to specify the date format in emails. Uses the
same rules as the C function STRFTIME.

pagerdateformat %A, %d %B %Y at
%H:%M:%S

This option allows you to specify the date format in pager. Uses the
same rules as the C function STRFTIME.

mailcmd /usr/sbin/send
mail -t

If you want to override the default operating system application for
sending mail, you can specify it here.

pollmailboxes no, yes If the contents of mailboxes are changed by anything other than
app_voicemail (such as external applications or another Asterisk
system), setting this to yes will cause app_voicemail to poll all

Comedian Mail | 161

Option Value/Example Notes
the mailboxes for changes, which will trigger proper message wait-
ing indication (MWI) updates.

pollfreq 30 Used in concert with pollmailboxes, this option specifies the
number of seconds to wait between mailbox polls.

imapgreetings no, yes This enables/disables remote storage of greetings in the IMAP folder.
For more details, see Chapter 18.

greetingsfolder INBOX If you’ve enabled imapgreetings, this parameter allows you to
define the folder your greetings will be stored in (defaults to INBOX).

imapparentfolder INBOX IMAP servers can handle parent folders in different ways. This field
allows you to specify the parent folder for your mailboxes. For more
details, see Chapter 7.

a The separator that is used for each format option must be the pipe (|) character.
b Sending email from Asterisk can require some careful configuration, because many spam filters will find Asterisk messages suspicious and

will simply ignore them. We talk more about how to set email for Asterisk in Chapter 18.
c Yes, you read that correctly: megabytes.
d The Analog Display Services Interface is a standard that allows for more complex feature interactions through the use of the phone display

and menus. With the advent of VoIP telephones, ADSI’s popularity has decreased in recent years.

External Validation of Voicemail Passwords
By default, Asterisk does not validate user passwords to ensure they are at least some-
what secure. Anyone who maintains voicemail systems will tell you that a large per-
centage of mailbox users set their passwords to something like 1234 or 1111, or some
other string that’s easy to guess. This represents a huge security hole in the voicemail
system.

Since the app_voicemail.so module does not have the built-in ability to validate pass-
words, the settings externpass, externpassnotify, and externpasscheck allow you to
validate them using an external program. Asterisk will call the program based on the
path you specify, and pass it the following arguments:

mailbox context oldpass newpass

The script will then evaluate the arguments based on rules that you defined in the
external script and, based on your rules, it should return to Asterisk a value of VALID
for success or INVALID for failure (actually, the return value for a failed password can
be anything except the words VALID or FAILURE). This value is typically printed to
stdout. If the script returns INVALID, Asterisk will play an invalid-password prompt and
the user will need to attempt something different.

Ideally, you would want to implement rules such as the following:

• Passwords must be a minimum of six digits in length

• Passwords must not be strings of repeated digits (e.g., 111111)

• Passwords must not be strings of contiguous digits (e.g., 123456 or 987654)

162 | Chapter 8: Voicemail

Asterisk comes with a simple script that will greatly improve the security of your voi-
cemail system. It is located in the source code under the folder: /contrib/scripts/voice-
mailpwcheck.py.

We strongly recommend that you copy it to your /usr/local/bin folder (or wherever you
prefer to put such things), and then uncomment the externpasscheck= option in your
voicemail.conf file. Your voicemail system will then enforce the password security rules
you have established.

Part of the [general] section is an area that is referred to as advanced options. These
options (listed in Table 8-2) are defined in the same way as the other options in the
[general] section, but they can also be defined on a per-mailbox basis, overriding
whatever is defined under [general] for that particular setting.

Table 8-2. Advanced options for voicemail.conf

Option Value/Example Notes

tz eastern, euro
pean, etc.

Specifies the zonemessages name, as defined in the
[zonemessages] section, discussed in the next section.

locale de_DE.utf8,
es_US.utf8,
etc.

Used to define how Asterisk generates date/time strings in different
locales. To determine the locales that are valid on your Linux system,
type locale -a at the shell.

attach yes, no If an email address is specified for a mailbox, this determines whether
the messages are attached to the email notifications (otherwise, a
simple message notification is sent).

attachfmt wav49, wav, etc. If attach is enabled and messages are stored in different formats,
this defines which format is sent with the email notifications. Often
wav49 is a good choice, as it uses a better compression algorithm and
thus will use less bandwidth.

saycid yes, no This command will state the caller ID of the person who left the mes-
sage.

cidinternalcontexts <context>,
<another
context>

Any dialplan contexts listed here will be searched in an attempt to
locate the mailbox context, so that the name associated with the
mailbox number can be spoken. The voicemail box number needs to
match the extension number that the call came from, and the voicemail
context needs to match the dialplan context.a

sayduration yes, no This command will state the length of the message.

saydurationm 2 Use this to specify the minimum duration of a message to qualify for
its length being played back. For example, if you set this to 2, any
message less than 2 minutes in length will not have its length stated.

dialout <context> If allowed, users can dial out from their mailboxes. This is considered
a very dangerous feature in a phone system (mainly because many
voicemail users like to use 1234 as their password), and is therefore
not recommended. If you insist on allowing this, make sure you have

Comedian Mail | 163

Option Value/Example Notes
a second level of password in the dialplan where another password is
specified. Even so, this is not a safe practice.

sendvoicemail yes, no This allows users to compose messages to other users from within their
mailboxes.

searchcontexts yes, no This allows voicemail applications in the dialplan to not have to specify
the voicemail context, since all contexts will be searched. This is not
recommended.

callback <context> This specifies which dialplan context to use to call back to the sender
of a message. The specified context will need to be able to handle
dialing of numbers in the format in which they are received (for ex-
ample, the country code may not be received with the caller ID, but
might be required for the outgoing call).

exitcontext <context> There are options that allow the callers to exit the voicemail system
when they are in the process of leaving a message (for example, press-
ing 0 to get an operator). By default, the context the caller came from
will be used as the exit context. If desired, this setting will define a
different context for callers exiting the voicemail system.

review yes, no This should almost always be set to yes (even though it defaults to
no). People get upset if your voicemail system does not allow them
to review their messages prior to delivering them.

operator yes, no Best practice dictates that you should allow your callers to “zero out”
from a mailbox, should they not wish to leave a message. Note that
an o extension (not “zero,” “oh”) is required in the exitcontext in
order to handle these calls.

envelope no, yes You can have voicemail play back the details of the message before it
plays the actual message. Since this information can also be accessed
by pressing 5, we generally set this to no.

delete no, yes After an email message notification is sent (which could include the
message itself), the message will be deleted. This option is risky, be-
cause even though a message was emailed, it is no guarantee that it
was received (spam filters seem to love to delete Asterisk voicemail
messages). Point being: on a new system, leave this at no until you
are certain that no messages are being lost due to spam filters.

volgain 0.0 This setting allows you to increase the volume of received messages.
Volume used to be a problem in older releases of Asterisk, but has not
been an issue for many years. We recommend leaving this at the
default. The sox utility is required for this to work.

nextaftercmd yes, no This handy little setting will save you some time, as it takes you directly
to the next message once you’ve finished dealing with the current
message.

forcename yes, no This strange little setting will check if the mailbox password is the same
as the mailbox number. If it is, it will force the user to change his
voicemail password and record his name.

164 | Chapter 8: Voicemail

Option Value/Example Notes

forcegreetings yes, no As above, but for greetings.

hidefromdir no, yes If you wish, you can hide specific mailboxes from the
Directory() application using this setting.

tempgreetwarn yes, no Setting this to yes will warn the mailbox owner that she has a tem-
porary greeting set. This can be a useful reminder when people return
from trips or vacations.

passwordlocation spooldir If you want, you can have mailbox passwords stored in the spool folder
for each mailbox.b

messagewrap no, yes If this is set to yes, when the user has listened to the last message,
pressing next (6) will take him to the first message. Also, pressing
previous (4) when at the first message will take the user to the last
message.

minpassword 6 This option enforces a minimum password length. Note that this does
not prevent the users from setting their passwords to something that’s
easy to guess (such as 123456).

vm-password custom_sound If you want, you can specify a custom sound here to use for the password
prompt in voicemail.

vm-newpassword custom_sound If you want, you can specify a custom sound here to use for the “Please
enter your new password followed by the pound key” prompt in voi-
cemail.

vm-passchanged custom_sound If you want, you can specify a custom sound here to use for the “Your
password has been changed” prompt in voicemail.

vm-reenterpassword custom_sound If you want, you can specify a custom sound here to use for the “Please
reenter your password followed by the pound key” prompt in
voicemail.

vm-mismatch custom_sound If you want, you can specify a custom sound here to use for the “The
passwords you entered and reentered did not match” prompt in
voicemail.

vm-invalid-password custom_sound If you want, you can specify a custom sound here to use for the “That
is not a valid password. Please try again” prompt in voicemail.

vm-pls-try-again custom_sound If you want, you can specify a custom sound here to use for the “Please
try again” prompt in voicemail.

listen-control-for
ward-key

You can use this setting to customize the fast forward key.

listen-control-
reverse-key

* You can use this setting to customize the rewind key.

listen-control-
pause-key

0 You can use this setting to customize the pause/unpause key.

listen-control-
restart-key

2 You can use this setting to customize the replay key.

Comedian Mail | 165

Option Value/Example Notes

listen-control-stop-
key

13456789 You can use this setting to customize the interrupt playback key.

backupdeleted 0 This setting will allow you to specify how many deleted messages are
automatically stored by the system. This is similar to a recycle bin.
Setting this to 0 disables this feature. Up to 9999 messages can be
stored, after which the oldest message will be erased each time another
message is deleted.

a Yes, we found this a bit confusing too.
b Typically the spool folder is /var/spool/asterisk/, and it can be defined in /etc/asterisk/asterisk.conf.

The [zonemessages] Section
The next section of the voicemail.conf file is the [zonemessages] section. The purpose
of this section is to allow time zone–specific handling of messages, so you can play back
to the user messages with the correct timestamps. You can set the name of the zone to
whatever you need. Following the zone name, you can define which time zone you
want the name to refer to, as well as some options that define how timestamps are
played back. You can look at the /usr/src/asterisk-complete/asterisk/1.8/configs/voice-
mail.conf.sample file for syntax details. Asterisk includes the examples shown in
Table 8-3.

Table 8-3. [zonemessages] section options for voicemail.conf

Zone name Value/Example Notes

eastern America/New_York|'vm-received' Q 'digits/at' IMp This value would be suit-
able for the eastern time
zone (EST/EDT).

central America/Chicago|'vm-received' Q 'digits/at' IMp This value would be suit-
able for the central time
zone (CST/CDT).

central24 America/Chicago|'vm-received' q 'digits/at' H N 'hours' This value would also be
suitable for CST/CDT, but
would play back the time
in 24-hour format.

military Zulu|'vm-received' q 'digits/at' H N 'hours'
'phonetic/z_p'

This value would be suit-
able for Universal Time
Coordinated (Zulu time,
formerly GMT).

european Europe/Copenhagen|'vm-received' a d b 'digits/at' HM This value would be suit-
able for Central Euro-
pean time (CEST).

166 | Chapter 8: Voicemail

The Contexts Section
All the remaining sections in the voicemail.conf file will be the voicemail contexts, which
allow you to segregate groups of mailboxes.

In many cases, you will only need one voicemail context, commonly named
[default]. This is worth noting, as it will make things simpler in the dialplan: all the
voicemail-related applications assume the context default if no context is specified. In
other words, if you don’t require separation of your voicemail users, use default as
your one and only voicemail context.

The format for the mailboxes is as follows:

mailbox => password[,FirstName LastName[,email addr[,pager addr[,options[|options]]]]]

The pipe character (|) used to be more popular in Asterisk. For the first
few years, it was used as the standard delimiter. More recently, it has
almost completely been replaced by the comma; however, there are still
a few places where the pipe is used. One of them is in voicemail.conf:
for example, as a separator for any mailbox-specific options, and also
as the separator character in the format= declarative. You’ll see this in
our upcoming example, as well as in the voicemail.conf.sample file.

The parts of the mailbox definition are:

mailbox
This is the mailbox number. It usually corresponds with the extension number of
the associated set.

password
This is the numeric password that the mailbox owner will use to access her voice-
mail. If the user changes her password, the system will update this field in the
voicemail.conf file.

FirstName LastName
This is the name of the mailbox owner. The company directory uses the text in this
field to allow callers to spell usernames.

email address
This is the email address of the mailbox owner. Asterisk can send voicemail noti-
fications (including the voicemail message itself, as an attachment) to the specified
email box.

pager address
This is the email address of the mailbox owner’s pager or cell phone. Asterisk can
send a short voicemail notification message to the specified email address.

options
This field is a list of options for setting the mailbox owner’s time zone and over-
riding the global voicemail settings. There are nine valid options: attach,

Comedian Mail | 167

serveremail, tz, saycid, review, operator, callback, dialout, and exitcontext.
These options should be in option = value pairs, separated by the pipe character
(|). The tz option sets the user’s time zone to a time zone previously defined in the
[zonemessages] section of voicemail.conf, and the other eight options override the
global voicemail settings with the same names.

The mailboxes you define in your voicemail.conf file might look like the following
examples:

[default]
100 => 5542,Mike Loukides,mike@shifteight.org
101 => 67674,Tim OReilly,tim@shifteight.org
102 => 36217,Mary JonesSmith,mary.jones-smith@shifteight.org

; *** This needs to all be on the same line
103 => 5426,Some Guy,,,dialout=fromvm|callback=fromvm
|review=yes|operator=yes|envelope=yes

[shifteight]
100 => 0107,Leif Madsen,leif@shifteight.org
101 => 0523,Jim VanMeggelen,jim@shifteight.org,,attach=no|maxmsg=100
102 => 11042,Tilghman Lesher,,,attach=no|tz=central

The Asterisk directory cannot handle the concept of a family name that
is anything other than a simple word. This means that family names
such as O’Reilly, Jones-Smith, and yes, even Van Meggelen must have
any punctuation characters and spaces removed before being added to
voicemail.conf.

The contexts in voicemail.conf are an excellent and powerful concept, but you will likely
find that the default context will be all that you need in normal use.

An Initial voicemail.conf File
We recommend the following sample as a starting point. You can refer to ~/asterisk-
complete/asterisk/1.8/configs/voicemail.conf.sample for details on the various settings:

; Voicemail Configuration

[general]
format=wav49|wav
serveremail=voicemail@shifteight.org
attach=yes
skipms=3000
maxsilence=10
silencethreshold=128
maxlogins=3
emaildateformat=%A, %B %d, %Y at %r
pagerdateformat=%A, %B %d, %Y at %r
sendvoicemail=yes ; Allow the user to compose and send a voicemail while inside

168 | Chapter 8: Voicemail

[zonemessages]
eastern=America/New_York|'vm-received' Q 'digits/at' IMp
central=America/Chicago|'vm-received' Q 'digits/at' IMp
central24=America/Chicago|'vm-received' q 'digits/at' H N 'hours'
military=Zulu|'vm-received' q 'digits/at' H N 'hours' 'phonetic/z_p'
european=Europe/Copenhagen|'vm-received' a d b 'digits/at' HM

[shifteight.org]
100 => 1234,Leif Madsen,leif@shifteight.org
101 => 1234,Jim Van Meggelen,jim@shifteight.org
102 => 1234,Russell Bryant,russell@shifteight.org
103 => 1234,Jared Smith,jared@shifteight.org

Setting up a Linux server to handle the sending of email is a Linux ad-
ministration task that is beyond the scope of this book. You will need
to test your voicemail to email service to ensure that the email is being
handled appropriately by the Mail Transfer Agent (MTA),‡ and that
downstream spam filters are not rejecting the messages (one reason this
might happen is if your Asterisk server is using a hostname in the email
body that does not in fact resolve to it).

Dialplan Integration
There are two primary dialplan applications that are provided by the app_voice-
mail.so module in Asterisk. The first, simply named VoiceMail(), does exactly what
you would expect it to, which is to record a message in a mailbox. The second one,
VoiceMailMain(), allows a caller to log into a mailbox to retrieve messages.

The VoiceMail() Dialplan Application
When you want to pass a call to voicemail, you need to provide two arguments: the
mailbox (or mailboxes) in which the message should be left, and any options relating
to this, such as which greeting to play or whether to mark the message as urgent. The
structure of the VoiceMail() command is this:

VoiceMail(mailbox[@context][&mailbox[@context][&...]][,options])

The options you can pass to VoiceMail() to provide a higher level of control are detailed
in Table 8-4.

‡ Also sometimes called a Message Transfer Agent.

Dialplan Integration | 169

Table 8-4. VoiceMail() optional arguments

Argument Purpose

b Instructs Asterisk to play the busy greeting for the mailbox (if no busy greeting is found, the unavailable greeting
will be played).

d([c]) Accepts digits to be processed by context c. If the context is not specified, it will default to the current context.

g(#) Applies the specified amount of gain (in decibels) to the recording. Only works on DAHDI channels.

s Suppresses playback of instructions to the callers after playing the greeting.

u Instructs Asterisk to play the unavailable greeting for the mailbox (this is the default behavior).

U Indicates that this message is to be marked as urgent. The most notable effect this has is when voicemail is stored
on an IMAP server. In that case, the email will be marked as urgent. When the mailbox owner calls in to the
Asterisk voicemail system, he should also be informed that the message is urgent.

P Indicates that this message is to be marked as priority.

The VoiceMail() application sends the caller to the specified mailbox, so that he can
leave a message. The mailbox should be specified as mailbox@context, where context
is the name of the voicemail context. The option letters b or u can be added to request
the type of greeting. If the letter b is used, the caller will hear the mailbox owner’s
busy message. If the letter u is used, the caller will hear the mailbox owner’s unavaila-
ble message (if one exists).

Consider this simple example extension 101, which allows people to call John:

exten => 101,1,Dial(${JOHN})

Let’s add an unavailable message that the caller will be played if John doesn’t answer
the phone. Remember, the second argument to the Dial() application is a timeout. If
the call is not answered before the timeout expires, the call is sent to the next priority.
Let’s add a 10-second timeout, and a priority to send the caller to voicemail if John
doesn’t answer in time:

exten => 101,1,Dial(${JOHN},10)
exten => 101,n,VoiceMail(101@default,u)

Now, let’s change it so that if John is busy (on another call), the caller will be sent to
his voicemail, where he will hear John’s busy message. To do this, we will make use of
the ${DIALSTATUS} variable, which contains one of several status values (type core show
application dial at the Asterisk console for a listing of all the possible values):

exten => 101,1,Dial(${JOHN},10)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
 same => n(unavail),VoiceMail(101@default,u)
 same => n,Hangup()
 same => n(busy),VoiceMail(101@default,b)
 same => n,Hangup()

Now callers will get John’s voicemail (with the appropriate greeting) if John is either
busy or unavailable. A slight problem remains, however, in that John has no way of
retrieving his messages. We will remedy that in the next section.

170 | Chapter 8: Voicemail

The VoiceMailMain() Dialplan Application
Users can retrieve their voicemail messages, change their voicemail options, and record
their voicemail greetings using the VoiceMailMain() application. VoiceMailMain() ac-
cepts two arguments: the mailbox number (and optionally the context) to be accessed,
and some options. Both arguments are optional.

The structure of the VoiceMailMain() application looks like this:

VoiceMailMain([mailbox][@context][,options])

If you do not pass any arguments to VoiceMailMain(), it will play a prompt asking the
caller to provide her mailbox number. The options that can be supplied are listed in
Table 8-5.

Table 8-5. VoiceMailMain() optional arguments

Argument Purpose

p Allows you to treat the <mailbox> parameter as a prefix to the mailbox number.

g(#) Increases the gain by # decibels when playing back messages.

s Skips the password check.

a(folder) Starts the session in one of the following voicemail folders (defaults to 0): 0 - INBOX, 1 - Old, 2 -
Work, 3 - Family, 4 - Friends, 5 - Cust1, 6 - Cust2, 7 - Cust3, 8 - Cust4,
9 - Cust5

To allow users to dial 8500 to check their voicemail or modify their voicemail options,
you would add an extension to the dialplan like this:

[Services]

exten => *98,1,VoiceMailMain()

Creating a Dial-by-Name Directory
One last feature of the Asterisk voicemail system that we should cover is the dial-by-
name directory. This is created with the Directory() application. This application uses
the names defined in the mailboxes in voicemail.conf to present the caller with a dial-
by-name directory of the users.

Directory() takes up to three arguments: the voicemail context from which to read the
names, the optional dialplan context in which to dial the user, and an option string
(which is also optional). By default, Directory() searches for the user by last name, but
passing the f option forces it to search by first name instead. Let’s add two dial-by-
name directories to the incoming context of our sample dialplan, so that callers can
search by either first or last name:

exten => 8,1,Directory(default,incoming,f)
exten => 9,1,Directory(default,incoming)

Dialplan Integration | 171

If callers press 8, they’ll get a directory by first name. If they dial 9, they’ll get the
directory by last name.

Using a Jitterbuffer
When using Asterisk as a voicemail server,§ you may want to add a jitterbuffer in be-
tween voicemail and the caller. The purpose of a jitterbuffer is to help deal with the
fact that when a call traverses an IP network, the traffic may not arrive with perfect
timing and in perfect order. If packets occasionally arrive with a bit of delay (jitter) or
if they arrive out of order, a jitterbuffer can fix it so that the voicemail system receives
the voice stream on time and in order. If the jitterbuffer detects that a packet was lost
(or may arrive so late that it will no longer matter), it can perform packet loss conceal-
ment. That is, it will attempt to make up a frame of audio to put in place of the lost
audio to make it harder to hear that audio was lost.

In Asterisk, jitterbuffer support can only be enabled on a bridge between two channels.
In the case of voicemail, there is generally only a single channel connected to one of the
voicemail applications. To enable the use of a jitterbuffer in front of voicemail, we create
a bridge between two channels by using a Local channel and specifying the j option.
Specifying the n option for the Local channel additionally ensures that the Local channel
is not optimized out of the call path in Asterisk:

[Services]

exten => *98,1,Dial(Local/vmm@Services/nj)

exten => vmm,1,VoiceMailMain()

Storage Backends
The storage of messages on a traditional voicemail system has always tended to be
overly complicated.‖ Asterisk, on the other hand, not only provides you with a simple,
logical, filesystem-based storage mechanism, but also offers a few extra message storage
options.

Linux Filesystem
By default, Asterisk will store voice messages in the spool folder, at /var/spool/asterisk/
voicemail/<context>/<mailbox>. The messages can be stored in multiple formats (such

§ This advice applies to any situation where Asterisk is the endpoint of a call. Another example would be when
using the MeetMe() or ConfBridge() applications for conferencing.

‖ Nortel used to store its messages in a sort of special partition, in a proprietary format, which made it pretty
much impossible to extract messages from the system, or email them, or archive them, or really do anything
with them.

172 | Chapter 8: Voicemail

as WAV and GSM), depending on what you specified as the format in the [general]
section of your voicemail.conf file. Your greetings will also be stored in this folder.

Asterisk will not create a folder for any mailboxes that do not have any
recordings yet (as would be the case with a new mailbox), so this folder
cannot be used as a reliable method of determining which mailboxes
exist on the system.

Here’s an example of what might be in a mailbox folder. This mailbox has no new
messages in the INBOX, has two saved messages in the Old folder, and has busy and
unavailable greetings recorded:

/var/spool/asterisk/voicemail/default
./INBOX
./Old
./Old/msg0000.WAV
./Old/msg0000.txt
./Old/msg0001.WAV
./Old/msg0001.txt
./Urgent
./busy.WAV
./unavail
./unavail.WAV

For each message, there is a matching msg####.txt file, which contains
the envelope information for the message. The msg####.txt file is also
critically important for message waiting indication (MWI), as this is the
file that Asterisk looks for in the INBOX to determine whether the mes-
sage light for a user should be on or off.

ODBC
In a centralized or distributed system, you may find it desirable to store messages as
binary objects in a database, instead of as files on the filesystem. We’ll discuss this in
detail in “ODBC Voicemail” on page 378.

IMAP
Many people would prefer to manage their voicemail as part of their email. This has
been called unified messaging by the telecom industry, and its implementation has tra-
ditionally been expensive and complex. Asterisk allows for a fairly simple integration
between voicemail and email, either through its built-in voicemail to email handler, or
through a relationship with an IMAP server. We’ll discuss IMAP integration in detail
in “VoiceMail IMAP Integration” on page 411.

Storage Backends | 173

Using Asterisk As a Standalone Voicemail Server
In a traditional telecom environment, the voicemail server was typically a standalone
unit (provided either as a separate server altogether, or as an add-in card to the system).
Very few PBXs had fully integrated voicemail (in the sense that voicemail was an integral
part of the PBX rather than a peripheral device).

Asterisk is quite capable of serving as a standalone voicemail system. The two most
common reasons one might want to do this are:

1. If you are building a large, centralized system and have several servers each pro-
viding a specific function (proxy server, media gateway, voicemail, conferencing,
etc.)

2. If you wish to replace the voicemail system on a traditional PBX with an Asterisk
voicemail

Asterisk can serve in either of these roles.

Integrating Asterisk into a SIP Environment As a Standalone
Voicemail Server
If you want to have Asterisk act as a dedicated voicemail server (i.e., with no sets reg-
istered to it and no other types of calls passing through it), the process from the dialplan
perspective is quite simple. Getting message waiting to work can be a bit more difficult,
though.

Let’s start with a quick diagram. Figure 8-1 shows an overly simplified example of a
typical SIP enterprise environment. We don’t even have an Asterisk server in there
(other than for the voicemail), in order to give you a generic representation of how
Asterisk could serve as a standalone voicemail server in an otherwise non-Asterisk
environment.

Unfortunately, Asterisk cannot send message notification to an endpoint if it doesn’t
know where that endpoint is. In a typical Asterisk system, where set registration and
voicemail are handled on the same machine, this is never a problem, since Asterisk
knows where the sets are. But in an environment where the sets are not registered to
Asterisk, this can become a complex problem.

There are several solutions on the Internet that recommend using the externnotify
option in voicemail.conf, triggering an external script whenever a message is left in a
mailbox (or deleted). While we can’t say that’s a bad approach, we find it a bit kludgy,
and it requires the administrator to understand how to write an external script or pro-
gram to handle the actual passing of the message.

174 | Chapter 8: Voicemail

Figure 8-1. Simplified SIP enterprise environment

Instead you can statically define an entry for each mailbox in the voicemail server’s
sip.conf file, indicating where the message notifications are to be sent. Rather than
defining the address of each endpoint, however, you can have the voicemail server send
all messages to the proxy, which will handle the relay of the message notifications to
the appropriate endpoints.

The voicemail server still needs to know about the SIP endpoints, even though the
devices are not registered directly to it. This can be done either through a sip.conf file
that identifies each SIP endpoint, or through a static real-time database that does the
same thing. Whether you use sip.conf or the Asterisk Realtime Architecture (ARA),
each endpoint will require an entry similar to this:

[messagewaiting](!) ; a template to handle the settings common
 ; to all mailboxes
type=peer
subscribecontext=voicemailbox ; the dialplan context on the voicemail server
context=voicemailbox ; the dialplan context on the voicemail server
host=192.168.1.1 ; ip address of presence server

[0000FFFF0001](messagewaiting) ; this will need to match the subscriber
 ; name on the proxy
mailbox=0000FFFF0001@DIR1 ; this has to be in the form mailbox@mailboxcontext
defaultuser=0000FFFF0001 ; this will need to match the subscriber
 ; name on the proxy

Using Asterisk As a Standalone Voicemail Server | 175

Note that Asterisk’s dynamic realtime will not work with this configu-
ration, as a peer’s information is only loaded into memory when there
is an actual call involving that peer. Since message notification is not a
call as far as Asterisk is concerned, using dynamic realtime will not allow
message waiting to happen for any peers not registered to Asterisk.

You will not want to implement this unless you have prototyped the basic operation of
the solution. Although we all agree that SIP is a protocol, not everyone agrees as to the
correct way to implement the protocol. As a result, there are many interoperability
challenges that need to be addressed in a solution like this. We have provided a basic
introduction to this concept in this book, but the implementation details will depend
on other factors external to Asterisk, such as the capabilities of the proxy.

The fact that no device has to register with Asterisk will significantly reduce the load
on the Asterisk server, and as a result this design should allow for a voicemail server
that can support several thousand subscribers.

Dialplan requirements

The dialplan of the voicemail server can be fairly simple. Two needs must be satisfied:

1. Receive incoming calls and direct them to the appropriate mailbox

2. Handle incoming calls from users wishing to check their messages

The system that is passing calls to the voicemail server should set some SIP headers in
order to pass additional information to the voicemail server. Typically, this information
would include the mailbox/username that is relevant to the call. In our example, we
are going to set the headers X-Voicemail-Mailbox and X-Voicemail-Context, which will
contain information we wish to pass to the voicemail server.#

If the source system is also an Asterisk system, you might set the headers
using the SIPAddHeader() voicemail application, in a manner similar
to this:

exten => sendtovoicemail,1,Verbose(2,Set SIP headers for voicemail)
 same => n,SipAddHeader(X-Voicemail-Mailbox: <mailbox number>)
 same => n,SipAddHeader(X-Voicemail-Context: voicemailbox)

Note that this dialplan does not go on the voicemail server. It would
only be useful if one of the other servers in your environment was also
an Asterisk server. If you were using a different kind of server, you would
need to find out how to set custom headers in that platform, or find out
if it already uses specific headers for this sort of thing, and possibly
modify the dialplan on the voicemail server to handle those headers.

#As far as we know, there aren’t any specific SIP headers that are standardized for this sort of thing, so you
should be able to name the headers whatever you want. We chose these header names simply because they
make some sort of sense. You may find that other headers would suit your needs better.

176 | Chapter 8: Voicemail

The voicemail server will need an extensions.conf file containing the following:

[voicemailbox]
; direct incoming calls to a mailbox
exten => Deliver,1,NoOp()
 same => n,Set(Mailbox=${SIP_HEADER(X-Voicemail-Mailbox)})
 same => n,Set(MailboxContext=${SIP_HEADER(X-Voicemail-Context)})
 same => n,VoiceMail(${Mailbox}@${MailboxContext})
 same => n,Hangup()

; connect users to their mailbox so that they can retrieve messages exten =>
Retrieve,1,NoOp()
 same => n,Set(Mailbox=${SIP_HEADER(X-Voicemail-Mailbox)})
 same => n,Set(MailboxContext=${SIP_HEADER(X-Voicemail-Context)})
 same => n,VoiceMailMain(${Mailbox}@${MailboxContext})
 same => n,Hangup()

sip.conf requirements

In the sip.conf file on the voicemail server, not only are entries required for all the
mailboxes for message waiting notification, but some sort of entry is required to define
the connection between the voicemail server and the rest of the SIP environment:

[VOICEMAILTRUNK]
type=peer
defaultuser=voicemail
fromuser=voicemail
secret=s0m3th1ngs3cur3
canreinvite=no
host=<address of proxy/registrar server>
disallow=all
allow=ulaw
dtmfmode=rfc2833
context=voicemailbox

The other end of the connection (probably your proxy server) must be configured to
pass voicemail connections to the voicemail server.

Running Asterisk as a standalone voicemail server requires some knowledge of clus-
tering and integration, but you can’t beat the price.

SMDI (Simplified Message Desk Interface)
The Simplified Message Desk Interface (SMDI) protocol is intended to allow commu-
nication of basic message information between telephone systems and voicemail
systems.

Asterisk supports SMDI, but given that this is an old protocol that runs across a serial
connection, there are likely to be integration challenges. Support in various PBXs and
other devices may be spotty. Still, it’s a fairly simple protocol, so for sure it’s worth
testing out if you are considering using Asterisk as a voicemail replacement.

Using Asterisk As a Standalone Voicemail Server | 177

The following is not a detailed explanation of how to configure SMDI for Asterisk, but
rather an introduction to the concepts, with some basic examples. If you are planning
on implementing SMDI, you will need to write some complex dialplan logic and have
a good understanding of how to interconnect systems via serial connections.

SMDI is enabled in Asterisk by the use of two options in the [general] section of the
voicemail.conf file:

smdienable=yes
smdiport=/dev/ttyS0; or whatever serial port you are connecting your SMDI service to

Additionally, you will need an smdi.conf file in your /etc/asterisk folder to define the
details of your SMDI configuration. It should look something like this (see the
smdi.conf.sample file for more information on the available options):

[interfaces]
charsize=7
paritybit=even
baudrate=1200 ; hopefully a higher bitrate is supported
smdiport=/dev/ttyS0 ; or whatever serial port you'll be using to handle
 ; SMDI messages on asterisk

[mailboxes] ; map incoming digit strings (typically DID numbers)
 ; to a valid mailbox@context in voicemail.conf
smdiport=/dev/ttyS0 ; first declare which SMDI port the following mailboxes
 ; will use
4169671111=1234@default
4165551212=9999@default

In the dialplan there are two functions that will be wanted in an SMDI configuration.
The SMDI_MSG_RETRIEVE() function pulls the relevant message from the SMDI message
queue. You need to pass the function a search key (typically the DID that is referred to
in the message), and it will pass back an ID number that can be referenced by the
SMDI_MSG() function:

SMDI_MSG_RETRIEVE(<smdi port>,<search key>[,timeout[,options]])

Once you have the SMDI message ID, you can use the SMDI_MSG() function to access
various details about the message, such as the station, callerID, and type (the SMDI
message type):

SMDI_MSG(<message_id>,<component>)

In your dialplan, you will need to handle the lookup of the SMDI messages that come
in, in order to ensure that calls are handled correctly. For example, if an incoming call
is intended for delivery to a mailbox, the message type might be one of B (for busy) or
N (for unanswered calls). If, on the other hand, the call is intended to go to VoiceMail
Main() because the caller wants to retrieve his messages, the SMDI message type would
be D, and that would have to be handled.

178 | Chapter 8: Voicemail

Conclusion
While the Asterisk voicemail system is quite old in terms of Asterisk code, it is never-
theless a powerful application that can (and does) compete quite successfully with
expensive, proprietary voicemail systems.

Conclusion | 179

CHAPTER 9

Internationalization

David Duffett

I traveled a good deal all over the world, and I got along
pretty good in all these foreign countries, for I have a

theory that it’s their country and they got a right
to run it like they want to.

—Will Rogers

Telephony is one of those areas of life where, whether at home or at work, people do
not like surprises. When people use phones, anything outside of the norm is an ex-
pectation not met, and as someone who is probably in the business of supplying tele-
phone systems, you will know that expectations going unmet can lead to untold misery
in terms of the extra work, lost money, and so forth that are associated with customer
dissatisfaction.

In addition to ensuring that the user experience is in keeping with what users expect,
there is also the need to make your Asterisk feel “at home.” For example, if an outbound
call is placed over an analog line (FXO), Asterisk will need to interpret the tones that
it “hears” on the line (busy, ringing, etc.).

By default (and maybe as one might expect since it was “born in the USA”), Asterisk
is configured to work within North America. However, since Asterisk gets deployed in
many places and (thankfully) people from all over the world make contributions to it,
it is quite possible to tune Asterisk for correct operation just about anywhere you choose
to deploy it.

If you have been reading this book from the beginning, chapter by chapter, you will
have already made some choices during the process of installation and initial configu-
ration that will have set up your Asterisk to work in your local area (and live up to your
customers’ expectations).

181

Quite a few of the chapters in this book contain information that will help you inter-
nationalize* or (perhaps more properly) localize your Asterisk implementation. The
purpose of this chapter is to provide a single place where all aspects of the changes that
need to be made to your Asterisk-based telephone system in this context can be refer-
enced, discussed, and explained. The reason for using the phrase “Asterisk-based tel-
ephone system” rather than just “Asterisk” is that some of the changes will need to be
made in other parts of the system (IP phones, ATAs, etc.), while other changes will be
implemented within Asterisk and DAHDI configuration files.

Let’s start by getting a list together (in no particular order) of the things that may need
to be changed in order to optimise your Asterisk-based telephone system for a given
location outside of North America. You can shout some out if you like…

• Language/accent of the prompts

• Physical connectorization for PSTN interfaces (FXO, BRI, PRI)

• Tones heard by users of IP phones and/or ATAs

• Caller ID format sent and/or received by analog interfaces

• Tones for analog interfaces to be supplied or detected by Asterisk

• Format of time/date stamps for voicemail

• The way the above time/date stamps are announced by Asterisk

• Patterns within the dialplan (of IP phones, ATAs, and Asterisk itself if you are using
the sample dialplan)

• The way to indicate to an analog device that voicemail is waiting (MWI)

• Tones supplied to callers by Asterisk (these come into play once a user is “inside”
the system; e.g., the tones heard during a call transfer)

We’ll cover everything in this list, adopting a strategy of working from the outer edge
of the system toward the very core (Asterisk itself). We will conclude with a handy
checklist of what you may need to change and where to change it.

Although the principles discussed in this chapter will allow you to adapt your Asterisk
specifically for your region (or that of your customer), for the sake of consistency all of
our examples will focus on how to adapt Asterisk for one region: the United Kingdom.

Devices External to the Asterisk Server
There are massive differences between a good old fashioned analog telephone and any
one of the large number of IP phones out there, and we need to pick up on one of the

* i18n is a term used to abbreviate the word internationalization, due to its length. The format is
<first_letter><number><last_letter>, where <number> is the number of letters between the first and last
letters. Other words, such as localization (L10n), modularization (m12n), etc. have also found a home with
this scheme, which Leif finds a little bit ridiculous. More information can be found here: http://www.w3.org/
2001/12/Glossary#I18N.

182 | Chapter 9: Internationalization

http://www.w3.org/2001/12/Glossary#I18N
http://www.w3.org/2001/12/Glossary#I18N

really fundamental differences in order to throw light on the next explanation, which
covers the settings we might need to change on devices external to Asterisk, such as IP
phones.

Have you ever considered the fact that an analog phone is a totally dumb device (we
know that a basic model is very, very cheap) that needs to connect to an intelligent
network (the PSTN), whereas an IP phone (e.g., SIP or IAX2) is a very intelligent device
that connects to a dumb network (the Internet, or any regular IP network)? Figures
9-1 and 9-2 illustrate the difference.

Figure 9-1. The old days: dumb devices connect to a smart network

Figure 9-2. The situation today: smart devices connect through a dumb network

Could we take two analog phones, connect them directly to each other and have the
functionality we would normally associate with a regular phone? No, of course not,
because the network supplies everything: the actual power to the phone, the dialtone
(from the local exchange or CO), the caller ID information, the ringing tone (from the
remote [closest to the destination phone] exchange or CO), all the signaling required,
and so on.

Conversely, could we take two IP phones, connect them directly to each other, and get
some sensible functionality? Sure we could, because all the intelligence is inside the IP
phones themselves—they provide the tones we hear (dialtone, ringing, busy) and run
the protocol that does all the required signaling (usually SIP). In fact, you can try this
for yourself—most mid-price IP phones have a built-in Ethernet switch, so you can
actually connect the two IP phones directly to each other with a regular (straight-
through) Ethernet patch cable, or just connect them through a regular switch. They
will need to have fixed IP addresses in the absence of a DHCP server, and you can

Devices External to the Asterisk Server | 183

usually dial the IP address of the other phone just by using the * key for the dots in
the address.

Figure 9-2 points to the fact that on an IP phone, we are responsible for setting all of
the tones that the network would have provided in the old days. This can be done in
one of (at least) two ways. The first is to configure the tones provided by the IP phone
on the device’s own web GUI. This is done by browsing to the IP address of the phone
(the IP address can usually be obtained by a menu option on the phone) and then
selecting the appropriate options. For example, on a Yealink IP phone, the tones are
set on the Phone page of the web GUI, under the Tones tab (where you’ll find a list of
the different types of tone that can be changed—in the case of the Yealink, these are
Dial, Ring Back, Busy, Congestion, Call Waiting, Dial Recall, Record, Info, Stutter,
Message, and Auto Answer).

The other way that this configuration can be applied is to auto-provision the phone
with these settings. A full explanation of the mechanism for auto-provisioning is beyond
the scope of this book, but you can usually set up the tones in the appropriate attributes
of the relevant elements in the XML file.

While we are changing settings on the IP phones, there are two other things that may
need to be changed in order for the phones to look right and to function correctly as
part of the system.

Most phones display the time when idle and, since many people find it particularly
annoying when their phones show the wrong time, we need to ensure that the correct
local time is displayed. It should be fairly easy to find the appropriate page of the web
GUI (or XML attributes) to specify the time server. You will also find that there are
settings for daylight saving time and other relevant stuff nearby.

The last thing to change is a potential show-stopper as far as the making of a phone
call is concerned—the dialplan. We’re not talking about the dialplan we find in /etc/
asterisk/extensions.conf, but the dialplan of the phone. Not everyone realizes that IP
phones have dialplans too—although these dialplans are more concerned with which
dial strings are permitted than with what to do on a given dial.

The general rule seems to be that if you dial on-hook the built-in dialplan is bypassed,
but if you pick up the handset the dialplan comes into play, and it just might happen
that the dialplan will not allow the dial string you need to be dialed. Although this
problem can manifest itself with a refusal by the phone to pass certain types of numbers
through to Asterisk, it can also affect any feature codes you plan to use. This can easily
be remedied by Googling the model number of the phone along with “UK dialplan”
(or the particular region you need), or you can go to the appropriate page on the web
GUI and either manually adjust the dialplan or pick the country you need from a drop-
down box (depending on the type of phone you are working with).

184 | Chapter 9: Internationalization

The prior discussion of IP phone configuration also applies to any analog telephone
adaptors (ATAs) you plan to use—specifically, to those supporting an FXS interface.
In addition, you may need to specify some of the electrical characteristics of the tel-
ephony interface, like line voltage and impedance, together with the caller ID format
that will work with local phones. All that differs is the way you obtain the IP address
for the web GUI—this is usually done by dialing a specific code on the attached analog
phone, which results in the IP address being read back to the caller.

Of course, an ATA may also feature an FXO interface, which will also need to be con-
figured to properly interact with the analog line provided in your region. The types of
things that need to be changed are similar to the FXS interface.

What if you are connecting your analog phone or line to a Digium card? We’ll cover
this next.

PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones
Before we get to DAHDI and Asterisk configuration, we need to physically connect to
the PSTN. Unfortunately, there are no worldwide standards for these connections; in
fact, there are often variations from one part of a given country to another.

PRI connections are generally terminated in an RJ45 connection these days, although
the impedance of the connections can vary. In some countries (notably in South Amer-
ica), it is still possible to find PRIs terminated in two BNC connectors, one for transmit
and one for receive.

Generally speaking, a PRI terminated in an RJ45 will be an ISDN connection, and if
you find the connection is made by a pair of BNC connectors (push-and-twist coaxial
connectors), the likelihood is that you are dealing with a CAS-based protocol (like R2).

Figure 9-3 shows the adaptor required if your telco has supplied BNC connectors (the
Digium cards require an RJ45 connection). It is called a balun, as it converts from a
balanced connection (RJ45) to an unbalanced connection (the BNCs), in addition to
changing the connection impedance.

Basic Rate Interfaces (BRIs) are common in continental Europe and are
almost always supplied via an RJ45 connection.

PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones | 185

Figure 9-3. A balun

Analog connections vary massively from place to place—you will know what kind of
connector is used in your locality. The important thing to remember is that the analog
line is only two wires, and these need to connect to the middle two pins of the RJ11
plug that goes into the Digium card—the other end is the local one. Figure 9-4 shows
the plug used in the UK, where the two wires are connected to pins 2 and 5.

Figure 9-4. The BT plug used for analog PSTN connections in the UK (note only pins 2–5 are present)

The Digium Asterisk Hardware Device Interface, or DAHDI, actually covers a number
of things. It contains the kernel drivers for telephony adaptor cards that work within
the DAHDI framework, as well as automatic configuration utilities and test tools. These
parts are contained in two separate packages (dahdi-linux and dahdi-tools), but we can
also use one complete package, called dahdi-linux-complete. All three packages are
available at http://downloads.digium.com/pub/telephony/. The installation of DAHDI
was covered in Chapter 3.

Chapter 7 covered the use of analog and digital PSTN connections, and we will not
reiterate those details here. If you are using digital PSTN connections, your job is to
find out what sort of connection the telco is giving you. Generally, if you have requested

186 | Chapter 9: Internationalization

http://downloads.digium.com/pub/telephony/

a primary rate interface (PRI), this will be a T1 in North America, a J1 in Japan, or an
E1 in pretty much the rest of the world.

Once you have established the type of PRI connection the telco has given you, there
are some further details that you will require in order to properly configure DAHDI
and Asterisk (e.g., whether the connection is ISDN or a CAS-based protocol). Again,
you will find these in Chapter 7.

DAHDI Drivers
The connections where some real localization will need to take place are those of analog
interfaces. For the purposes of configuring your Asterisk-based telephone system to
work best in a given locality, you will first need to specifically configure some low-level
aspects of the way the Digium card interacts with the connected device or line. This is
done through the DAHDI kernel driver(s), in a file called /etc/dahdi/system.conf.

In the following lines (taken from the sample configuration that you get with a fresh
install of DAHDI), you will find both the loadzone and defaultzone settings. The load
zone setting allows you to choose which tone set(s) the card will both generate (to feed
to analog telephones) and recognize (on the connected analog telephone lines):

Tone Zone Data
^^^^^^^^^^^^^^
Finally, you can preload some tone zones, to prevent them from getting
overwritten by other users (if you allow non-root users to open /dev/dahdi/*
interfaces anyway). Also this means they won't have to be loaded at runtime.
The format is "loadzone=<zone>" where the zone is a two letter country code.
#
You may also specify a default zone with "defaultzone=<zone>" where zone
is a two letter country code.
#
An up-to-date list of the zones can be found in the file zonedata.c
#
loadzone = us
#loadzone = us-old
#loadzone=gr
#loadzone=it
#loadzone=fr
#loadzone=de
#loadzone=uk
#loadzone=fi
#loadzone=jp
#loadzone=sp
#loadzone=no
#loadzone=hu
#loadzone=lt
#loadzone=pl
defaultzone=us
#

PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones | 187

The /etc/dahdi/system.conf file uses the hash symbol (#) to indicate a
comment instead of a semicolon (;) like the files in /etc/asterisk/.

Although it is possible to load a number of different tone sets (you can see all the sets
of tones in detail in zonedata.c) and to switch between them, in most practical situations
you will only need:

loadzone=uk # to load the tone set
defaultzone=uk # to default DAHDI to using that set

…or whichever tones you need for your region.

If you perform a dahdi_genconf to automatically (or should that be auto-magically?)
configure your DAHDI adaptors, you will notice that the newly generated /etc/dahdi/
system.conf will have defaulted both loadzone and defaultzone to being us. Despite the
warnings not to hand-edit the file, it is fine to change these settings to what you need.

In case you were wondering how we tell whether there are any voicemails in the mailbox
associated with the channel an analog phone is plugged into, it is done with a stuttered
dialtone. The format of this stuttered dialtone is decided by the loadzone/default
zone combination you have used.

As a quick aside, analog phones that have a message waiting indicator (e.g., an LED or
lamp that flashes to indicate there is new voicemail) achieve this by automatically going
off-hook periodically and listening for the stuttered dialtone. You can witness this by
watching the Asterisk command line to see the DAHDI channel go active (if you have
nothing better to do!).

That’s it at the DAHDI level. We chose the protocol(s) for PRI or BRI connections, the
type of signaling for the analog channels (all covered in Chapter 7), and the tones for
the analog connections that have just been discussed.

Once you have completed your configuration at the DAHDI level (in /
etc/dahdi/system.conf), you need to perform a dahdi_cfg -vvv to have
DAHDI reread the configuration. This is also a good time to use
dahdi_tool to check that everything appears to be in order at the Linux
level.

This way, if things do not work properly after you have configured
Asterisk to work with the DAHDI adaptors, you can be sure that the
problem is confined to chan_dahdi.conf (or an #included dahdi-chan-
nels.conf if you are using this part of the dahdi_genconf output).

188 | Chapter 9: Internationalization

The relationship between Linux, DAHDI, and Asterisk (and therefore /etc/dahdi/sys-
tem.conf and /etc/asterisk/chan_dahdi.conf) is shown in Figure 9-5.

Figure 9-5. The relationship between Linux, DAHDI, and Asterisk

Asterisk
With everything set at the Linux level, we now only need to configure Asterisk to make
use of the channels we just enabled at the Linux level and to customize the way that
Asterisk interprets and generates information that comes in from, or goes out over,
these channels. This work is done in /etc/asterisk/chan_dahdi.conf.

In this file we will not only tell Asterisk what sort of channels we have (these settings
will fit with what we already did in DAHDI), but also configure a number of things that
will ensure Asterisk is well suited to its new home.

Caller ID
A key component of this change is caller ID. While caller ID delivery methods are pretty
much standard within the BRI and PRI world, they vary widely in the analog world;
thus, if you plugged an American analog phone into the UK telephone network, it
would actually work as a phone, but caller ID information would not be displayed.
This is because that information is transmitted in different ways in different places
around the world, and an American phone would be looking for caller ID signaling in
the US format, while the UK telephone network would be supplying it (if it is enabled—
it is not standard in the UK; you have to pay for caller ID!) in the UK format.

Not only is the format different, but the method of telling a telephone (or Asterisk) to
look out for the caller ID may vary from place to place too. This is important, as we do
not want Asterisk to waste time looking for caller ID information if it is not being
presented on the line.

Asterisk | 189

Again, Asterisk defaults to the North American caller ID format (no entries in /etc/
asterisk/chan_dahdi.conf describe this, it’s just the default), and in order to change it
we will need to make some entries that describe the technical details of the caller ID
system. In the case of the UK, the delivery of caller ID information is signaled by a
polarity reversal on the telephone line (in other words, the A and B legs of the pair of
telephone wires are temporarily switched over), and the actual caller ID information is
delivered in a format known as V.23 (frequency shift keying, or FSK). So, the entries in
chan_dahdi.conf to receive UK-style caller ID on any FXO interfaces will look like this:

cidstart=polarity ; the delivery of caller ID will be
 ; signaled by a polarity reversal
cidsignalling=v23 ; the delivery of the called ID information
 ; will be in V23 format

Of course, you may also need to send caller ID using the same local signaling informa-
tion to any analog phones that are connected to FXS interfaces, and one more entry
may be needed as in some locations the caller ID information is sent after a specified
number of rings. If this is the case, you can use this entry:

sendcalleridafter=2

Before you can make these entries, you will need to establish the details of your local
caller ID system (someone from your local telco or Google could be your friend here,
but there is also some good information in the sample /etc/asterisk/chan_dahdi.conf
file).

Language and/or Accent of Prompts
As you may know, the prompts (or recordings) that Asterisk will use are stored in /var/
lib/asterisk/sounds/. In older versions of Asterisk all the sounds were in this actual di-
rectory, but these days you will find a number of subdirectories that allow the use of
different languages or accents. The names of these subdirectories are arbitrary; you can
call them whatever you want.

Note that the filenames in these directories must be what Asterisk is expecting—for
example, in /var/lib/asterisk/sound/en/ the file hello.gsm would contain the word
“Hello” (spoken by the lovely Allison), whereas hello.gsm in /var/lib/asterisk/sounds/
es/ (for Spanish in this case) would contain the word “Hola” (spoken by the Spanish
equivalent of the lovely Allison†).

† Who is, in fact, the same Allison who does the English prompts; June Wallack does the French prompts. The
male Australian-accented prompts are done by Cameron Twomey. All voiceover talent are available to record
additional prompts as well. See http://www.digium.com/en/products/ivr/ for more information.

190 | Chapter 9: Internationalization

http://www.digium.com/en/products/ivr/

The default directory used is /var/lib/asterisk/sounds/en, so how do you change that?

There are two ways. One is to set the language in the channel configuration file that
calls are arriving through using the language directive. For example, the line:

language=en_UK

placed in chan_dahdi.conf, sip.conf, and so on (to apply generally, or for just a given
channel or profile) will tell Asterisk to use sound files found in /var/lib/asterisk/sounds/
en_UK (which could contain British-accented prompts) for all calls that come in
through those channels.

The other way is to change the language during a phone call through the dialplan. This
(along with many attributes of an individual call) can be set using the CHANNEL() dialplan
function. See Chapter 10 for a full treatment of dialplan functions.

The following example would allow the caller to choose one of three languages in which
to continue the call:

; gives the choice of (1) French, (2) Spanish, or (3) German
exten => s,1,Background(choose-language)
 same => n,WaitExten(5)

exten => 1,1,Set(CHANNEL(language)=fr)

exten => 2,1,Set(CHANNEL(language)=es)

exten => 3,1,Set(CHANNEL(language)=de)

; the next priority for extensions 1, 2, or 3 would be handled here
exten => _[123],n,Goto(menu,s,1)

If the caller pressed 1 sounds would be played from /var/lib/asterisk/sounds/fr, if he
pressed 2 the sounds would come from /var/lib/asterisk/sounds/es, and so on.

As already mentioned, the names of these directories are arbitrary and do not need to
be only two characters long—the main thing is that you match the name of the sub-
directory you have created in the language directive in the channel configuration, or
when you set the CHANNEL(language) argument in the dialplan.

Time/Date Stamps and Pronunciation
Asterisk uses the Linux system time from the host server, as you would expect, but we
may have users of the system who are in different time zones, or even in different coun-
tries. Voicemail is where the rubber hits the road, as this is where users come into
contact with time/date stamp information.

Consider a scenario where some users of the system are based in the US, while others
are in the UK.

As well as the time difference, another thing to consider is the way people in the two
locations are used to hearing date and time information—in the US, dates are usually

Asterisk | 191

ordered month, day, year and times are specified in 12-hour clock format (e.g.,
2:54 P.M.).

In contrast, in the UK, dates are ordered day, month, year and times are often specified
in 24-hour clock format (14:54 hrs)—although some people in the UK prefer 12-hour
clock format, so we will cover that too.

Since all these things are connected to voicemail, you would be right to guess that we
configure it in /etc/asterisk/voicemail.conf—specifically, in the [zonemessages] section
of the file.

Here is the [zonemessages] part of the sample voicemail.conf file that comes with As-
terisk, with UK24 (for UK people that like 24-hour clock format times) and UK12 (for UK
people that prefer 12-hour clock format) zones added:

[zonemessages]
; Users may be located in different timezones, or may have different
; message announcements for their introductory message when they enter
; the voicemail system. Set the message and the timezone each user
; hears here. Set the user into one of these zones with the tz=attribute
; in the options field of the mailbox. Of course, language substitution
; still applies here so you may have several directory trees that have
; alternate language choices.
;
; Look in /usr/share/zoneinfo/ for names of timezones.
; Look at the manual page for strftime for a quick tutorial on how the
; variable substitution is done on the values below.
;
; Supported values:
; 'filename' filename of a soundfile (single ticks around the filename
; required)
; ${VAR} variable substitution
; A or a Day of week (Saturday, Sunday, ...)
; B or b or h Month name (January, February, ...)
; d or e numeric day of month (first, second, ... thirty-first)
; Y Year
; I or l Hour, 12 hour clock
; H Hour, 24 hour clock (single digit hours preceded by "oh")
; k Hour, 24 hour clock (single digit hours NOT preceded by "oh")
; M Minute, with 00 pronounced as "o'clock"
; N Minute, with 00 pronounced as "hundred" (US military time)
; P or p AM or PM
; Q "today", "yesterday" or ABdY
; (*note: not standard strftime value)
; q " (for today), "yesterday", weekday, or ABdY
; (*note: not standard strftime value)
; R 24 hour time, including minute
;
eastern=America/New_York|'vm-received' Q 'digits/at' IMp
central=America/Chicago|'vm-received' Q 'digits/at' IMp
central24=America/Chicago|'vm-received' q 'digits/at' H N 'hours'
military=Zulu|'vm-received' q 'digits/at' H N 'hours' 'phonetic/z_p'
european=Europe/Copenhagen|'vm-received' a d b 'digits/at' HM

192 | Chapter 9: Internationalization

UK24=Europe/London|'vm-received' q 'digits/at' H N 'hours'
UK12=Europe/London|'vm-received' Q 'digits/at' IMp

These zones not only specify a time, but also dictate the way times and dates are ordered
and read out.

Having created these zones, we can go to the voicemail context part of voicemail.conf
to associate the appropriate mailboxes with the correct zones:

[default]
4001 => 1234,Russell Bryant,rb@shifteight.org,,|tz=central
4002 => 4444,David Duffett,dd@shifteight.org,,|tz=UK24
4003 => 4450,Mary Poppins,mp@shifteight.org,,|tz=UK12|attach=yes

As you can see, when we declare a mailbox, we also (optionally) associate it with a
particular zone. Full details on voicemail can be found in Chapter 8.

The last thing to localize in our Asterisk configuration is the tones played to callers by
Asterisk once they are inside the system (e.g., the tones a caller hears during a transfer).

As identified earlier in this chapter, the initial tones that people hear when they are
calling into the system will come from the IP phone, or from DAHDI for analog
channels.

These tones are set in /etc/asterisk/indications.conf. Here is a part of the sample file,
where you can see a given region specified by the country directive. We just need to
change the country code as appropriate:

;
; indications.conf
;
; Configuration file for location specific tone indications
;
; NOTE:
; When adding countries to this file, please keep them in alphabetical
; order according to the 2-character country codes!
;
; The [general] category is for certain global variables.
; All other categories are interpreted as location specific indications
;
[general]
country=uk ; default is US, so we have changed it to UK

Your dialplan will need to reflect the numbering scheme for your region. If you do not
already know the scheme for your area, your local telecoms regulator will usually be
able to supply details of the plan. Also, the example dialplan in /etc/asterisk/exten-
sions.conf is, of course, packed with North American numbers and patterns.

Asterisk | 193

Conclusion—Easy Reference Cheat Sheet
As you can now see, there are quite a few things to change in order to fully localize your
Asterisk-based telephone system, and not all of them are in the Asterisk, or even
DAHDI, configuration—some things need to be changed on the connected IP phones
or ATAs themselves.

Before we leave the chapter, have a look at Table 9-1: a cheat sheet for what to change
and where to change it, for your future reference.

Table 9-1. Internationalization cheat sheet

What to change Where to change it

Call progress tones • IP phones—on the phone itself

• ATAs—on the ATA itself

• Analog phones—DAHDI (/etc/dahdi/system.conf)

Type of PRI/BRI and
protocol

DAHDI—/etc/dahdi/system.conf and /etc/asterisk/chan_dahdi.conf

Physical PSTN connections • Balun if required for PRI

• Get the analog pair to middle 2 pins of the RJ11 connecting to the Digium card

Caller ID on analog circuits Asterisk—/etc/asterisk/chan_dahdi.conf

Prompt language and/or ac-
cent

• Channel—/etc/asterisk/sip.conf, /etc/asterisk/iax.conf, /etc/asterisk/chan_dahdi.conf,
etc.

• Dialplan—CHANNEL(language) function

Voicemail time/date stamps
and pronunciation

Asterisk—/etc/asterisk/voicemail.conf

Tones delivered by Asterisk Asterisk—/etc/asterisk/indications.conf

May all your Asterisk deployments feel at home…

194 | Chapter 9: Internationalization

CHAPTER 10

Deeper into the Dialplan

For a list of all the ways technology has failed to improve
the quality of life, please press three.

—Alice Kahn

Alrighty. You’ve got the basics of dialplans down, but you know there’s more to come.
If you don’t have Chapter 6 sorted out yet, please go back and give it another read.
We’re about to get into more advanced topics.

Expressions and Variable Manipulation
As we begin our dive into the deeper aspects of dialplans, it is time to introduce you to
a few tools that will greatly add to the power you can exercise in your dialplan. These
constructs add incredible intelligence to your dialplan by enabling it to make decisions
based on different criteria you define. Put on your thinking cap, and let’s get started.

Basic Expressions
Expressions are combinations of variables, operators, and values that you string to-
gether to produce a result. An expression can test values, alter strings, or perform
mathematical calculations. Let’s say we have a variable called COUNT. In plain English,
two expressions using that variable might be “COUNT plus 1” and “COUNT divided by 2.”
Each of these expressions has a particular result or value, depending on the value of
the given variable.

In Asterisk, expressions always begin with a dollar sign and an opening square bracket
and end with a closing square bracket, as shown here:

$[expression]

Thus, we would write our two examples like this:

$[${COUNT} + 1]
$[${COUNT} / 2]

195

When Asterisk encounters an expression in a dialplan, it replaces the entire expression
with the resulting value. It is important to note that this takes place after variable sub-
stitution. To demonstrate, let’s look at the following code*:

exten => 321,1,Set(COUNT=3)
 same => n,Set(NEWCOUNT=$[${COUNT} + 1])
 same => n,SayNumber(${NEWCOUNT})

In the first priority, we assign the value of 3 to the variable named COUNT.

In the second priority, only one application—Set()—is involved, but three things ac-
tually happen:

1. Asterisk substitutes ${COUNT} with the number 3 in the expression. The expression
effectively becomes this:

exten => 321,n,Set(NEWCOUNT=$[3 + 1])

2. Asterisk evaluates the expression, adding 1 to 3, and replaces it with its computed
value of 4:

exten => 321,n,Set(NEWCOUNT=4)

3. The Set() application assigns the value 4 to the NEWCOUNT variable

The third priority simply invokes the SayNumber() application, which speaks the current
value of the variable ${NEWCOUNT} (set to the value 4 in priority two).

Try it out in your own dialplan.

Operators
When you create an Asterisk dialplan, you’re really writing code in a specialized script-
ing language. This means that the Asterisk dialplan—like any programming language—
recognizes symbols called operators that allow you to manipulate variables. Let’s look
at the types of operators that are available in Asterisk:

Boolean operators
These operators evaluate the “truth” of a statement. In computing terms, that es-
sentially refers to whether the statement is something or nothing (nonzero or zero,
true or false, on or off, and so on). The Boolean operators are:

expr1 | expr2
This operator (called the “or” operator, or “pipe”) returns the evaluation of
expr1 if it is true (neither an empty string nor zero). Otherwise, it returns the
evaluation of expr2.

* Remember that when you reference a variable you can call it by its name, but when you refer to a variable’s
value, you have to use the dollar sign and brackets around the variable name.

196 | Chapter 10: Deeper into the Dialplan

expr1 & expr2
This operator (called “and”) returns the evaluation of expr1 if both expressions
are true (i.e., neither expression evaluates to an empty string or zero). Other-
wise, it returns zero.

expr1 {=, >, >=, <, <=, !=} expr2
These operators return the results of an integer comparison if both arguments
are integers; otherwise, they return the results of a string comparison. The
result of each comparison is 1 if the specified relation is true, or 0 if the relation
is false. (If you are doing string comparisons, they will be done in a manner
that’s consistent with the current local settings of your operating system.)

Mathematical operators
Want to perform a calculation? You’ll want one of these:

expr1 {+, -} expr2
These operators return the results of the addition or subtraction of integer-
valued arguments.

expr1 {*, /, %} expr2
These return, respectively, the results of the multiplication, integer division,
or remainder of integer-valued arguments.

Regular expression operator
You can also use the regular expression operator in Asterisk:

expr1 : expr2
This operator matches expr1 against expr2, where expr2 must be a regular
expression.† The regular expression is anchored to the beginning of the string
with an implicit ^.‡

If the match succeeds and the pattern contains at least one regular expression
subexpression—\(... \)—the string corresponding to \1 is returned; other-
wise, the matching operator returns the number of characters matched. If the
match fails and the pattern contains a regular expression subexpression, the
null string is returned; otherwise, 0 is returned.

In Asterisk version 1.0 the parser was quite simple, so it required that you put at least
one space between the operator and any other values. Consequently, the following
might not have worked as expected:

exten => 123,1,Set(TEST=$[2+1])

† For more on regular expressions, grab a copy of the ultimate reference, Jeffrey E. F. Friedl’s Mastering Regular
Expressions (O’Reilly), or visit http://www.regular-expressions.info.

‡ If you don’t know what a ^ has to do with regular expressions, you simply must read Mastering Regular
Expressions. It will change your life!

Expressions and Variable Manipulation | 197

http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/
http://www.regular-expressions.info
http://oreilly.com/catalog/9780596528126/
http://oreilly.com/catalog/9780596528126/

This would have assigned the variable TEST to the string “2+1”, instead of the value 3.
In order to remedy that, we would put spaces around the operator, like so:

exten => 234,1,Set(TEST=$[2 + 1])

This is no longer necessary in current versions of Asterisk, as the expression parser has
been made more forgiving in these types of scenarios. However, for readability’s sake,
we still recommend including the spaces around your operators.

To concatenate text onto the beginning or end of a variable, simply place them together,
like this:

exten => 234,1,Set(NEWTEST=blah${TEST})

Dialplan Functions
Dialplan functions allow you to add more power to your expressions; you can think of
them as intelligent variables. Dialplan functions allow you to calculate string lengths,
dates and times, MD5 checksums, and so on, all from within a dialplan expression.

Syntax
Dialplan functions have the following basic syntax:

FUNCTION_NAME(argument)

You reference a function’s name the same way as a variable’s name, but you reference
a function’s value with the addition of a dollar sign, an opening curly brace, and a
closing curly brace:

${FUNCTION_NAME(argument)}

Functions can also encapsulate other functions, like so:

${FUNCTION_NAME(${FUNCTION_NAME(argument)})}
 ^ ^ ^ ^ ^^^^
 1 2 3 4 4321

As you’ve probably already figured out, you must be very careful about making sure
you have matching parentheses and braces. In the preceding example, we have labeled
the opening parentheses and curly braces with numbers and their corresponding clos-
ing counterparts with the same numbers.

Examples of Dialplan Functions
Functions are often used in conjunction with the Set() application to either get or set
the value of a variable. As a simple example, let’s look at the LEN() function. This
function calculates the string length of its argument. Let’s calculate the string length of
a variable and read back the length to the caller:

198 | Chapter 10: Deeper into the Dialplan

exten => 123,1,Set(TEST=example)
 same => n,SayNumber(${LEN(${TEST})})

This example will first evaluate $TEST as example. The string “example” is then given to
the LEN() function, which will evaluate as the length of the string, 7. Finally, 7 is passed
as an argument to the SayNumber() application.

Let’s look at another simple example. If we wanted to set one of the various channel
timeouts, we could use the TIMEOUT() function. The TIMEOUT() function accepts one of
three arguments: absolute, digit, and response. To set the digit timeout with the
TIMEOUT() function, we could use the Set() application, like so:

exten => s,1,Set(TIMEOUT(digit)=30)

Notice the lack of ${ } surrounding the function. Just as if we were assigning a value
to a variable, we assign a value to a function without the use of the ${ } encapsulation.

A complete list of available functions can be found by typing core show functions at the
Asterisk command-line interface.

Conditional Branching
Now that you’ve learned a bit about expressions and functions, it’s time to put them
to use. By using expressions and functions, you can add even more advanced logic to
your dialplan. To allow your dialplan to make decisions, you’ll use conditional branch-
ing. Let’s take a closer look.

The GotoIf() Application
The key to conditional branching is the GotoIf() application. GotoIf() evaluates an
expression and sends the caller to a specific destination based on whether the expres-
sion evaluates to true or false.

GotoIf() uses a special syntax, often called the conditional syntax:

GotoIf(expression?destination1:destination2)

If the expression evaluates to true, the caller is sent to destination1. If the expression
evaluates to false, the caller is sent to the second destination. So, what is true and what
is false? An empty string and the number 0 evaluate as false. Anything else evaluates
as true.

The destinations can each be one of the following:

• A priority label within the same extension, such as weasels

• An extension and a priority label within the same context, such as 123,weasels

• A context, extension, and priority label, such as incoming,123,weasels

Conditional Branching | 199

Either of the destinations may be omitted, but not both. If the omitted destination is
to be followed, Asterisk simply goes on to the next priority in the current extension.

Let’s use GotoIf() in an example:

exten => 345,1,Set(TEST=1)
 same => n,GotoIf($[${TEST} = 1]?weasels:iguanas)
 same => n(weasels),Playback(weasels-eaten-phonesys)
 same => n,Hangup()
 same => n(iguanas),Playback(office-iguanas)
 same => n,Hangup()

You will notice that we have used the Hangup() application following
each use of the Playback() application. This is done so that when we
jump to the weasels label, the call stops before execution gets to the
office-iguanas sound file. It is becoming increasingly common to see
extensions broken up into multiple components (protected from each
other by the Hangup() command), each one a distinct sequence of steps
executed following a GotoIf().

Providing Only a False Conditional Path
If we wanted to, we could have crafted the preceding example like this:

exten => 345,1,Set(TEST=1)
 same => n,GotoIf($[${TEST} = 1]?:iguanas) ; we don't have the weasels label anymore,
 ; but this will still work
 same => n,Playback(weasels-eaten-phonesys)
 same => n,Hangup()
 same => n(iguanas),Playback(office-iguanas)
 same => n,Hangup()

There’s nothing between the ? and the :, so if the statement evaluates to true, execution
will continue at the next step. Since that’s what we want, a label isn’t needed.

We don’t really recommend doing this, because it’s hard to read, but you will see
dialplans like this, so it’s good to be aware that this syntax is totally correct.

Typically, when you have this type of layout where you end up wanting to prevent
Asterisk from falling through to the next priority after you’ve performed that jump, it’s
probably better to jump to separate extensions instead of priority labels. If anything, it
makes it a bit more clear when reading the dialplan. We could rewrite the previous bit
of dialplan like this:

exten => 345,1,Set(TEST=1)
 same => n,GotoIf($[${TEST} = 1]?weasels,1:iguanas,1) ; now we're going to
 ; extension,priority

exten => weasels,1,Playback(weasels-eaten-phonesys) ; this is NOT a label.
 ; It is a different extension
 same => n,Hangup()

200 | Chapter 10: Deeper into the Dialplan

exten => iguanas,1,Playback(office-iguanas)
 same => n,Hangup()

By changing the value assigned to TEST in the first line, you should be able to have your
Asterisk server play a different greeting.

Let’s look at another example of conditional branching. This time, we’ll use both
Goto() and GotoIf() to count down from 10 and then hang up:

exten => 123,1,Set(COUNT=10)
 same => n(start),GotoIf($[${COUNT} > 0]?:goodbye)
 same => n,SayNumber(${COUNT})
 same => n,Set(COUNT=$[${COUNT} - 1])
 same => n,Goto(start)
 same => n(goodbye),Hangup()

Let’s analyze this example. In the first priority, we set the variable COUNT to 10. Next,
we check to see if COUNT is greater than 0. If it is, we move on to the next priority. (Don’t
forget that if we omit a destination in the GotoIf() application, control goes to the next
priority.) From there, we speak the number, subtract 1 from COUNT, and go back to
priority label start. If COUNT is less than or equal to 0, control goes to priority label
goodbye, and the call is hung up.

The classic example of conditional branching is affectionately known as the anti-
girlfriend logic. If the caller ID number of the incoming call matches the phone number
of the recipient’s ex-girlfriend, Asterisk gives a different message than it ordinarily
would to any other caller. While somewhat simple and primitive, it’s a good example
for learning about conditional branching within the Asterisk dialplan.

This example uses the CALLERID function, which allows us to retrieve the caller ID in-
formation on the inbound call. Let’s assume for the sake of this example that the vic-
tim’s phone number is 888-555-1212:

exten => 123,1,GotoIf($[${CALLERID(num)} = 8885551212]?reject:allow)
 same => n(allow),Dial(DAHDI/4)
 same => n,Hangup()
 same => n(reject),Playback(abandon-all-hope)
 same => n,Hangup()

In priority 1, we call the GotoIf() application. It tells Asterisk to go to priority label
reject if the caller ID number matches 8885551212, and otherwise to go to priority label
allow (we could have simply omitted the label name, causing the GotoIf() to fall
through). If the caller ID number matches, control of the call goes to priority label
reject, which plays back an uninspiring message to the undesired caller. Otherwise,
the call attempts to dial the recipient on channel DAHDI/4.

Conditional Branching | 201

Time-Based Conditional Branching with GotoIfTime()
Another way to use conditional branching in your dialplan is with the GotoIfTime()
application. Whereas GotoIf() evaluates an expression to decide what to do, GotoIf
Time() looks at the current system time and uses that to decide whether or not to follow
a different branch in the dialplan.

The most obvious use of this application is to give your callers a different greeting before
and after normal business hours.

The syntax for the GotoIfTime() application looks like this:

GotoIfTime(times,days_of_week,days_of_month,months?label)

In short, GotoIfTime() sends the call to the specified label if the current date and time
match the criteria specified by times, days_of_week, days_of_month, and months. Let’s
look at each argument in more detail:

times
This is a list of one or more time ranges, in a 24-hour format. As an example, 9:00
A.M. through 5:00 P.M. would be specified as 09:00-17:00. The day starts at 0:00
and ends at 23:59.

It is worth noting that times will properly wrap around. So, if you
wish to specify the times your office is closed, you might write
18:00-9:00 in the times parameter, and it will perform as expected.
Note that this technique works as well for the other components
of GotoIfTime(). For example, you can write sat-sun to specify the
weekend days.

days_of_week
This is a list of one or more days of the week. The days should be specified as mon,
tue, wed, thu, fri, sat, and/or sun. Monday through Friday would be expressed as
mon-fri. Tuesday and Thursday would be expressed as tue&thu.

Note that you can specify a combination of ranges and single days,
as in: sun-mon&wed&fri-sat, or, more simply: wed&fri-mon.

days_of_month
This is a list of the numerical days of the month. Days are specified by the numbers
1 through 31. The 7th through the 12th would be expressed as 7-12, and the 15th
and 30th of the month would be written as 15&30.

202 | Chapter 10: Deeper into the Dialplan

months
This is a list of one or more months of the year. The months should be written as
jan-apr for a range, and separated with ampersands when wanting to include non-
sequential months, such as jan&mar&jun. You can also combine them like so:
jan-apr&jun&oct-dec.

If you wish to match on all possible values for any of these arguments, simply put an
* in for that argument.

The label argument can be any of the following:

• A priority label within the same extension, such as time_has_passed

• An extension and a priority within the same context, such as 123,time_has_passed

• A context, extension, and priority, such as incoming,123,time_has_passed

Now that we’ve covered the syntax, let’s look at a couple of examples. The following
example would match from 9:00 A.M. to 5:59 P.M., on Monday through Friday, on any
day of the month, in any month of the year:

exten => s,1,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)

If the caller calls during these hours, the call will be sent to the first priority of the s
extension in the context named open. If the call is made outside of the specified times,
it will be sent to the next priority of the current extension. This allows you to easily
branch on multiple times, as shown in the next example (note that you should always
put your most specific time matches before the least specific ones):

; If it's any hour of the day, on any day of the week,
; during the fourth day of the month, in the month of July,
; we're closed
exten => s,1,GotoIfTime(*,*,4,jul?closed,s,1)

; During business hours, send calls to the open context
 same => n,GotoIfTime(09:00-17:59,mon-fri,*,*?open,s,1)
 same => n,GotoIfTime(09:00-11:59,sat,*,*?open,s,1)

; Otherwise, we're closed
 same => n,Goto(closed,s,1)

If you run into the situation where you ask the question, “But I specified
17:58 and it’s now 17:59. Why is it still doing the same thing?” it should
be noted that the granularity of the GotoIfTime() application is only to
a two-minute period. So, if you specify 18:00 as the ending time of a
period, the system will continue to perform the same way until 18:01:59.

Conditional Branching | 203

Macros
Macros§ are a very useful construct designed to avoid repetition in the dialplan. They
also help in making changes to the dialplan. To illustrate this point, let’s look at our
sample dialplan again. If you remember the changes we made for voicemail, we ended
up with the following for John’s extension:

exten => 101,1,Dial(${JOHN},10)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
 same => n(unavail),VoiceMail(101@default,u)
 same => n,Hangup()
 same => n(busy),VoiceMail(101@default,b)
 same => n,Hangup()

Now imagine you have a hundred users on your Asterisk system—setting up the ex-
tensions would involve a lot of copying and pasting. Then imagine that you need to
make a change to the way your extensions work. That would involve a lot of editing,
and you’d be almost certain to have errors.

Instead, you can define a macro that contains a list of steps to take, and then have all
of the phone extensions refer to that macro. All you need to change is the macro, and
everything in the dialplan that references that macro will change as well.

If you’re familiar with computer programming, you’ll recognize that
macros are similar to subroutines in many modern programming
languages. If you’re not familiar with computer programming, don’t
worry—we’ll walk you through creating a macro.

The best way to appreciate macros is to see one in action, so let’s move right along.

Defining Macros
Let’s take the dialplan logic we used to set up voicemail for John and turn it into a
macro. Then we’ll use the macro to give John and Jane (and the rest of their coworkers)
the same functionality.

§ Although Macro() seems like a general-purpose dialplan subroutine, it has a stack overflow problem that
means you should not try to nest Macro() calls more than five levels deep. If you plan to use a lot of macros
within macros (and call complex functions within them), you may run into stability problems. You will know
you have a problem with just one test call, so if your dialplan tests out, you’re good to go. We also recommend
that you take a look at the GoSub() and Return() applications (see “GoSub()” on page 207), as a lot of macro
functionality can be implemented without actually using Macro(). Also, please note that we are not suggesting
that you don’t use Macro(). It is fantastic and works very well; it just doesn’t nest efficiently.

204 | Chapter 10: Deeper into the Dialplan

Macro definitions look a lot like contexts. (In fact, you could argue that they really are
small, limited contexts.) You define a macro by placing macro- and the name of your
macro in square brackets, like this:

[macro-voicemail]

Macro names must start with macro-. This distinguishes them from regular contexts.
The commands within the macro are built almost identically to anything else in the
dialplan; the only limiting factor is that macros use only the s extension. Let’s add our
voicemail logic to the macro, changing the extension to s as we go:

[macro-voicemail]
exten => s,1,Dial(${JOHN},10)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
 same => n(unavail),VoiceMail(101@default,u)
 same => n,Hangup()
 same => n(busy),VoiceMail(101@default,b)
 same => n,Hangup()

That’s a start, but it’s not perfect, as it’s still specific to John and his mailbox number.
To make the macro generic so that it will work not only for John but also for all of his
coworkers, we’ll take advantage of another property of macros: arguments. But first,
let’s see how we call macros in our dialplan.

Calling Macros from the Dialplan
To use a macro in our dialplan, we use the Macro() application. This application calls
the specified macro and passes it any arguments. For example, to call our voicemail
macro from our dialplan, we can do the following:

exten => 101,1,Macro(voicemail)

The Macro() application also defines several special variables for our use. They include:

${MACRO_CONTEXT}
The original context in which the macro was called.

${MACRO_EXTEN}
The original extension in which the macro was called.

${MACRO_PRIORITY}
The original priority in which the macro was called.

${ARG n }
The nth argument passed to the macro. For example, the first argument would be
${ARG1}, the second ${ARG2}, and so on.

As we explained earlier, the way we initially defined our macro was hardcoded for John,
instead of being generic. Let’s change our macro to use ${MACRO_EXTEN} instead of 101
for the mailbox number. That way, if we call the macro from extension 101 the voice-
mail messages will go to mailbox 101, if we call the macro from extension 102 messages
will go to mailbox 102, and so on:

Macros | 205

[macro-voicemail]
exten => s,1,Dial(${JOHN},10)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
 same => n(unavail),VoiceMail(${MACRO_EXTEN}@default,u)
 same => n,Hangup()
 same => n(busy),VoiceMail(${MACRO_EXTEN}@default,b)
 same => n,Hangup()

Using Arguments in Macros
Okay, now we’re getting closer to having the macro the way we want it, but we still
have one thing left to change: we need to pass in the channel to dial, as it’s currently
still hardcoded for ${JOHN} (remember that we defined the variable JOHN as the channel
to call when we want to reach John). Let’s pass in the channel as an argument, and
then our first macro will be complete:

[macro-voicemail]
exten => s,1,Dial(${ARG1},10)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
 same => n(unavail),VoiceMail(${MACRO_EXTEN}@default,u)
 same => n,Hangup()
 same => n(busy),VoiceMail(${MACRO_EXTEN}@default,b)
 same => n,Hangup()

Now that our macro is done, we can use it in our dialplan. Here’s how we can call our
macro to provide voicemail to John, Jane, and Jack:

exten => 101,1,Macro(voicemail,${JOHN})
exten => 102,1,Macro(voicemail,${JANE})
exten => 103,1,Macro(voicemail,${JACK})

With 50 or more users, this dialplan will still look neat and organized; we’ll simply
have one line per user, referencing a macro that can be as complicated as required. We
could even have a few different macros for various user types, such as executives,
courtesy_phones, call_center_agents, analog_sets, sales_department, and so on.

A more advanced version of the macro might look something like this:

[macro-voicemail]
exten => s,1,Dial(${ARG1},20)
 same => n,Goto(s-${DIALSTATUS},1)

exten => s-NOANSWER,1,VoiceMail(${MACRO_EXTEN},u)
 same => n,Goto(incoming,s,1)

exten => s-BUSY,1,VoiceMail(${MACRO_EXTEN},b)
 same => n,Goto(incoming,s,1)

exten => _s-.,1,Goto(s-NOANSWER,1)

206 | Chapter 10: Deeper into the Dialplan

Since we know how to use dialplan functions now as well, here is an-
other way of controlling which voicemail prompt (unavailable vs. busy)
is played to the caller. In the following example, we’ll be using the
IF() dialplan function:

[macro-voicemail]
exten => s,1,Dial(${ARG1},20)
 same => n,VoiceMail(${MACRO_EXTEN},${IF($[${DIALSTATUS} = BUSY]?b:u)})

This macro depends on a nice side effect of the Dial() application: when you use the
Dial() application, it sets the DIALSTATUS variable to indicate whether the call was suc-
cessful or not. In this case, we’re handling the NOANSWER and BUSY cases, and treating all
other result codes as a NOANSWER.

GoSub()
The GoSub() dialplan application is similar to the Macro() application, in that the pur-
pose is to allow you to call a block of dialplan functionality, pass information to that
block, and return from it (optionally with a return value). GoSub() works in a different
manner from Macro(), though, in that it doesn’t have the stack space requirements, so
it nests effectively. Essentially, GoSub() acts like Goto() with a memory of where it
came from.

In this section we’re going to reimplement what we learned in “Macros” on page 204.
If necessary, you might want to review that section: it explains why we might use a
subroutine, and the goal we’re trying to accomplish.

Defining Subroutines
Unlike with Macro(), there are no special naming requirements when using GoSub() in
the dialplan. In fact, you can use GoSub() within the same context and extension if you
want to. In most cases, however, GoSub() is used in a similar fashion to Macro(), so
defining a new context is common. When creating the context, we like to prepend the
name with sub so we know the context is typically called from the GoSub() application
(of course, there is no requirement that you do so, but it seems a sensible convention).

Here is a simple example of how we might define a subroutine in Asterisk:

[subVoicemail]

Let’s take our example from “Macros” on page 204 and convert it to a subroutine. Here
is how it is defined for use with Macro():

[macro-voicemail]
exten => s,1,Dial(${JOHN},10)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
 same => n(unavail),VoiceMail(101@default,u)
 same => n,Hangup()

GoSub() | 207

 same => n(busy),VoiceMail(101@default,b)
 same => n,Hangup()

If we were going to convert this to be used for a subroutine, it might look like this:

[subVoicemail]
exten => start,1,Dial(${JOHN},10)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
 same => n(unavail),VoiceMail(101@default,u)
 same => n,Hangup()
 same => n(busy),VoiceMail(101@default,b)
 same => n,Hangup()

Not much of a change, right? All we’ve altered in this example is the context name,
from [macro-voicemail] to [subVoicemail], and the extension, from s to start (since
there is no requirement that the extension be called anything in particular, unlike with
Macro(), which expects the extension to be s).

Of course, as in the example in the section “Macros” on page 204, we haven’t passed
any arguments to the subroutine, so whenever we call [subVoicemail], ${JOHN} will
always be called, and the voicemail box 101 will get used. In the following sections,
we’ll dig a little deeper. First we’ll look at how we would call a subroutine, and then
we’ll learn how to pass arguments.

Calling Subroutines from the Dialplan
Subroutines are called from the dialplan using the GoSub() application. The arguments
to GoSub() differ slightly than those for Macro(), because GoSub() has no naming re-
quirements for the context or extension (or priority) that gets used. Additionally, no
special channel variables are set when calling a subroutine, other than the passed ar-
guments, which are saved to ${ARGn} (where the first argument is ${ARG1}, the second
argument is ${ARG2}, and so forth).

Now that we’ve updated our voicemail macro to be called as a subroutine, lets take a
look at how we call it using GoSub():

exten => 101,1,GoSub(subVoicemail,start,1())

You’ll notice that we’ve placed a set of opening and closing parentheses
within our GoSub() application. These are the placeholders for any ar-
guments we might pass to the subroutine, and while it is optional for
them to exist, it’s a programming style we prefer to use.

Next, let’s look at how we can pass arguments to our subroutine in order to make it
more general.

208 | Chapter 10: Deeper into the Dialplan

Using Arguments in Subroutines
The ability to use arguments is one of the major features of using Macro() or GoSub(),
because it allows you to abstract out code that would otherwise be duplicated across
your dialplan. Without the need to duplicate the code, we can better manage it, and
we can easily add functionality to large numbers of users by modifying a single location.
You are encouraged to move code into this form whenever you find yourself creating
duplicate code.

Before we start using our subroutine, we need to update it to accept arguments so that
it is generic enough to be used by multiple users:

[subVoicemail]
exten => start,1,Dial(${ARG1},10)
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY"]?busy:unavail)
 same => n(unavail),VoiceMail(${ARG2}@default,u)
 same => n,Hangup()
 same => n(busy),VoiceMail(${ARG2}@default,b)
 same => n,Hangup()

Recall that previously we had hardcoded the channel variable ${JOHN} as the location
to dial, and mailbox 101 as the voicemail box to be used if ${JOHN} wasn’t available. In
this code, we’ve replaced ${JOHN} and 101 with ${ARG1} and ${ARG2}, respectively. In
more complex subroutines we might even assign the variables ${ARG1} and ${ARG2} to
something like ${DESTINATION} and ${VMBOX}, to make it clear what the ${ARG1} and
${ARG2} represent.

Now that we’ve updated our subroutine, we can use it for several extensions:

[LocalSets]
exten => 101,1,GoSub(subVoicemail,start,1(${JOHN},${EXTEN}))
exten => 102,1,GoSub(subVoicemail,start,1(${JANE},${EXTEN}))
exten => 103,1,GoSub(subVoicemail,start,1(${JACK},${EXTEN}))

Again, our dialplan is nice and neat. We could even modify our subroutine down to
just three lines:

[subVoicemail]
exten => start,1,Dial(${ARG1},10)
 same => n,VoiceMail(${ARG2}@default,${IF($[${DIALSTATUS} = BUSY]?b:u)})
 same => n,Hangup()

One difference to note between GoSub() and Macro(), however, is that if we left our
subroutine like this, we’d never return. In this particular example that’s not a problem,
since after the voicemail is left, we would expect the caller to hang up anyway. In
situations where we want to do more after the subroutine has executed, though, we
need to implement the Return() application.

GoSub() | 209

Returning from a Subroutine
Unlike Macro(), the GoSub() dialplan application does not return automatically once it
is done executing. In order to return from whence we came, we need to use the
Return() application. Now that we know how to call a subroutine and pass arguments,
we can look at an example where we might need to return from the subroutine.

Using our previous example, we could break out the dialing portion and the voicemail
portion into separate subroutines:

[subDialer]
exten => start,1,Dial(${ARG1},${ARG2})
 same => n,Return()

[subVoicemail]
exten => start,1,VoiceMail(${ARG1}@${ARG2},${ARG3})
 same => n,Hangup()

The [subDialer] context created here takes two arguments: ${ARG1}, which contains
the destination to dial; and ${ARG2}, which contains the ring cycle, defined in seconds.
We conclude the [subDialer] context with the dialplan application Return(), which
will return to the priority following the one that called GoSub() (the next line of the
dialplan).

The [subVoicemail] context contains the VoiceMail() application, which is using three
arguments passed to it: ${ARG1} contains the mailbox number, ${ARG2} contains the
voicemail context, and ${ARG3} contains a value to indicate which voicemail message
(unavailable or busy) to play to the caller.

Calling these subroutines might look like this:

exten => 101,1,GoSub(subDialer,start,1(${JOHN},30))
 same => n,GoSub(subVoicemail,start,1(${EXTEN},default,u))

Here we’ve used the subDialer subroutine, which attempts to call ${JOHN}, ringing him
for 30 seconds. If the Dial() application returns (e.g., if the line was busy, or there was
no answer for 30 seconds), we Return() from the subroutine and execute the next line
of our dialplan, which calls the subVoicemail subroutine. From there, we pass the ex-
tension that was dialed (e.g., 101) as the mailbox number, and pass the values
default for the voicemail context and the letter u to play the unavailable message.

Our example has been hardcoded to play the unavailable voicemail message, but we
can modify the Return() application to return the ${DIALSTATUS} so that we can play
the busy message if its value is BUSY. To do this, we’ll use the ${GOSUB_RETVAL} channel
variable, which is set whenever we pass a value to the Return() application:

[subDialer]
exten => start,1,Dial(${ARG1},${ARG2})
 same => n,Return(${DIALSTATUS})

[subVoicemail]

210 | Chapter 10: Deeper into the Dialplan

exten => start,1,VoiceMail(${ARG1}@${ARG2},${ARG3})
 same => n,Hangup()

In this version we’ve made just the one change: Return() to Return(${DIALSTATUS}).

Now we can modify extension 101 to use the ${GOSUB_RETVAL} channel variable, which
will be set by Return():

exten => 101,1,GoSub(subDialer,start,1(${JOHN},30))
 same => n,Set(VoicemailMessage=${IF($[${GOSUB_RETVAL} = BUSY]?b:u)})
 same => n,GoSub(subVoicemail,start,1(${EXTEN},default,${VoicemailMessage}))

Our dialplan now has a new line that sets the ${VoicemailMessage} channel variable to
a value of u or b, using the IF() dialplan function and the value of ${GOSUB_RETVAL}. We
then pass the value of ${VoicemailMessage} as the third argument to our subVoice
mail subroutine.

Before moving on, you might want to go back and review “Macros” on page 204
and“GoSub()” on page 207. We’ve given you a lot to digest here, but these concepts
will save you a lot of work as you start building your dialplans.

Local Channels
Local channels are a method of executing dialplans from the Dial() application. They
may seem like a bit of a strange concept when you first start using them, but believe us
when we tell you they are a glorious and extremely useful feature that you will almost
certainly want to make use of when you start writing advanced dialplans. The best way
to illustrate the use of Local channels is through an example. Let’s suppose we have a
situation where we need to ring multiple people, but we need to provide delays of
different lengths before dialing each of the members. The use of Local channels is the
only solution to the problem.

With the Dial() application, you can certainly ring multiple endpoints, but all three
channels will ring at the same time, and for the same length of time. Dialing multiple
channels at the same time is done like so:

[LocalSets]
exten => 107,1,Verbose(2,Dialing multiple locations simultaneously)
 same => n,Dial(SIP/0000FFFF0001&DAHDI/g0/14165551212&SIP/MyITSP/12565551212,30)
 same => n,Hangup()

This example dials three destinations for a period of 30 seconds. If none of those lo-
cations answers the call within 30 seconds, the dialplan continues to the next line and
the call is hung up.

However, let’s say we want to introduce some delays, and stop ringing locations at
different times. Using Local channels gives us independent control over each of the
channels we want to dial, so we can introduce delays and control the period of time for
which each channel rings independently. We’re going to show you how this is done in
the dialplan, both within a table that shows the delays visually, and all together in a

Local Channels | 211

box, like we’ve done for other portions of the dialplan. We’ll be building the dialplan
to match the time starts and stops described in Figure 10-1.

Figure 10-1. Time delayed dialing with local channels

First we need to call three Local channels, which will all execute different parts of the
dialplan. We do this with the Dial() application, like so:

[LocalSets]
exten => 107,1,Verbose(2,Dialing multiple locations with time delay)

; *** This all needs to be on a single line
 same => n,Dial(Local/channel_1@TimeDelay&Local/channel_2@TimeDelay
&Local/channel_3@TimeDelay,40)
 same => n,Hangup()

Now our Dial() application will dial three Local channels. The destinations will be the
channel_1, channel_2, and channel_3 extensions located within the TimeDelay dialplan
context. Remember that Local channels are a way of executing the dialplan from within
the Dial() application. Our master timeout for all the channels is 40 seconds, which
means any Local channel that does not have a shorter timeout configured will be hung
up if it does not answer the call within that period of time.

As promised, Table 10-1 illustrates the delay configurations.

Table 10-1. Delayed dialing using Local channels

Time period
(in seconds)

channel_1 channel_2 channel_3

0 Dial(SIP/
0000FFFF0001,20)

Wait(10) Wait(15)

5

10 Dial(DAHDI/
g0/14165551212)

15 Dial(SIP/MyITSP/
12565551212,15)

20 Hangup()

212 | Chapter 10: Deeper into the Dialplan

Time period
(in seconds)

channel_1 channel_2 channel_3

25

30 Hangup()

35

40

In this table, we can see that channel_1 started dialing location SIP/0000FFFF0001 im-
mediately and waited for a period of 20 seconds. After 20 seconds, that Local channel
hung up. Our channel_2 waited for 10 seconds prior to dialing the endpoint DAHDI/
g0/14165551212. There was no maximum time associated with this Dial(), so its dialing
period ended when the master time out of 40 seconds (which we set when we initially
called the Local channels) expired. Finally, channel_3 waited 15 seconds prior to dial-
ing, then dialed SIP/MyITSP/12565551212 and waited for a period of 15 seconds prior to
hanging up.

If we put all this together, we end up with the following dialplan:

[LocalSets]
exten => 107,1,Verbose(2,Dialing multiple locations with time delay)

; *** This all needs to be on a single line
 same => n,Dial(Local/channel_1@TimeDelay&Local/channel_2@TimeDelay
&Local/channel_3@TimeDelay,40)
 same => n,Hangup()

[TimeDelay]
exten => channel_1,1,Verbose(2,Dialing the first channel)
 same => n,Dial(SIP/0000FFFF0001,20)
 same => n,Hangup()

exten => channel_2,1,Verbose(2,Dialing the second channel with a delay)
 same => n,Wait(10)
 same => n,Dial(DAHDI/g0/14165551212)

exten => channel_3,1,Verbose(2,Dialing the third channel with a delay)
 same => n,Wait(15)
 same => n,Dial(SIP/MyITSP/12565551212,15)
 same => n,Hangup()

You’ll see Local channels used throughout this book, for various purposes. Remember
that the intention is simply to perform some dialplan logic from a location where you
can only dial a location, but require some dialplan logic to be executed prior to dialing
the endpoint you eventually want to get to. A good example of this is with the use of
the Queue() application, which we’ll discuss in “Using Local Channels” on page 293.

Local Channels | 213

Additional scenarios and information about Local channels and the modifier flags
(/n, /j, /m, /b) are available at https://wiki.asterisk.org/wiki/display/AST/Local+Chan
nel. If you will be making any sort of regular use of Local channels, that is a very im-
portant document to read.

Using the Asterisk Database (AstDB)
Having fun yet? It gets even better!

Asterisk provides a powerful mechanism for storing values called the Asterisk database
(AstDB). The AstDB provides a simple way to store data for use within your dialplan.

For those of you with experience using relational databases such as
PostgreSQL or MySQL, the Asterisk database is not a traditional rela-
tional database; it is a Berkeley DB version 1 database. There are several
ways to store data from Asterisk in a relational database. Check out
Chapter 16 for more about relational databases.

The Asterisk database stores its data in groupings called families, with values identified
by keys. Within a family, a key may be used only once. For example, if we had a family
called test, we could store only one value with a key called count. Each stored value
must be associated with a family.

Storing Data in the AstDB
To store a new value in the Asterisk database, we use the Set() application,‖ but instead
of using it to set a channel variable, we use it to set an AstDB variable. For example, to
assign the count key in the test family with the value of 1, we would write the following:

exten => 456,1,Set(DB(test/count)=1)

If a key named count already exists in the test family, its value will be overwritten with
the new value. You can also store values from the Asterisk command line, by running
the command database put <family> <key> <value>. For our example, you would type
database put test count 1.

Retrieving Data from the AstDB
To retrieve a value from the Asterisk database and assign it to a variable, we use the
Set() application again. Let’s retrieve the value of count (again, from the test family),
assign it to a variable called COUNT, and then speak the value to the caller:

‖ Previous versions of Asterisk had applications called DBput() and DBget() that were used to set values in and
retrieve values from the AstDB. If you’re using an old version of Asterisk, you’ll want to use those applications
instead.

214 | Chapter 10: Deeper into the Dialplan

https://wiki.asterisk.org/wiki/display/AST/Local+Channel
https://wiki.asterisk.org/wiki/display/AST/Local+Channel

exten => 456,1,Set(DB(test/count)=1)
 same => n,Set(COUNT=${DB(test/count)})
 same => n,SayNumber(${COUNT})

You may also check the value of a given key from the Asterisk command line by running
the command database get <family> <key>. To view the entire contents of the AstDB,
use the database show command.

Deleting Data from the AstDB
There are two ways to delete data from the Asterisk database. To delete a key, you can
use the DB_DELETE() application. It takes the path to the key as its arguments, like this:

; deletes the key and returns its value in one step
exten => 457,1,Verbose(0, The value was ${DB_DELETE(test/count)})

You can also delete an entire key family by using the DBdeltree() application. The
DBdeltree() application takes a single argument: the name of the key family to delete.
To delete the entire test family, do the following:

exten => 457,1,DBdeltree(test)

To delete keys and key families from the AstDB via the command-line interface, use
the database del <key> and database deltree <family> commands, respectively.

Using the AstDB in the Dialplan
There are an infinite number of ways to use the Asterisk database in a dialplan. To
introduce the AstDB, we’ll look at two simple examples. The first is a simple counting
example to show that the Asterisk database is persistent (meaning that it survives sys-
tem reboots). In the second example, we’ll use the BLACKLIST() function to evaluate
whether or not a number is on the blacklist and should be blocked.

To begin the counting example, let’s first retrieve a number (the value of the count key)
from the database and assign it to a variable named COUNT. If the key doesn’t exist,
DB() will return NULL (no value). Therefore, we can use the ISNULL() function to verify
whether or not a value was returned. If not, we will initialize the AstDB with the
Set() application, where we will set the value in the database to 1. The next priority
will send us back to priority 1. This will happen the very first time we dial this extension:

exten => 678,1,Set(COUNT=${DB(test/count)})
 same => n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
 same => n,Set(DB(test/count)=1)
 same => n,Goto(1)
 same => n(continue),NoOp()

Next, we’ll say the current value of COUNT, and then increment COUNT:

exten => 678,1,Set(COUNT=${DB(test/count)})
 same => n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
 same => n,Set(DB(test/count)=1)
 same => n,Goto(1)

Using the Asterisk Database (AstDB) | 215

 same => n(continue),NoOp()
 same => n,SayNumber(${COUNT})
 same => n,Set(COUNT=$[${COUNT} + 1])

Now that we’ve incremented COUNT, let’s put the new value back into the database.
Remember that storing a value for an existing key overwrites the previous value:

exten => 678,1,Set(COUNT=${DB(test/count)})
 same => n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
 same => n,Set(DB(test/count)=1)
 same => n,Goto(1)
 same => n(continue),NoOp()
 same => n,SayNumber(${COUNT})
 same => n,Set(COUNT=$[${COUNT} + 1])
 same => n,Set(DB(test/count)=${COUNT})

Finally, we’ll loop back to the first priority. This way, the application will continue
counting:

exten => 678,1,Set(COUNT=${DB(test/count)})
 same => n,GotoIf($[${ISNULL(${COUNT})}]?:continue)
 same => n,Set(DB(test/count)=1)
 same => n,Goto(1)
 same => n(continue),NoOp()
 same => n,SayNumber(${COUNT})
 same => n,Set(COUNT=$[${COUNT} + 1]
 same => n,Set(DB(test/count)=${COUNT})
 same => n,Goto(1)

Go ahead and try this example. Listen to it count for a while, and then hang up. When
you dial this extension again, it should continue counting from where it left off. The
value stored in the database will be persistent, even across a restart of Asterisk.

In the next example, we’ll create dialplan logic around the BLACKLIST() function, which
checks to see if the current caller ID number exists in the blacklist. (The blacklist is
simply a family called blacklist in the AstDB.) If BLACKLIST() finds the number in the
blacklist, it returns the value 1; otherwise, it will return 0. We can use these values in
combination with a GotoIf() to control whether the call will execute the Dial()
application:

exten => 124,1,GotoIf($[${BLACKLIST()]?blocked,1)
 same => n,Dial(${JOHN})

exten => blocked,1,Playback(privacy-you-are-blacklisted)
 same => n,Playback(vm-goodbye)
 same => n,Hangup()

To add a number to the blacklist, run the database put blacklist <number> 1 command
from the Asterisk command-line interface.

216 | Chapter 10: Deeper into the Dialplan

Handy Asterisk Features
Now that we’ve gone over some more of the basics, let’s look at a few popular functions
that have been incorporated into Asterisk.

Zapateller()
Zapateller() is a simple Asterisk application that plays a special information tone at
the beginning of a call, which causes auto-dialers (usually used by telemarketers) to
think that the line has been disconnected. Not only will they hang up, but their systems
will flag your number as out of service, which could help you avoid all kinds of tele-
marketing calls. To use this functionality within your dialplan, simply call the Zapa
teller() application.

We’ll also use the optional nocallerid option so that the tone will be played only when
there is no caller ID information on the incoming call. For example, you might use
Zapateller() in the s extension of your [incoming] context, like this:

[incomimg]
exten => s,1,Zapateller(nocallerid)
 same => n,Playback(enter-ext-of-person)

Call Parking
Another handy feature is called call parking. Call parking allows you to place a call on
hold in a “parking lot,” so that it can be taken off hold from another extension. Pa-
rameters for call parking (such as the extensions to use, the number of spaces, and so
on) are all controlled within the features.conf configuration file. The [general] section
of the features.conf file contains four settings related to call parking:

parkext
This is the parking lot extension. Transfer a call to this extension, and the system
will tell you which parking position the call is in. By default, the parking extension
is 700.

parkpos
This option defines the number of parking slots. For example, setting it to
701-720 creates 20 parking positions, numbered 701 through 720.

context
This is the name of the parking context. To be able to park calls, you must include
this context.

parkingtime
If set, this option controls how long (in seconds) a call can stay in the parking lot.
If the call isn’t picked up within the specified time, the extension that parked the
call will be called back.

Handy Asterisk Features | 217

Also note that because the user needs to be able to transfer the calls to the parking lot
extension, you should make sure you’re using the t and/or T options to the Dial()
application.

So, let’s create a simple dialplan to show off call parking:

[incoming]
include => parkedcalls

exten => 103,1,Dial(SIP/Bob,,tT)
exten => 104,1,Dial(SIP/Charlie,,tT)

To illustrate how call parking works, say that Alice calls into the system and dials
extension 103 to reach Bob. After a while, Bob transfers the call to extension 700, which
tells him that the call from Alice has been parked in position 701. Bob then dials Charlie
at extension 104, and tells him that Alice is at extension 701. Charlie then dials exten-
sion 701 and begins to talk to Alice. This is a simple and effective way of allowing callers
to be transferred between users.

Conferencing with MeetMe()
Last but not least, let’s cover setting up an audio conference bridge with the MeetMe()
application.# This application allows multiple callers to converse together, as if they
were all in the same physical location. Some of the main features include:

• The ability to create password-protected conferences

• Conference administration (mute conference, lock conference, kick participants)

• The option of muting all but one participant (useful for company announcements,
broadcasts, etc.)

• Static or dynamic conference creation

Let’s walk through setting up a basic conference room. The configuration options for
the MeetMe conferencing system are found in meetme.conf. Inside the configuration
file, you define conference rooms and optional numeric passwords. (If a password is
defined here, it will be required to enter all conferences using that room.) For our
example, let’s set up a conference room at extension 600. First, we’ll set up the con-
ference room in meetme.conf. We’ll call it 600, and we won’t assign a password at this
time:

[rooms]
conf => 600

Now that the configuration file is complete, we’ll need to restart Asterisk so that it can
reread the meetme.conf file. Next, we’ll add support for the conference room to our
dialplan with the MeetMe() application. MeetMe() takes three arguments: the name of

#In the world of legacy PBXs, this type of functionality is very expensive. Either you have to pay big bucks for
a dial-in service, or you have to add an expensive conferencing bridge to your proprietary PBX.

218 | Chapter 10: Deeper into the Dialplan

the conference room (as defined in meetme.conf), a set of options, and the password
the user must enter to join this conference. Let’s set up a simple conference using room
600, the i option (which announces when people enter and exit the conference), and a
password of 54321:

exten => 600,1,MeetMe(600,i,54321)

That’s all there is to it! When callers enter extension 600, they will be prompted for the
password. If they correctly enter 54321, they will be added to the conference. You can
run core show application MeetMe from the Asterisk CLI for a list of all the options
supported by the MeetMe() application.

Another useful application is MeetMeCount(). As its name suggests, this application
counts the number of users in a particular conference room. It takes up to two
arguments: the conference room in which to count the number of participants, and
optionally a variable name to assign the count to. If the variable name is not passed as
the second argument, the count is read to the caller:

exten => 601,1,Playback(conf-thereare)
 same => n,MeetMeCount(600)
 same => n,Playback(conf-peopleinconf)

If you pass a variable as the second argument to MeetMeCount(), the count is assigned
to the variable, and playback of the count is skipped. You might use this to limit the
number of participants, like this:

; limit the conference room to 10 participants
exten => 600,1,MeetMeCount(600,CONFCOUNT)
 same => n,GotoIf($[${CONFCOUNT} <= 10]?meetme:conf_full,1)
 same => n(meetme),MeetMe(600,i,54321)

exten => conf_full,1,Playback(conf-full)

Isn’t Asterisk fun?

Conclusion
In this chapter, we’ve covered a few more of the many applications in the Asterisk
dialplan, and hopefully we’ve given you some more tools that you can use to further
explore the creation of your own dialplans. As with other chapters, we invite you to go
back and reread any sections that require clarification.

Conclusion | 219

CHAPTER 11

Parking and Paging

I don’t believe in angels, no. But I do have a wee parking
angel. It’s on my dashboard and you wind it up. The

wings flap and it’s supposed to give you a parking space.
It’s worked so far.

—Billy Connolly

This chapter will focus on two important aspects of a PBX system: parking calls to allow
them to be answered from a location different from where they were originally an-
swered, and paging, which allows the announcement of who the call is for and how it
can be retrieved.

In Asterisk, these two functionalities are exclusive to one another, and can be used
independently of one another. Some businesses that contain large warehouses, or have
employees who move around the office a lot and don’t necessarily sit at a desk all day,
utilize the paging and parking functionality of their systems to direct calls around the
office. In this chapter we’ll show you how to use both parking and paging in the tra-
ditional setting, along with a couple of more modern takes on this commonly used
functionality.

features.conf
There are several features common to most modern PBXs that Asterisk also provides.
Many of these features have optional parameters. The features.conf file is where you
can adjust or define the various feature parameters in Asterisk.

DTMF-Based Features
Many of the parameters in features.conf only apply when invoked on calls that have
been bridged by the dialplan applications Dial() or Queue(), with one or more of the
options K, k, H, h, T, t, W, w, X, or x specified. Features accessed in this way are DTMF-
based (meaning they can’t be accessed via SIP messaging, but only through touch-tone

221

signals in the audio channel triggered by the users dialing the required digits on their
dialpads).*

Transfers on SIP channels (for example from a SIP telephone) can be handled using the
capabilities of the phone itself, and won’t be affected by anything in the features.conf
file.

The [general] section
In the [general] section of features.conf, you can define options that fine-tune the be-
havior of the park and transfer features in Asterisk. These options are listed in
Table 11-1.

Table 11-1. features.conf [general] section

Option Value/Example Notes

parkext 700 Sets the default extension used to park calls.

parkpos 701-720 Sets the range of extensions used as the parking lot. Parked calls may
be retrieved by dialing the numbers in this range.

context parkedcalls Sets the default dialplan context where the parking extension and the
parking lot extensions are created.

parkinghints no Enables/disables automatic creation of dialplan hints for the parking lot
extensions so that phones can subscribe to the state of extensions in the
parking lot. The default is no.

parkingtime 45 Specifies the number of seconds a call will wait in the parking lot before
timing out.

comebacktoorigin yes Configures the handling of timed-out parked calls. For more information
on the behavior of this option, see the sidebar titled “Handling Timed-
Out Parked Calls with the comebacktoorigin Option” on page 224.

courtesytone beep Specifies the sound file to be played to the parked caller when the parked
call is retrieved from the parking lot.

parkedplay caller Indicates which side of the call to play the courtesytone to when a
parked call is picked up. Valid options include callee, caller,
both, or no. The default is no.

parkedcalltransfers caller Controls which side of a call has the ability to execute a DTMF-based
transfer in the call that results from picking up a parked call. Valid options
include callee, caller, both, or no. The default is no.

parkedcallreparking caller Controls which side of a call has the ability to execute a DTMF-based park
in the call that results from picking up a parked call.a Valid options include
callee, caller, both, or no. The default is no.

* Yes, we realize that a SIP INFO message is in fact a SIP message, and is not technically part of the audio
channel, but the point is that you can’t use the “transfer” or “park” button on your SIP phone to access
these features while on a call. You’ll have to send DTMF.

222 | Chapter 11: Parking and Paging

Option Value/Example Notes

parkedcallhangup caller Controls which side of a call has the ability to execute a DTMF-based
hangup in the call that results from picking up a parked call. Valid options
include callee, caller, both, or no. The default is no.

parkedcallrecording caller Controls which side of a call has the ability to initiate a DTMF-based one-
touch recording in the call that results from picking up a parked call.
Valid options include callee, caller, both, or no. The default is no.

parkeddynamic yes Enables the dynamic creation of parking lots in the dialplan. The channel
variables PARKINGDYNAMIC, PARKINGDYNCONTEXT, and PAR
KINGDYNPOS need to be set.

adsipark yes Passes ADSI information regarding the parked call back to the originating
set.

findslot next Configures the parking slot selection behavior. See ??? for more details.

parkedmusicclass default Specifies the class to be used for the music on hold played to a parked
caller. A music class set in the dialplan using the CHANNEL(musi
cclass) dialplan function will override this setting.

transferdigittimeout 3 Sets the number of seconds to wait for each digit from the caller executing
a transfer.

xfersound beep Specifies the sound to be played to indicate that an attended transfer is
complete.

xferfailsound beeperr Specifies the sound to be played to indicate that an attended transfer
has failed to complete.

pickupexten *8 Configures the extension used for call pickup.

pickupsound beep Specifies the sound to be played to indicate a successful call pickup
attempt. No sound is played by default.

pickupfailsound beeperr Specifies the sound to be played to indicate a failed call pickup attempt.
No sound is played by default.

featuredigittimeout 1000 Sets the number of milliseconds to wait in between digits pressed during
a bridged call when matching against DTMF activated call features.

atxfernoanswertimeout 15 Configures the number of seconds to wait for the target of an attended
transfer to answer before considering the attempt timed out.

atxferdropcall no Configures behavior of attended transfer call handling when the trans-
ferer hangs up before the transfer is complete and the transfer fails. By
default, this option is set to no and a call will be originated to attempt
to connect the transferee back to the caller that initiated the transfer. If
set to yes, the call will be dropped after the transfer fails.

atxferloopdelay 10 Sets the number of seconds to wait in between callback retries if atx
ferdropcall is set to no.

atxfercallbackretries 2 Sets the number of callback attempts to make if atxferdropcall is
set to no. By default, this is set to 2 callback attempts.

a Read that again. It makes sense.

features.conf | 223

Handling Timed-Out Parked Calls with the comebacktoorigin Option
This option configures the behavior of call parking when the parked call times out (see
the parkingtime option). comebacktoorigin can have one of two values:

yes (default)
When the parked call timeout is exceeded, Asterisk will attempt to send the call
back to the peer that parked this call. If the channel is no longer available to
Asterisk, the caller will be disconnected.

no
This option would be used when you want to perform custom dialplan function-
ality on parked calls that have exceeded their timeouts. The caller will be sent into
a specific area of the dialplan where logic can be applied to gracefully handle the
remainder of the call (this may involve simply returning the call to a different ex-
tension, or performing a lookup of some sort).

You also may need to take into account calls where the originating channel cannot
handle a returned parked call. If, for example, the call was parked by a channel that is
also a trunk to another system, there would not be enough information to send the call
back to the correct person on that other system. The actions following a timeout would
be more complex than comebacktoorigin=yes could handle gracefully.

Parked calls that time out with comebacktoorigin=no will always be sent into the par
kedcallstimeout context.

The dialplan (and contexts) were discussed in detail in Chapter 6.

The extension they will be sent to will be built from the name of the channel that parked
the call. For example, if a SIP peer named 0004F2040808 parked this call, the extension
will be SIP_0004F2040808.

If this extension does not exist, the call will be sent to the s extension in the parked
callstimeout context instead. Finally, if the s extension of parkedcallstimeout does not
exist, the call will be sent to the s extension of the default context.

Additionally, for any calls where comebacktoorigin=no, there will be an extension of
SIP_0004F2040808 created in the park-dial context. This extension will be set up to do
a Dial() to SIP/0004F2040808.†

† We hope you realize that the actual extension will be related to the channel name that parked the call,
and will not be SIP_0004F2040808 (unless Leif sells you the Polycom phone from his lab).

224 | Chapter 11: Parking and Paging

The [featuremap] Section
This section allows you to define specific DTMF sequences, which will trigger various
features on channels that have been bridged via options in the Dial() or Queue() ap-
plication. The options are detailed in Table 11-2.

Table 11-2. features.conf [featuremap] section

Option Value/Example Notes Dial()/Queue()
Flags

blindxfer #1 Invokes a blind (unsupervised) transfer T, t

disconnect *0 Hangs up the call H, h

automon *1 Starts recording of the current call using the Monitor() application
(pressing this key sequence a second time stops the recording)

W, w

atxfer *2 Performs an automated transfer T, t

parkcall #72 Parks a call K, k

automixmon *3 Starts recording of the current call using the MixMonitor() ap-
plication (pressing this key sequence again stops the recording)

X, x

The default blindxfer and disconnect codes are # and *, respectively.
Normally you’ll want to change them from the defaults, as they will
interfere with other things that you might want to do (for example, if
you use the Tt option in your Dial() command, every time you press
the # key you’ll initiate a transfer).

The [applicationmap] Section
This section of features.conf allows you to map DTMF codes to dialplan applications.
The caller will be placed on hold until the application has completed execution.

The syntax for defining an application map is as follows (it must appear on a single
line; line breaks are not allowed)‡:

<FeatureName> => <DTMF_sequence>,<ActivateOn>[/<ActivatedBy>]
,<Application>([<AppArguments>])[,MOH_Class]

What you are doing is the following:

1. Giving your map a name so that it can be enabled in the dialplan through the use
of the DYNAMIC_FEATURES channel variable.

2. Defining the DTMF sequence that activates this feature (we recommend using at
least two digits for this).

‡ There is some flexibility in the syntax (you can look at the sample file for details), but our example uses the
style we recommend, since it’s the most consistent with typical dialplan syntax.

features.conf | 225

3. Defining which channel the feature will be activated on, and (optionally) which
participant is allowed to activate the feature (the default is to allow both channels
to use/activate this feature).

4. Giving the name of the application that this map will trigger, and its arguments.

5. Providing an optional music on hold (MOH) class to assign to this feature (which
the opposite channel will hear when the application is executing). If you do not
define any MOH class, the caller will hear only silence.

Here is an example of an application map that will trigger an AGI script:

agi_test => *6,self/callee,AGI(agi-test.agi),default

Since applications spawned from the application map are run outside
the PBX core, you cannot execute any applications that trigger the
dialplan (such as Goto(), Macro(), Background(), etc.). If you wish to use
the application map to spawn external processes (including executing
dialplan code), you will need to trigger an external application through
an AGI() call or the System() application. Point being, if you want any-
thing complex to happen through the use of an application map, you
will need to test very carefully, as not all things will work as you
might expect.

To use an application map, you must declare it in the dialplan by setting the
DYNAMIC_FEATURES variable somewhere before the Dial() command that connects the
channels. Use the double underscore modifier on the variable name in order to ensure
that the application map is available to both channels throughout the life of the call.
For example:

exten => 101,n,Set(__DYNAMIC_FEATURES=agi_test)
exten => 101,n,Dial(SIP/0000FFFF0002)

If you want to allow more than one application map to be available on
a call, you will need to use the # symbol as a delimiter between multiple
map names:

Set(__DYNAMIC_FEATURES=agi_test#my_other_map)

The reason why the # character was chosen instead of a simple comma
is that older versions of the Set() application interpreted the comma
differently than more recent versions, and the syntax for application
maps has never been updated.

Don’t forget to reload the features module after making changes to the features.conf file:

*CLI> features reload

You can verify that your changes have taken place through the CLI command features
show. Make sure you test out your application map before you turn it over to your users!

226 | Chapter 11: Parking and Paging

Inheriting Channel Variables
Channel variables are always associated with the original channel that set them, and
are no longer available once the channel is transferred.

In order to allow channel variables to follow the channel as it is transferred among the
system, channel variable inheritance must be employed. There are two modifiers that
can allow the channel variable to follow the channel: single underscore and double
underscore.

The single underscore (_) causes the channel variable to be inherited by the channel for
a single transfer, and is no longer available for additional transfers. If you use a double
underscore (__), the channel variable will be inherited throughout the life of that
channel.

Setting channel variables for inheritance simply requires you to prefix the channel name
with a single or double underscore. The channel variables are then referenced exactly
the same as they would be normally (e.g., do not attempt to read the values of channel
variables with the underscores in the variable name).

Here’s an example of setting a channel variable for single transfer inheritance:

exten => example,1,Set(_MyVariable=thisValue)

Here’s an example of setting a channel variable for infinite transfer inheritance:

exten => example,1,Set(__MyVariable=thisValue)

To read the value of the channel variable, do not use underscore(s):

exten => example,1,Verbose(1,Value of MyVariable is: ${MyVariable})

Application Map Grouping
If you have a lot of features that you need to activate for a particular context or exten-
sion, you can group several features together in an application map grouping, so that
one assignment of the DYNAMIC_FEATURES variable will assign all of the designated fea-
tures of that map.

The application map groupings are added at the end of the features.conf file. Each
grouping is given a name, and then the relevant features are listed.

[shifteight]
unpauseMonitor => *1 ; custom key mapping
pauseMonitor => *2 ; custom key mapping
agi_test => ; no custom key mapping

features.conf | 227

If you want to specify a custom key mapping to a feature in an applica-
tion map grouping, simply follow the => with the key mapping you want.
If you do not specify a key mapping, the default key map for that feature
will be used (as found in the [featuremap] section). Regardless of
whether you want to assign a custom key mapping or not, the => oper-
ator is required.

In the dialplan, you would assign this application map grouping with the Set()
application:

Set(__DYNAMIC_FEATURES=shifteight) ; use the double underscore if you want to ensure
 ; both call legs have the variable assigned.

Parking Lots
A parking lot allows a call to be held in the system without being associated with a
particular extension. The call can then be retrieved by anyone who knows the park
code for that call. This feature is often used in conjunction with an overhead paging
system (PA system, or Tannoy, for our UK readers). For this reason, it is often referred
to as park-and-page; however, it should be noted that parking and paging are in fact
separate.

To park a call in Asterisk, you need to transfer the caller to the feature code assigned
to parking, which is assigned in the features.conf file with the parkext directive. By
default, this is 700:

parkext => 700 ; What extension to dial to park (all parking lots)

You have to wait to complete the transfer until you get the number of the parking
retrieval slot from the system, or you will have no way of retrieving the call. By default
the retrieval slots, assigned with the parkpos directive in features.conf, are numbered
from 701–720:

parkpos => 701-720 ; What extensions to park calls on (defafult parking lot)

Once the call is parked, anyone on the system can retrieve it by dialing the number of
the retrieval slot (parkpos) assigned to that call. The call will then be bridged to the
channel that dialed the retrieval code.

There are two common ways to define how retrieval slots are assigned. This is done
with the findslot directive in the features.conf file. The default method (findslot =>
first) always uses the lowest-numbered slot if it is available, and only assigns higher-
numbered codes if required. The second method (findslot => next) will rotate through
the retrieval codes with each successive park, returning to the first retrieval code after
the last one has been used. Which method you choose will depend on how busy your
parking lots are. If you use parking rarely, the default findslot of first will be best
(people will be used to their parked calls always being in the same slot). If you use
parking a lot (for example, in an automobile dealership), on the other hand, it is far

228 | Chapter 11: Parking and Paging

better for each successive page to assign the next slot, since you will often have more
than one call parked at a time. Your users will get used to listening carefully to the
actual parking lot number (instead of just always dialing 701), and this will minimize
the chance of people accidentally retrieving the wrong call on a busy system.

If you are using parking, you are probably also going to need a way to announce the
parked calls so that the intended parties know how to retrieve them. While you could
just run down the hall yelling “Bob, there’s a call for you on 701!,” the more professional
method is to use a paging system (more formally known as a public address system),
which we will discuss in the next section.

Overhead and “Underchin” Paging (a.k.a. Public Address)
In many PBX systems, it is desirable to be able to allow a user to send his voice from a
telephone into a public address system. This normally involves dialing a feature code
or extension that makes a connection to a public address resource of some kind, and
then making an announcement through the handset of the telephone that is broadcast
to all devices associated with that paging resource. Often, this will be an external paging
system consisting of an amplifier connected to overhead speakers; however, paging
through the speakers of office telephones is also popular (mainly for cost reasons). If
you have the budget (or an existing overhead paging system), overhead paging is gen-
erally better, but set paging (a.k.a. “underchin” paging) can work well in many envi-
ronments. What is perhaps most common is to have a mix of set and overhead paging,
where, for example, set-based paging might be in use for offices, but overhead paging
would be used for warehouse, hallway, and public areas (cafeteria, reception, etc.).

In Asterisk, the Page() application is used for paging. This application simply takes a
list of channels as its argument, calls all of the listed channels simultaneously, and, as
they are answered, puts each one into a conference room. With this in mind, it becomes
obvious that one requirement for paging to work is that each destination channel must
be able to automatically answer the incoming connection and place the resultant audio
onto a speaker of some sort (in other words, Page() won’t work if all the phones just
ring).

So, while the Page() application itself is painless and simple to use, getting all the des-
tination channels to handle the incoming pages correctly is a bit trickier. We’ll get to
that shortly.

The Page() application takes three arguments, defining the group of channels the page
is to be connected to, the options, and the timeout:

exten => *724,1,Page(${ChannelsToPage},i,120)

The options (outlined in Table 11-3) give you some flexibility with respect to how
Page() works, but the majority of the configuration is going to have to do with how the
target devices handle the incoming connection. We’ll dive into the various ways you
can configure devices to receive pages in the next section.

Overhead and “Underchin” Paging (a.k.a. Public Address) | 229

Table 11-3. Page() options

Option Description Discussion

d Enables full-duplex audio Sometimes referred to as “talkback paging,” the use of this option implies
that the equipment that receives the page has the ability to transmit
audio back at the same time as it is receiving audio. Generally, you would
not want to use this unless you had a specific need for it.

i Ignores attempts to forward the call You would normally want this option enabled.

q Does not play beep to caller (quiet mode) Normally you won’t use this, but if you have an external amplifier that
provides its own tone, you may want to set this option.

r Records the page into a file If you intended on using the same page multiple times in the future,
you could record the page and then use it again later by triggering it
using Originate() or using the A(x) option to Page().

s Dials a channel only if the device state is
NOT_INUSE

This option is likely only useful (and reliable) on SIP-bound channels,
and even so may not work if a single line is allowed multiple calls on it.
Therefore, don’t rely on this option in all cases.

A(x) Plays announcement x to all participants You could use a previously recorded file to be played over the paging
system. If you combined this with Originate() and Record(), you
could implement a delayed paging system.

n Does not play announcement simultane-
ously to caller (implies A(x))

By default the system will play the paged audio to both the caller and
the callee. If this option is enabled, the paged audio will not be played
to the caller (the person paging).

Because of how Page() works, it is very resource-intensive. We cannot stress this
enough. Carefully read on, and we’ll cover how to ensure that paging does not cause
performance problems in a production environment (which it is almost certain to do
if not designed correctly).

Places to Send Your Pages
As we stated before, Page() is in and of itself very simple. The trick is how to bring it
all together. Pages can be sent to different kinds of channels, and they all require dif-
ferent configuration.

External paging

If a public address system is installed in the building, it is common to connect the
telephone system to an external amplifier and send pages to it through a call to a chan-
nel. One way of doing this is to plug the sound card of your server into the amplifier
and send calls to the channel named Console/DSP, but this assumes that the sound
drivers on your server are working correctly and the audio levels are normalized cor-
rectly on that channel. Another, potentially simpler, and possibly more robust way to
handle external paging is to use an FXS device of some kind (such as an ATA), which

230 | Chapter 11: Parking and Paging

is connected to a paging interface such as a Bogen UTI1,§ which then connects to the
paging amplifier.‖

In your dialplan, paging to an external amplifier would look like a simple Dial() to the
device that is connected to the paging equipment. For example, if you had an ATA
configured in sip.conf as [PagingATA], and you plugged the ATA into a Bogen UTI1,
you would perform paging by dialing:

exten => *724,1,Verbose(2,Paging to external amplifier) ; note the '*' in the
 ; extension is part of
 ; what you actually dial
 same => n,Set(PageDevice=SIP/PagingATA)
 same => n,Page(${PageDevice},i,120)

Note that for this to work you will have had to register your ATA as a SIP device under
sip.conf, and in this case we named the device [PagingATA]. You can name this device
anything you want (for example, we often use the MAC address as the name of a SIP
device), but for anything that is not a user telephone, it can be helpful to use a name
that makes it stand out from other devices.

If you had an FXS card in your system and you connected the UTI1 to that, you would
Dial() to the channel for that FXS port instead:

 same => n,Dial(DAHDI/25)

The UTI1 answers the call and opens a channel to the paging system; you then make
your announcement and hang up.

Set paging

Set-based paging first became popular in key telephone systems, where the speakers of
the office telephones are used as a poor-man’s public address system. Most SIP tele-
phones have the ability to auto-answer a call on handsfree, which accomplishes what
is required on a per-telephone basis. In addition to this, however, it is necessary to pass
the audio to more than one set at the same time. Asterisk uses its built-in conferencing
engine to handle the under-the-hood details. You use the Page() application to make
it happen.

Like Dial(), the Page() application can handle several channels. Since you will generally
want Page() to signal several sets at once (perhaps even all the sets on your system) you
may end up with lengthy device strings that look something like this:

Page(SIP/SET1&SIP/SET2&SIP/SET3&SIP/SET4&SIP/SET5&SIP/SET6&SIP/SET7&...

§ The Bogen UTI1 is useful because it can handle all manner of different kinds of incoming and outgoing
connections, which pretty nearly guarantees that you’ll be able to painlessly connect your telephone system
to any sort of external paging equipment, no matter how old or obscure.

‖ In this book we’re assuming that the external paging equipment is already installed and was working with
the old phone system.

Overhead and “Underchin” Paging (a.k.a. Public Address) | 231

Beyond a certain size, your Asterisk system will be unable to page mul-
tiple sets. For example, in an office with 200 telephones, using SIP to
page every set would not be possible; the traffic and CPU load on your
Asterisk server would simply be too much. In cases like this, you should
be looking at either multicast paging or external paging.

Perhaps the trickiest part of SIP-based paging is the fact that you usually have to tell
each set that it must auto-answer, but different manufacturers of SIP telephones use
different SIP messages for this purpose. So, depending on the telephone model you are
using, the commands needed to accomplish SIP-based set paging will be different. Here
are some examples:

• For Aastra:

exten => *724,1,Verbose(2,Paging to Aastra sets)
 same => n,SIPAddHeader(Alert-Info: info=alert-autoanswer)
 same => n,Set(PageDevice=SIP/00085D000000)
 same => n,Page(${PageDevice},i)

• For Polycom:

exten => *724,1,Verbose(2,Paging to Polycom sets)
 same => n,SIPAddHeader(Alert-Info: Ring Answer)
 same => n,Set(PageDevice=SIP/0004F2000000)
 same => n,Page(${PageDevice},i)

• For Snom:

exten => *724,1,Verbose(2,Paging to Snom sets)
 same => n,Set(VXML_URL=intercom=true)

; replace 'domain.com' with the domain of your system
 same => n,SIPAddHeader(Call-Info: sip:domain.com\;answer-after=0)
 same => n,Set(PageDevice=SIP/000413000000)
 same => n,Page(${PageDevice},i)

• For Cisco SPA (the former Linksys phones, not the 79XX series):

exten => *724,1,Verbose(2,Paging to Cisco SPA sets -- but not Cisco 79XX sets)
 same => n,SIPAddHeader(Call-Info:\;answer-after=0) ; Cisco SPA phones
 same => n,Set(PageDevice=SIP/0004F2000000)
 same => n,Page(${PageDevice},i)

Assuming you’ve figured that out, what happens if you have a mix of phones in your
environment? How do you control which headers to send to which phones?#

Any way you slice it, it’s not pretty.

#Hint: the local channel will be your friend here.

232 | Chapter 11: Parking and Paging

Fortunately, many of these sets support IP multicast, which is a far better way to send
a page to multiple sets (read on for details). Still, if you only have a few phones on your
system and they are all from the same manufacturer, SIP-based paging could be the
simplest, so we don’t want to scare you off it completely.

Multicast paging via the MulticastRTP channel

If you are serious about paging through the sets on your system, and you have more
than a handful of phones, you will need to look at using IP multicast. The concept of
IP multicast has been around for a long time,* but it has not been widely used. Never-
theless, it is ideal for paging within a single location.

Asterisk has a channel (chan_multicast_rtp) that is designed to create an RTP multi-
cast. This stream is then subscribed to by the various phones, and the result is that
whenever media appears on the multicast stream, the phones will pass that media to
their speakers.

Since MulticastRTP is a channel driver, it does not have an application, but instead will
work anywhere in the dialplan that you might otherwise use a channel. In our case,
we’ll be using the Page() application to initiate our multicast.

To use the multicast channel, you simply send a call to it the same as you would to any
other channel. The syntax for the channel is as follows:

MulticastRTP/<type>/<ip address:port>[/<linksys address:port>]

The type can be either basic or linksys. The basic syntax of the MulticastRTP channel
looks like this:

exten => *723,1,Page(MulticastRTP/basic/239.0.0.1:1234)

Not all sets support IP multicast, but we have tested it out on Snom,† Linksys/Cisco,
and Aastra, and it works swell.‡

* It even has its own Class D reserved IP address space, from 224.0.0.0 to 239.255.255.255 (but read up on IP
multicast before you just grab one of these and assign it). Parts of this address space are private, parts are
public, and parts are designated for purposes other than what you might want to use them for. For information
about multicast addressing, see http://en.wikipedia.org/wiki/IP_multicast#IP_multicast_addressing
_assignments.

† Very loud, and no way to adjust gain.

‡ So far as we can tell, Polycom sets do not support multicast. We certainly were not able to find a way to
use it.

Overhead and “Underchin” Paging (a.k.a. Public Address) | 233

http://en.wikipedia.org/wiki/IP_multicast#IP_multicast_addressing_assignments
http://en.wikipedia.org/wiki/IP_multicast#IP_multicast_addressing_assignments

Multicast Paging on Cisco SPA Telephones
The multicast paging feature on Cisco SPA phones is a bit strange, but once configured
it works fine. The trick of it is that the address you put into the phone is not the multicast
address that the page is sent across, but rather a sort of signaling channel.

What we have found is that you can make this address the same as the multicast address,
but simply use a different port number.

The dialplan looks like this:

exten => *724,1,Page(MulticastRTP/linksys/239.0.0.1:1234/239.0.0.1:6061)

In the SPA phone, you need to log into the Administration interface and navigate to
the SIP tab. At the very bottom of the page you will find the section called Linksys Key
System Parameters. You need to set the following parameters:

• Linksys Key System: Yes

• Multicast Address: 239.0.0.1:6061

Note that the multicast address you assign to the phone is the one that comes second
in the channel definition (in our example, the one using port 6061).

Note that you can write the Page() command in this format in an environment where
there is a mix of SPA phones (FKA Linksys, now Cisco) phones and other types of
phones. The other phones will use the first address and will work the same as if you
had used basic instead of linksys.

VoIP paging adaptors

Recently, there have been some VoIP-based paging speakers introduced to the market.
These devices are addressed in the dialplan in the exact same way as a SIP ATA con-
nected to a UTI1, but they can be installed in the same manner as overhead speakers
would be. Since they auto-answer, there is no need to pass them any extra information,
the way you would need to with a SIP telephone set.

For smaller installations (where no more than perhaps half a dozen speakers are re-
quired), these devices may be cost-effective. However, for anything larger than that,
(or installation in a complex environment such as a warehouse or parking lot), you will
get better performance at far less cost with a traditional analog paging system connected
to the phone system by an analog (FXS) interface.

We don’t know if these devices support multicast. Keep this in mind if you are planning
to use a large number of them.

Combination paging

In many organizations, there may be a need for both set-based and external paging. As
an example, a manufacturing facility might want to use set-based paging for the office
area but overhead paging for the plant and warehouse. From Asterisk’s perspective,

234 | Chapter 11: Parking and Paging

this is fairly simple to accomplish. When you call the Page() application, you simply
specify the various resources you want to page, separated by the & character, and they
will all be included in the conference that the Page() application creates.

Bringing it all together

At this point you should have a list of the various channel types that you want to page.
Since Page() will nearly always want to signal more than one channel, we recommend
setting a global variable that defines the list of channels to include, and then calling the
Page() application with that string:

[global]

MULTICAST=MulticastRTP/linksys/239.0.0.1:1234
;MULTICAST=MulticastRTP/linksys/239.0.0.1:1234/239.0.0.1:6061 ; if you have SPA
 ; (Linksys/Cisco)
 ; phones

BOGEN=SIP/ATAforPaging ; This assumes an ATA in your sip.conf file named
 ; [ATAforPaging]
;BOGEN=DAHDI/25 ; We could do this too, assuming we have an analog
 ; FXS card at DAHDI channel 25
PAGELIST=${MULTICAST}&${BOGEN} ; All of these variable names are arbitrary.
 ; Asterisk doesn't care what you call these strings

[page_context] ; You don't need a page context, so long as the extension you
 ; assign to paging is dialable by your sets

exten => *724,1,Page(${PAGELIST},i,120)

This example offers several possible configurations, depending on the hardware. While
it is not strictly required to have a PAGELIST variable defined, we have found that this
will tend to simplify the management of multiple paging resources, especially during
the configuration and testing process.

We created a context for paging for the purposes of this example. In order for this to
work, you’ll need to either include this context in the contexts where your sets enter
the dialplan, or code a Goto() in those contexts to take the user to this context and
extension (i.e., Goto(page_context,*724,1)) Alternatively, you could hardcode an ex-
tension for the Page() application in each context that services sets.

Zone Paging
Zone paging is popular in places such as automobile dealerships, where the parts de-
partment, the sales department, and perhaps the used car department all require pag-
ing, but have no need to hear each other’s pages.

In zone paging, the person sending the page needs to select which zone she wishes to
page into. A zone paging controller such as a Bogen PCM2000 is generally used to allow
signaling of the different zones: the Page() application signals the zone controller, the

Overhead and “Underchin” Paging (a.k.a. Public Address) | 235

zone controller answers, and then an additional digit is sent to select which zone the
page is to be sent to. Most zone controllers will allow for a page to all zones, in addition
to combining zones (for example, a page to both the new and used car sales
departments).

You could also have separate extensions in the dialplan going to separate ATAs (or
groups of telephones), but this may prove more complicated and expensive than simply
purchasing a paging controller that is designed to handle this. Zone paging doesn’t
require any significantly different technology, but it does require a little more thought
and planning with respect to both the dialplan and the hardware.

Conclusion
In this chapter we explored the features.conf file, which contains the functionality for
enabling DTMF-based transfers, enabling the recording of calls during a call, and con-
figuring parking lots for one or more companies. We also looked at various ways of
announcing calls and information to people in the office using a multitude of paging
methods, including traditional overhead paging systems and multicast paging to the
phone sets on employees’ desks. This exploration of the various methods of imple-
menting the traditional parking and paging methods in a modern way will hopefully
show you the flexibility Asterisk can offer.

236 | Chapter 11: Parking and Paging

CHAPTER 12

Internet Call Routing

There ain’t no such thing as a free lunch (TANSTAAFL).

—Robert Heinlein

One of the attractions of VoIP is the concept of avoiding the use of the PSTN altogether,
and routing all calls directly between endpoints using the Internet at little or no cost.
While the technology to do this has been around for some time, the reality is that most
phone calls still cost money—even those that are routed across VoIP services.

From a technology standpoint, there are still many systems out there that cannot handle
routing VoIP calls using anything other than a dialpad on a telephone.

From a cultural standpoint, we are still used to calling each other using a numerical
string (a.k.a., a phone number). With VoIP, the concept of being able to phone some-
body using name@domain (just as we do with email) makes sense, but there are a few
things to consider before we can get there.

So what’s holding everything up?

freenum.org
The first few sections of this chapter may put you off the whole idea entirely, so we
want to start off by saying that freenum.org proposes an interim solution to the whole
mess that is so elegant, we can’t see any reason why everyone in the VoIP community
won’t embrace it.*

DNS and SIP URIs
The Domain Name System (DNS) is designed to make it easier for humans to locate
resources on the Internet. While ultimately all connections between endpoints are

* Seriously, get your butt over to freenum.org and get your ISN today. It’s simple and free, and soon all the
cool kids will have one.

237

http://www.freenum.org

handled through numerical IP addresses, it can be very helpful to associate a name
(such as www.google.com) with what may in fact be multiple IP addresses.

In the case of VoIP, the use of a domain name can take something like
100@192.168.1.1 (extension@server) and make it available as leif@shifteight.org
(which looks so much sexier on a business card).

The SIP URI
A SIP URI generally looks like sip:endpoint@domain.tld. Depending on your SIP client,
you may be able to dial a SIP URI as endpoint@domain.tld, or even just as endpoint (if
you have a proxy server and the endpoint you are calling is part of your domain).

For a SIP telephone, which often only has a numerical dialpad, it can be problematic
to dial a SIP URI by name,† so it has become common to use numerical dialing to reach
external resources. We are also used to making “phone calls” using “phone numbers.”
The SIP protocol itself, however, only understands resource@address, so whatever you
dial must ultimately be converted to this format before SIP can do anything with it.
Usually the only reason you can dial something by “phone number” from your SIP
phone is because you are registered to a resource that understands how to convert the
numerical strings you dial into SIP URIs.

In Asterisk, the resource part of the URI (the part before the @) must match an extension
in the dialplan.‡ The address portion will be the address (or hostname) of the Asterisk
server itself. So, a URI of sip:100@shifteight.org will end up at an extension called
100, somewhere in the dialplan of the server that provides SIP service for
shifteight.org.

What is dialed (100) may not in any way relate to the actual identifier of the endpoint
being connected to. For example, we might have a user named Leif whose phone may
be a device that registers itself by its MAC address, and therefore could be something
like 0000FFFF0001@192.168.1.99.§ Much of the purpose of the Asterisk dialplan is to
simplify addressing for users and to handle the complexities of the various protocols
that Asterisk supports.

SRV Records
A Service Record (SRV) is a somewhat new type of DNS record that provides informa-
tion about available services. Defined in RFC 2782, it is often used by newer protocols

† Do you know where the @ symbol is on your dialpad?

‡ Bear in mind that an extension in Asterisk can be any alphanumeric string, such as leif or 100.

§ You could actually dial this URI directly from your phone and bypass the Asterisk server, but you can see
how dialing 100 is going to be a lot more popular than trying to figure out how to type
0004f2a1b2c3@192.168.1.99 into your phone using just the numeric dialpad (it can be done, by the way).

238 | Chapter 12: Internet Call Routing

(SIP being one of them). If you want to support SIP lookups on your domain, you will
require a relevant SRV record in order to properly respond.

When a SIP connection does a lookup on leif@shifteight.org, for the purposes of SIP,
the SRV record can respond that the requested service (SIP) is actually found on the
server pbx.shifteight.org (or possibly even on a completely different domain, such as
pbx.tothemoon.net).

Internet hosting providers typically offer a web-based interface for setting up DNS
records, but many of them do not provide a good interface for SRV records (assuming
they offer anything at all). You can generally set up A records and MX records easily
enough, but SRV records can be trickier. If your host does not support SRV records,
you will need to move your DNS hosting to another provider if you want to be able to
support SIP SRV lookups for your domain.

The majority of DNS servers run BIND (Berkeley Internet Name Daemon). The BIND
record for an SRV entry for SIP will look something like this:

_sip._udp.shifteight.org. 86400 IN SRV 0 0 5060 pbx.shifteight.org.

The form of the record is detailed in Table 12-1.

Table 12-1. Components of a SIP SRV record

Name Description Example

Service Symbolic name of service _sip.

Proto Transport protocol _udp.

Name Domain name for this recorda shifteight.org.

TTL Time to live (in seconds) 86400

Class DNS class field (always IN) IN

Priority Target host priority 0

Weight Relative weight of this record 0

Port TCP/UDP port number 5060

Target Hostname of machine providing this service pbx.shifteight.org.
a Note the trailing dot.

When you configure an SRV record, you can test it with the following Linux command:

dig SRV _sip._udp.shifteight.org

The result will contain several components, but the section you are interested in is:

;; ANSWER SECTION:
_sip._udp.shifteight.org. 14210 IN SRV 0 0 5060 pbx.shifteight.org.

This means that your DNS server is responding correctly to an SRV lookup for
SIP to your domain by responding with the hostname of your PBX (in this case,
pbx.shifteight.org).

DNS and SIP URIs | 239

Any SIP requests to your domain will be referred to your Asterisk server, which will be
responsible for handling incoming SIP connections.‖

If your dialplan does not understand the name/resource/endpoint portion of the SIP
URI, calls will fail. This means that if you want to be able to offer resources in your
Asterisk system by name, you will need relevant dialplan entries.

Accepting Calls to Your System
When a SIP URI comes into your Asterisk system, the resource portion of the URI will
arrive in the dialplan as an ${EXTEN}. So, for example, leif@shifteight.org would arrive
in the dialplan as leif within the ${EXTEN} channel variable in whatever context you
use to handle unauthenticated SIP calls (if you are building your dialplan using the
examples in this book, that will be the unauthenticated dialplan context).

Modifying sip.conf

Once you are familiar with the security implications of allowing unauthenticated SIP
connections, you will need to ensure that your sip.conf file allows for them. While
Asterisk allows them by default, in earlier chapters of this book we have instructed you
to disable unauthenticated SIP calls. The logic for this is simple: if you don’t need it,
don’t enable it.

Since we are now interested in allowing calls from the Internet, we will need to allow
unauthenticated SIP calls. We do that by setting a general variable in the /etc/asterisk/
sip.conf file, as follows:

[general]
context=unauthenticated ; default context for incoming calls
allowguest=yes ; enable unauthenticated calls

After making this change, don’t forget to reload SIP, using this command from the
command line:

$ sudo asterisk -rx "sip reload"

or this one from the Asterisk CLI:

*CLI> sip reload

You can verify that the changes have succeeded using the Asterisk CLI command sip
show settings. What you want to see is Allow unknown access: Yes under the Global
Settings section, and Context: unauthenticated under the Default Settings header.

Standard dialplan

In order to handle an incoming name, your dialplan needs to contain an extension that
matches that name.

‖ This could just as easily be a proxy server, or any other server capable of handling incoming SIP connections.

240 | Chapter 12: Internet Call Routing

A dialplan entry on the pbx.shifteight.org system might look like this:

[unauthenticated]
exten => leif,1,Goto(PublicExtensions,100,1)

exten => jim,1,Goto(PublicExtensions,101,1)

exten => tilghman,1,Goto(PublicExtensions,102,1)

exten => russell,1,Goto(PublicExtensions,103,1)

This is by far the simplest way to implement name dialing, but it is also complex to
maintain, especially in systems with hundreds of users.

In order to implement name handling in a more powerful way, you could add something
like the following to your extensions.conf file. Note that some lines have been wrapped
in this example due to space restrictions. These lines must appear on a single line in
the dialplan. All lines should start with exten =>, same =>, or a comment indicator (;).

[unauthenticated]
exten => _[A-Za-z0-9].,1,Verbose(2,UNAUTHENTICATED REQUEST TO ${EXTEN} FROM
${CALLERID(all)})
 same => n,Set(FilteredExtension=${FILTER(A-Za-z0-9,${EXTEN})})
 same => n,Set(CheckPublicExtensionResult=${DIALPLAN_EXISTS(PublicExtensions,
${FilteredExtension},1)})
 same => n,GotoIf($["${CheckPublicExtensionResult}" = "0"]?CheckEmailLookup)
 same => n,Goto(PublicExtensions,${FilteredExtension},1)

; This is our handler for when someone dials a SIP URI with a name
 same => n(CheckEmailLookup),GoSub(subEmailToExtensionLookup,start,1
(${TOLOWER(${FilteredExtension})}))
 same => n,GotoIf($["${GOSUB_RETVAL}" = "NoResult"]?i,1:PublicExtensions,
${GOSUB_RETVAL},1)
 same => n,Goto(i,1)

; This handles invalid numbers/names
exten => i,1,Verbose(2,Incoming call from ${CALLERID(all)} to context ${CONTEXT}
found no result)
 same => n,Playback(silence/1&invalid)
 same => n,Hangup()

; These are explicit extension matches (useful on small systems)
exten => leif,1,Goto(PublicExtensions,100,1)

exten => jim,1,Goto(PublicExtensions,101,1)

exten => tilghman,1,Goto(PublicExtensions,102,1)

exten => russell,1,Goto(PublicExtensions,103,1)

When a call enters the dialplan, it can match in one of two places: it can match our
pattern match at the top, or it can match the explicit named extensions closer to the
bottom of our example (i.e., leif, jim, tilghman, or russell).

DNS and SIP URIs | 241

If the call does not explicitly match our named extensions, the pattern match will be
utilized. Our pattern match of _[A-Za-z0-9]. matches any string starting with an al-
phanumeric character followed by one or more other characters.

The incoming string needs to be made safe, so we utilize the FILTER() function to re-
move nonalphanumeric characters, and assign the result to the FilteredExtension
channel variable.

The DIALPLAN_EXISTS() function will be used to see if the request matches anything in
the PublicExtensions context. This function will return either a 0 (if no match is
found) or a 1 (when a match is found) and assign the result to the
CheckPublicExtensionResult channel variable.

The next line is a GotoIf() that checks the status of the CheckPublicExtensionResult
variable. If the result returned was 0, the dialplan will continue at the CheckEmail
Lookup priority label. If the result was anything other than 0 (in this case, the other result
could have been a 1), the next line of the dialplan will be executed. This line will perform
a Goto() and continue execution in the PublicExtensions context (presumably to dial
our destination endpoint).

Assuming our CheckPublicExtensionResult variable was a 0, our dialplan will continue
at the CheckEmailLookup priority label, where we use the subroutine
subEmailToExtensionLookup via a GoSub().# We pass the value contained within the
FilteredExtension channel variable to the subroutine, but you’ll notice that we’ve
wrapped it in the TOLOWER() dialplan function (which expects your email addresses to
be stored in lowercase as opposed to mixed case).

Upon return from the subEmailToExtensionLookup subroutine, we check the
GOSUB_RETVAL channel variable (which was automatically set when the subroutine re-
turned). The result will be one of two things: the extension number that matches the
name that was passed to the subroutine, or the string NoResult. Our dialplan checks
${GOSUB_RETVAL}, and if it contains NoResult, the caller is passed to the i (invalid) ex-
tension, where we inform the caller that the extension dialed is invalid. If all is well,
the call will continue execution in the PublicExtensions context.

File parsing

This little trick will allow you to use the voicemail.conf file to look up valid usernames
against their email address. This could end up being kludgy, and it requires that the
email field in voicemail.conf is filled out and contains a username (before the @ symbol)
that you will support in your dialplan, but it’s simple to code in the dialplan, and if
nothing else it will give you some ideas of how you might handle providing a more
automated way of linking names to extension numbers for the purpose of SIP URI
dialing. Note that this method will not allow you to exclude some people from name
dialing. It’s all or nothing.

#We explain the use of subEmailToExtensionLookup in the following section.

242 | Chapter 12: Internet Call Routing

We’ve written this as a subroutine, which is invoked something like this:

; where 'name' is the username as found in the email address
GoSub(subEmailToExtensionLookup,start,1(name))

The subroutine looks like this:

[subEmailToExtensionLookup]
exten => start,1,Verbose(2,Checking for user in voicemail.conf)
 same => n,Set(LOCAL(FilteredExtension)=${FILTER(a-z0-9,${ARG1})})
 same => n,Set(LOCAL(Result)=${SHELL(grep "${LOCAL(FilteredExtension)}@"
/etc/asterisk/voicemail.conf)})
 same => n,GotoIf($[${ISNULL(${LOCAL(Result)})}]?no_Result,1)
 same => n,Set(LOCAL(ExtensionToDial)=${CUT(${LOCAL(Result)},=,1)})
 same => n,Set(LOCAL(ExtensionToDial)=${FILTER(0-9,${LOCAL(ExtensionToDial)})})
 same => n,Return(${LOCAL(ExtensionToDial)})

exten => no_Result,1,Verbose(2,No user ${ARG1} found in voicemail.conf)
 same => n,Return(NoResult)

Let’s go over this code, because there are some useful actions being performed that you
may be able to apply for other purposes as well.

First, a channel variable named FilteredExtension is created. This variable is local to
the subroutine:

Set(LOCAL(FilteredExtension)=${FILTER(a-z0-9,${ARG1})})

The FILTER() function looks at the entire ${ARG1} and removes any nonalphanumeric
characters. This is primarily for security reasons. We are passing this string out to the
shell, so it’s critical to ensure it will only contain characters that we expect.

The next step is where the coolness happens:

Set(LOCAL(Result)=${SHELL(grep "${LOCAL(FilteredExtension)}@" /etc/asterisk/voicemail.conf)})

The shell is invoked in order to run the grep shell application, which will search through
the voicemail.conf file, return any lines that contain name@, and assign the result to the
variable ${Result}:

GotoIf($[${ISNULL(${LOCAL(Result)})}]?no_result,1)

If no lines contain the string we’re looking for, we’ll return from the subroutine the
value NoResult (which will be found in the ${GOSUB_RETVAL} channel variable). The
dialplan section that called the subroutine will need to handle this condition.

We’ve created an extension named no_result for this purpose:

exten => no_result,1,Verbose(2,No user ${ARG1} found in voicemail.conf)
 same => n,Return(NoResult)

DNS and SIP URIs | 243

If ${Result} is not null, the next steps will clean up ${Result} in order to extract the
extension number* of the user with the name passed in ${ARG1}:

Set(LOCAL(ExtensionToDial)=${CUT(${LOCAL(Result)},=,1)})

The CUT() function will use the = symbol as the field delimiter and will assign the value
from the first field found in ${Result} to the new variable ExtensionToDial. From there,
we simply need to trim any trailing spaces by filtering all nonnumeric characters:

Set(LOCAL(ExtensionToDial)=${FILTER(0-9,${LOCAL(ExtensionToDial)})})

We can now return the extension number of the name we received:

Return(${LOCAL(ExtensionToDial)})

This example was something we whipped up for the purposes of illustrating some
methods you can employ in order to easily match names to extension numbers for the
purposes of SIP URI dialing. This is by no means the best way of doing this, but it is
fairly simple to implement, and in many cases may be all that you need.

Database lookup

Using a database is by far the best way to handle user information on larger, more
complex systems. We will discuss integrating Asterisk with databases in more detail in
Chapter 16, but it is useful to introduce the concept here.

A database is ideal for handling name lookup, as it makes maintenance of user data
(and integration with external systems such as web interfaces) far simpler. However, it
does require a bit more effort to design and implement.

The example we will use in this chapter will work, but for a production environment
it is probably too simplistic. Our goal here is simply to give you enough information to
understand the concept; a tighter integration is part of what is covered in Chapter 16.

First, we’ll need a table to handle our name-to-extension mapping. This could be a
separate table from the main user table, or it could be handled in the main user table,
provided that that table contains a field that will contain the exact strings that users
will publish as their SIP URIs (as an example, some companies have rules regarding
how email addresses look, so Leif might have a URI such as lmadsen@shifteight.org,
or leif.madsen@shifteight.org).

If you are serious about implementing this example in a production
system, make sure you are familiar with the material in Chapter 16, as
some key concepts are covered there that we omit here.

Our sample NameMapping table looks like Table 12-2.

* In actual fact, what we are extracting is the voicemail box number; however, this number is generally going
to be the same as the user’s dialable internal extension number. If it is not the same, this particular technique
will not accomplish name-to-extension lookups, and another way will have to be found.

244 | Chapter 12: Internet Call Routing

Table 12-2. NameMapping table

Name Extension Context

leif 100 publicExtensions

leif.madsen 100 publicExtensions

lmadsen 100 publicExtensions

jim 101 publicExtensions

reception 0 Servicesa

voicemail *98 Services
a Make sure this context exists on your system.

We believe that having a separate table that only handles name-to-extension/context
mapping is the most useful solution, since this table can be used to handle more than
just users with telephone sets. You are encouraged to come up with other ways to
handle this that may be more suitable to your environment.

In the dialplan, we would refer to this table using Asterisk’s func_odbc function:

[subLookupNameInNameMappingTable]
exten => start,1,Verbose(2,Looking up ${ARG1})

; where 'name' is the username as found in the email address
 same => n,Set(ARRAY(CalleeExtension,CalleeContext)=${GET_NAME_LOOKUP(${ARG1})})
 same => n,GotoIf($[${ISNULL(${CalleeExtension})}]?no_result,1)
 same => n,GotoIf($[${ISNULL(${CalleeContext})}]?no_result,1)
 same => n,Return() ; You'll need to handle the new CalleeExtension and
 ; CalleeContext variables in the code that called this
 ; subroutine

exten => no_result,1,Verbose(2,Name was not found in the database.)
 same => n,Return(NoResult)

The /etc/asterisk/func_odbc.conf file will require the following entry:

[NAME_LOOKUP](DB)
prefix=GET
SELECT Extension,Context FROM NameMapping WHERE Name='${ARG1}'

Keep in mind that there’s nothing to say you can’t reference more than
one datastore to look up names. For example, you might have a table
such as the one we’ve described here, but also have a secondary lookup
that goes to, say, an LDAP database to try to resolve names there as well.
This can get complicated to configure and maintain, but if designed right
it can also mean that your Asterisk system can be tightly integrated with
other systems in your enterprise.

DNS and SIP URIs | 245

Details on how to handle all of this in your dialplan are beyond the scope of this book.
Suffice it to say that in your dialplan you will still need to handle the values that your
subroutine creates or assigns.

Dialing SIP URIs from Asterisk
Asterisk can dial a SIP URI as easily as any other sort of destination, but it is the endpoint
(namely, your telephone) that is ultimately going to shoulder the burden of composing
the address, and there lies the difficulty.

Most SIP telephones will allow you to compose a SIP URI using the dialpad. This sounds
like a great idea at first, but since there are no typewriter keys on a phone set, in order
to dial something like jim.vanmeggelen@shifteight.org what you would need to ac-
tually input into the phone would be something along the lines of:

5-444-6-*-888-2-66(pause)-6-33-4(pause)-4-33-555-33-66-#-7777-44(pause)-444-333-8-33-
444-(pause)-4(pause)-44-8-*-666-777-4

To support this in your dialplan, you would need something similar to this†:

exten => _[0-9a-zA-Z].,1,Verbose()
 same => n,Set(FilteredExtension=${FILTER(0-9a-zA-Z@-_.,${EXTEN})})
 same => n,Dial(SIP/${FilteredExtension})

It’s simple, it’s fun, and it works! … ?

The reality is that until all phones support complex and flexible address books, as well
as a QWERTY-style keyboard (perhaps via touchscreen), SIP URI dialing is not going
to take off.

If you have a SIP URI that you want to dial on a regular basis (for example, during the
writing of this book there were many calls made between Jim and Leif), you could add
something like this to your dialplan:

exten => 5343,1,Dial(SIP/leif.madsen@shifteight.org)

With this in your dialplan, you could dial 5343 (LEIF) on your phone and the Asterisk
dialplan would translate it into the appropriate SIP URI. It’s not practical for a large
number of URIs, but for a few here and there it can be a helpful shortcut.

Nevertheless, keep reading, because there are some very useful components of DNS
that simplify the process of dialing directly between systems without the use of the
PSTN.

† Technically, the characters ! # $ % & ' * + / = ? ^ ` { | } ~ are also valid as part of the local-part of an
email address; however, they are uncommon, and we have elected not to allow them in our dialplan examples.

246 | Chapter 12: Internet Call Routing

ENUM and E.164
Although the SIP protocol really doesn’t think in terms of phone numbers, the reality
is that phone numbers are not going away any time soon, and if you want to properly
integrate a VoIP system with as many telephone networks as possible, you’re going to
need to handle the PSTN in some way.

ENUM maps telephone numbers onto the Domain Name System (DNS). In theory,
ENUM is a great idea. Why not cut out the PSTN altogether, and simply route phone
calls directly between endpoints using the same numbering plan? We’re not sure this
idea is ever going to become what the emerging telecom community would like it to
be, though. The reason? Nobody really can say who owns phone numbers.

E.164 and the ITU
The International Telecommunication Union (ITU) is a United Nations agency that is
actually older than the UN itself. It was founded in 1865 as the International Telegraph
Union. The ITU-T sector, known for many decades as CCITT (Comité consultatif
international téléphonique et télégraphique), is the standards body responsible for all
of the protocols used by the PSTN, as well as many that are used in VoIP. Prior to the
advent of VoIP, the workings of the ITU-T sector were of little interest to the average
person, and membership was generally limited to industries and institutions that had
a vested interest in telecommunications standards.

ITU standards tend to follow a letter-dot-number format. ITU-T standards you may
have heard of include H.323, H.264, G.711, G.729, and so forth.

E.164 is the ITU-T standard that defines the international numbering plan for the
PSTN. If you’ve ever used a telephone, you’ve used E.164 addressing.

Each country in the world has been assigned a country code,‡ and control of addressing
in those countries is handled by the local authorities.

E.164 numbers are limited to 15 digits in length (excluding the prefix).

In Asterisk, there is nothing special that needs to be done in order to handle E.164
addressing, other than to make sure your dialplan is suitable to the needs of any PSTN-
compatible channels you may have.

For example, if you’re operating in a NANP country, you will probably need to have
the following pattern matches:

_NXXNXXXXXX
_1NXXNXXXXXX
_011X.
_N11

‡ With the exception of 24 countries and territories in country code 1, which are all part of the North American
Numbering Plan Authority (NANPA).

ENUM and E.164 | 247

In the UK, you might need something more like this:

_0[123789]XXXXXXXXX
_0[123789]XXXXXXXX

And in Australia, your dialplan might have these pattern matches:

_NXXXXXXX
_0XXXXXXXXX

Please don’t just copy and paste these pattern matches into your
dialplan. The peculiarities of regional dialplans are tricky, and change
constantly. One important item that needs to be carefully considered is
the region-specific number for emergency calling, as discussed in
“Emergency Dialing” on page 154. You don’t want to get this stuff
wrong.

The North American Numbering Plan Authority
In much of North America, the North American Numbering Plan (NANP) is in use. All
countries in the NANP are assigned to country code 1. Canada and the US are the most
well-known of these countries, but the NANP actually includes around 24 different
countries and territories (mostly in the Caribbean).

ENUM
In order to allow the mapping of E.164 numbers onto the DNS namespace, a way of
representing phone numbers as DNS names had to be devised.

This concept is defined in RFC 3761, helpfully named “The E.164 to Uniform Resource
Identifiers (URI) Dynamic Delegation Discovery System (DDDS) Application
(ENUM).” ENUM reportedly stands for Electronic NUmber Mapping.

According to the RFC, converting a phone number into an ENUM-compatible address
requires the following algorithm:

1. Remove all characters with the exception of the digits.
For example, the First Well Known Rule produced the Key
"+442079460148". This step would simply remove the
leading "+", producing "442079460148".

2. Put dots (".") between each digit. Example:
 4.4.2.0.7.9.4.6.0.1.4.8

3. Reverse the order of the digits. Example:
 8.4.1.0.6.4.9.7.0.2.4.4

4. Append the string ".e164.arpa" to the end. Example:
 8.4.1.0.6.4.9.7.0.2.4.4.e164.arpa

Clear as mud?

248 | Chapter 12: Internet Call Routing

ENUM has not taken off. The reasons appear to be mostly political in nature. The
problem stems from the fact that there is no one organization that controls numbering
on the PSTN the way that IANA does for the Internet. Since no one entity has a clear
mandate for managing E.164 numbers globally, the challenge of maintaining an accu-
rate and authoritative database for ENUM has proved elusive.

Some countries in Europe have done a good job of delivering reliable ENUM databases,
but in country code 1 (NANP), which contains multiple countries and therefore mul-
tiple regulatory bodies, the situation has become an illogical mess. This is hardly sur-
prising, since the carriers that control E.164 addressing can’t reasonably be expected
to get enthusiastic about allowing you to bypass their networks. The organizations
responsible for implementing ENUM in North America have tended to work toward
creating a PSTN on the Internet, which could save them money, but not you or I.

This is not at all what is wanted. Why would I want to route VoIP calls from my system
to yours across a network that wants to charge me for the privilege? SIP is designed to
route calls between endpoints, and has no real use for the concept of a carrier.

The advantage of all this is supposed to be that when an ENUM lookup is performed,
a valid SIP URI is returned.

Asterisk and ENUM
Asterisk can perform lookups against ENUM databases using either the ENUMLOOKUP()
function or a combination of the ENUMQUERY() and ENUMRESULT() dialplan functions.
ENUMLOOKUP() only returns a single value back from the lookup, and is useful when you
know there is likely to only be one return value (such as the SIP URI you want the
system to dial), or if you simply want to get the number of records available.

Status of ENUM Around the World
In the NANP (and many other) countries, the official e164.arpa zone has not been
formally implemented, and therefore there is no official place to go to perform ENUM
lookups for NANP numbers.

A list of the statuses of various countries’ implementations of ENUM can be found at
http://enumdata.org/. For those countries fortunate enough to have ENUM in produc-
tion, you can perform ENUM lookups directly to their e164.arpa zones of those coun-
tries fortunate enough to have ENUM in production.

For countries without e164.arpa zones, there are several alternative places to perform
lookups, the most popular currently being http://www.e164.org. Note that these or-
ganizations have no formal mandate to maintain the zones they represent. They are
community-based, best-effort projects, and the data contained in them will frequently
be out-of-date.

ENUM and E.164 | 249

http://enumdata.org/
http://www.e164.org

An ENUM lookup in the dialplan might look like this:

exten => _X.,1,Set(CurrentExten=${FILTER(0-9,${EXTEN})})
 same => n,Set(LookupResult=${ENUMLOOKUP(${CurrentExten},sip,,,e164.arpa)})
 same => n,GotoIf($[${EXISTS(${LookupResult})}]?HaveLocation,1)
 same => n,Set(LookupResult=${ENUMLOOKUP(${CurrentExten},sip,,,e164.org)})
 same => n,GotoIf($[${ISNULL(${LookupResult})}]?NormalCall,1:HaveLocation,1)

exten => HaveLocation,1,Verbose(2,Handle dialing via SIP URI returned)
 exten => ...

exten => NormalCall,1,Verbose(2,Handle dialing via standard PSTN route)
 exten => ...

The dialplan code we just looked at will take the number dialed and pass it to the
ENUMLOOKUP() function. It requests the method type to be sip (we want the SIP URI
returned) and the lookup to be performed first against the listings in DNS found in the
e164.arpa zone, and next against the records found at http://www.e164.org.

Outside the countries that have implemented it, there is little uptake of ENUM. As
such, many ENUM queries will not return any results. This is not expected to change
in the near future, and ENUM will remain a curiosity until more widely implemented.

ISN, ITAD, and freenum.org
Finally we get to the cool part of this chapter.

The biggest shortcoming of ENUM is that it uses a numbering system that is not under
the control of any Internet numbering authorities.§ The freenum.org project solves this
problem by utilizing a numbering scheme that is managed by IANA. This means that
a formal, globally valid, nongeographic numbering system for VoIP can be immediately
and easily implemented without getting mired in the bureaucracy and politics that
burden the E.164 numbering system.

John Todd, who manages the project, notes that “Freenum.org is a DNS service that
uses ENUM-like mapping methods to allow many services to be mapped to a keypad-
friendly string. The most obvious and widely used method for this is connecting VoIP users
together for free by creating an easily-remembered dial string that maps to SIP URIs in
the background. However, anything that can appear in a NAPTR record (email, instant
messenger, web addresses) can be mapped to an ISN-style freenum.org address. The goal
of the project is to provide free numeric pointers to the billions of phones that support only
0–9, * and # characters and allow those devices to communicate via VoIP or other next-
generation protocols. The project is spread out across more than thirty DNS servers
worldwide.”

§ More to the point, perhaps, is that E.164 numbers are controlled by far too many organizations, each one
subjected to different regulations, and having goals that are not always compatible with the concept of global,
free VoIP calling.

250 | Chapter 12: Internet Call Routing

http://www.e164.org

Got ISN?
The heart of the freenum.org concept is the ITAD Subscriber Number (ISN). The ISN
is a numeric string that is composed of an extension number on your system, an asterisk
character separator (*),‖ and a number that is unique to your organization called an IP
Telephony Administrative Domain (ITAD) number. The advantage of the ISN is that
it can be dialed from any telephone. An ISN would look something like this:

0*1273

which would represent extension zero at ITAD 1273# and would resolve to sip:0@
shifteight.org.

You control your extension numbers (everything to the left of the *). Your ITAD is
assigned by IANA (the same organization that controls IP and MAC addresses).

Once your ITAD is assigned, you will be able to publish ISNs on your website, or on
business cards, or wherever you would normally publish phone numbers. Any system
capable of dialing ISNs will allow its users to call you by dialing your ISN. Calls will be
routed directly between the two systems using the SIP URI that freenum.org returns.

ITAD Subscriber Numbers (ISNs)
The ISN does not replace a SIP URI, but rather complements it by allowing dialing of
VoIP numbers using only characters found on a standard telephone dialpad. In order
to resolve an ISN into a valid URI, the DNS system will query the ISN against the
freenum.org domain. Any DNS lookup against your ISN will return a URI that defines
how your system expects to receive calls to that ISN.*

Management of Internet Numbering
The Internet Assigned Numbers Authority (IANA) is the body responsible for managing
any numbering system that exists as a result of an RFC that requires a numerical da-
tabase of some kind. The most well-known responsibility of IANA is the delegation of
IP addresses to the five Regional Internet Registries that control all of the public IP
addresses on the planet.† These organizations are responsible for the assignment of
IP addresses within their regions.

‖ This character has nothing to do with the software that is the subject of this book; it simply refers to the *
that is on the dialpad of every telephone. We wonder what might have been if, instead of Asterisk, Mark
Spencer had decided to call his creation Octothorpe.

#ITAD 1273 is assigned to shifteight.org.

* Although freenum.org can handle ITADs that resolve to non-SIP URIs, the handling of multiple protocols is
beyond the scope of this book. For now, we recommend you restrict your ISN to handling SIP URIs.

† AfriNIC, APNIC, ARIN, LACNIC, and RIPE NCC.

ISN, ITAD, and freenum.org | 251

There are many other numbering schemes that have been created as a result of an RFC.
Other IANA-managed numbers include MAC addresses—specifically, the Organiza-
tionally Unique Identifier (OUI) portion of the MAC addressing space.

Several years ago, a protocol named TRIP (Telephony Routing over IP) was created.
While this protocol never took off, and is unlikely to see any future growth, it did offer
us one incredibly useful thing: the ITAD. Since ITADs are part of an RFC, the IANA is
mandated to maintain a database of ITADs. This is what makes freenum.org possible.

IP Telephony Administrative Domains (ITADs)
Freenum.org takes advantage of IANA’s responsibility to maintain a database of ITAD
numbers and allows us to build simple, standards-based, globally relevant, and com-
munity-driven numbering plans for VoIP.‡ You can find the list of currently assigned
ITAD numbers at http://www.iana.org/assignments/trip-parameters/trip-parameters
.xml#trip-parameters-5.

You will want to obtain your own ITAD number by submitting the form located at
http://www.iana.org/cgi-bin/assignments.pl.

This form should be filled out as shown in Figure 12-1.

Figure 12-1. Request for Assignments form

‡ Note that freenum.org has consulted with the folks at IANA in regard to the use of ITADs with protocols
other than TRIP.

252 | Chapter 12: Internet Call Routing

http://www.iana.org/assignments/trip-parameters/trip-parameters.xml#trip-parameters-5
http://www.iana.org/assignments/trip-parameters/trip-parameters.xml#trip-parameters-5
http://www.iana.org/cgi-bin/assignments.pl

Your application will be reviewed by a Real Human Being™, and within a few days you
should be assigned an ITAD by IANA. A few days later, you will also receive information
for your freenum.org account (there is currently a simple review process to ensure that
bots and spammers don’t abuse the system). You will then need to log onto the free-
num.org site and define the parameters for your ITAD.

Create a DNS Entry for Your ITAD
In the top-right corner of the freenum.org site, you will see a Sign in here link. Your
username is the email address you registered with IANA, and your password will have
been emailed to you by the freenum.org system.§

You will be presented with a list of your assigned ITADs. In order for your new ITAD
to work, you will need to ensure the DNS records are up-to-date.

There are two methods of handling DNS for your ITAD. The first (and
simplest) is to have a NAPTR record inserted into the freenum.org zone.
The other way is to create a zone for your ITAD, and have free-
num.org delegate that zone to your name servers. We will only discuss
the first method here, but if you are familiar with NAPTR/ENUM ad-
ministration for a DNS server, you can use the second method.

The freenum.org folks have created the Freenum Automated Self-Service Tool (FASST)
to simplify DNS record entry for you. The essential fields will already be filled out. The
only thing you need to change is under the DNS Setting section of the form: specify the
hostname of your PBX and save the changes. The FASST tool uses a regular expression
to convert an ISN lookup to a SIP URI.

In order to specify your hostname, you will need to modify the sample regular expres-
sion provided by FASST, changing the sample hostname sip.yourdomain.com to the
hostname of your PBX. So, for example, in our case we would want to change:

!^\\+*([^*]*)!sip:\\1@sip.yourdomain.com!

to:

!^\\+*([^*]*)!sip:\\1@pbx.shifteight.org!

The other fields in the DNS entry should not be changed unless you know what you
are doing. The rest of the fields in the form are optional, and can be filled out as you
see fit.

§ This may take a few days, so if you’ve received your ITAD from IANA but not yet a password from
freenum.org, give it some time.

ISN, ITAD, and freenum.org | 253

John Todd notes: “For those sites which have extremely complex configurations or geo-
graphically diverse offices with different SIP servers handling different prefixes (for in-
stance: 12xxx goes to the Asterisk server in France, 13xxx to the Asterisk server in Ger-
many, and so on) then there are more sophisticated methods where you run your own
delegated zone out of the freenum.org domain, but those are outside the scope of this book
but can be learned about on the freenum.org site.”

Testing Your ITAD
As is often the case with DNS changes, it can take a few days for your changes to
propagate through the system. To check, you can Google for “online dig tool” to find
a web-based lookup tool, or use the dig tool under Linux:

$ dig NAPTR 4.3.2.1.1273.freenum.org

Once your record is updated in the system, the result will include the following:

;; ANSWER SECTION:
4.3.2.1.1273.freenum.org. 86400 IN NAPTR 100 10 "u" "E2U+sip"
"!^\\+*([^*]*)!sip:\\1@shifteight.org!" .

If the answer section does not include the regular expression containing your domain
name, the records have not updated and you should wait a few more hours (or even
leave it for a day).

Using ISNs in Your Asterisk System
So now that you’ve got your own ITAD (you did sign up, right?), you’ll want to make
it available to others, and also configure your dialplan to allow you to dial other ITADs.

Under the [globals] section of your dialplan (/etc/asterisk/extensions.conf), add a global
variable that contains your ITAD:

[globals]
ITAD = 1273 ; replace '1273' with your own ITAD number

To allow calling to ITADs from your system, you will need something like the following
dialplan code‖:

[OutgoingISN]
exten => _X*X!,1,GoSub(subFreenum,start,1(${EXTEN}))
exten => _XX*X!,1,GoSub(subFreenum,start,1(${EXTEN}))
exten => _XXX*X!,1,GoSub(subFreenum,start,1(${EXTEN}))
exten => _XXXX*X!,1,GoSub(subFreenum,start,1(${EXTEN}))
exten => _XXXXX*X!,1,GoSub(subFreenum,start,1(${EXTEN}))
; you may need to add more lines here to handle XXXXXX*X, XXXXXXX*X, and so forth

‖ If people publish the users’ full DIDs instead of their internal extension numbers, the pattern matches will
need to support up to 15 digits.

254 | Chapter 12: Internet Call Routing

[subFreenum]
exten => start,1,Verbose(2,Performing ISN lookup)
 same => n,Set(ISN=${FILTER(0-9*,${ARG1})})
 same => n,Set(Result=${ENUMLOOKUP(${ISN},sip,s,,freenum.org)})
 same => n,GotoIf($[${EXISTS(${Result})}]?call,1:no_result,1)

exten => call,1,Verbose(2,Placing call to ISN --${ISN}-- via ${Result})
 same => n,Dial(SIP/${Result})
 same => n,Return()

exten => no_result,1,Verbose(2,Lookup for ISN: --${ISN}-- returned no result)
 same => n,Playback(silence/1&invalid)
 same => n,Return()

We have added two new contexts to our dialplan: OutgoingISN and subFreenum. The
OutgoingISN context controls who can dial ISN numbers from within your dialplan. If
you have been following our examples throughout this book, you should have a context
called LocalSets, which is the context where all your telephones enter the dialplan.
Including OutgoingISN within LocalSets enables dialing of ISN numbers:

[LocalSets]
include => OutgoingISN ; include the context that enables ISN dialing
include => CallPlace ; use subroutine to determine what you can dial

We have placed the OutgoingISN include above the CallPlace include
because Asterisk will perform extension matching in the order of the
includes, and since CallPlace has a more general pattern match than
our OutgoingISN pattern matches, we need to make sure OutgoingISN
appears first.

The magic for dialing ISN numbers is handled in the subFreenum context. Our Outgoin
gISN context will pass the requested extension (e.g., 1234*256) to the subFreenum sub-
routine. After the NoOp() on the first line, the subroutine will filter the request for num-
bers and the asterisk (*) character to make the extension safe. The result will then be
assigned to the ISN channel variable:

exten => start,n,Set(ISN=${FILTER(0-9*,${ARG1})})

The subroutine will then perform a lookup for the ISN via the DNS system using the
ENUMLOOKUP() dialplan function. Options passed to the ENUMLOOKUP() function include:

• The ISN number to look up

• The method type to look up and return (SIP)

• The s option, which tells Asterisk to perform an ISN-style lookup instead of a
standard ENUM lookup

• The zone suffix for performing the lookups (we’ll use freenum.org, but the default
is e164.arpa)

ISN, ITAD, and freenum.org | 255

Our code for performing the lookup then looks like this:

exten => start,n,Set(Result=${ENUMLOOKUP(${ISN},sip,s,,freenum.org)})

Following the lookup and storing the result in the ${Result} channel variable, our
subroutine will verify whether we received a result or not:

exten => start,n,GotoIf($[${EXISTS(${Result})}]?call,1:no_result,1)

If no result is received, the call will be handled in the no_result extension. If a result is
received back from our lookup, then execution will continue at the call extension
where the call will be placed using the result stored in the ${Result} channel variable.

Receiving calls to your ITAD

Receiving calls to your ITAD is much simpler. If your system supports incoming SIP
URIs, ISNs will already work for you.# We showed the configuration required to accept
calls to your system in “Accepting Calls to Your System” on page 240.

Security and Identity
It is a sad fact of the Internet that there are a few selfish, greedy criminal types out there
who think nothing of attempting to take advantage of people for their own gain. In
telecom, this behavior represents several risks to you.

In this section, we will focus on security issues relating to the portions of your system
that you intend to make publicly available through the Internet. While it would be
simple to just refuse to allow any sort of external connections, the reality is that if you
want people to be able to call you for free from the Internet (for example, if you intend
to publish your company’s SIP URIs on your web page), you are going to have to define
a secure place within your system where those calls will arrive. Securing your incoming
public VoIP connections is conceptually similar to implementing a DMZ in traditional
networking.*

In Asterisk, certain contexts in your dialplan cannot be trusted. This means that you
will need to carefully consider what resources are available to channels that enter the
system through these contexts, and ensure that only certain services and features are
available.

#If you’ve set up your ITAD and ISN correctly, the conversion from ISN dial string to SIP URI will take place
before the call arrives on your doorstep.

* A DMZ is any portion of your network that you expose to the Internet (such as your website), and therefore
cannot completely trust. It is not uncommon for organizations to place the PBX within a DMZ.

256 | Chapter 12: Internet Call Routing

Toll Fraud
Toll fraud is by far the biggest risk to your phone system in terms of the potential for
ruinous cost. It is not unheard of for fraudsters to rack up tens of thousands of dollars
in stolen phone calls over the course of a few days.

Toll fraud is not a new thing, having existed prior to VoIP; however, the enabling nature
of VoIP means that it is easier for fraudsters to take advantage of unsecured systems.
Most carriers will not take responsibility for these costs, and thus if your system is
compromised you could be stuck with a very large phone bill. While carriers are getting
better and better at alerting their customers to suspicious activity, that does not absolve
you of responsibility for ensuring your system is hardened against this very real and
very dangerous threat.

Within your Asterisk system, it is vitally important that you know what resources on
your system are exposed to the outside world and ensure that those resources are secure.

The most common form of toll fraud these days is accomplished by brute-force attack.
In this scenario, the thieves will have a script that will contact your system and attempt
to register as a valid user. If they are able to register as a telephone on your system, the
flood of calls will commence, and you will be stuck with the bill. If you are using simple
extension numbers and easy-to-guess passwords, and your system accepts registrations
from outside your firewall, it is certain that you will eventually be the victim of toll fraud.

Brute-force attacks can also cause performance problems with your system, as one of
these scripts can flood your router and PBX with massive numbers of registration at-
tempts.

The following tactics have proven successful in minimizing the risk of toll fraud:

1. Do not use easy-to-guess passwords. Passwords should be at least eight characters
long and contain a mix of digits, letters, and characters. 8a$j03H% is a good pass-
word.† 1234 is not.

2. Do not use extension numbers for your SIP registrations in sip.conf. Instead of
[1000], use something like a MAC address (something like [0004f2123456] would
be much more difficult for a brute-force script to guess).

3. Use an analysis script such as fail2ban to tweak your internal firewall to block IP
addresses that are displaying abusive behavior, such as massive packet floods.

The fail2ban daemon is emerging as a popular way to automatically
respond to security threats. We’ll discuss it further in Chapter 26.

† Actually, since it’s published in this book, it is no longer a good password, but you get the idea.

Security and Identity | 257

Spam over Internet Telephony (SPIT)
VoIP spam has not yet taken off, but rest assured, it will. Spammers all over the world
are drooling at the prospect of being able to freely assault anyone and everyone with
an Internet-enabled phone system.

Like email, VoIP entails a certain level of trust, in that it assumes that every phone call
is legitimate. Unfortunately, as with email spam, it only takes a few bad apples to spoil
things for the rest of us.

Many organizations and persons are working on ways to address SPIT now, before it
becomes a problem. Some concepts being worked on include certificates and whitelists.
No one method has emerged as the definitive solution.

While it would be easy to simply lock our systems away from the world, the fact is that
Internet telephony is something that every business will be expected to support in the
not-too-distant future. SPIT will increasingly become a problem as more and more
unsavory characters decide that this is the new road to riches.

Solving the SPIT problem will be an ongoing process: a battle between us and The Bad
Guys™.

Distributed Denial of Service Attacks
SIP denial of service attacks are already happening on the Internet. Amazon’s EC2 cloud
has become a popular place to originate these attacks from, and other cloud-based or
compromised systems will become popular for these activities as well. The actual at-
tacks are not strictly denial of service attacks (in the sense that they are not deliberately
trying to choke your system); rather, they are attack campaigns that are typically trying
to use brute force to locate exploitable holes in any systems they can find. As the sheer
number of these attacks increases, the effect on the network will be similar to that of
email spam.

The previously mentioned fail2ban daemon can be useful in minimizing the effects of
these attacks. Refer to Chapter 26 for more details.

Phishing
When a VoIP system has been compromised, one popular use of the compromised
system is to relay fraud campaigns using the identity of the compromised system.
Criminals engaging in so-called phishing expeditions will make random calls to lists of
numbers, attempting to obtain credit card or other sensitive information, while posing
as your organization.

258 | Chapter 12: Internet Call Routing

Security Is an Ongoing Process
In contrast to previous editions, throughout this book we have tried to provide exam-
ples and best practices that take security into consideration at all stages. Whatever you
are working on, you should be thinking about security. While implementing good se-
curity requires more design, development, and testing effort, it will save you time and
money in the long run.

Most security holes happen as a result of something that was hastily implemented and
wasn’t locked down later. “I’ll just quickly build this now, and I’ll clean it up later” are
words you never want to say (or hear).

Conclusion
One of the dreams of VoIP was that it was going to make phone calls free. Over a decade
later, we’re still paying for our phone calls. The technology has existed for some time,
but the ease of use has not been there.

It costs nothing to register your ITAD and set up your system to handle ISNs. If every
Asterisk system deployed had an ITAD, and people started publishing their ISNs on
websites, vcards, and business cards, the weight of the Asterisk community would drive
industry adoption.

Security considerations for VoIP have to be taken into consideration, but we expect
that the benefits will outweigh the risks.

Our collective dream of free Internet calling may be closer than we think.

Conclusion | 259

CHAPTER 13

Automatic Call Distribution (ACD)
Queues

An Englishman, even if he is alone, forms an orderly
queue of one.

—George Mikes

Automatic Call Distribution (ACD), or call queuing, provides a way for a PBX to queue
up incoming calls from a group of users: it aggregates multiple calls into a holding
pattern and assigns each call a rank that determines the order in which that call should
be delivered to an available agent (typically, first in first out). When an agent becomes
available, the highest-ranked caller in the queue is delivered to that agent, and everyone
else moves up a rank.

If you have ever called an organization and heard “all of our representatives are busy,”
you have experienced ACD. The advantage of ACD to the callers is that they don’t have
to keep dialing back in an attempt to reach someone, and the advantages to the organ-
izations are that they are able to better service their customers and to temporarily handle
situations where there are more callers than there are agents.*

There are two types of call centers: inbound and outbound. ACD refers
to the technology that handles inbound call centers, whereas the term
Predictive Dialer refers to the technology that handles outbound call
centers. In this book we will primarily focus on inbound calling.

* It is a common misconception that a queue can allow you to handle more calls. This is not strictly true, in
that your callers will still want to speak to a live person, and they will only be willing to wait for so long. In
other words, if you are short-staffed, your queue could end up being nothing more than an obstacle to your
callers. The ideal queue is invisible to the callers, since their calls get answered immediately without them
having to hold.

261

We’ve all been frustrated by poorly designed and managed queues: enduring hold mu-
sic from a radio that isn’t in tune, mind-numbing wait times, and pointless messages
that tell you every 20 seconds how important your call is, despite that fact that you’ve
been waiting for 30 minutes and have heard the message so many times you can quote
it from memory. From a customer service perspective, queue design may be one of the
most important aspects of your telephone system. As with an automated attendant,
what must be kept in mind above all else is that your callers are not interested in holding
in a queue. They called because they want to talk to you. All your design decisions must
keep this crucial fact front-and-center in your mind: people want to talk to other people;
not to your phone system.†

The purpose of this chapter is to teach you how to create and design queues that get
callers to their intended destinations as quickly and painlessly as possible.

In this chapter, we may flip back and forth between the usage of the
terms queue members and agents. Unless we are talking about agents
logged in via chan_agent (using AgentLogin()), we’re almost certainly
talking about queue members as added via AddQueueMember() or the CLI
commands (which we’ll discuss in this chapter). Just know that there is
a difference in Asterisk between an agent and a queue member, but that
we’ll use the term agent loosely to simply describe an endpoint as called
by a Queue().

Creating a Simple ACD Queue
To start with, we’re going to create a simple ACD queue. It will accept callers and
attempt to deliver them to a member of the queue.

In Asterisk, the term member refers to a peer assigned to a queue that
can be dialed, such as SIP/0000FFFF0001. An agent technically refers to
the Agent channel also used for dialing endpoints. Unfortunately, the
Agent channel is a deprecated technology in Asterisk, as it is limited in
flexibility and can cause unexpected issues that can be hard to diagnose
and resolve. We will not be covering the use of chan_agent, so be aware
that we will generally use the term member to refer to the telephone
device and agent to refer to the person who handles the call. Since one
isn’t generally effective without the other, either term may refer to both.

We’ll create the queue(s) in the queues.conf file, and manually add queue members to
it through the Asterisk console. In the section “Queue Members” on page 266, we’ll

† There are several books available that discuss call center metrics and available queuing strategies, such as
James C. Abbott’s The Executive Guide to Call Center Metrics (Robert Houston Smith).

262 | Chapter 13: Automatic Call Distribution (ACD) Queues

look into how to create a dialplan that allows us to dynamically add and remove queue
members (as well as pause and unpause them).

The first step is to create your queues.conf file in the /etc/asterisk configuration directory:

$ cd /etc/asterisk/
$ touch queues.conf

Populate it with the following configuration, which will create two queues named
[sales] and [support]. You can name them anything you want, but we will be using
these names later in the book, so if you use different queue names from what we’ve
recommended here, make note of your choices for future reference:

[general]
autofill=yes ; distribute all waiting callers to available members
shared_lastcall=yes ; respect the wrapup time for members logged into more
 ; than one queue

[StandardQueue](!) ; template to provide common features
musicclass=default ; play [default] music
strategy=rrmemory ; use the Round Robin Memory strategy
joinempty=no ; do not join the queue when no members available
leavewhenempty=yes ; leave the queue when no members available
ringinuse=no ; don't ring members when already InUse (prevents
 ; multiple calls to an agent)

[sales](StandardQueue) ; create the sales queue using the parameters in the
 ; StandardQueue template

[support](StandardQueue) ; create the support queue using the parameters in the
 ; StandardQueue template

The [general] section defines the default behavior and global options. We’ve only
specified two options in the [general] section, since the built-in defaults are sufficient
for our needs at this point.

The first option is autofill, which tells the queue to distribute all waiting callers to all
available members immediately. Previous versions of Asterisk would only distribute
one caller at a time, which meant that while Asterisk was signaling an agent, all other
calls were held (even if other agents were available) until the first caller in line had been
connected to an agent (which obviously led to bottlenecks in older versions of Asterisk
where large, busy queues were being used). Unless you have a particular need for back-
ward-compatibility, this option should always be set to yes.

The second option in the [general] section of queues.conf is shared_lastcall. When
we enable shared_lastcall, the last call to an agent who is logged into multiple queues
will be the call that is counted for wrapup time‡ in order to avoid sending a call to an
agent from another queue during the wrap period. If this option is set to no, the wrap
timer will only apply to the queue the last call came from, which means an agent who

‡ Wrapup time is used for agents who may need to perform some sort of logging or other function once a call
is done. It gives them a grace period of several seconds in order to perform this task before taking another call.

Creating a Simple ACD Queue | 263

was wrapping up a call from the support queue might still get a call from the sales
queue. This option should also always be set to yes (the default).

The next section, [StandardQueue] is the template we’ll apply to our sales and support
queues (we declared it a template by adding (!)). We’ve defined the musicclass to be
the default music on hold, as configured in the musiconhold.conf file. The strategy
we’ll employ is rrmemory, which stands for Round-Robin with Memory. The rrmemory
strategy works by rotating through the agents in the queue in sequential order, keeping
track of which agent got the last call, and presenting the next call to the next agent.
When it gets to the last agent, it goes back to the top (as agents log in, they are added
to the end of the list). We’ve set joinempty to no since it is generally bad form to put
callers into a queue where there are no agents available to take their calls.

You could set this to yes for ease of testing, but we would not recom-
mend putting it into production unless you are using the queue for some
function that is not about getting your callers to your agents. Nobody
wants to wait in a line that is not going anywhere.

The leavewhenempty option is used to control whether callers should fall out of the
Queue() application and continue on in the dialplan if no members are available to take
their calls. We’ve set this to yes because it makes no sense to wait in a line that’s not
going anywhere.

From a business perspective, you should be telling your agents to clear
all calls out of the queue before logging off for the day. If you find that
there are a lot of calls queued up at the end of the day, you might want
to consider extending someone’s shift to deal with them. Otherwise,
they’ll just add to your stress when they call back the next day, in a worse
mood.

The alternative is to use GotoIfTime() near the end of the day to redirect
callers to voicemail, or some other appropriate location in your dialplan.

Finally, we’ve set ringinuse to no, which tells Asterisk not to ring members when their
devices are already ringing. The purpose of setting ringinuse to no is to avoid multiple
calls to the same member from one or more queues.

It should be mentioned that joinempty and leavewhenempty are looking
for either no members logged into the queue, or all members unavaila-
ble. Agents that are Ringing or InUse are not considered unavailable, so
will not block callers from joining the queue or cause them to be kicked
out when joinempty=no and/or leavewhenempty=yes.

264 | Chapter 13: Automatic Call Distribution (ACD) Queues

Once you’ve finished configuring your queues.conf file, you can save it and reload the
app_queue.so module from your Asterisk CLI:

$ asterisk -r
*CLI> module reload app_queue.so
 -- Reloading module 'app_queue.so' (True Call Queueing)

Then verify that your queues were loaded into memory:

localhost*CLI> queue show
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 No Members
 No Callers

sales has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 No Members
 No Callers

Now that you’ve created the queues, you need to configure your dialplan to allow calls
to enter the queue.

Add the following dialplan logic to the extensions.conf file:

[Queues]
exten => 7001,1,Verbose(2,${CALLERID(all)} entering the support queue)
same => n,Queue(support)
same => n,Hangup()

exten => 7002,1,Verbose(2,${CALLERID(all)} entering the sales queue)
same => n,Queue(sales)
same => n,Hangup()

[LocalSets]
include => Queues ; allow phones to call queues

We’ve included the Queues context in the LocalSets context so that our telephones can
call the queues we’ve set up. In Chapter 15, we’ll define menu items that go to these
queues. Save the changes to your extensidons.conf file, and reload the dialplan with the
dialplan reload CLI command.

If you dial extension 7001 or 7002 at this point, you will end up with output like the
following:

 -- Executing [7001@LocalSets:1] Verbose("SIP/0000FFFF0003-00000001",
 "2,"Leif Madsen" <100> entering the support queue") in new stack
== "Leif Madsen" <1--> entering the support queue
 -- Executing [7001@LocalSets:2] Queue("SIP/0000FFFF0003-00000001",
 "support") in new stack
 [2011-02-14 08:59:39] WARNING[13981]: app_queue.c:5738 queue_exec:
 Unable to join queue 'support'
 -- Executing [7001@LocalSets:3]
 Hangup("SIP/0000FFFF0003-00000001", "") in new stack
 == Spawn extension (LocalSets, 7001, 3) exited non-zero on
 'SIP/0000FFFF0003-00000001'

Creating a Simple ACD Queue | 265

You don’t join the queue at this point, as there are no agents in the queue to answer
calls. Because we have joinempty=no and leavewhenempty=yes configured in
queues.conf, callers will not be placed into the queue. (This would be a good opportu-
nity to experiment with the joinempty and leavewhenempty options in queues.conf to
better understand their impact on queues.)

In the next section, we’ll demonstrate how to add members to your queue (as well as
other member interactions with the queue, such as pause/unpause).

Queue Members
Queues aren’t very useful without someone to answer the calls that come into them,
so we need a method for allowing agents to be logged into the queues to answer calls.
There are various ways of going about this, and we’ll show you how to add members
to the queue both manually (as an administrator) and dynamically (as the agent). We’ll
start with the Asterisk CLI method, which allows you to easily add members to the
queue for testing and minimal dialplan changes. We’ll then expand upon that, showing
you how to add dialplan logic allowing agents to log themselves into and out of the
queues and to pause and unpause themselves in queues they are logged into.

Controlling Queue Members via the CLI
We can add queue members to any available queue through the Asterisk CLI command
queue add. The format of the queue add command is (all on one line):

*CLI> queue add member <channel> to <queue> [[[penalty <penalty>] as
<membername>] state_interface <interface>]

The <channel> is the channel we want to add to the queue, such as SIP/
0000FFFF0003, and the <queue> name will be something like support or sales—any
queue name that exists in /etc/asterisk/queues.conf. For now we’ll ignore the
<penalty> option, but we’ll discuss it in “Advanced Queues” on page 283 (penalty is
used to control the rank of a member within a queue, which can be important for agents
who are logged into multiple queues). We can define the <membername> to provide
details to the queue-logging engine. The state_interface option is something that we
should delve a bit more into at this junction. Because it is so important for all aspects
of queues and their members in Asterisk, we’ve written a little section about it, so go
ahead and read “An Introduction to Device State” on page 273. Once you’ve set that
up, come back here and continue on. Don’t worry, we’ll wait.

Now that you’ve added callcounter=yes to sip.conf (we’ll be using SIP channels
throughout the rest of our examples), let’s see how to add members to our queues from
the Asterisk CLI.

266 | Chapter 13: Automatic Call Distribution (ACD) Queues

Adding a queue member to the support queue can be done with the queue add mem-
ber command:

*CLI> queue add member SIP/0000FFFF0001 to support
Added interface 'SIP/0000FFFF0001' to queue 'support'

A query of the queue will verify that our new member has been added:

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 Members:
 SIP/0000FFFF0001 (dynamic) (Not in use) has taken no calls yet
 No Callers

To remove a queue member, you would use the queue remove member command:

*CLI> queue remove member SIP/0000FFFF0001 from support
Removed interface 'SIP/0000FFFF0001' from queue 'support'

Of course, you can use the queue show command again to verify that your member has
been removed from the queue.

We can also pause and unpause members in a queue from the Asterisk console, with
the queue pause member and queue unpause member commands. They take a similar
format to the previous commands we’ve been using:

*CLI> queue pause member SIP/0000FFFF0001 queue support reason DoingCallbacks
paused interface 'SIP/0000FFFF0001' in queue 'support' for reason 'DoingCallBacks'

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 Members:
 SIP/0000FFFF0001 (dynamic) (paused) (Not in use) has taken no calls yet
 No Callers

By adding a reason for pausing the queue member, such as lunchtime, you ensure that
your queue logs will contain some additional information that may be useful. Here’s
how to unpause the member:

*CLI> queue unpause member SIP/0000FFFF0001 queue support reason off-break
unpaused interface 'SIP/0000FFFF0001' in queue 'support' for reason 'off-break'

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 Members:
 SIP/0000FFFF0001 (dynamic) (Not in use) has taken no calls yet
 No Callers

In a production environment, the CLI would not normally be the best way to control
the state of agents in a queue. Instead, there are dialplan applications that allow agents
to inform the queue as to their availability.

Queue Members | 267

Controlling Queue Members with Dialplan Logic
In a call center staffed by live agents, it is most common to have the agents themselves
log in and log out at the start and end of their shifts (or whenever they go for lunch, or
to the bathroom, or are otherwise not available to the queue).

To enable this, we will make use of the following dialplan applications:

• AddQueueMember()

• RemoveQueueMember()

While logged into a queue, it may be that an agent needs to put herself into a state
where she is temporarily unavailable to take calls. The following applications will allow
this:

• PauseQueueMember()

• UnpauseQueueMember()

It may be easier to think of these applications in the following manner: the add and
remove applications are used to log in and log out, and the pause/unpause pair are used
for short periods of agent unavailability. The difference is simply that pause/unpause
set the member as unavailable/available without actually removing them from the
queue. This is mostly useful for reporting purposes (if a member is paused, the queue
supervisor can see that she is logged into the queue, but simply not available to take
calls at that moment). If you’re not sure which one to use, we recommend that the
agents use add/remove whenever they are not going to be available to take calls.

Using Pause and Unpause
The use of pause and unpause is a matter of preference. In some environments, these
options may be used for all activities during the day that render an agent unavailable
(such as during the lunch hour and when performing work that is not queue-related).
In most call centers, however, if an agent is not beside his phone and ready to take a
call at that moment, he should not be logged in at all, even if he is only going to be away
from his desk for a few minutes (such as for a bathroom break).

Some supervisors like to use the add/remove and pause/unpause settings as a sort of
punch clock, so that they can track when their staff arrive for work and leave at the end
of the day, and how long they spend at their desks and on breaks. We do not feel this
is a sound practice, as the purpose of these applications is to inform the queue as to
agent availability, not to enable tracking of employees’ activities.

An important thing to note here relates to the joinempty setting in queues.conf, which
was discussed earlier. If an agent is paused, he is considered as logged into the queue.
Let’s say it is near the end of the day, and one agent put himself into pause a few hours
earlier to work on a project. All the other agents have logged out and gone home. A call
comes in. The queue will note that an agent is logged into the queue, and will therefore
queue the call, even though the reality is that there are no people actually staffing that
queue at that time. This caller may end up holding in an unstaffed queue indefinitely.

268 | Chapter 13: Automatic Call Distribution (ACD) Queues

In short, agents who are not sitting at their desks and planning to be available to take
calls in the next few minutes should log out. Pause/unpause should only be used for
brief moments of unavailability (if at all). If you want to use your phone system as a
punch clock, there are lots of great ways to do that in Asterisk, but the queue member
applications are not the way we would recommend.

Let’s build some simple dialplan logic that will allow our agents to indicate their avail-
ability to the queue. We are going to use the CUT() dialplan function to extract the name
of our channel from our call to the system, so that the queue will know which channel
to log into the queue.

We have built this dialplan to show a simple process for logging into and out of a queue,
and changing the paused status of a member in a queue. We are doing this only for a
single queue that we previously defined in the queues.conf file. The status channel var-
iables that the AddQueueMember(), RemoveQueueMember(), PauseQueueMember(), and
UnpauseQueueMember() applications set might be used to Playback() announcements to
the queue members after they’ve performed certain functions to let them know whether
they have successfully logged in/out or paused/unpaused):

[QueueMemberFunctions]

exten => *54,1,Verbose(2,Logging In Queue Member)
 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(peername)})
 same => n,AddQueueMember(support,${MemberChannel})

; ${AQMSTATUS}
; ADDED
; MEMBERALREADY
; NOSUCHQUEUE

exten => *56,1,Verbose(2,Logging Out Queue Member)
 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(peername)})
 same => n,RemoveQueueMember(support,${MemberChannel})

; ${RQMSTATUS}:
; REMOVED
; NOTINQUEUE
; NOSUCHQUEUE

exten => *72,1,Verbose(2,Pause Queue Member)
 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(peername)})
 same => n,PauseQueueMember(support,${MemberChannel})

; ${PQMSTATUS}:
; PAUSED
; NOTFOUND

exten => *87,1,Verbose(2,Unpause Queue Member)
 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(peername)})
 same => n,UnpauseQueueMember(support,${MemberChannel})

Queue Members | 269

; ${UPQMSTATUS}:
; UNPAUSED
; NOTFOUND

Automatically Logging Into and Out of Multiple Queues
It is quite common for an agent to be a member of more than one queue. Rather than
having a separate extension for logging into each queue (or demanding information
from the agents about which queues they want to log into), this code uses the Asterisk
database (astdb) to store queue membership information for each agent, and then loops
through each queue the agents are a member of, logging them into each one in turn.

In order to for this code to work, an entry similar to the following will need to be added
to the AstDB via the Asterisk CLI. For example, the following would store the member
0000FFFF0001 as being in both the support and sales queues:

*CLI> database put queue_agent 0000FFFF0001/available_queues support^sales

You will need to do this once for each agent, regardless of how many queues they are
members of.

If you then query the Asterisk database, you should get a result similar to the following:

pbx*CLI> database show queue_agent
/queue_agent/0000FFFF0001/available_queues : support^sales

The following dialplan code is an example of how to allow this queue member to be
automatically added to both the support and sales queues. We’ve defined a subroutine
that is used to set up three channel variables (MemberChannel, MemberChanType,
AvailableQueues). These channel variables are then used by the login (*54), logout
(*56), pause (*72), and unpause (*87) extensions. Each of the extensions uses the
subSetupAvailableQueues subroutine to set these channel variables and to verify that
the AstDB contains a list of one or more queues for the device the queue member is
calling from:

[subSetupAvailableQueues]
;
; This subroutine is used by the various login/logout/pausing/unpausing routines
; in the [ACD] context. The purpose of the subroutine is centralize the retrieval
; of information easier.
;
exten => start,1,Verbose(2,Checking for available queues)

; Get the current channel's peer name (0000FFFF0001)
 same => n,Set(MemberChannel=${CHANNEL(peername)})

; Get the current channel's technology type (SIP, IAX, etc)
 same => n,Set(MemberChanType=${CHANNEL(channeltype)})

; Get the list of queues available for this agent
 same => n,Set(AvailableQueues=${DB(queue_agent/${MemberChannel}/
 available_queues)})
; *** This should all be on a single line

270 | Chapter 13: Automatic Call Distribution (ACD) Queues

; if there are no queues assigned to this agent we'll handle it in the
; no_queues_available extension
 same => n,GotoIf($[${ISNULL(${AvailableQueues})}]?no_queues_available,1)

 same => n,Return()

exten => no_queues_available,1,Verbose(2,No queues available for agent
 ${MemberChannel})
; *** This should all be on a single line

; playback a message stating the channel has not yet been assigned
 same => n,Playback(silence/1&channel¬-yet-assigned)
 same => n,Hangup()

[ACD]
;
; Used for logging agents into all configured queues per the AstDB
;
;
; Logging into multiple queues via the AstDB system
exten => *54,1,Verbose(2,Logging into multiple queues per the database values)

; get the available queues for this channel
 same => n,GoSub(subSetupAvailableQueues,start,1())
 same => n,Set(QueueCounter=1) ; setup a counter variable

; using CUT(), get the first listed queue returned from the AstDB
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})

; While the WorkingQueue channel variable contains a value, loop
 same => n,While($[${EXISTS(${WorkingQueue})}])

; AddQueueMember(queuename[,interface[,penalty[,options[,membername
; [,stateinterface]]]]])
; Add the channel to a queue, setting the interface for calling
; and the interface for monitoring of device state
;
; *** This should all be on a single line
 same => n,AddQueueMember(${WorkingQueue},${MemberChanType}/
${MemberChannel},,,${MemberChanType}/${MemberChannel})

 same => n,Set(QueueCounter=$[${QueueCounter} + 1]) ; increase our counter

; get the next available queue; if it is null our loop will end
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})

 same => n,EndWhile()

; let the agent know they were logged in okay
 same => n,Playback(silence/1&agent-loginok)
 same => n,Hangup()

exten => no_queues_available,1,Verbose(2,No queues available for ${MemberChannel})

Queue Members | 271

 same => n,Playback(silence/1&channel¬-yet-assigned)
 same => n,Hangup()

; -------------------------

; Used for logging agents out of all configured queues per the AstDB
exten => *56,1,Verbose(2,Logging out of multiple queues)

; Because we reused some code, we've placed the duplicate code into a subroutine
 same => n,GoSub(subSetupAvailableQueues,start,1())
 same => n,Set(QueueCounter=1)
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})
 same => n,While($[${EXISTS(${WorkingQueue})}])
 same => n,RemoveQueueMember(${WorkingQueue},${MemberChanType}/${MemberChannel})
 same => n,Set(QueueCounter=$[${QueueCounter} + 1])
 same => n,Set(WorkingQueue=${CUT(AvailableQueues,^,${QueueCounter})})
 same => n,EndWhile()
 same => n,Playback(silence/1&agent-loggedoff)
 same => n,Hangup()

; -------------------------

; Used for pausing agents in all available queues
exten => *72,1,Verbose(2,Pausing member in all queues)
 same => n,GoSub(subSetupAvailableQueues,start,1())

 ; if we don't define a queue, the member is paused in all queues
 same => n,PauseQueueMember(,${MemberChanType}/${MemberChannel})
 same => n,GotoIf($[${PQMSTATUS} = PAUSED]?agent_paused,1:agent_not_found,1)

exten => agent_paused,1,Verbose(2,Agent paused successfully)
 same => n,Playback(silence/1&unavailable)
 same => n,Hangup()

; -------------------------

; Used for unpausing agents in all available queues
exten => *87,1,Verbose(2,UnPausing member in all queues)
 same => n,GoSub(subSetupAvailableQueues,start,1())

 ; if we don't define a queue, then the member is unpaused from all queues
 same => n,UnPauseQueueMember(,${MemberChanType}/${MemberChannel})
 same => n,GotoIf($[${PQMSTATUS} = PAUSED]?agent_unpaused,1:agent_not_found,1)

exten => agent_unpaused,1,Verbose(2,Agent paused successfully)
 same => n,Playback(silence/1&available)
 same => n,Hangup()

; -------------------------

; Used by both pausing and unpausing dialplan functionality
exten => agent_not_found,1,Verbose(2,Agent was not found)
 same => n,Playback(silence/1&cannot-complete-as-dialed)

272 | Chapter 13: Automatic Call Distribution (ACD) Queues

You could further refine these login and logout routines to take into account that the
AQMSTATUS and RQMSTATUS channel variables are set each time AddQueueMember() and
RemoveQueueMember() are used. For example, you could set a flag that lets the queue
member know he has not been added to a queue by setting a flag, or even add recordings
or text-to-speech systems to play back the particular queue that is producing the prob-
lem. Or, if you’re monitoring this via the Asterisk Manager Interface, you could have
a screen pop, or use JabberSend() to inform the queue member via instant messaging.
(Sorry, sometimes our brains run away with us.)

An Introduction to Device State
Device states in Asterisk are used to inform various applications as to whether your
device is currently in use or not. This is especially important for queues, as we don’t
want to send callers to an agent who is already on the phone. Device states are controlled
by the channel module, and in Asterisk only chan_sip has the appropriate handling.
When the queue asks for the state of a device, it first queries the channel driver (e.g.,
chan_sip). If the channel cannot provide the device state directly (as is the case with
chan_iax2), it asks the Asterisk core to determine it, which it does by searching through
channels currently in progress.

Unfortunately, simply asking the core to search through active channels isn’t accurate,
so getting device state from channels other than chan_sip is less reliable when working
with queues. We’ll explore some methods of controlling calls to other channel types
in “Advanced Queues” on page 283, but for now we’ll focus on SIP channels, which
do not have complex device state requirements. For more information about device
states, see Chapter 14.

In order to correctly determine the state of a device in Asterisk, we need to enable call
counters in sip.conf. By enabling call counters, we’re telling Asterisk to track the active
calls for a device so that this information can be reported back to the channel module
and the state can be accurately reflected in our queues. First, let’s see what happens to
our queue without the callcounter option:

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 Members:
 SIP/0000FFFF0001 (dynamic) (Not in use) has taken no calls yet
 No Callers

Now suppose we have an extension in our dialplan, 555, that calls MusicOnHold(). If we
dial that extension without having enabled call counters, a query of the support queue
(of which SIP/0000FFFF0001 is a member) from the Asterisk CLI will show something
similar to the following:

 -- Executing [555@LocalSets:1] MusicOnHold("SIP/0000FFFF0001-00000000",
 "") in new stack
 -- Started music on hold, class 'default', on SIP/0000FFFF0001-00000000

Queue Members | 273

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 Members:
 SIP/0000FFFF0001 (dynamic) (Not in use) has taken no calls yet
 No Callers

Notice that even though our phone should be marked as In Use because it is on a call,
it does not show up that way when we look at the queue status. This is obviously a
problem since the queue will consider this device as available, even though it is already
on a call.

To correct this problem, we need to add callcounter=yes to the [general] section of
our sip.conf file. We can also specifically configure this for any peer (since it is a peer-
level configuration option); however, this is really something you’ll want to set for all
peers that might ever be part of a queue, so it’s normally going to be best to put this
option in the [general] section (it could also be assigned to a template that would be
used with all peers in the queue).

Edit your sip.conf file so it looks similar to the following:

[general]
context=unauthenticated ; default context for incoming calls
allowguest=no ; disable unauthenticated calls
srvlookup=yes ; enabled DNS SRV record lookup on outbound calls
udpbindaddr=0.0.0.0 ; listen for UDP request on all interfaces
tcpenable=no ; disable TCP support
callcounter=yes ; enable device states for SIP devices

Then reload the chan_sip module and perform the same test again:

*CLI> sip reload
 Reloading SIP
 == Parsing '/etc/asterisk/sip.conf': == Found

The device should now show In use when a call is in progress from that device:

 == Parsing '/etc/asterisk/sip.conf': == Found
 == Using SIP RTP CoS mark 5
 -- Executing [555@LocalSets:1] MusicOnHold("SIP/0000FFFF0001-00000001",
 "") in new stack
 -- Started music on hold, class 'default', on SIP/0000FFFF0001-00000001

*CLI> queue show support
support has 0 calls (max unlimited) in 'rrmemory' strategy
(0s holdtime, 0s talktime), W:0, C:0, A:0, SL:0.0% within 0s
 Members:
 SIP/0000FFFF0001 (dynamic) (In use) has taken no calls yet
 No Callers

In short, Queue() needs to know the state of a device in order to properly manage call
distribution. The callcounter option in sip.conf is an essential component of a properly
functioning queue.

274 | Chapter 13: Automatic Call Distribution (ACD) Queues

The queues.conf File
We’ve mentioned the queues.conf file already, but there are many options in this file,
and we figured it would be right and proper for us to go over some of them with you.

Table 13-1 contains the options available in the [general] section of queues.conf.

Table 13-1. Available options for [general] section of queues.conf

Options Available values Description

persistentmembers yes, no Set this to yes to store dynamically added members to queues in the
AstDB so that they can be re-added upon Asterisk restart.

autofill yes, no With autofill disabled, the queue application will attempt to deliver
calls to agents in a serial manner. This means only one call is attempted
to be distributed to agents at a time. Additional callers are not distributed
to agents until that caller is connected to an agent. With autofill
enabled, callers are distributed to available agents simultaneously.

monitor-type MixMonitor,
<unspecified>

If you specify the value MixMonitor the MixMonitor() application
will be used for recording calls within the queue. If you do not specify a
value or comment the option out, the Monitor() application will be
used instead.

updatecdr yes, no Set this to yes to populate the dstchannel field of the CDR records
with the name of a dynamically added member on answer. The value is
set with the AddQueueMember() application. This option is used to
mimic the behavior of chan_agent channels.

shared_lastcall yes, no This value is used for members logged into more than one queue to have
their last call be the same across all queues, in order for the queues to
respect the wrap up time of other queues.

Table 13-2 describes the options available for configuring queue contexts.

Table 13-2. Available options for defined queues in queues.conf

Options Available values Description

musicclass Music class as de-
fined by musicon-
hold.conf

Sets the music class to be used by a particular queue. You
can also override this value with the
CHANNEL(musicclass) channel variable.

announce Filename of the an-
nouncement

Used for playing an announcement to the agent that an-
swered the call, typically to let him know what queue the
caller is coming from. Useful when the agent is in multiple
queues, especially when set to auto-answer the queue.

strategy ringall,
leastrecent,
fewestcalls,
random, rrme
mory, linear,
wrandom

• ringall: rings all available callers (default)

• leastrecent: rings the interface that least
recently received a call

• fewestcalls: rings the interface that has
completed the fewest calls in this queue

The queues.conf File | 275

Options Available values Description
• random: rings a random interface

• rrmemory: rings members in a round-robin fashion,
remembering where we left off last for the next caller

• linear: rings members in the order specified,
always starting at the beginning of the list

• wrandom: rings a random member, but uses the
members’ penalties as a weight.

servicelevel Value in seconds Used in statistics to determine the service level of the queue
(calls answered within the service level time frame).

context Dialplan context Allows a caller to exit the queue by pressing a single DTMF
digit. If a context is specified and the caller enters a number,
that digit will attempt to be matched in the context speci-
fied, and dialplan execution will continue there.

penaltymemberslimit Value of 0 or greater Used to disregard penalty values if the number of members
in the queue is lower than the value specified.

timeout Value in seconds Specifies the number of seconds to ring a member’s device.
Also see timeoutpriority.

retry Value in seconds Specifies the number of seconds to wait before attempting
the next member in the queue if the timeout value is
exhausted while attempting to ring a member of the queue.

timeoutpriority app, conf Used to control the priority of the two possible timeout
options specified for a queue. The Queue() application has
a timeout value that can be specified to control the absolute
time a caller can be in the queue. The timeout value in
queues.conf controls the amount of time (along with
retry) to ring a member for. Sometime these values con-
flict, so you can control which value takes precedence. The
default is app, as this is the way it works in previous versions.

weight Value of 0 or higher Defines the weight of a queue. A queue with a higher weight
defined will get first priority when members are associated
with multiple queues.

wrapuptime Value in seconds The number of seconds to keep a member unavailable in a
queue after completing a call.

autofill yes, no Same as defined in the [general] section. This value can
be defined per queue.

autopause yes, no, all Enables/disables the automatic pausing of members who
fail to answer a call. A value of all causes this member to
be paused in all queues she is a member of.

maxlen Value of 0 or higher Specifies the maximum number of callers allowed to be
waiting in a queue. A value of zero means an unlimited
number of callers are allowed in the queue.

276 | Chapter 13: Automatic Call Distribution (ACD) Queues

Options Available values Description

setinterfacevar yes, no If set to yes, the following channel variables will be set just
prior to connecting the caller with the queue member:

• MEMBERINTERFACE: the member’s interface, such
as Agent/1234

• MEMBERNAME: the name of the member

• MEMBERCALLS: the number of calls the interface
has taken

• MEMBERLASTCALL: the last time the member took
a call

• MEMBERPENALTY: the penalty value of the
member

• MEMBERDYNAMIC: indicates whether the member
was dynamically added to the queue or not

• MEMBERREALTIME: indicates whether the member
is included from real time or not

setqueueentryvar yes, no If set to yes, the following channel variables will be set just
prior to the call being bridged:

• QEHOLDTIME: the amount of time the caller was
held in the queue

• QEORIGINALPOS: the position the caller originally
entered the queue at

setqueuevar yes, no If set to yes, the following channel variables will be set just
prior to the call being bridged:

• QUEUENAME: the name of the queue

• QUEUEMAX: the maximum number of calls allowed
in this queue

• QUEUESTRATEGY: the strategy method defined for
the queue

• QUEUECALLS: the number of calls currently in the
queue

• QUEUEHOLDTIME: the current average hold time of
callers in the queue

• QUEUECOMPLETED: the number of completed calls
in this queue

• QUEUEABANDONED: the number of abandoned calls

• QUEUESRVLEVEL: the queue service level

• QUEUESRVLEVELPERF: the queue’s service level
performance

The queues.conf File | 277

Options Available values Description

membermacro Name of a macro de-
fined in the
dialplan

Defines a macro to be executed just prior to bridging the
caller and the queue member.

announce-frequency Value in seconds Defines how often we should announce the caller’s position
and/or estimated hold time in the queue. Set this value to
zero to disable.

min-announce-frequency Value in seconds Specifies the minimum amount of time that must pass be-
fore we announce the caller’s position in the queue again.
This is used when the caller’s position may change fre-
quently, to prevent the caller hearing multiple updates in
a short period of time.

periodic-announce-frequency Value in seconds Indicates how often we should make periodic announce-
ments to the caller.

random-periodic-announce yes, no If set to yes, will play the defined periodic announcements
in a random order. See periodic-announce.

relative-periodic-announce yes, no If set to yes, the periodic-announce-frequency
timer will start from when the end of the file being played
back is reached, instead of from the beginning. Defaults to
no.

announce-holdtime yes, no, once Defines whether the estimated hold time should be played
along with the periodic announcements. Can be set to yes,
no, or only once.

announce-position yes, no, limit,
more

Defines whether the caller’s position in the queue should
be announced to her. If set to no, the position will never be
announced. If set to yes, the caller’s position will always
be announced. If the value is set to limit, the caller will
hear her position in the queue only if it is within the limit
defined by announce-position-limit. If the value
is set to more, the caller will hear her position if it is beyond
the number defined by announce-position-limit.

announce-position-limit Number of zero or
greater

Used if you’ve defined announce-position as either
limit or more.

announce-round-seconds Value in seconds If this value is nonzero, we’ll announce the number of sec-
onds as well, and round them to the value defined.

queue-thankyou Filename of prompt
to play

If not defined, will play the default value (“Thank you for
your patience”). If set to an empty value, the prompt will
not be played at all.

queue-youarenext Filename of prompt
to play

If not defined, will play the default value (“You are now first
in line”). If set to an empty value, the prompt will not be
played at all.

queue-thereare Filename of prompt
to play

If not defined, will play the default value (“There are”). If
set to an empty value, the prompt will not be played at all.

278 | Chapter 13: Automatic Call Distribution (ACD) Queues

Options Available values Description

queue-callswaiting Filename of prompt
to play

If not defined, will play the default value (“calls waiting”).
If set to an empty value, the prompt will not be played at all.

queue-holdtime Filename of prompt
to play

If not defined, will play the default value (“The current es-
timated hold time is”). If set to an empty value, the prompt
will not be played at all.

queue-minutes Filename of prompt
to play

If not defined, will play the default value (“minutes”). If set
to an empty value, the prompt will not be played at all.

queue-seconds Filename of prompt
to play

If not defined, will play the default value (“seconds”). If set
to an empty value, the prompt will not be played at all.

queue-reporthold Filename of prompt
to play

If not defined, will play the default value (“Hold time”). If
set to an empty value, the prompt will not be played at all.

periodic-announce A set of periodic an-
nouncements to be
played, separated
by commas

Prompts are played in the order they are defined. Defaults
to queue-periodic-announce (“All representatives
are currently busy assisting other callers. Please wait for the
next available representative”).

monitor-format gsm, wav, wav49,
<any valid
file format>

Specifies the file format to use when recording. If
monitor-format is commented out, calls will not be
recorded.

monitor-type MixMonitor,
<unspeci
fied>

Same as monitor-type as defined in the [general]
section, but on a per-queue basis.

joinempty paused, pen
alty, inuse,
ringing,
unavailable,
invalid,
unknown,
wrapup

Controls whether a caller is added to the queue when no
members are available. Comma-separated options can be
included to define how this option determines whether
members are available. The definitions for the values are:

• paused: members are considered unavailable if
they are paused.

• penalty: members are considered unavailable if
their penalties are less than
QUEUE_MAX_PENALTY.

• inuse: members are considered unavailable if their
device status is In Use.

• ringing: members are considered unavailable if
their device status is Ringing.

• unavailable: applies primarily to agent channels;
if the agent is not logged in but is a member of the
queue, it is considered unavailable.

• invalid: members are considered unavailable if
their device status is Invalid. This is typically an
error condition.

• unknown: members are considered unavailable if
device status is unknown.

The queues.conf File | 279

Options Available values Description
• wrapup: members are considered unavailable if

they are currently in the wrapup time after the com-
pletion of a call.

leavewhenempty paused, pen
alty, inuse,
ringing,
unavailable,
invalid,
unknown,
wrapup

Used to control whether callers are kicked out of the queue
when members are no longer available to take calls. See
joinempty for more information on the assignable
values.

eventwhencalled yes, no, vars If set to yes, the following manager events will be sent to
the Asterisk Manager Interface (AMI):

• AgentCalled

• AgentDump

• AgentConnect

• AgentComplete

If set to vars, all channel variables associated with the
agent will also be sent to the AMI.

eventmemberstatus yes, no If set to yes, the QueueMemberStatus event will be
sent to AMI. Note that this may generate a lot of manager
events.

reportholdtime yes, no Enables reporting of the caller’s hold time to the queue
member prior to bridging.

ringinuse yes, no Used to avoid sending calls to members whose status is In
Use. Recall from our discussion in the preceding section
that only the SIP channel driver is currently able to accurately
report this status.

memberdelay Value in seconds Used if you want there to be a delay prior to the caller and
queue member being connected to each other.

timeoutrestart yes, no If set to yes, resets the timeout for an agent to answer if
either a BUSY or CONGESTION status is received from the
channel. This can be useful if the agent is allowed to reject
or cancel a call.

defaultrule Rule as defined in
queuerules.conf

Associates a queue rule as defined in queuerules.conf to this
queue, which is used to dynamically change the minimum
and maximum penalties, which are then used to select an
available agent. See “Changing Penalties Dynamically
(queuerules.conf)” on page 285.

member Device Used to define static members in a queue. To define a static
member, you supply its Technology/Device_ID (e.g.,
Agent/1234, SIP/0000FFFF0001, DAHDI/
g0/14165551212).

280 | Chapter 13: Automatic Call Distribution (ACD) Queues

The agents.conf File
If you’ve browsed through the samples in the ~/src/asterisk-complete/1.8/configs/ di-
rectory, you may have noticed the agents.conf file. It may seem tempting, and it has its
places, but overall the best way to implement queues is through the use of SIP channels.
There are two reasons for this. The first is that SIP channels are the only type that
provide true device state information. The other reason is that agents are always logged
in when using the agent channel, and if you’re using remote agents, the bandwidth
requirements may be greater than you wish. However, in busy call centers it may be
desirable to force agents to answer calls immediately rather than having them press the
answer button on the phone.

The agents.conf file is use to define agents for queues using the agents channel. This
channel is similar in nature to the other channel types in Asterisk (local, SIP, IAX2,
etc.), but it is more of a pseudo-channel in that it is used to connect callers to agents
who have logged into the system using other types of transport channel. For example,
suppose we use our SIP-enabled phone to log in to Asterisk using the AgentLogin()
dialplan application. Once we’re logged in, the channel remains online the entire time
it is available (logged on), and calls are then passed to it through the agent channel.

Let’s take a look at the various options available to us in the agents.conf file to get a
better idea of what it provides us. Table 13-3 shows the single option available in the
[general] section of agents.conf. Table 13-4 shows the available options under the
[agents] header.

Table 13-3. Options available under the [general] header in agents.conf

Options Available values Description

multiplelogin yes, no If set to yes, a single line on a device can log in as multiple agents. Defaults to yes.

Table 13-4. Options available under the [agents] header in agents.conf

Options Available values Description

maxloginretries Integer value Specifies the maximum number of tries an agent has to log in before the
system considers it a failed attempt and ends the call. Defaults to 3.

autologoff Value in seconds Specifies the number of seconds for which an agent’s device should ring
before the agent is automatically logged off.

autologoffunavail yes, no If set to yes, the agent is automatically logged off when the device being
called returns a status of CHANUNAVAIL.

ackcall yes, no If set to yes, the agent must enter a single DTMF digit to accept the call.
To be used in conjunction with acceptdtmf. Defaults to no.

acceptdtmf Single DTMF
character

Used in conjunction with ackcall, this option defines the DTMF char-
acter to be used to accept a call. Defaults to #.

endcall yes, no If set to yes, allows an agent to end a call with a single DTMF digit. To
be used in conjunction with enddtmf. Defaults to yes.

The agents.conf File | 281

Options Available values Description

enddtmf Single DTMF
character

Used in conjunction with endcall, this option defines the DTMF char-
acter to be used to end a call. Defaults to *.

wrapuptime Value in milliseconds Specifies the amount of time after disconnection of a caller from an agent
for which the agent will not be available to accept another call. Used in
situations where agents must perform a function after each call (such as
entering call details into a log).

musiconhold Music class as defined
in musiconhold.conf

Defines the default music class agents listen to when logged in.

goodbye Name of file (relative
to /var/lib/asterisk/
sounds/<lang>/)

Defines the default goodbye sound played to agents. Defaults to vm-
goodbye.

updatecdr yes, no Used in call detail records to change the source channel field to the agent/
agent_id.

group Integer value Allows you to define groups for sets of agents. The use of agent groups is
essentially deprecated functionality that we do not recommend you use. If
you define group1, you can use Agent/@1 in queues.conf to call that
group of agents. The call will be connected arbitrarily to one of those
agents. If no agents are available, it will return back to the queue like any
other unanswered call. If you use Agent/:1, it will wait for a member
of the group to become available. The use of strategies has no effect on
agent groups. Do not use these.

recordagentcalls yes, no Enables/disables the recording of agent calls. Disabled by default.

recordformat File format (gsm,
wav, etc.)

Defines the format to be used when recording agent calls. Default is wav.

urlprefix String (URL) Accepts a string as its argument. The string can be formed as a URL and
is appended to the start of the text to be added to the name of the recording.

savecallsin Filesystem path
(e.g., /var/calls/)

Accepts a filesystem path as its argument. Allows you to override the
default path of /var/spool/asterisk/monitor/ with one of your choosing.a

custom_beep Name of file (relative
to /var/lib/asterisk/
sounds/<lang>/)

Accepts a filename as its argument. Can be used to define a custom
notification tone to signal to an always-connected agent that there is an
incoming call.

agent Agent definition (see
description)

Defines an agent for use by Queue() and AgentLogin(). These are
agents that will log in and stay connected to the system, waiting for calls
to be delivered by the Queue() dialplan application. Agents are defined
like so:

agent => agent_id,agent_password,name

An example of a defined agent would be:
agent => 1000,1234,Danielle Roberts

a Since the storage of calls will require a large amount of hard drive space, you will want to define a strategy to handle storing and managing
these recordings. This location should probably reside on a separate volume, one with very high performance characteristics.

282 | Chapter 13: Automatic Call Distribution (ACD) Queues

Advanced Queues
In this section we’ll take a look at some of the finer-grained queue controls, such as
options for controlling announcements and when callers should be placed into (or
removed from) the queue. We’ll also look at penalties and priorities, exploring how we
can control the agents in our queue by giving preference to a pool of agents to answer
the call and increase that pool dynamically based on the wait times in the queue. Finally,
we’ll look at using Local channels as queue members, which gives us the ability to
perform dialplan functionality prior to connecting the caller to an agent.

Priority Queue (Queue Weighting)
Sometimes you need to add people to a queue at a higher priority than that given to
other callers. Perhaps the caller has already spent time waiting in a queue, and an agent
has taken some information but realized the caller needed to be transferred to another
queue. In this case, to minimize the caller’s overall wait time, it might be desirable to
transfer the call to a priority queue that has a higher weight (and thus a higher prefer-
ence), so it will be answered quickly.

Setting a higher priority on a queue is done with the weight option. If you have two
queues with differing weights (e.g., support and support-priority), agents assigned to
both queues will be passed calls from the higher-priority queue in preference to calls
from the lower-priority queue. Those agents will not take any calls from the lower-
priority queue until the higher-priority queue is cleared. (Normally, there will be some
agents who are assigned only to the lower-priority queue, to ensure that those calls are
dealt with in a timely manner.) For example, if we place queue member James Shaw
into both the support and support-priority queues, callers in the support-priority
queue will have a preferred standing with James over callers in the support queue.

Let’s take a look at how we could make this work. First, we need to create two queues
that are identical except for the weight option. We can use a template for this to ensure
that the two queues remain identical if anything should need to change in the future:

[support_template](!)
musicclass=default
strategy=rrmemory
joinempty=no
leavewhenempty=yes
ringinuse=no

[support](support_template)
weight=0

[support-priority](support_template)
weight=10

With our queues configured (and subsequently reloaded using module reload
app_queue.so from the Asterisk console), we can now create two extensions to transfer

Advanced Queues | 283

callers to. This can be done wherever you would normally place your dialplan logic to
perform transfers. We’re going to use the LocalSets context, which we’ve previously
enabled as the starting context for our devices:

[LocalSets]
include => Queue ; allow direct transfer of calls to queues

[Queues]
exten => 7000,1,Verbose(2,Entering the support queue)
 same => n,Queue(support) ; standard support queue available
 ; at extension 7000
 same => n,VoiceMail(7000@queues,u) ; if there are no members in the queue,
 ; we exit and send the caller to voicemail
 same => n,Hangup()

exten => 8000,1,Verbose(2,Entering the priority support queue)
 same => n,Queue(support-priority) ; priority queue available at
 ; extension 8000
 same => n,VoiceMail(7000@queues,u) ; if there are no members in the queue,
 ; we exit and send the caller to voicemail
 same => n,Hangup()

There you have it: two queues defined with different weights. We’ve configured our
standard queues to start at extension 7000, and our priority queues to start at 8000. We
can mirror this for several queues by simply matching between the 7XXX and 8XXX ranges.
So, for example, if we have our sales queue at extension 7004, our priority-sales queue
(for returning customers, perhaps?) could be placed in the mirrored queue at 8004,
which has a higher weight.

The only other configuration left to do is to make sure some or all of your queue mem-
bers are placed in both queues. If you have more callers in your 7XXXX queues, you may
want to have more queue members logged into that queue, with a percentage of your
queue members logged into both queues. Exactly how you wish to configure your
queues will depend on your local policy and circumstances.

Queue Member Priority
Within a queue, we can penalize members in order to lower their preference for being
called when there are people waiting in a particular queue. For example, we may pe-
nalize queue members when we want them to be a member of a queue, but to be used
only when the queue gets full enough that all our preferred agents are unavailable. This
means we can have three queues (say, support, sales, and billing), each containing
the same three queue members: James Shaw, Kay Madsen, and Danielle Roberts.

Suppose, however, that we want James Shaw to be the preferred contact in the
support queue, Kay Madsen preferred in sales, and Danielle Roberts preferred in
billing. By penalizing Kay Madsen and Danielle Roberts in support, we ensure that
James Shaw will be the preferred queue member called. Similarly, we can penalize James

284 | Chapter 13: Automatic Call Distribution (ACD) Queues

Shaw and Danielle Roberts in the sales queue so Kay Madsen is preferred, and penalize
James Shaw and Kay Madsen in the billing queue so Danielle Roberts is preferred.

Penalizing queue members can be done either in the queues.conf file, if you’re specifying
queue members statically, or through the AddQueueMember() dialplan application. Let’s
look at how our queues would be set up with static members in queues.conf. We’ll be
using the StandardQueue template we defined earlier in this chapter:

[support](StandardQueue)
member => SIP/0000FFFF0001,0,James Shaw ; preferred
member => SIP/0000FFFF0002,10,Kay Madsen ; second preferred
member => SIP/0000FFFF0003,20,Danielle Roberts ; least preferred

[sales](StandardQueue)
member => SIP/0000FFFF0002,0,Kay Madsen
member => SIP/0000FFFF0003,10,Danielle Roberts
member => SIP/0000FFFF0001,20,James Shaw

[billing](StandardQueue)
member => SIP/0000FFFF0003,0,Danielle Roberts
member => SIP/0000FFFF0001,10,James Shaw
member => SIP/0000FFFF0002,20,Kay Madsen

By defining different penalties for each member of the queue, we can help control the
preference for where callers are delivered, but still ensure that other queue members
will be available to answer calls if the preferred member is unavailable. Penalties can
also be defined using AddQueueMember(), as the following example demonstrates:

exten => *54,1,Verbose(2,Logging In Queue Member)
 same => n,Set(MemberChannel=${CHANNEL(channeltype)}/${CHANNEL(peername)})

; *CLI> database put queue support/0000FFFF0001/penalty 0
 same => n,Set(QueuePenalty=${DB(queue/support/${CHANNEL(peername)}/penalty)})

; *CLI> database put queue support/0000FFFF0001/membername "James Shaw"
 same => n,Set(MemberName=${DB(queue/support/${CHANNEL(peername)}/membername)})

; AddQueueMember(queuename[,interface[,penalty[,options[,membername
; [,stateinterface]]]]])
 same => n,AddQueueMember(support,${MemberChannel},${QueuePenalty},,${MemberName})

Using AddQueueMember(), we’ve shown how you could retrieve the penalty associated
with a given member name for a particular queue and assign that value to the member
when she logs into the queue. Some additional abstraction would need to be done to
make this work for multiple queues; for more information see “Automatically Logging
Into and Out of Multiple Queues” on page 270.

Changing Penalties Dynamically (queuerules.conf)
Using the queuerules.conf file, it is possible to specify rules to change the values of the
QUEUE_MIN_PENALTY and QUEUE_MAX_PENALTY channel variables. The QUEUE_MIN_PENALTY
and QUEUE_MAX_PENALTY channel variables are used to control which members of a queue

Advanced Queues | 285

are to be used for servicing callers. Let’s say we have a queue called support, and we
have five queue members with various penalties ranging from 1 through 5. If prior to a
caller entering the queue the QUEUE_MIN_PENALTY channel variable is set to a value of 2
and the QUEUE_MAX_PENALTY is set to a value of 4, only queue members whose penalties
are set to values ranging from 2 through 4 will be considered available to answer that
call:

[Queues]
exten => 7000,1,Verbose(2,Entering the support queue)
 same => n,Set(QUEUE_MIN_PENALTY=2) ; set minimum queue member penalty to be used
 same => n,Set(QUEUE_MAX_PENALTY=4) ; set maximum queue member penalty we'll use
 same => n,Queue(support) ; entering the queue with minimum and maximum
 ; member penalties to be used

What’s more, during the caller’s stay in the queue, we can dynamically change the
values of QUEUE_MIN_PENALTY and QUEUE_MAX_PENALTY for that caller. This allows either
more or a different set of queue members to be used, depending on how long the caller
waits in the queue. For instance, in the previous example, we could modify the mini-
mum penalty to 1 and the maximum penalty to 5 if the caller has to wait more than 60
seconds in the queue.

The rules are defined using the queuerules.conf file. Multiple rules can be created in
order to facilitate different penalty changes throughout the call. Let’s take a look at
how we’d define the changes described in the previous paragraph:

[more_members]
penaltychange => 60,5,1

If you make changes to the queuerules.conf file and reload
app_queue.so, the new rules will affect only new callers in the queue,
not existing callers.

We’ve defined the rule more_members in queuerules.conf and passed the following values
to penaltychange: 60 is the number of seconds to wait before changing the penalty
values, 5 is the new QUEUE_MAX_PENALTY, and 1 is the new QUEUE_MIN_PENALTY. With our
new rule defined, we must reload app_queue.so to make it available to us for use:

*CLI> module reload app_queue.so
 -- Reloading module 'app_queue.so' (True Call Queueing)
 == Parsing '/etc/asterisk/queuerules.conf': == Found

We can also verify our rules at the console with queue show rules:

*CLI> queue show rules
Rule: more_members
 After 60 seconds, adjust QUEUE_MAX_PENALTY to 5 and adjust QUEUE_MIN_PENALTY to 1

286 | Chapter 13: Automatic Call Distribution (ACD) Queues

With our rule now loaded into memory, we can modify our dialplan to make use of it.
Just modify the Queue() line to include the new rule, like so:

[Queues]
exten => 7000,1,Verbose(2,Entering the support queue)
 same => n,Set(QUEUE_MIN_PENALTY=2) ; set minimum queue member penalty
 same => n,Set(QUEUE_MAX_PENALTY=4) ; set maximum queue member penalty

; Queue(queuename[,options[,URL[,announceoverride[,timeout[,AGI[,macro
; [,gosub[,rule[,position]]]]]]]]])
 same => n,Queue(support,,,,,,,,more_members) ; entering queue with minimum and
 ; maximum member penalties

The queuerules.conf file is quite flexible. We can define our rule using relative instead
of absolute penalty values, and we can define multiple rules:

[more_members]
penaltychange => 30,+1
penaltychange => 45,,-1
penaltychange => 60,+1
penaltychange => 120,+2

Here, we’ve modified our more_members rule to use relative values. After 30 seconds, we
increase the maximum penalty by 1 (which would take us to 5 using our sample
dialplan). After 45 seconds, we decrease the minimum penalty by 1, and so on. We can
verify our new rule changes after a module reload app_queue.so at the Asterisk console:

*CLI> queue show rules
Rule: more_members
 After 30 seconds, adjust QUEUE_MAX_PENALTY by 1 and adjust QUEUE_MIN_PENALTY by 0
 After 45 seconds, adjust QUEUE_MAX_PENALTY by 0 and adjust QUEUE_MIN_PENALTY by -1
 After 60 seconds, adjust QUEUE_MAX_PENALTY by 1 and adjust QUEUE_MIN_PENALTY by 0
 After 120 seconds, adjust QUEUE_MAX_PENALTY by 2 and adjust QUEUE_MIN_PENALTY by 0

Announcement Control
Asterisk has the ability to play several announcements to callers waiting in the queue.
For example, you might want to announce the caller’s position in the queue, the average
wait time, or make periodic announcements thanking your callers for waiting (or what-
ever your audio files say). It’s important to tune the values that control when these
announcements are played to the callers, because announcing their position, thanking
them for waiting, and telling them the average hold time too often may annoy them,
causing them to either hang up or take it out on your agents.

There are several options in the queues.conf file that you can use to fine-tune what and
when announcements are played to your callers. The full list of queue options is avail-
able in “The queues.conf File” on page 275, but we’ll review the relevant ones here.

Table 13-5 lists the options you can use to control when announcements are played to
the caller.

Advanced Queues | 287

Table 13-5. Options related to prompt control timing within a queue

Options Available
values

Description

announce-frequency Value in
seconds

Defines how often we should announce the caller’s position and/
or estimated hold time in the queue. Set this value to zero to disable.

min-announce-frequency Value in
seconds

Indicates the minimum amount of time that must pass before we
announce the caller’s position in the queue again. This is used when
the caller’s position may change frequently, to prevent the caller
hearing multiple updates in a short period of time.

periodic-announce-
frequency

Value in
seconds

Specifies how often we should make periodic announcements to
the caller.

random-periodic-announce yes, no If set to yes, will play the defined periodic announcements in a
random order. See periodic-announce.

relative-periodic-announce yes, no If set to yes, the periodic-announce-frequency timer will
start from when the end of the file being played back is reached,
instead of from the beginning. Defaults to no.

announce-holdtime yes, no,
once

Defines whether the estimated hold time should be played along
with the periodic announcements. Can be set to yes, no, or only
once.

announce-position yes, no,
limit,
more

Defines whether the caller’s position in the queue should be an-
nounced to her. If set to no, the position will never be announced.
If set to yes, the caller’s position will always be announced. If the
value is set to limit, the caller will hear her position in the queue
only if it is within the limit defined by announce-position-
limit. If the value is set to more, the caller will hear her position
only if it is beyond the number defined by announce-posi
tion-limit.

announce-position-limit Number of
zero or
greater

Used if you’ve defined announce-position as either limit
or more.

announce-round-seconds Value in
seconds

If this value is nonzero, we’ll announce the number of seconds as
well, and round them to the value defined.

Table 13-6 shows what files will be used when announcements are played to the caller.

Table 13-6. Options for controlling the playback of prompts within a queue

Options Available values Description

musicclass Music class as defined by
musiconhold.conf

Sets the music class to be used by a particular queue. You can also
override this value with the CHANNEL(musicclass) channel
variable.

queue-thankyou Filename of prompt to
play

If not defined, will play the default value (“Thank you for your pa-
tience”). If set to an empty value, the prompt will not be played at all.

288 | Chapter 13: Automatic Call Distribution (ACD) Queues

Options Available values Description

queue-youarenext Filename of prompt to
play

If not defined, will play the default value (“You are now first in line”).
If set to an empty value, the prompt will not be played at all.

queue-thereare Filename of prompt to
play

If not defined, will play the default value (“There are”). If set to an
empty value, the prompt will not be played at all.

queue-callswaiting Filename of prompt to
play

If not defined, will play the default value (“calls waiting”). If set to
an empty value, the prompt will not be played at all.

queue-holdtime Filename of prompt to
play

If not defined, will play the default value (“The current estimated
hold time is”). If set to an empty value, the prompt will not be played
at all.

queue-minutes Filename of prompt to
play

If not defined, will play the default value (“minutes”). If set to an
empty value, the prompt will not be played at all.

queue-seconds Filename of prompt to
play

If not defined, will play the default value (“seconds”). If set to an
empty value, the prompt will not be played at all.

queue-reporthold Filename of prompt to
play

If not defined, will play the default value (“Hold time”). If set to an
empty value, the prompt will not be played at all.

periodic-announce A set of periodic an-
nouncements to be
played, separated by
commas

Prompts are played in the order they are defined. Defaults to
queue-periodic-announce (“All representatives are cur-
rently busy assisting other callers. Please wait for the next available
representative”).

If the number of options devoted to playing announcements to callers is any indication
of their importance, it’s probably in our best interest to use them to their fullest po-
tential. The options in Table 13-5 help us define when we’ll play announcements to
callers, and the options in Table 13-6 help us control what we play to our callers. With
those tables in hand, let’s take a look at an example queue where we’ve defined some
values. We’ll use our basic queue template as a starting point:

[general]
autofill=yes ; distribute all waiting callers to available members
shared_lastcall=yes ; respect the wrapup time for members logged into more
 ; than one queue

[StandardQueue](!) ; template to provide common features
musicclass=default ; play [default] music
strategy=rrmemory ; use the Round Robin Memory strategy
joinempty=yes ; do not join the queue when no members available
leavewhenempty=no ; leave the queue when no members available
ringinuse=no ; don't ring members when already InUse (prevents
 ; multiple calls to an agent)

[sales](StandardQueue) ; create the sales queue using the parameters in the
 ; StandardQueue template

[support](StandardQueue) ; create the support queue using the parameters in the
 ; StandardQueue template

Advanced Queues | 289

We’ll now modify the StardardQueue template to control our announcements:

[StandardQueue](!) ; template to provide common features
musicclass=default ; play [default] music
strategy=rrmemory ; use the Round Robin Memory strategy
joinempty=yes ; do not join the queue when no members available
leavewhenempty=no ; leave the queue when no members available
ringinuse=no ; don't ring members when already InUse (prevents
 ; multiple calls to an agent)

; -------- Announcement Control --------
announce-frequency=30 ; announces caller's hold time and position every 30
 ; seconds
min-announce-frequency=30 ; minimum amount of time that must pass before the
 ; caller's position is announced
periodic-announce-frequency=45 ; defines how often to play a periodic announcement to
 ; caller
random-periodic-announce=no ; defines whether to play periodic announcements in
 ; a random order, or serially
relative-periodic-announce=yes ; defines whether the timer starts at the end of
 ; file playback (yes) or the beginning (no)
announce-holdtime=once ; defines whether the estimated hold time should be
 ; played along with the periodic announcement
announce-position=limit ; defines if we should announce the caller's position
 ; in the queue
announce-position-limit=10 ; defines the limit value where we announce the
 ; caller's position (when announce-position is set to
 ; limit or more)
announce-round-seconds=30 ; rounds the hold time announcement to the nearest
 ; 30-second value

Let’s describe what we’ve just set in our StandardQueue template.

We’ll announce the caller’s hold time and position every 30 seconds (announce-
frequency),§ and make sure the minimum amount of time that passes before we an-
nounce it again is at least 30 seconds (min-announce-frequency). We do this to limit
how often our announcements are played to the callers, in order to avoid the updates
becoming annoying. Periodically, we’ll play an announcement to the callers that thanks
them for holding and assures them that an agent will be with them shortly. (The an-
nouncement is defined by the periodic-announcement setting. We’re using the default
announcement, but you can define one or more announcements yourself using
periodic-announce.)

These periodic announcements will be played every 45 seconds (periodic-announce-
frequency), in the order they were defined (random-period-announce). To determine
when the periodic-announce-frequency timer should start, we use relative-periodic-
announce. The yes setting means the timer will start after the announcement has finished
playing, rather than when it starts to play. The problem you could run into if you set
this to no is that if your periodic announcement runs for any significant length of time

§ Callers’ positions and hold times are only announced if more than one person is holding in the queue.

290 | Chapter 13: Automatic Call Distribution (ACD) Queues

(lets say 30 seconds), it will appear as if it is being played every 15 seconds, rather than
every 45 seconds as may be intended.

How many times we announce the hold time to the caller is controlled via the announce-
holdtime option, which we’ve set to once. Setting the value to yes will announce it every
time, and setting to no will disable it.

We configure how and when we announce the caller’s estimated remaining hold time
via announce-position, which we’ve set to limit. Using the value of limit for announce-
position lets us announce the caller’s position only if it is within the limit defined by
announce-position-limit. So, in this case we’re only announcing the callers’ positions
if they are in the first 10 positions of the queue. We could also use yes to announce the
position every time the periodic announcement is played, set it to no to never announce
it, or use the value more if we want to announce the position only when it is greater than
the value set for announce-position-limit.

Our last option, announce-round-seconds, controls the value to round to when we an-
nounce the caller’s hold time. In this case, instead of saying “1 minute and 23 seconds,”
the value would be rounded to the nearest 30-second value, which would result in a
prompt of “1 minute and 30 seconds.”

Overflow
Overflowing out of the queue is done either with a timeout value, or when no queue
members are available (as defined by joinempty or leavewhenempty). In this section we’ll
discuss how to control when overflow happens.

Controlling timeouts

The Queue() application supports two kinds of timeout: one is for the maximum period
of time a caller stays in the queue, and the other is how long to ring a device when
attempting to connect a caller to a queue member. We’ll be talking about the maximum
period of time a caller stays in the queue before the call overflows to another location,
such as VoiceMail(). Once the call has fallen out of the queue, it can go anywhere that
a call could normally go when controlled by the dialplan.

The timeouts are specified in two locations. The timeout that indicates how long to
ring queue members for is specified in the queues.conf file. The absolute timeout (how
long the caller stays in the queue) is controlled via the Queue() application. To set a
maximum amount of time for callers to stay in a queue, simply specify it after the queue
name in the Queue() application:

[Queues]
exten => 7000,1,Verbose(2,Joining the support queue for a maximum of 2 minutes)
 same => n,Queue(support,120)
 same => n,VoiceMail(support@queues,u)
 same => n,Hangup()

Advanced Queues | 291

Of course, we could define a different destination, but the VoiceMail() application is
as good as any. Just make sure that if you’re going to send callers to voicemail someone
checks it regularly and calls your customers back.

Now let’s say we have the scenario where we have set our absolute timeout to 10 sec-
onds, our timeout value for ringing queue members to 5 seconds, and our retry timeout
value to 4 seconds. In this scenario, we would ring the queue member for 5 seconds,
then wait 4 seconds before attempting another queue member. That brings us up to
9 seconds of our absolute timeout of 10 seconds. At this point, should we ring the
second queue member for 1 second and then exit the queue, or should we ring this
member for the full 5 seconds before exiting?

We control which timeout value has priority with the timeoutpriority option in
queues.conf. The available values are app and conf. If we want the application timeout
(the absolute timeout) to take priority, which would cause our caller to be kicked out
after exactly 10 seconds, we should set the timeoutpriority value to app. If we want
the configuration file timeout to take priority and finish ringing the queue member,
which will cause the caller to stay in the queue a little longer, we should set timeout
priority to conf. The default value is app (which is the default behavior in previous
versions of Asterisk).

Controlling when to join and leave a queue

Asterisk provides two options that control when callers can join and are forced to leave
queues, based on the statuses of the queue members. The first option, joinempty, is
used to control whether callers can enter a queue. The leavewhenempty option is used
to control when callers already in a queue should be removed from that queue (i.e., if
all of the queue members become unavailable). Both options take a comma-separated
list of values that control this behavior. The factors are listed in Table 13-7.

Table 13-7. Options that can be set for joinempty or leavewhenempty

Value Description

paused Members are considered unavailable if they are paused.

penalty Members are considered unavailable if their penalties are less than QUEUE_MAX_PENALTY.

inuse Members are considered unavailable if their device status is In Use.

ringing Members are considered unavailable if their device status is Ringing.

unavailable Applies primarily to agent channels; if the agent is not logged in but is a member of the queue it is considered
unavailable.

invalid Members are considered unavailable if their device status is Invalid. This is typically an error condition.

unknown Members are considered unavailable if device status is unknown.

wrapup Members are considered unavailable if they are currently in the wrapup time after the completion of a call.

292 | Chapter 13: Automatic Call Distribution (ACD) Queues

For joinempty, prior to placing a caller into the queue, all the members are checked for
availability using the factors you list as criteria. If all members are deemed to be un-
available, the caller will not be permitted to enter the queue, and dialplan execution
will continue at the next priority.‖ For the leavewhempty option, the members’ statuses
are checked periodically against the listed conditions; if it is determined that no
members are available to take calls, the caller is removed from the queue, with dialplan
execution continuing at the next priority.

An example use of joinempty could be:

joinempty=paused,inuse,invalid

With this configuration, prior to a caller entering the queue the statuses of all queue
members will be checked, and the caller will not be permitted to enter the queue unless
at least one queue member is found to have a status that is not paused, inuse, or invalid.

The leavewhenempty example could be something like:

leavewhenempty=inuse,ringing

In this case, the queue members’ statuses will be checked periodically, and callers will
be removed from the queue if no queue members can be found who do not have a status
of either inuse or ringing.

Previous versions of Asterisk used the values yes, no, strict, and loose as the available
values to be assigned. The mapping of those values is shown in Table 13-8.

Table 13-8. Mapping between old and new values for controlling when callers join and leave queues

Value Mapping (joinempty) Mapping (leavewhenempty)

yes (empty) penalty,paused,invalid

no penalty,paused,invalid (empty)

strict penalty,paused,invalid,unavailable penalty,paused,invalid,unavailable

loose penalty,invalid penalty,invalid

Using Local Channels
The use of Local channels as queue members is a popular way of executing parts of the
dialplan and performing checks prior to dialing the actual agent’s device. For example,
it allows us to do things like start recording the call, set up channel variables, write to
a log file, set a limit on the call length (e.g., if it is a paid service), or do any of the other
things we might need to do once we know which location we’re going to call.

When using Local channels for queues, they are added just like any other channels. In
the queues.conf file, adding a Local channel would look like this:

‖ If the priority n+1 from where the Queue() application was called is not defined, the call will be hung up.

Advanced Queues | 293

; queues.conf
[support](StandardQueue)
member => Local/SIP-0000FFFF0001@MemberConnector ; pass the technology to dial over
 ; and the device identifier,
 ; separated by a hyphen. We'll
 ; break it apart inside the
 ; MemberConnector context.

Notice how we passed the type of technology we want to call along with
the device identifier to the MemberConnector context. We’ve simply used
a hyphen (although we could have used nearly anything as a separator
argument) as the field marker. We’ll use the CUT() function inside the
MemberConnector context and assign the first field (SIP) to one channel
variable and the second field (0000FFFF0001) to another channel variable,
which will then be used to call the endpoint.

Passing information to be later “exploded” in the context used by the
Local channel is a common and useful technique (kind of like the
explode() function in PHP).

Of course, we’ll need the MemberConnector context to actually connect the caller to the
agent:

[MemberConnector]
exten => _[A-Za-z0-9].,1,Verbose(2,Connecting ${CALLERID(all)} to Agent at ${EXTEN})

 ; filter out any bad characters, allowing alphanumeric characters and the hyphen
 same => n,Set(QueueMember=${FILTER(A-Za-z0-9\-,${EXTEN})

 ; assign the first field of QueueMember to Technology using the hyphen separator
 same => n,Set(Technology=${CUT(QueueMember,-,1)})

 ; assign the second field of QueueMember to Device using the hyphen separator
 same => n,Set(Device=${CUT(QueueMember,-,2)})

 ; dial the agent
 same => n,Dial(${Technology}/${Device})
 same => n,Hangup()

So, now we’ve passed our queue member to the context, and we can dial the device.
However, because we’re using the Local channel as the queue member, the Queue()
won’t necessarily know the state the call is in, especially when the Local channel is
optimized out of the path (see https://wiki.asterisk.org/wiki/display/AST/Local+Channel
+Modifiers for information about the /n modifier, which causes the Local channel to
not be optimized out of the path). The queue will be monitoring the state of the Local
channel, and not that of the device we really want to monitor.

Luckily, we can give the Queue() the actual device to monitor and associate that with
the Local channel, so that the Local channel’s state is always that of the device we’ll
end up calling. Our queue member would be modified in the queues.conf file like so:

294 | Chapter 13: Automatic Call Distribution (ACD) Queues

https://wiki.asterisk.org/wiki/display/AST/Local+Channel+Modifiers
https://wiki.asterisk.org/wiki/display/AST/Local+Channel+Modifiers

; queues.conf
[support](StandardQueue)
member => Local/SIP-0000FFFF0001@MemberConnector,,,SIP/0000FFFF0001

Only SIP channels are capable of sending back reliable device state in-
formation, so it is highly recommended that you use only these channels
when using Local channels as queue members.

You can also use the AddQueueMember() and RemoveQueueMember() applications to add
members to and remove members from a queue, just like with any other channel.
AddQueueMember() also has the ability to set the state interface, which we defined stati-
cally in the queues.conf file. An example of how you might do this follows:

[QueueMemberLogin]
exten => 500,1,Verbose(2,Logging in device ${CHANNEL(peername)} into the support queue)

 ; Save the device's technology to the MemberTech channel variable
 same => n,Set(MemberTech=${CHANNEL(channeltype)})

 ; Save the device's identifier to the MemberIdent channel variable
 same => n,Set(MemberIdent=${CHANNEL(peername)})

 ; Build up the interface name and assign it to the Interface channel variable
 same => n,Set(Interface=${MemberTech}/${MemberIdent})

 ; Add the member to the support queue using a Local channel. We're using the same
 ; format as before, separating the technology and the device indentifier with
 ; a hyphen and passing that information to the MemberConnector context. We then
 ; use the IF() function to determine if the member's technology is SIP and, if so,
 ; to pass back the contents of the Interface channel variable as the value to the
 ; state interface field of the AddQueueMember() application.
 ;
 ; *** This line should not have any line breaks
 same => n,AddQueueMember(support,Local/${MemberTech}-${MemberIdent}
@MemberConnector,,,${IF($[${MemberTech} = SIP]?${Interface})})
 same => n,Playback(silence/1)

 ; Play back either the agent-loginok or agent-incorrect file, depending on what
 ; the AQMSTATUS variable is set to.
 same => n,Playback(${IF($[${AQMSTATUS} = ADDED]?agent-loginok:agent-incorrect)})
 same => n,Hangup()

Now that we can add devices to the queue using Local channels, let’s look at how we
might control the number of calls to either non-SIP channels or devices with more than
one line on them. We can make use of the GROUP() and GROUP_COUNT() functions to track
call counts to an endpoint. We’ll modify our MemberConnector context to take this into
account:

[MemberConnector]
exten => _[A-Za-z0-9].,1,Verbose(2,Connecting ${CALLERID(all)} to Agent at ${EXTEN})

 ; filter out any bad characters, allowing alphanumeric characters and the hyphen
 same => n,Set(QueueMember=${FILTER(A-Za-z0-9\-,${EXTEN})

Advanced Queues | 295

 ; assign the first field of QueueMember to Technology using the hyphen separator
 same => n,Set(Technology=${CUT(QueueMember,-,1)})

 ; assign the second field of QueueMember to Device using the hyphen separator
 same => n,Set(Device=${CUT(QueueMember,-,2)})

 ; Increase the value of the group inside the queue_members category by one
 same => n,Set(GROUP(queue_members)=${Technology}-${Device})

 ; Check if the group@category is greater than 1, and, if so, return Congestion()
 ; (too many channels)
 ;
 ; *** This line should not have any line breaks
 same => n,ExecIf($[${GROUP_COUNT(${Technology}-${Device}@queue_members)} > 1]
?Congestion())

 ; dial the agent
 same => n,Dial(${Technology}/${Device})
 same => n,Hangup()

The passing back of Congestion() will cause the caller to be returned to the queue (while
this is happening, the caller gets no indication that anything is amiss and keeps hearing
music until we actually connect to the device). While this is not an ideal situation
because the queue will keep trying the member over and over again (or at least include
it in the cycle of agents, depending on how many members you have and their current
statuses), it is better than an agent getting multiple calls at the same time.

We’ve also used this same method to create a type of reservation process. If you want
to call an agent directly (for example, if the caller needs to follow up with a particular
agent), you could reserve that agent by using the GROUP() and GROUP_COUNT() functions
to essentially pause the agent in the queue until the caller can be connected. This is
particularly useful in situations where you need to play some announcements to the
caller prior to connecting her with the agent, but you don’t want the agent to get con-
nected to another caller while the announcements are being played.

Queue Statistics: The queue_log File
The queue_log file located in /var/log/asterisk/ contains information about the queues
defined in your system (when a queue is reloaded, when queue members are added or
removed, etc.) and about calls into the queues (e.g., their status and what channels the
callers were connected to). The queue log is enabled by default, but can be controlled
via the logger.conf file. There are three options related to the queue_log file specifically:

queue_log
Controls whether the queue log is enabled or not. Valid values are yes or no (de-
faults to yes).

296 | Chapter 13: Automatic Call Distribution (ACD) Queues

queue_log_to_file
Controls whether the queue log should be written to a file even when a real time
backend is present. Valid values are yes or no (defaults to no).

queue_log_name
Controls the name of the queue log. The default is queue_log.

The queue log is a pipe-separated list of events. The fields in the queue_log file are as
follows:

• Epoch timestamp of the event

• Unique ID of the call

• Name of the queue

• Name of bridged channel

• Type of event

• Zero or more event parameters

The information contained in the event parameters depends on the type of event. A
sample queue_log file might look something like the following:

1292281046|psy1-1292281041.87|7100|NONE|ENTERQUEUE||4165551212|1
1292281046|psy1-1292281041.87|7100|Local/9996@MemberConnector|RINGNOANSWER|0
1292281048|psy1-1292281041.87|7100|Local/9990@MemberConnector|CONNECT|2
|psy1-1292281046.90|0

1292284121|psy1-1292281041.87|7100|Local/9990@MemberConnector|COMPLETECALLER|2|3073|1
1292284222|MANAGER|7100|Local/9990@MemberConnector|REMOVEMEMBER|
1292284222|MANAGER|7200|Local/9990@MemberConnector|REMOVEMEMBER|
1292284491|MANAGER|7100|Local/9990@MemberConnector|ADDMEMBER|
1292284491|MANAGER|7200|Local/9990@MemberConnector|ADDMEMBER|
1292284519|psy1-1292284515.93|7100|NONE|ENTERQUEUE||4165551212|1
1292284519|psy1-1292284515.93|7100|Local/9996@MemberConnector|RINGNOANSWER|0
1292284521|psy1-1292284515.93|7100|Local/9990@MemberConnector|CONNECT|2
|psy1-1292284519.96|0

1292284552|MANAGER|7100|Local/9990@MemberConnector|REMOVEMEMBER|
1292284552|MANAGER|7200|Local/9990@MemberConnector|REMOVEMEMBER|
1292284562|psy1-1292284515.93|7100|Local/9990@MemberConnector|COMPLETECALLER|2|41|1

As you can see from this example, there might not always be a unique ID for the event.
In some cases external services, such as the Asterisk Manager Interface (AMI), perform
actions on the queue; in this case you’ll see something like MANAGER in the Unique ID
field.

The available events and the information they provide are described in Table 13-9.

Queue Statistics: The queue_log File | 297

Table 13-9. Events in the Asterisk queue log

Event Information provided

ABANDON Written when a caller in a queue hangs up before his call is answered by an agent. Three parameters
are provided for ABANDON: the position of the caller at hangup, the original position of the caller when
entering the queue, and the amount of time the caller waited prior to hanging up.

ADDMEMBER Written when a member is added to the queue. The bridged channel name will be populated with the
name of the channel added to the queue.

AGENTDUMP Indicates that the agent hung up on the caller while the queue announcement was being played, prior
to them being bridged together.

AGENTLOGIN Recorded when an agent logs in. The bridged channel field will contain something like Agent/
9994 if logging in with chan_agent, and the first parameter field will contain the channel logging
in (e.g., SIP/0000FFFF0001).

AGENTLOGOFF Logged when an agent logs off, along with a parameter indicating how long the agent was logged in
for.

COMPLETEAGENT Recorded when a call is bridged to an agent and the agent hangs up, along with parameters indicating
the amount of time the caller was held in the queue, the length of the call with the agent, and the
original position at which the caller entered the queue.

COMPLETECALLER Same as COMPLETEAGENT, except the caller hung up and not the agent.

CONFIGRELOAD Indicates that the queue configuration was reloaded (e.g., via module reload app_queue.so).

CONNECT Written when the caller and the agent are bridged together. Three parameters are also written: the
amount of time the caller waited in the queue, the unique ID of the queue member’s channel to which
the caller was bridged, and the amount of time the queue member’s phone rang prior to being answered.

ENTERQUEUE Written when a caller enters the queue. Two parameters are also written: the URL (if specified) and
the caller ID of the caller.

EXITEMPTY Written when the caller is removed from the queue due to a lack of agents available to answer the call
(as specified by the leavewhenempty parameter). Three parameters are also written: the position
of the caller in the queue, the original position at which the caller entered the queue, and the amount
of time the caller was held in the queue.

EXITWITHKEY Written when the caller exits the queue by pressing a single DTMF key on his phone to exit the queue
and continue in the dialplan (as enabled by the context parameter in queues.conf). Four parameters
are recorded: the key used to exit the queue, the position of the caller in the queue upon exit, the
original position the caller entered the queue at, and the amount of time the caller was waiting in the
queue.

EXITWITHTIMEOUT Written when the caller is removed from the queue due to timeout (as specified by the timeout
parameter to Queue()). Three parameters are also recorded: the position the caller was in when
exiting the queue, the original position of the caller when entering the queue, and the amount of time
the caller waited in the queue.

PAUSE Written when a queue member is paused.

PAUSEALL Written when all members of a queue are paused.

UNPAUSE Written when a queue member is unpaused.

UNPAUSEALL Written when all members of a queue are unpaused.

298 | Chapter 13: Automatic Call Distribution (ACD) Queues

Event Information provided

PENALTY Written when a member’s penalty is modified. The penalty can be changed through several means,
such as the QUEUE_MEMBER_PENALTY() function, through using Asterisk Manager Interface, or
the Asterisk CLI commands.

REMOVEMEMBER Written when a queue member is removed from the queue. The bridge channel field will contain the
name of the member removed from the queue.

RINGNOANSWER Logged when a queue member is rung for a period of time, and the timeout value for ringing the queue
member is exceeded. A single parameter will also be written indicating the amount of time the
member’s extension rang.

TRANSFER Written when a caller is transferred to another extension. Additional parameters are also written,
which include: the extension and context the caller was transferred to, the hold time of the caller in
the queue, the amount of time the caller was speaking to a member of the queue, and the original
position of the caller when he entered the queue.a

SYSCOMPAT Recorded if an agent attempts to answer a call, but the call cannot be set up due to incompatibilities
in the media setup.

a Please note that when the caller is transferred using SIP transfers (rather than the built-in transfers triggered by DTMF and configured in
features.conf), the TRANSFER event may not be reliable.

Conclusion
We started this chapter with a look at basic call queues, discussing what they are, how
they work, and when you might want to use one. After building a simple queue, we
explored how to control queue members through various means (including the use of
Local channels, which provide the ability to perform some dialplan logic just prior to
connecting to a queue member). We also explored all the options available to us in the
queues.conf, agents.conf, and queuerules.conf files, which offer us fine-grained control
over any queues we configure. Of course, we need the ability to monitor what our
queues are doing, so we looked finally at the queue log and the myriad of events and
event parameters written when various things happen in our queues.

With the knowledge provided in this chapter, you should be well on your way to im-
plementing a successful set of queues for your company.

Conclusion | 299

CHAPTER 14

Device States

Out of clutter, find simplicity.

—Albert Einstein

It is often useful to be able to determine the state of the devices that are attached to a
telephone system. For example, a receptionist might require the ability to see the sta-
tuses of all the people in the office in order to determine whether somebody can take
a phone call. Asterisk itself needs this same information. As another example, if you
were building a call queue, as discussed in Chapter 13, Asterisk needs to know when
an agent is available so that another call can be delivered. This chapter discusses device
state concepts in Asterisk, as well as how devices and applications use and access this
information.

Device States
There are two types of devices that device states refer to: real devices and virtual devices.
Real devices are telephony endpoints that can make or receive calls, such as SIP phones.
Virtual devices include things that are inside of Asterisk, but provide useful state in-
formation. Table 14-1 lists the available virtual devices in Asterisk.

Table 14-1. Virtual devices in Asterisk

Virtual device Description

MeetMe:
<conference bridge>

The state of a MeetMe conference bridge. The state will reflect whether or not the conference
bridge currently has participants called in. More information on using MeetMe() for call
conferencing can be found in “Conferencing with MeetMe()” on page 218.

SLA:<shared line> Shared Line Appearance state information. This state is manipulated by the SLATrunk()
and SLAStation() applications. More detail can be found in “Shared Line Appearan-
ces” on page 318.

Custom:<custom name> Custom device states. These states have custom names and are modified using the
DEVICE_STATE() function. Example usage can be found in “Using Custom Device
States” on page 307.

301

Virtual device Description

Park:<exten@context> The state of a spot in a call parking lot. The state information will reflect whether or not a
caller is currently parked at that extension. More information about call parking in Asterisk
can be found in “Parking Lots” on page 228.

Calendar:<calendar
name>

Calendar state. Asterisk will use the contents of the named calendar to set the state to
available or busy. More information about calendar integration in Asterisk can be found
in Chapter 18.

A device state is a simple one-to-one mapping to a device. Figure 14-1 shows this
mapping.

Figure 14-1. Device state mappings

Checking Device States
The DEVICE_STATE() dialplan function can be used to read the current state of a device.
Here is a simple example of it being used in the dialplan:

exten => 7012,1,Answer()

; *** This line should not have any line breaks
 same => n,Verbose(3,The state of SIP/0004F2060EB4 is
${DEVICE_STATE(SIP/0004F2060EB4)})
 same => n,Hangup()

If we call extension 7012 from the same device that we are checking the state of, the
following verbose message comes up on the Asterisk console:

 -- The state of SIP/0004F2060EB4 is INUSE

302 | Chapter 14: Device States

Chapter 20 discusses the Asterisk Manager Interface (AMI). The Get
Var manager action can be used to retrieve device state values in an
external program. You can use it to get the value of either a normal
variable or a dialplan function, such as DEVICE_STATE().

The following list includes the possible values that will come back from the
DEVICE_STATE() function:

• UNKNOWN

• NOT_INUSE

• INUSE

• BUSY

• INVALID

• UNAVAILABLE

• RINGING

• RINGINUSE

• ONHOLD

Extension States
Extension states are another important concept in Asterisk. Extension states are what
SIP devices subscribe to for presence information. (SIP presence is discussed in more
detail in “SIP Presence” on page 306). The state of an extension is determined by
checking the state of one or more devices. The list of devices that map to extension
states is defined in the Asterisk dialplan, /etc/asterisk/extensions.conf, using a special
hint directive. Figure 14-2 shows the mapping between devices, device states, and
extension states.

Hints
To define an extension state hint in the dialplan, the keyword hint is used in place of
a priority. Here is a simple example dialplan that relates to Figure 14-2:

[default]

exten => 1234,hint,SIP/phoneA&SIP/phoneB&SIP/phoneC

exten => 5555,hint,DAHDI/1

exten => 31337,hint,MeetMe:31337

Extension States | 303

Typically, hints are simply defined along with the rest of the extension. This next ex-
ample adds simple extension entries for what would happen if each of these extensions
were called:

[default]

exten => 1234,hint,SIP/phoneA&SIP/phoneB&SIP/phoneC
exten => 1234,1,Dial(SIP/phoneA&SIP/phoneB&SIP/phoneC)

exten => 5555,hint,DAHDI/1
exten => 5555,1,Dial(DAHDI/1)

exten => 31337,hint,MeetMe:31337
exten => 31337,1,MeetMe(31337,dM)

In our example we’ve made a direct correlation between the hint’s extension number
and the extension number being dialed, although there is no requirement that that be
the case.

Checking Extension States
The easiest way to check the current state of an extension is at the Asterisk CLI. The
core show hints command will show you all currently configured hints. Consider the
following hint definition:

Figure 14-2. Extension state mappings

304 | Chapter 14: Device States

[phones]

exten => 7001,hint,SIP/0004F2060EB4

When core show hints is executed at the Asterisk CLI, the following output is presented
when the device is currently in use:

*CLI> core show hints

 -= Registered Asterisk Dial Plan Hints =-
 7001@phones : SIP/0004F2060EB4 State:InUse Watchers 0

- 1 hints registered

In addition to showing you the state of the extension, the output of core show hints also
provides a count of watchers. A watcher is something in Asterisk that has subscribed
to receive updates on the state of this extension. If a SIP phone subscribes to the state
of an extension, the watcher count will be increased.

Extension state can also be retrieved with a dialplan function, EXTENSION_STATE(). This
function operates similarly to the DEVICE_STATE() function described in the preceding
section. The following example shows an extension that will print the current state of
another extension to the Asterisk console:

exten => 7013,1,Answer()
 same => n,Verbose(3,The state of 7001@phones is ${EXTENSION_STATE(7001@phones)})
 same => n,Hangup()

When this extension is called, this is the verbose message that shows up on the Asterisk
console:

 -- The state of 7001@phones is INUSE

The following list includes the possible values that may be returned back from the
EXTENSION_STATE() function:

• UNKNOWN

• NOT_INUSE

• INUSE

• BUSY

• UNAVAILABLE

• RINGING

• RINGINUSE

• HOLDINUSE

• ONHOLD

Extension States | 305

SIP Presence
Asterisk provides the ability for devices to subscribe to extension state using the SIP
protocol. This functionality is often referred to as BLF (Busy Lamp Field).*

Asterisk Configuration
To get this working, hints must be defined in /etc/asterisk/extensions.conf (see
“Hints” on page 303 for more information on configuring hints in the dialplan). Ad-
ditionally, there are some important options that must be set in the configuration file
for the SIP channel driver, which is /etc/asterisk/sip.conf. The following list discusses
these options:

callcounter
Enables/disables call counters. This must be enabled for Asterisk to be able to
provide state information for SIP devices. This option may be set either in the
[general] section or in peer-specific sections of sip.conf.

If you would like device states to work for SIP devices, you must at
least set the callcounter option to yes. Otherwise, the SIP channel
driver will not bother tracking calls to and from devices and will
provide no state information about them.

busylevel
Sets the number of calls that must be in progress for Asterisk to report that a device
is busy. This option may only be set in peer-specific sections of sip.conf. By default,
this option is not set. This means that Asterisk will report that a device is in use,
but never busy.

call-limit
This option has been deprecated in favor of using the GROUP() and GROUP_COUNT()
functions in the Asterisk dialplan. You may find older documentation that suggests
that this option is required for SIP presence to work. That used to be the case, but
this option has been replaced by the callcounter option for that purpose.

allowsubscribe
Allows you to disable support for subscriptions. If this option has not been set,
subscriptions will be enabled. To disable subscription support completely, set
allowsubscribe to no in the [general] section of sip.conf.

* Some also like to call these “blinky lamps” or “blinky lights” for their phones. Geeks and their LEDs…

306 | Chapter 14: Device States

subscribecontext
Allows you to set a specific context for subscriptions. Without this set, the context
defined by the context option will be used. This option may be set either in the
[general] section or in peer-specific sections of sip.conf.

notifyringing
Controls whether or not a notification will be sent when an extension goes into a
ringing state. This option is set to yes by default. It only has an effect on subscrip-
tions that use the dialog-info event package. This option can only be set globally
in the [general] section of sip.conf.

notifyhold
Allows chan_sip to set SIP devices’ states to ONHOLD. This is set to yes by default.
This option can only be set globally in the [general] section of sip.conf.

notifycid
Enables/disables sending of an inbound call’s caller ID information to an exten-
sion. This option applies to devices that subscribe to dialog-info+xml-based ex-
tension state notifications, such as Snom phones. Displaying caller ID information
can be useful to help an agent decide whether to execute a pickup on an incoming
call. This option is set to no by default.

This magic pickup only works if the extension and context of the
hint are the same as the extension and context of the incoming call.
Notably, the usage of the subscribecontext option usually breaks
this option. This option can also be set to the value ignore-con
text. This will bypass the context issue, but should only be used
in an environment where there is only a single instance of the ex-
tension that has been subscribed to. Otherwise, you might acci-
dentally pick up calls that you did not mean to pick up.

Using Custom Device States
Asterisk provides the ability to create custom device states. This lends itself to the
development of some interesting custom applications. We’ll start by showing the basic
syntax for controlling custom device states, and then we’ll build an example that uses
them.

Custom device states all start with a prefix of Custom:. The text that comes after the
prefix can be anything you want. To set or read the value of a custom device state, use
the DEVICE_STATE() dialplan function. For example, to set a custom device state:

exten => example,1,Set(DEVICE_STATE(Custom:example)=BUSY)

Similarly, to read the current value of a custom device state:

exten => Verbose(1,The state of Custom:example is ${DEVICE_STATE(Custom:example)})

Using Custom Device States | 307

Custom device states can be used as a way to directly control the state shown on a
device that has subscribed to the state of an extension. Just map an extension to a
custom device state using a hint in the dialplan:

exten => example,hint,Custom:example

An Example
There are a number of interesting use cases for custom device states. In this section we
will build an example that implements a custom “do not disturb” (DND) button on a
SIP phone. This same approach could be applied to many other things that you might
like to be able to toggle at the touch of a button. For example, this approach could be
used to let members know if they are currently logged into a queue or not.

The first piece of the example is the hint in the dialplan. This is required so BLF can be
configured on a SIP phone to subscribe to this extension. In this case, the phone must
be configured to subscribe to the state of DND_7015:

exten => DND_7015,hint,Custom:DND_7015

Next, we will create an extension that will be called when the user presses the key
associated with the custom DND feature. It is interesting to note that this extension
does nothing with audio. In fact, the user of the phone most likely will not even know
that a call is placed when he presses the button. As far as the user is concerned, pressing
that key simply turns on or off the light next to the button that reflects whether or not
DND is enabled. The extension should look like this:

exten => DND_7015,1,Answer()
 same => n,GotoIf($["${DEVICE_STATE(Custom:DND_7015)}"="BUSY"]?turn_off:turn_on)

 same => n(turn_off),Set(DEVICE_STATE(Custom:DND_7015)=NOT_INUSE)
 same => n,Hangup()

 same => n(turn_on),Set(DEVICE_STATE(Custom:DND_7015)=BUSY)
 same => n,Hangup()

The final part of this example shows how the DND state is used in the dialplan. If DND
is enabled, a message is played to the caller saying that the agent is unavailable. If it is
disabled, a call will be made to a SIP device:

exten => 7015,1,GotoIf($["${DEVICE_STATE(Custom:DND_7015)}"="BUSY"]?busy:available)
 same => n(available),Verbose(3,DND is currently off for 7015.)
 same => n,Dial(SIP/exampledevice)
 same => n,Hangup()

 same => n(busy),Verbose(3,DND is on for 7015.)
 same => n,Playback(vm-theperson)
 same => n,Playback(digits/7&digits/0&digits/1&digits/5)
 same => n,Playback(vm-isunavail)
 same => n,Playback(vm-goodbye)
 same => n,Hangup()

308 | Chapter 14: Device States

Example 14-1 shows the full example as it would appear in /etc/asterisk/extensions.conf.

Example 14-1. Custom “do not disturb” functionality using custom device states

;
; A hint so a phone can use BLF to signal the DND state.
;
exten => DND_7015,hint,Custom:DND_7015

;
; An extension to dial when the user presses the custom DND
; key on his phone. This will toggle the state and will result
; in the light on the phone turning on or off.
;
exten => DND_7015,1,Answer()
 same => n,GotoIf($["${DEVICE_STATE(Custom:DND_7015)}"="BUSY"]?turn_off:turn_on)

 same => n(turn_off),Set(DEVICE_STATE(Custom:DND_7015)=NOT_INUSE)
 same => n,Hangup()

 same => n(turn_on),Set(DEVICE_STATE(Custom:DND_7015)=BUSY)
 same => n,Hangup()

;
; Example usage of the DND state.
;
exten => 7015,1,GotoIf($["${DEVICE_STATE(Custom:DND_7015)}"="BUSY"]?busy:available)
 same => n(available),Verbose(3,DND is currently off for 7015.)
 same => n,Dial(SIP/exampledevice)
 same => n,Hangup()

 same => n(busy),Verbose(3,DND is on for 7015.)
 same => n,Playback(vm-theperson)
 same => n,Playback(digits/7&digits/0&digits/1&digits/5)
 same => n,Playback(vm-isunavail)
 same => n,Playback(vm-goodbye)
 same => n,Hangup()

Distributed Device States
Asterisk is primarily designed to run on a single system. However, as requirements for
scalability increase, it is common for deployments to require multiple Asterisk servers.
Since that has become increasingly common, some features have been added to make
it easier to coordinate multiple Asterisk servers. One of those features is distributed
device state support.

What this means is that if a device is on a call on one Asterisk server, the state of that
device on all servers reflects that. To be more specific, the way this works is that every
server knows the state of each device from the perspective of each server. Using this
collection of states, each server will calculate what the overall device state value is to
report to the rest of Asterisk.

Distributed Device States | 309

To accomplish distributed device state, some sort of messaging mechanism must be
used for the servers to communicate with each other. Two such mechanisms are sup-
ported as of Asterisk 1.8: AIS and XMPP.

Using OpenAIS
The Application Interface Specification (AIS) is a standardized set of messaging mid-
dleware APIs. The definition for the APIs is provided by the Service Availability Fo-
rum. The open source implementation of AIS that was used for the development and
testing of this functionality is OpenAIS, which is built on Corosync.

Corosync, and thus OpenAIS, is built in such a way that nodes must be located on the
same high-speed, low-latency LAN. If your deployment is geographically distributed,
you should use the XMPP-based distributed device state support, which is discussed
in “Using XMPP” on page 314.

Installation

The first step to getting the necessary components installed is to install Corosync and
OpenAIS. Corosync depends on the NSS library. Install the libnss3-dev package on
Ubuntu or the nss-devel package on CentOS.

Next, install Corosync and OpenAIS. There may be packages available, but they are
also fairly straightforward to install from source. Download the latest releases from the
Corosync and OpenAIS home pages. Then, execute the following commands to com-
pile and install each package:

$ tar xvzf corosync-1.2.8.tar.gz
$ cd corosync-1.2.8
$./configure
$ make
$ sudo make install

$ tar xvzf openais-1.1.4.tar.gz
$ cd openais-1.1.4
$./configure
$ make
$ sudo make install

If you installed Asterisk prior to installing Corosync and OpenAIS, you will need to re-
compile and reinstall Asterisk to get AIS support. Start by running the Asterisk config-
ure script. The configure script is responsible for inspecting the system to find out which
optional dependencies can be found so that the build system knows which modules
can be built:

$ cd /path/to/asterisk
$./configure

310 | Chapter 14: Device States

http://www.saforum.org
http://www.saforum.org
http://www.openais.org
http://www.corosync.org

After running the configure script, run the menuselect tool to ensure that Asterisk has
been told to build the res_ais module (this module can be found in the Resource Mod-
ules section of menuselect):

$ make menuselect

Finally, compile and install Asterisk:

$ make
$ sudo make install

This is a pretty quick and crude set of instructions for compiling and
installing Asterisk. For a much more complete set of instructions, please
see Chapter 3.

OpenAIS configuration

Now that OpenAIS has been installed, it needs to be configured. There is a configura-
tion file for both OpenAIS and Corosync that must be put in place. Check to see if /etc/
ais/openais.conf and /etc/corosync/corosync.conf exist. If they do not exist, copy in the
sample configuration files:

$ sudo mkdir -p /etc/ais
$ cd openais-1.1.4
$ sudo cp conf/openais.conf.sample /etc/ais/openais.conf

$ sudo mkdir -p /etc/corosync
$ cd corosync-1.2.8
$ sudo cp conf/corosync.conf.sample /etc/corosync/corosync.conf

Next, you will need to edit both the openais.conf and corosync.conf files. There are a
number of options here, but the most important one that must be changed is the
bindnetaddr option in the totem-interface section. This must be set to the IP address
of the network interface that this node will use to communicate with the rest of the
cluster:

totem {
 ...
 interface {
 ringnumber: 0
 bindnetaddr: 10.24.22.144
 mcastaddr: 226.94.1.1
 mcastport: 5405
 }
}

For detailed documentation on the rest of the options in these configuration files, see
the associated manpages:

$ man openais.conf
$ man corosync.conf

Distributed Device States | 311

To get started with testing out basic OpenAIS connectivity, try starting the aisexec
application in the foreground and watching the output:

$ sudo aisexec -f

For example, if you watch the output of aisexec on the first node while you bring up
the second node, you should see output that reflects that the cluster now has two
connected nodes:

Nov 13 06:55:30 corosync [CLM] CLM CONFIGURATION CHANGE
Nov 13 06:55:30 corosync [CLM] New Configuration:
Nov 13 06:55:30 corosync [CLM] r(0) ip(10.24.22.144)
Nov 13 06:55:30 corosync [CLM] r(0) ip(10.24.22.242)
Nov 13 06:55:30 corosync [CLM] Members Left:
Nov 13 06:55:30 corosync [CLM] Members Joined:
Nov 13 06:55:30 corosync [CLM] r(0) ip(10.24.22.242)
Nov 13 06:55:30 corosync [TOTEM] A processor joined or left the membership and a new
membership was formed.
Nov 13 06:55:30 corosync [MAIN] Completed service synchronization, ready to provide
service.

If you have any trouble getting the nodes to sync up with each other,
one thing to check is that there are no firewall rules on the nodes that
are blocking the multicast traffic that is used for the nodes to commu-
nicate with each other.

Asterisk configuration

The res_ais module for Asterisk has a single configuration file, /etc/asterisk/ais.conf.
One short section is required in this file to enable distributed device state in an AIS
cluster. Place the following contents in the /etc/asterisk/ais.conf file:

[device_state]

type = event_channel
publish_event = device_state
subscribe_event = device_state

There is an Asterisk CLI command that can be used to ensure that this configuration
has been loaded properly:

*CLI> ais evt show event channels

===
=== Event Channels ==
===
===
=== ---
=== Event Channel Name: device_state
=== ==> Publishing Event Type: device_state
=== ==> Subscribing to Event Type: device_state

312 | Chapter 14: Device States

=== ---
===
===

Another useful Asterisk CLI command provided by the res_ais module is used to list
the members of the AIS cluster:

*CLI> ais clm show members

===
=== Cluster Members ===
===
===
=== ---
=== Node Name: 10.24.22.144
=== ==> ID: 0x9016180a
=== ==> Address: 10.24.22.144
=== ==> Member: Yes
=== ---
===
=== ---
=== Node Name: 10.24.22.242
=== ==> ID: 0xf216180a
=== ==> Address: 10.24.22.242
=== ==> Member: Yes
=== ---
===
===

Testing device state changes

Now that you’ve set up and configured distributed device state using OpenAIS, there
are some simple tests that can be done using custom device states to ensure that device
states are being communicated between the servers. Start by creating a test hint in the
Asterisk dialplan, /etc/asterisk/extensions.conf:

[devstate_test]

exten => foo,hint,Custom:abc

Now, you can adjust the custom device state from the Asterisk CLI using the dialplan
set global CLI command and then check the state on each server using the core show
hints command. For example, we can use this command to set the state on one server:

pbx1*CLI> dialplan set global DEVICE_STATE(Custom:abc) INUSE

 -- Global variable 'DEVICE_STATE(Custom:abc)' set to 'INUSE'

and then, check the state on another server using this command:

*CLI> core show hints

-= Registered Asterisk Dial Plan Hints =-
 foo@devstatetest : Custom:abc State:InUse Watchers 0

Distributed Device States | 313

If you would like to dive deeper into the processing of distributed device state changes,
there are some useful debug messages that can be enabled. First, enable debug on the
Asterisk console in /etc/asterisk/logger.conf. Then, enable debugging at the Asterisk
CLI:

*CLI> core set debug 1

With the debug output enabled, you will see some messages that show how Asterisk
is processing each state change. When the state of a device changes on one server,
Asterisk checks the state information it has for that device on all servers and determines
the overall device state. The following examples illustrate:

*CLI> dialplan set global DEVICE_STATE(Custom:abc) NOT_INUSE

 -- Global variable 'DEVICE_STATE(Custom:abc)' set to 'NOT_INUSE'

[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:652
handle_devstate_change: Processing device state change for 'Custom:abc'
[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:602
process_collection: Adding per-server state of 'Not in use' for 'Custom:abc'
[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:602
process_collection: Adding per-server state of 'Not in use' for 'Custom:abc'
[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:609
process_collection: Aggregate devstate result is 'Not in use' for 'Custom:abc'
[Nov 13 13:27:12] DEBUG[14801]: devicestate.c:631
process_collection: Aggregate state for device 'Custom:abc' has changed to
'Not in use'

*CLI> dialplan set global DEVICE_STATE(Custom:abc) INUSE

 -- Global variable 'DEVICE_STATE(Custom:abc)' set to 'INUSE'

[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:652 handle_devstate_change:
Processing device state change for 'Custom:abc'
[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:602 process_collection:
Adding per-server state of 'Not in use' for 'Custom:abc'
[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:602 process_collection:
Adding per-server state of 'In use' for 'Custom:abc'
[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:609 process_collection:
Aggregate devstate result is 'In use' for 'Custom:abc'
[Nov 13 13:29:30] DEBUG[14801]: devicestate.c:631 process_collection:
Aggregate state for device 'Custom:abc' has changed to 'In use'

Using XMPP
The eXtensible Messaging and Presence Protocol (XMPP), formerly (and still com-
monly) known as Jabber, is an IETF standardized communications protocol. It is most
commonly known as an IM protocol, but it can be used for a number of other interesting
applications as well. The XMPP Standards Foundation (XSF) works to standardize
extensions to the XMPP protocol. One such extension, referred to as PubSub, provides
a publish/subscribe mechanism.

314 | Chapter 14: Device States

http://www.xmpp.org

Asterisk has the ability to use XMPP PubSub to distribute device state information. One
of the nice things about using XMPP to accomplish this is that it works very well for
geographically distributed Asterisk servers.

Installation

To distribute device states using XMPP, you will need an XMPP server that supports
PubSub. One such server that has been successfully tested against Asterisk is Tigase.

The Tigase website has instructions for installing and configuring the Tigase server.
We suggest that you follow those instructions (or the instructions provided for what-
ever other server you may choose to use) and come back to this book when you’re ready
to work on the Asterisk-specific parts.

On the Asterisk side of things, you will need to ensure that you have installed the
res_jabber module. You can check to see if it is already loaded at the Asterisk CLI:

*CLI> module show like jabber

Module Description Use Count
res_jabber.so AJI - Asterisk Jabber Interface 0
1 modules loaded

If you are using a custom /etc/asterisk/modules.conf file that lists only specific modules
to be loaded, you can also check the filesystem to see if the module was compiled and
installed:

$ ls -l /usr/lib/asterisk/modules/res_jabber.so

-rwxr-xr-x 1 root root 837436 2010-11-12 15:33 /usr/lib/asterisk/modules/res_jabber.so

If you do not yet have res_jabber installed, you will need to install the iksemel and
OpenSSL libraries. Then, you will need to recompile and reinstall Asterisk. Start by
running the Asterisk configure script, which is responsible for inspecting the system
and locating optional dependencies, so that the build system knows which modules
can be built:

$ cd /path/to/asterisk
$./configure

After running the configure script, run the menuselect tool to ensure that Asterisk has
been told to build the res_jabber module. This module can be found in the Resource
Modules section of menuselect:

$ make menuselect

Finally, compile and install Asterisk:

$ make
$ sudo make install

Distributed Device States | 315

http://www.tigase.org

This is a pretty quick and crude set of instructions for compiling and
installing Asterisk. For a much more complete set of instructions, please
see Chapter 3.

Creating XMPP accounts

Unfortunately, Asterisk is currently not able to register new accounts on an XMPP
server. You will have to create an account for each server via some other mechanism.
The method we used while testing was to use an XMPP client such as Pidgin to complete
the account registration process. After account registration is complete, the XMPP cli-
ent is no longer needed. For the rest of the examples, we will use the following two
buddies, both of which are on the server jabber.shifteight.org:

• server1@jabber.shifteight.org/astvoip1

• server2@jabber.shifteight.org/astvoip2

Asterisk configuration

The /etc/asterisk/jabber.conf file will need to be configured on each server. We will show
the configuration for a two-server setup here, but the configuration can easily be ex-
panded to more servers as needed. Example 14-2 shows the contents of the configura-
tion file for server 1 and Example 14-3 shows the contents of the configuration file for
server 2. For additional information on the jabber.conf options associated with distrib-
uted device states, see the configs/jabber.conf.sample file that is included in the Asterisk
source tree.

Example 14-2. jabber.conf for server1

[general]
autoregister = yes

[asterisk]
type = client
serverhost = jabber.shifteight.org
pubsub_node = pubsub.jabber.shifteight.org
username = server1@jabber.shifteight.org/astvoip1
secret = mypassword
distribute_events = yes
status = available
usetls = no
usesasl = yes
buddy = server2@jabber.shifteight.org/astvoip2

Example 14-3. jabber.conf for server2

[general]
autoregister = yes

[asterisk]
type = client

316 | Chapter 14: Device States

http://www.pidgin.im

serverhost = jabber.shifteight.org
pubsub_node = pubsub.jabber.shifteight.org
username = server2@jabber.shifteight.org/astvoip2
secret = mypassword
distribute_events = yes
status = available
usetls = no
usesasl = yes
buddy = server1@jabber.shifteight.org/astvoip1

Testing

To ensure that everything is working properly, start by doing some verification of the
jabber.conf settings on each server. There are a couple of relevant Asterisk CLI com-
mands that can be used here. The first is the jabber show connected command, which
will verify that Asterisk has successfully logged in with an account on the jabber server.
The output of this command on the first server shows:

*CLI> jabber show connected

Jabber Users and their status:
 User: server1@jabber.shifteight.org/astvoip1 - Connected

 Number of users: 1

Meanwhile, if jabber show connected is executed on the second server, it shows:

*CLI> jabber show connected

Jabber Users and their status:
 User: server2@jabber.shifteight.org/astvoip2 - Connected

 Number of users: 1

The next useful command for verifying the setup is jabber show buddies. This command
allows you to verify that the other server is correctly listed on your buddy list. It also
lets you see if the other server is seen as currently connected. If you were to run this
command on the first server without Asterisk currently running on the second server,
the output would look like this:

*CLI> jabber show buddies

Jabber buddy lists
Client: server1@jabber.shifteight.org/astvoip1
 Buddy: server2@jabber.shifteight.org
 Resource: None
 Buddy: server2@jabber.shifteight.org/astvoip2
 Resource: None

Distributed Device States | 317

Next, start Asterisk on the second server and run jabber show buddies on that server.
The output will contain more information, since the second server will see the first
server online:

*CLI> jabber show buddies

Jabber buddy lists
Client: server2@jabber.shifteight.org/astvoip2
 Buddy: server1@jabber.shifteight.org
 Resource: astvoip1
 node: http://www.asterisk.org/xmpp/client/caps
 version: asterisk-xmpp
 Jingle capable: yes
 Status: 1
 Priority: 0
 Buddy: server1@jabber.shifteight.org/astvoip1
 Resource: None

At this point, you should be ready to test out the distribution of device states. The
procedure is the same as that for testing device states over AIS, which can be found in
“Testing device state changes” on page 313.

Shared Line Appearances
In Asterisk, Shared Line Appearances (SLA)—sometimes also referred to in the industry
as Bridged Line Appearances (BLA)—can be used. This functionality can be used to
satisfy two primary use cases, which include emulating a simple key system and creating
shared extensions on a PBX.

Building key system emulation is the use case for which these applications were pri-
marily designed. In this environment, you have some small number of trunks coming
into the PBX, such as analog phone lines, and each phone has a dedicated button for
calls on that trunk. You may refer to these trunks as line 1, line 2, and line 3, for example.

The second primary use case is for creating shared extensions on your PBX. This use
case seems to be the most common these days. There are many reasons you might want
to do this. One example is that you may want an extension to appear on both the phones
of an executive and her administrative assistant. Another example would be if you want
the same extension to appear on all of the phones in the same lab.

While these use cases are supported to an extent, there are limitations. There is still
more work to be done in Asterisk to make these features work really well for what
people want to do with them. These limitations are discussed in “Limita-
tions” on page 328.

Installing the SLA Applications
The SLA applications are built on two key technologies in Asterisk. The first is device
state processing, and the second is conferencing. Specifically, the conferencing used by

318 | Chapter 14: Device States

these applications is the MeetMe() application. The SLA applications come with the
same module as the MeetMe() application, so you must install the app_meetme module.

You can check at the Asterisk CLI to see if you already have the module:

pbx*CLI> module show like app_meetme.so

Module Description Use Count
0 modules loaded

In this case, the module is not present. The most common reason that an Asterisk
system does not have the app_meetme module is because DAHDI has not been installed.
The MeetMe() application uses DAHDI to perform conference mixing. Once DAHDI is
installed (refer to Chapter 3 for installation information), rerun the Asterisk configure
script, recompile, and reinstall. Once the module has been properly installed, you
should be able to see it at the CLI:

*CLI> module show like app_meetme.so

Module Description Use Count
app_meetme.so MeetMe conference bridge 0
1 modules loaded

Once the app_meetme module is loaded, you should have both the SLAStation() and
SLATrunk() applications available:

*CLI> core show applications like SLA

 -= Matching Asterisk Applications =-
 SLAStation: Shared Line Appearance Station.
 SLATrunk: Shared Line Appearance Trunk.
 -= 2 Applications Matching =-

Configuration Overview
The two main configuration files that must be edited to set up SLA are /etc/asterisk/
extensions.conf and /etc/asterisk/sla.conf. The sla.conf file is used for defining trunks
and stations. A station is any SIP phone that will be using SLA. Trunks are the literal
trunks or shared extensions that will be appearing on two or more stations. The Asterisk
dialplan, extensions.conf, provides some important glue that pulls an SLA configuration
together. The dialplan includes some extension state hints and extensions that define
how calls get into and out of an SLA setup. The next few sections provide detailed
examples of the configuration for a few different use cases.

Key System Example with Analog Trunks
This usage of SLA comes with the simplest configuration.† This scenario would typi-
cally be used for a fairly small installation, where you have a few analog lines and SIP

† Admittedly, none of the configuration for SLA is simple.

Shared Line Appearances | 319

phones that all have line keys directly associated with the analog lines. For the purposes
of this example, we will say we have two analog lines and four SIP phones. Each SIP
phone will have a button for line1 and a button for line2. This section will assume that
you have done some configuration up front, including:

• Configuring the four SIP phones. For more information on setting up SIP phones,
see Chapter 5.

• Configuring the two analog lines. Fore more information on setting up analog lines
with Asterisk, see Chapter 7.

For this example, we will use the following device names for the SIP phones and analog
lines. Be sure to adapt the examples to match your own configuration:

• SIP/station1

• SIP/station2

• SIP/station3

• SIP/station4

• DAHDI/1

• DAHDI/2

sla.conf

As mentioned previously, sla.conf contains configuration that maps devices to trunks
and stations. For this example, we will start by defining the two trunks:

[line1]
type = trunk
device = DAHDI/1

[line2]
type = trunk
device = DAHDI/2

Next, we will set up the station definitions. We have four SIP phones, which will each
use both trunks. Note that the section names in sla.conf for stations do not need to
match the SIP device names, but it is done that way here for convenience:

[station1]
type = station
device = SIP/station1
trunk = line1
trunk = line2

[station2]
type = station
device = SIP/station2
trunk = line1
trunk = line2

320 | Chapter 14: Device States

[station3]
type = station
device = SIP/station3
trunk = line1
trunk = line2

[station4]
type = station
device = SIP/station4
trunk = line1
trunk = line2

The station configuration is a bit repetitive. Asterisk configuration file template sections
come in handy here to collapse the configuration down a bit. Here is the station con-
figuration again, but this time using a template:

[station](!)
type = trunk
trunk = line1
trunk = line2

[station1](station)
device = SIP/station1

[station2](station)
device = SIP/station2

[station3](station)
device = SIP/station3

[station4](station)
device = SIP/station4

extensions.conf

The next configuration file required for this example is /etc/asterisk/extensions.conf.
There are three contexts. First, we have the line1 and line2 contexts. When a call comes
in on one of the analog lines, it will come in to one of these contexts in the dialplan and
execute the SLATrunk() application. This application will take care of ringing all of the
appropriate stations:

[line1]

exten => s,1,SLATrunk(line1)

[line2]

exten => s,1,SLATrunk(line2)

The next section of the dialplan is the sla_stations context. All calls from the SIP
phones should be sent to this context. Further, the SIP phones should be configured
such that as soon as they go off-hook, they immediately make a call to the station1

Shared Line Appearances | 321

extension (or station2, station3, etc., as appropriate). If the line1 key on the phone is
pressed, a call should be sent to the station1_line1 extension (or station2_line1, etc.).

Any time that a phone goes off-hook or a line key is pressed, the call that is made will
immediately connect it to one of the analog lines. For a line that is not already in use,
the analog line will be providing a dialtone, and the user will be able to send digits to
make a call. If a user presses a line key for a line that is already in use, that user will be
bridged into the existing call on that line. The sla_stations context looks like this:

[sla_stations]

exten => station1,1,SLAStation(station1)
exten => station1_line1,hint,SLA:station1_line1
exten => station1_line1,1,SLAStation(station1_line1)
exten => station1_line2,hint,SLA:station1_line2
exten => station1_line2,1,SLAStation(station1_line2)

exten => station2,1,SLAStation(station2)
exten => station2_line1,hint,SLA:station2_line1
exten => station2_line1,1,SLAStation(station2_line1)
exten => station2_line2,hint,SLA:station2_line2
exten => station2_line2,1,SLAStation(station2_line2)

exten => station3,1,SLAStation(station3)
exten => station3_line1,hint,SLA:station3_line1
exten => station3_line1,1,SLAStation(station3_line1)
exten => station3_line2,hint,SLA:station3_line2
exten => station3_line2,1,SLAStation(station3_line2)

exten => station4,1,SLAStation(station4)
exten => station4_line1,hint,SLA:station4_line1
exten => station4_line1,1,SLAStation(station4_line1)
exten => station4_line2,hint,SLA:station4_line2
exten => station4_line2,1,SLAStation(station4_line2)

Additional phone configuration tasks

The previous section covered the dialplan for trunks and stations. There are some spe-
cific things to keep in mind when setting up phones for use with this setup. First, each
phone should be configured to send a call as soon as it is taken off-hook.

The other important item is the configuration of the line keys. Asterisk uses extension
state subscriptions to control the LEDs next to the line buttons. Beyond that, each line
key should be configured as a speed-dial. Use the following checklist for your line key
configuration (how you accomplish these tasks will depend on the specific phones you
are using):

• Set the label of the key to be Line 1 (etc.), or whatever you deem appropriate.

• Set up the keys such that the Line 1 key on station1 subscribes to the state of
station1_line1, and so on. This is required so Asterisk can make the LEDs reflect
the state of the lines.

322 | Chapter 14: Device States

• Ensure that if the Line 1 key on station1 is pressed a call is sent to the sta
tion1_line1 extension, and so on.

Key System Example with SIP Trunks
This example is intended to be identical in functionality to the previous example. The
difference is that instead of using analog lines as trunks, we will use a connection to a
SIP provider that will terminate the calls to the PSTN. For more information on setting
up Asterisk to connect to a SIP provider, see Chapter 7.

sla.conf

The sla.conf file for this scenario is a bit tricky.‡ You might expect to see the device line
in the trunk configuration have a SIP channel listed, but instead we’re going to use a
Local channel. This will allow us to use some additional dialplan logic for call pro-
cessing. The purpose of the Local channel will become clearer in the next section, when
the dialplan example is discussed. Here are the trunk configurations:

[line1]
type = trunk
device = Local/disa@line1_outbound

[line2]
type = trunk
device = Local/disa@line2_outbound

The station configuration is identical to the last example, so let’s get right to it:

[station](!)
type = trunk
trunk = line1
trunk = line2

[station1](station)
device = SIP/station1

[station2](station)
device = SIP/station2

[station3](station)
device = SIP/station3

[station4](station)
device = SIP/station4

‡ Read: a hack.

Shared Line Appearances | 323

extensions.conf

As in the last example, you will need line1 and line2 contexts to process incoming calls
on these trunks:

[line1]

exten => s,1,SLATrunk(line1)

;
; If the provider specifies your phone number when sending you
; a call, you will need another rule in the dialplan to match that.
;
exten => _X.,1,Goto(s,1)

[line2]

exten => s,1,SLATrunk(line2)

exten => _X.,1,Goto(s,1)

This example requires an sla_stations context, as well. This is for all calls coming from
the phones. It’s the same as it was in the last example:

[sla_stations]

exten => station1,1,SLAStation(station1)
exten => station1_line1,hint,SLA:station1_line1
exten => station1_line1,1,SLAStation(station1_line1)
exten => station1_line2,hint,SLA:station1_line2
exten => station1_line2,1,SLAStation(station1_line2)

exten => station2,1,SLAStation(station2)
exten => station2_line1,hint,SLA:station2_line1
exten => station2_line1,1,SLAStation(station2_line1)
exten => station2_line2,hint,SLA:station2_line2
exten => station2_line2,1,SLAStation(station2_line2)

exten => station3,1,SLAStation(station3)
exten => station3_line1,hint,SLA:station3_line1
exten => station3_line1,1,SLAStation(station3_line1)
exten => station3_line2,hint,SLA:station3_line2
exten => station3_line2,1,SLAStation(station3_line2)

exten => station4,1,SLAStation(station4)
exten => station4_line1,hint,SLA:station4_line1
exten => station4_line1,1,SLAStation(station4_line1)
exten => station4_line2,hint,SLA:station4_line2
exten => station4_line2,1,SLAStation(station4_line2)

The last piece of the dialplan that is required is the implementation of the line1_out
bound and line2_outbound contexts. This is what the SLA applications use when they
want to send calls out to a SIP provider. The key to this setup is the usage of the
DISA() application. In the last example, phones were directly connected to an analog
line. This allowed the upstream switch to provide a dialtone, collect digits, and then

324 | Chapter 14: Device States

complete the call. In this example, we use the DISA() application locally to provide a
dialtone and collect digits. Once a complete number has been dialed, the call will pro-
ceed to go out to a SIP provider:

[line1_outbound]

exten => disa,1,DISA(no-password,line1_outbound)

;
; Add extensions for whatever numbers you would like to
; allow to be dialed.
;
exten => _1NXXNXXXXXX,1,Dial(SIP/${EXTEN}@myprovider)

[line2_outbound]

exten => disa,1,DISA(no-password,line2_outbound)

exten => _1NXXNXXXXXX,1,Dial(SIP/${EXTEN}@myprovider)

Shared Extension Example
The previous two examples were for small key system emulation. For this example,
we’ll try something quite different. Many PBX vendors offer the ability to have the same
extension shared across multiple phones. This is not simply a matter of having multiple
phones ring when an extension is called: it is deeper integration than that. The behavior
of the line key for a shared extension is similar to that of a line key on a key system. For
example, you can simply put a call on hold from one phone and pick it up from another.
Also, if multiple phones press the key for the shared extension, they will all be bridged
into the same call. That is why this functionality is often also referred to as Bridged Line
Appearances (BLA).

In the previous two examples, we had two trunks and four stations. For this example,
we’re going to set up a single shared extension on two phones. The shared extension
will be referred to as extension 5001.

sla.conf

Every usage of the SLA applications requires trunk and station definitions. This exam-
ple, like the previous ones, will be making use of the DISA() application and the
sla.conf file will look very similar:

[5001]
type = trunk
device = Local/disa@5001_outbound

[5001_phone1]
device = SIP/5001_phone1
trunk = 5001

[5001_phone2]

Shared Line Appearances | 325

device = SIP/5001_phone2
trunk = 5001

extensions.conf

The first part of the dialplan that is required is what will be executed when extension
5001 is dialed on the PBX. Normally, to call a phone you would use the Dial()
application. In this case, we’re going to use the SLATrunk() application. This will take
care of ringing both phones and keeping them bridged together:

exten => 5001,1,SLATrunk(5001)

Next, we will need a context that will be used for making outbound calls from this
shared extension. This assumes that 5001_phone1 and 5001_phone2 have been configured
with their context options set to 5001 in sip.conf:

[5001]

;
; This extension is needed if you want the shared extension to
; be used by default. In that case, have this extension dialed
; when the phone goes off-hook.
;
exten => 5001_phone1,1,SLAStation(5001_phone1)
;
; This is the extension that should be dialed when the 5001 key is
; pressed on 5001_phone1.
;
exten => 5001_phone1_5001,hint,SLA:5001_phone1_5001
exten => 5001_phone1_5001,1,SLAStation(5001_phone1_5001)

exten => 5001_phone2,1,SLAStation(5001_phone2)
exten => 5001_phone2_5001,hint,SLA:5001_phone2_5001
exten => 5001_phone2_5001,1,SLAStation(5001_phone2_5001)

Finally, we need an implementation of the 5001_outbound context. This will be used to
provide a dialtone and collect digits on the bridged line:

[5001_outbound]

exten => disa,1,DISA(no-password,5001_outbound)

;
; This context will also need to be able to see whatever
; extensions you would like to be reachable from this extension.
;
include => pbx_extensions

326 | Chapter 14: Device States

Additional Configuration
The /etc/asterisk/sla.conf file has some optional configuration parameters that were not
used in any of the examples in this chapter. To give you an idea of what other behavior
can be configured, the options are covered here. This file has a [general] section that
is reserved for global configuration options. Currently, there is only a single option that
can be specified in this section:

attemptcallerid = yes
This option specifies whether or not the SLA applications should attempt to pass
caller ID information. It is set to no by default. If this is enabled, the display of the
phones may not be what you would expect in some situations.

The trunk definitions in the previous examples only specified the type and device. Here
are some additional options that can be specified for a trunk:

autocontext = line1
If this option is set, Asterisk will automatically create a dialplan context using this
name. The context will contain an s extension that executes the SLATrunk() appli-
cation with the appropriate argument for this trunk. By default, all dialplan entries
must be created manually.

ringtimeout = 20
This option allows you to specify the number of seconds to allow an inbound call
on this trunk to ring before the SLATrunk() application will exit and consider it an
unanswered call. By default, this option is not set.

barge = no
The barge option specifies whether or not other stations are allowed to join a call
that is in progress on this trunk by pressing the same line button. Barging into a
call on a trunk is allowed by default.

hold = private
The hold option specifies hold permissions for this trunk. If this option is set to
open, any station can place this trunk on hold and any other station is allowed to
take it back off of hold. If this option is set to private, only the station that placed
the trunk on hold is allowed to take it back off of hold. This option is set to open
by default.

When we defined the stations in the previous examples, we only supplied the type,
device, and a list of trunks. However, station definitions accept some additional con-
figuration options, as well. They are listed here:

autocontext = sla_stations
If this option is specified, Asterisk will automatically create the extensions required
for calls coming from this station in the context specified. This is off by default,
which means that all extensions must be specified manually.

Shared Line Appearances | 327

ringtimeout = 20
A timeout may be specified in seconds for how long this station will ring before
the call is considered unanswered. There is no timeout set by default.

ringdelay = 5
A ring delay in seconds can be specified for a station. If a delay is specified, this
station will not start ringing until this number of seconds after the call first came
in on this shared line. There is no delay set by default.

hold = private
Hold permissions can be specified for a specific station as well. If this option is set
to private, any trunks put on hold by this station can only be picked back up by
this station. By default, this is set to open.

trunk = line1,ringtimeout=20
A ringtimeout can be applied to calls coming from only a specific trunk.

trunk = line1,ringdelay=5
A ringdelay can also be applied to calls from a specific trunk.

Limitations
While Asterisk makes many things easy, SLA is not one of them. Despite this func-
tionality being intended to emulate simple features, the configuration required to make
it work is fairly complex. Someone who is new to Asterisk and only wants a simple key
system setup will have to learn a lot of complex Asterisk and SIP phone concepts to get
it working.

Another feature that still needs some development work before it will work seamlessly
with SLA is caller ID. At the time that this functionality was written, Asterisk did not
have the appropriate infrastructure in place to be able to update caller ID information
throughout the duration of the call. Based on how this functionality is implemented,
this infrastructure is required to make the display on the phones useful. It does exist as
of Asterisk 1.8 but the SLA applications have not yet been updated to use it. The end
result is that you can either have no caller ID information at all, or you can enable it
and understand that the phone displays are not always going to display correctly as
changes happen throughout the duration of a call.

Another limitation, most relevant to usage of shared extensions, is that transfers do not
work. The main reason is that transfers generally involve putting a call on hold for a
short time. Call hold is processed in a special way with SLA, in that the held call is not
controlled by the phone that initiated the hold. This breaks transfer processing.

In summary, SLA is not necessarily simple to set up, and it comes with some significant
limitations. With that said, if what does exist suits your needs, by all means go for it.

328 | Chapter 14: Device States

Conclusion
This chapter discussed many aspects of device state handling in Asterisk. We started
by discussing the core concepts of device states and extension states, and built up from
there. We covered how SIP phones can subscribe to states, tools for creating custom
states, and two mechanisms that can be used for distributing states among many serv-
ers. Finally, we covered one of the features in Asterisk, Shared Line Appearances, that
relies heavily on the device state infrastructure in Asterisk to operate.

Conclusion | 329

CHAPTER 15

The Automated Attendant

I don’t answer the phone. I get the feeling whenever I do
that there will be someone on the other end.

—Fred Couples

In many PBXs it is common to have a menuing system in place to answer incoming
calls automatically, and allow the callers to direct themselves to various extensions and
resources in the system through menu choices. This is known in the telecom industry
as an automated attendant (AA). An auto attendant normally provides the following
features:

• Transfer to extension

• Transfer to voicemail

• Transfer to a queue

• Play message (e.g., “our address is…”)

• Connect to a submenu (e.g., “for a listing of our departments...”)

• Connect to reception

• Repeat choices

For anything else—especially if there is external integration required, such as a database
lookup—an Interactive Voice Response (IVR) would normally be needed.

An Auto Attendant Is Not an IVR
In the open source telecom community, you will often hear the term IVR used to de-
scribe an automated attendant. However, in the telecom industry, an IVR is distinct
from an auto attendant. For this reason, when you are talking to somebody about any
sort of telecom menu, you should ensure that you are talking about the same thing. To
a telecom professional, the term IVR implies a relatively complex and involved devel-
opment effort (and subsequent costs), whereas an automated attendant is a simple and
inexpensive thing that is common to most PBXs.

331

In this chapter we talk about building an automated attendant. In Chapter 17 we will
discuss IVR.*

Designing Your Auto Attendant
The most common mistake beginners make when designing an AA is needless com-
plexity. While there can be much joy and sense of accomplishment in the creation of
a multilevel AA with dozens of nifty options and oodles of really cool prompts, your
callers have a different agenda. The reason people make phone calls is primarily because
they want to talk to someone. While people have become used to the reality of auto
attendants, and in some cases they can speed things up, for the most part people would
prefer to speak to somebody live. This means that there are two fundamental rules that
every auto attendant should adhere to:

1. Keep it simple.

2. Make sure you always include a handler for the folks who are going to press 0
whenever they hear an auto attendant. If you do not want to have a 0 option, be
aware that many people will be insulted by this, and they will hang up and not call
back. In business, this is generally a bad thing.

Before you start to code your AA, it is wise to design it. You will need to define a call
flow, and you will need to specify the prompts that will play at each step. Software
diagramming tools can be useful for this, but there’s no need to get fancy. Table 15-1
provides a good template for a basic auto attendant that will do what you need.

Table 15-1. A basic automated attendant

Step or choice Sample prompt Notes Filename

Greeting—business
hours

Thank you for calling
ABC company.

Day greeting. daygreeting.wav

Greeting—non-busi-
ness hours

Thank you for calling
ABC company. Our
office is now closed.

Night greeting. nightgreeting.wav

Main menu If you know the ex-
tension of the per-
son you wish to
reach, please enter it
now. For sales,
please press 1, for
service, press 2, for
our company direc-
tory, press #. For our

Main menu prompt. mainmenu.wav

* It should be noted that Asterisk is an excellent IVR-creation tool. It’s not bad for building automated
attendants either.

332 | Chapter 15: The Automated Attendant

Step or choice Sample prompt Notes Filename
address and fax in-
formation, please
press 3. To repeat
these choices press
9, or you can remain
on the line or press 0
to be connected to
our operator.

1 Please hold while
we connect your
calls.

Transfer to sales queues. holdwhileweconnect.wav

2 Please hold while
we connect your
call.

Transfer to support queue. holdwhileweconnect.wav

n/a Run Directory() application n/a

3 Our address is [ad-
dress]. Our fax num-
ber is [fax number].
etc.

Play a recording containing address and fax
information. Return caller to menu prompt
when done.

faxandaddress.wav

0 Transferring to our
attendant. Please
hold.

Transfer to reception/operator. transfertoreception.wav

9 n/a Repeat. Replay menu prompt (but not greet-
ing).

n/a

t n/a Timeout. If the caller does not make a choice,
treat the call as if caller has dialed 0.

i You have made an
invalid selection.
Please try again.

Caller pressed an invalid digit: replay menu
prompt (but not greeting).

invalid.wav

_XXXa n/a Transfer call to dialed extension. holdwhileweconnect.wav
a This pattern match must be relevant to your extension range.

Let’s go over the various components of this template. Then we’ll show you the dialplan
code required to implement it, as well as how to create prompts for it.

The Greeting
The first thing the caller hears is actually two prompts.

The first prompt is the greeting. The only thing the greeting should do is greet the caller.
Examples of a greeting might be “Thank you for calling Van Meggelen and Associates,”
“Welcome to Leif’s School of Wisdom and T-Shirt Design,” or “You have reached the
offices of Dewey, Cheetum, and Howe, Attorneys.” That’s it—the choices for the caller
will come later. This allows you to record different greetings without having to record

Designing Your Auto Attendant | 333

a whole new menu. For example, for a few weeks each year you might want your
greeting to say “Season’s greetings” or whatever, but your menu will not need to change.
Also, if you want to play a different recording after hours (“Thank you for calling. Our
office is now closed.”), you can use different greetings, but the heart of the menu can
stay the same. Finally, if you want to be able to return callers to the menu from a
different part of the system, you will normally not want them to hear the greeting again.

The Main Menu
The main menu prompt is where you inform your callers of the choices available to
them. You should speak this as quickly as possible (without sounding rushed).† When
you record a choice, always tell the users the action that will be taken before giving them
the digit option to take that action. So, don’t say “press 1 for sales,” but rather say “for
sales, press 1.” The reason for this is that most people will not pay full attention to the
prompt until they hear the choice that is of interest to them. Once they hear their choice,
you will have their full attention and can tell them what button to press to get them to
where they want to go.

Another point to consider is what order to put the choices in. A typical business, for
example, will want sales to be the first menu choice, and most callers will expect this
as well. The important thing is to think of your callers. For example, most people will
not be interested in address and fax information, so don’t make that the first choice.‡

Think about the goal of getting the callers to their intended destinations as quickly as
possible when you make your design choices. Ruthlessly cut anything that is not ab-
solutely essential.

Selection 1

Option 1 in our example will be a simple transfer. Normally this would be to a resource
located in another context, and it would typically have an internal extension number
so that internal users could also transfer calls to it. In this example, we are going to use
this option to send callers to the queue called sales that was created in Chapter 13.

Selection 2

Option 2 will be technically identical to option 1. Only the destination will be different.
This selection will transfer callers to the support queue.

† If necessary, you can use an audio editing program such as Audacity to remove silence, and even to speed up
the recording a bit.

‡ In fact, we don’t normally recommend this in an AA because it adds to what the caller has to listen to, and
most people will go to a website for this sort of information.

334 | Chapter 15: The Automated Attendant

Selection #

It’s good to have the option for the directory as close to the beginning of the recording
as possible. Many people will use a directory if they know it is there, but can’t be
bothered to listen to the whole menu prompt to find out about it. Impatient people will
press 0, so the sooner you tell them about the directory, the more chance you’ll have
that they’ll use it, and thus reduce the workload on your receptionist.

Selection 3

When you have an option that does nothing but play a recording back to the caller
(such as address and fax information), you can leave all the code for that in the same
context as the menu, and simply return the caller to the main menu prompt at the end
of the recording. In general, these sorts of options are not as useful as we would like to
think they are, so in most cases you’ll probably want to leave this out.

Selection 9

It is very important to give the caller the option to hear the choices again. Many people
will not be paying attention throughout the whole menu, and if you don’t give them
the option to hear the choices again, they will most likely press 0.

Note that you do not have to play the greeting again, only the main menu prompt.

Selection 0

As stated before, and whether you like it or not, this is the choice that many (possibly
the majority) of your callers will select. If you really don’t want to have somebody
handle these calls, you can send this extension to a mailbox, but we don’t recommend
it. If you are a business, many of your callers will be your customers. You want to make
it easy for them to get in touch with you. Trust us.

Timeout
Many people will call a number, and not pay too much attention to what is happening.
They know that if they just wait on the line, they will eventually be transferred to the
operator. Or perhaps they are in their cars, and really shouldn’t be pressing buttons on
their phones. Either way, oblige them. If they don’t make any selection, don’t harass
them and force them to do so. Connect them to the operator.

Invalid
People make mistakes. That’s OK. The invalid handler will let them know that whatever
they have chosen is not a valid option and will return them to the menu prompt so that
they can try again. Note that you should not play the greeting again, only the main
menu prompt.

Designing Your Auto Attendant | 335

Dial by Extension
If somebody calls your system and knows the extension she wants to reach, your au-
tomated attendant should have code in place to handle this.

Although Asterisk can handle an overlap between menu choices and
extension numbers (i.e., you can have a menu choice 1 and extensions
from 100–199), it is generally best to avoid this overlap. Otherwise, the
dialplan will always have to wait for the interdigit timeout whenever
somebody presses 1, because it won’t know if they are planning to dial
extension 123. The interdigit timeout is the delay the system will allow
between digits before it assumes the entire number has been input. This
timer ensures callers have enough time to dial a multidigit extension,
but it also causes a delay in the processing of single-digit inputs.

Building Your Auto Attendant
After you have designed your auto attendant, there are three things you need to do to
make it work properly:

• Record prompts.

• Build the dialplan for the menu.

• Direct the incoming channels to the auto attendant context.

We will start by talking about recordings.

Recording Prompts
Recording prompts for a telephone system is a critical task. This is what your callers
will hear when they interact with your system, and the quality and professionalism of
these prompts will reflect on your organization.

Asterisk is very flexible in this regard and can work with many different audio formats.
We have found that, in general, the most useful format to use is WAV. Files saved in
this format can be of many different kinds, but only one type of WAV file will work
with Asterisk: files must be encoded in 16-bit, 8000 Hz, mono format.

Recommended Prompt File Format
The WAV file format we have recommended is useful for system prompts because it is
a format that can easily be converted to any other format that your phones might use
without distortion, and one that almost any computer can play without any special
software. Thus, not only can Asterisk handle the file easily, but it is also easy to work
with it on a PC (which can be useful). Asterisk can handle other file formats as well,
and in some cases these may be more suitable to your needs, but in general we find 16-

336 | Chapter 15: The Automated Attendant

bit 8-kHz WAV files to be the easiest to work with and, most of the time, the best-
possible quality.

There are essentially two ways to get prompts into a system. One is to record sound
files in a studio or on a PC, and then move those files into the system. A second way is
to record the prompts directly onto the system using a telephone set. We prefer the
second method.

Our advice is this: don’t get hung up on the complexities of recording audio through
a PC or in a studio.§ It is generally not necessary. A telephone set will produce excellent-
quality recordings, and the reasons are simple: the microphone and electronics in a
telephone are carefully designed to capture the human voice in a format that is ideal
for transmission on telephone networks, and therefore a phone set is also ideal for doing
prompts. The set will capture the audio in the correct format, and will filter out back-
ground noise and normalize the decibel level.

Yes, a properly produced studio prompt will be superior to a prompt
recorded over a telephone, but if you don’t have the equipment or ex-
perience, take our advice and use a telephone to do your recordings,
because a poorly produced studio prompt will be much worse.

Using the dialplan to create recordings

The simplest method of recording prompts is to use the Record() application. For
example:

[context_for_my_handset]
exten => 101,1,Playback(vm-intro)
exten => 101,n,Record(maingreeting.wav)
exten => 101,n,Wait(2)
exten => 101,n,Playback(maingreeting)
exten => 101,n,Hangup

This extension plays a prompt, issues a beep, makes a recording, and plays that re-
cording back.‖ It’s notable that the Record() application takes the entire filename as its
argument, while the Playback() application excludes the filetype extension
(.wav, .gsm, etc.). This is because the Record() application needs to know which format
the recording should be made in, while the Playback() application does not. Instead,
Playback() automatically selects the best audio format available, based upon the codec
your handset is using and the formats available in the sounds folder (for example, if you

§ Unless you are an expert in these areas, in which case go for it!

‖ The vm-intro prompt isn’t perfect (it asks you to leave a message), but it’s close enough for our purposes.
The usage instructions at least are correct: press pound to end the recording. Once you’ve gotten the hang
of recording prompts, you can go back, record a custom prompt, and change priority 1 to reflect more
appropriate instructions for recording your own prompts.

Building Your Auto Attendant | 337

have a maingreeting.wav and a maingreeting.gsm file in your sounds folder, Play
back() will select the one that requires the least CPU to play back to the caller).

You’ll probably want a separate extension for recording each of the prompts, possibly
hidden away from your normal set of extensions, to avoid a mistyped extension from
wiping out any of your current menu prompts. If the number of prompts that you have
is large, repeating this extension with slight modifications for each will get tedious, but
there are ways around that. We’ll show you how to make your prompt recording more
intelligent in Chapter 17, but for now, this method will suffice.

The Dialplan
Here is the code required to create the auto attendant that we designed earlier. We will
often use blank lines before labels within an extension in order to make the dialplan
easier to read, but note that just because there is a blank line does not mean there is a
different extension:

[main_menu]

exten => s,1,Verbose(1, Caller ${CALLERID(all)} has entered the auto attendant)
 same => n,Answer()

; this sets the inter-digit timer
 same => n,Set(TIMEOUT(digit)=2)

; wait one second to establish audio
 same => n,Wait(1)

; If Mon-Fri 9-5 goto label daygreeting
 same => n,GotoIfTime(9:00-17:00,mon-fri,*,*?daygreeting:afterhoursgreeting)

 same => n(afterhoursgreeting),Background(after-hours) ; AFTER HOURS GREETING
 same => n,Goto(menuprompt)

 same => n(daygreeting),Background(daytime) ; DAY GREETING
 same => n,Goto(menuprompt)

 same => n(menuprompt),Background(main-menu) ; MAIN MENU PROMPT
 same => n,WaitExten(4) ; more than 4 seconds is probably
 ; too much
 same => n,Goto(0,1) ; Treat as if caller has pressed '0'

exten => 1,1,Verbose(1,
 same => n,Goto(Queues,7002,1) ; Sales Queue - see Chapter 13 for details

exten => 2,1,Verbose(1,
 same => n,Goto(Queues,7001,1) ; Service Queue - see Chapter 13 for details

exten => 3,1,Verbose(1,
 same => n,Background() ; Address and fax info
 same => n,Goto(s,menuprompt) ; Take caller back to main menu prompt

338 | Chapter 15: The Automated Attendant

exten => #,1,Verbose(1,
 same => n,Directory() ;

exten => 0,1,Verbose(1,
 same => n,Dial(SIP/operator) ; Operator extension/queue

exten => i,1,Verbose(1,
 same => n,Playback(invalid)
 same => n,Goto(s,menuprompt)

exten => t,1,Verbose(1,
 same => n,Goto(0,1)

; You will want to have a pattern match for the various extensions
; that you'll allow external callers to dial
; BUT DON'T JUST INCLUDE THE LocalSets CONTEXT
; OR EXTERNAL CALLERS WILL BE ABLE TO MAKE CALLS OUT OF YOUR SYSTEM

; WHATEVER YOU DO HERE, TEST IT CAREFULLY TO ENSURE EXTERNAL CALLERS
; WILL NOT BE ABLE TO DO ANYTHING BUT DIAL INTERNAL EXTENSIONS

exten => _1XX,1,Verbose(1,Call to an extension starting with '1'
 same => n,Goto(InternalSets,${EXTEN},1)

Delivering Incoming Calls to the Auto Attendant
Any call coming into the system will enter the dialplan in the context defined for what-
ever channel the call arrives on. In many cases this will be a context named incoming,
or from-pstn, or something similar. The calls will arrive either with an extension (as
would be the case with a DID) or without one (which would be the case with a tradi-
tional analog line).

Whatever the name of the context, and whatever the name of the extension, you will
want to send each incoming call to the menu. Here are a few examples:

[from-pstn] ; an analog line that has context=from-pstn (typically a DAHDI channel)
exten => s,1,Goto(main_menu,s,1)

[incoming] ; a DID coming in on a channel with context=incoming (PRI, SIP, or IAX)
exten => 4169671111,1,Goto(main_menu,s,1)

Depending on how you configure your incoming channels, you will generally want to
use the Goto() application if you want to send the call to an auto attendant. This is far
neater than just coding everything in the incoming context.

Building Your Auto Attendant | 339

IVR
We’ll cover Interactive Voice Response (IVR) in more depth in Chapter 17 but before
we do that, we’re going to talk about something that is essential to any IVR: database
integration is the subject of the next chapter.

Conclusion
An automated attendant can provide a very useful service to callers. However, if it is
not designed and implemented well, it can also be a barrier to your callers that may
well drive them away. Take the time to carefully plan out your auto attendant, and keep
it simple.

340 | Chapter 15: The Automated Attendant

CHAPTER 16

Relational Database Integration

Few things are harder to put up with than the annoyance
of a good example.

—Mark Twain

In this chapter we are going to explore integrating some Asterisk features and functions
into a database. There are several databases available for Linux, but we have chosen to
limit our discussion to the two most popular: PostgreSQL and MySQL.

We will also explain how to configure Linux to connect to a Microsoft SQL database
via ODBC; however, configuration of the Windows/Microsoft portion is beyond the
scope of this book.

Regardless of which database you use, this chapter focuses primarily on the ODBC
connector, so as long as you have some familiarity with getting your favorite database
ODBC-ready, you shouldn’t have any problems with this chapter.

Integrating Asterisk with databases is one of the fundamental aspects of building a large
clustered or distributed system. The power of the database will enable you to use dy-
namically changing data in your dialplans, for tasks such as sharing information across
an array of Asterisk systems or integrating with web-based services. Our favorite
dialplan function, which we will cover later in this chapter, is func_odbc.

While not all Asterisk deployments will require relational databases, understanding
how to harness them opens a treasure chest full of new ways to design your telecom
solution.

341

Installing and Configuring PostgreSQL and MySQL
In the following sections we will show how to install and configure PostgreSQL and
MySQL on both CentOS and Ubuntu.* It is recommended that you only install one
database at a time while working through this section. Pick the database you are most
comfortable with, as there is no wrong choice.

Installing PostgreSQL for CentOS
The following command can be used to install the PostgreSQL server and its depend-
encies from the console:

$ sudo yum install -y postgresql-server
Install 3 Package(s)
Upgrade 0 Package(s)

Total download size: 6.9 M
Is this ok [y/N]: y

Then start the database, which will take a few seconds to initialize for the first time:

$ sudo service postgresql start

Now head to “Configuring PostgreSQL” on page 343 for instructions on how to per-
form the initial configuration.

Installing PostgreSQL for Ubuntu
To install PostgreSQL on Ubuntu, run the following command. You will be prompted
to also install any additional packages that are dependencies of the application. Press
Enter to accept the list of dependencies, at which point the packages will be installed
and PostgreSQL will be automatically started and initialized:

$ sudo apt-get install postgresql
...
After this operation, 19.1MB of additional disk space will be used.
Do you want to continue [Y/n]? y

Now head to “Configuring PostgreSQL” on page 343 for instructions on how to per-
form the initial configuration.

* On a large, busy system you will want to install the database on a completely separate box from your Asterisk
system.

342 | Chapter 16: Relational Database Integration

Installing MySQL for CentOS
To install MySQL on CentOS, run the following command. You will be prompted to
install several dependencies. Press Enter to accept, and the MySQL server and de-
pendency packages will be installed:

$ sudo yum install mysql-server
Install 5 Package(s)
Upgrade 0 Package(s)

Total download size: 27 M
Is this ok [y/N]: y

Then start the MySQL database by running:

$ sudo service mysqld start

Now head to “Configuring MySQL” on page 345 to perform the initial configuration.

Installing MySQL for Ubuntu
To install MySQL on Ubuntu, run the following command. You will be prompted to
install several dependencies. Press Enter to accept, and the MySQL server and its de-
pendency packages will be installed:

$ sudo apt-get install mysql-server
Need to get 24.0MB of archives.
After this operation, 60.6MB of additional disk space will be used.
Do you want to continue [Y/n]? y

During the installation, you will be placed into a configuration wizard to help you
through the initial configuration of the database. You will be prompted to enter a new
password for the root user. Type in a strong password and press Enter . You will then
be asked to confirm the password. Type your strong password again, followed by
Enter . You will then be returned to the console, where the installation will complete.
The MySQL service will now be running.

Now head to “Configuring MySQL” on page 345 to perform the initial configuration.

Configuring PostgreSQL
Next, create a user called asterisk, which you will use to connect to and manage the
database. You can switch to the postgres user by using the following command:

$ sudo su - postgres

At the time of this writing, PostgreSQL version 8.1.x is utilized on
CentOS, and 8.4.x on Ubuntu.

Installing and Configuring PostgreSQL and MySQL | 343

Then run the following commands to create the asterisk user in the database and set
up permissions:

$ createuser -P
Enter name of user to add: asterisk
Enter password for new user:
Enter it again:
Shall the new role be a superuser? (y/n) n
Shall the new user be allowed to create databases? (y/n) y
Shall the new user be allowed to create more new users? (y/n) n
CREATE ROLE

Now, edit the pg_hba.conf file in order to allow the asterisk user you just created to
connect to the PostgreSQL server over the TCP/IP socket.

On CentOS, this file will be located at /var/lib/pgsql/data/pg_hba.conf. On Ubuntu, you
will find it at /etc/postgresql/8.4/main/pg_hba.conf.

At the end of the file, replace everything below this line:

TYPE DATABASE USER CIDR-ADDRESS METHOD

with the following:

TYPE DATABASE USER CIDR-ADDRESS METHOD
host all asterisk 127.0.0.1/32 md5
local all asterisk trust

Configuring PostgreSQL Database Access via IPv6 localhost
Also, on Ubuntu you will likely need to add the following line:

host all asterisk ::1/128 md5

Without it, when you get to “Validating the ODBC Connector” on page 351 you may
end up with the following error when connecting:

[28000][unixODBC]FATAL: no pg_hba.conf entry for host "::1", user "asterisk",
database "asterisk", SSL off
[ISQL]ERROR: Could not SQLConnect

Now you can create the database that we will use throughout this chapter. Call the
database asterisk and set the owner to your asterisk user:

$ createdb --owner=asterisk asterisk
CREATE DATABASE

You can set the password for the asterisk user like so:

$ psql -d template1
template1=# "ALTER USER asterisk WITH PASSWORD 'password'"
template1=# \q

Exit from the postgres user:

$ exit

344 | Chapter 16: Relational Database Integration

Then restart the PostgreSQL server. On CentOS:

$ sudo service postgresql restart

You need to restart the PostgreSQL service because you made changes
to pg_hba.conf, not because you added a new user or changed the pass-
word.

On Ubuntu:

$ sudo /etc/init.d/postgresql-8.4 restart

On Ubuntu 10.10 and newer the version number seems to be dropped,
so it may just be /etc/init.d/postgresql restart.

You can verify your connection to the PostgreSQL server via TCP/IP, like so:

$ psql -h 127.0.0.1 -U asterisk
Password for user asterisk:

Welcome to psql 8.1.21, the PostgreSQL interactive terminal.

Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with psql commands
 \g or terminate with semicolon to execute query
 \q to quit

asterisk=>

You’re now ready to move on to “Installing and Configuring ODBC” on page 346.

Configuring MySQL
With the MySQL database now running, you should secure your installation. Con-
veniently, there is a script you can execute that will allow you to enter a new pass-
word† for the root user, along with some additional options. The script is pretty
straightforward, and after entering and confirming your root password you can con-
tinue to select the defaults unless you have a specific reason not to.

Execute the following script:

$ sudo /usr/bin/mysql_secure_installation

† If you installed on Ubuntu, you will have already set the root password. You will have to enter that password
while executing the script, at which point it will say you’ve already set a root password, so you don’t need
to change it.

Installing and Configuring PostgreSQL and MySQL | 345

Then connect to the database console so you can create your asterisk user and set up
permissions:

$ mysql -u root -p
Enter password:

After entering the password, you will be presented with the mysql console prompt. You
can now create your asterisk user by executing the CREATE USER command. The % is a
wildcard indicating the asterisk user can connect from any host and is IDENTIFIED BY
the password some_secret_password (which you should obviously change). Note the
trailing semicolon:

mysql> CREATE USER 'asterisk'@'%' IDENTIFIED BY 'some_secret_password';
Query OK, 0 rows affected (0.00 sec)

Let’s also create the initial database you’ll use throughout this chapter:

mysql> CREATE DATABASE asterisk;
Query OK, 1 rows affected (0.00 sec)

Now that you’ve created your user and database, you need to assign permissions for
the asterisk user to access the asterisk database:

mysql> GRANT ALL PRIVILEGES ON asterisk.* TO 'asterisk'@'%';
Query OK, 0 rows affected (0.00 sec)

Finally, exit from the console and verify that your permissions are correct by logging
back into the asterisk database as the asterisk user:

mysql> exit
Bye
mysql -u asterisk -p asterisk
Enter password:

mysql>

You’re now ready to move on to “Installing and Configuring ODBC” on page 346.

Installing and Configuring ODBC
The ODBC connector is a database abstraction layer that makes it possible for Asterisk
to communicate with a wide range of databases without requiring the developers to
create a separate database connector for every database Asterisk wants to support. This
saves a lot of development effort and code maintenance. There is a slight performance
cost, because we are adding another application layer between Asterisk and the data-
base, but this can be mitigated with proper design and is well worth it when you need
powerful, flexible database capabilities in your Asterisk system.

Before you install the connector in Asterisk, you have to install ODBC into Linux itself.
To install the ODBC drivers, use one of the following commands.

346 | Chapter 16: Relational Database Integration

On CentOS:

$ sudo yum install unixODBC unixODBC-devel libtool-ltdl libtool-ltdl-devel

If you’re using a 64-bit installation, remember to add .x86_64 to the end
of your development packages to make sure the i386 packages are not
also installed, as stability problems can result if Asterisk links against
the wrong libraries.

On Ubuntu:

$ sudo apt-get install unixODBC unixODBC-dev

See Chapter 3 for the matrix of packages you should have installed.

You’ll also need to install the unixODBC development package, because Asterisk uses
it to build the ODBC modules we will be using throughout this chapter.

The unixODBC drivers shipped with distributions are often a few ver-
sions behind the officially released versions on the http://www.unixodbc
.org website. If you have stability issues while using unixODBC, you
may need to install from source. Just be sure to remove the uni-
xODBC drivers via your package manager first, and then update the
paths in your /etc/odbcinst.ini file.

By default, CentOS will install the drivers for connecting to PostgreSQL databases via
ODBC. To install the drivers for MySQL, execute the following command:

$ sudo yum install mysql-connector-odbc

To install the PostgreSQL ODBC connector on Ubuntu:

$ sudo apt-get install odbc-postgresql

Or to install the MySQL ODBC connector on Ubuntu:

$ sudo apt-get install libmyodbc

Configuring ODBC for PostgreSQL
Configuration for the PostgreSQL ODBC driver is done in the /etc/odbcinst.ini file.

On CentOS the default file already contains some data, including that for PostgreSQL,
so just verify that the data exists. The file will look like the following:

[PostgreSQL]
Description = ODBC for PostgreSQL

Installing and Configuring ODBC | 347

http://www.unixodbc.org
http://www.unixodbc.org

Driver = /usr/lib/libodbcpsql.so
Setup = /usr/lib/libodbcpsqlS.so
FileUsage = 1

On Ubuntu, the /etc/odbcinst.ini file will be blank, so you’ll need to add the data to that
configuration file. Add the following to the odbcinst.ini file:

[PostgreSQL]
Description = ODBC for PostgreSQL
Driver = /usr/lib/odbc/psqlodbca.so
Setup = /usr/lib/odbc/libodbcpsqlS.so
FileUsage = 1

On 64-bit systems, you will need to change the path of the libraries
from /usr/lib/ to /usr/lib64/ in order to access the correct library files.

In either case, you can use cat > /etc/odbcinst.ini to write a clean configuration file, as
we’ve done in other chapters. Just use Ctrl + D to save the file once you’re done.

Verify that the system is able to see the driver by running the following command. It
should return the label name PostgreSQL if all is well:

$ odbcinst -q -d
[PostgreSQL]

Next, configure the /etc/odbc.ini file, which is used to create an identifier that Asterisk
will use to reference this configuration. If at any point in the future you need to change
the database to something else, you simply need to reconfigure this file, allowing
Asterisk to continue to point to the same place‡:

[asterisk-connector]
Description = PostgreSQL connection to 'asterisk' database
Driver = PostgreSQL
Database = asterisk
Servername = localhost
UserName = asterisk
Password = welcome
Port = 5432
Protocol = 8.1
ReadOnly = No
RowVersioning = No
ShowSystemTables = No
ShowOidColumn = No
FakeOidIndex = No
ConnSettings =

‡ Yes, this is excessively verbose. The only entries you really need are Driver, Database, and Servername. Even
the UserName and Password are specified elsewhere, as you’ll see later (although these are required when testing,
as in “Validating the ODBC Connector” on page 351).

348 | Chapter 16: Relational Database Integration

Configuring ODBC for MySQL
Configuration for the MySQL ODBC driver is done in the /etc/odbcinst.ini file.

On CentOS the default file already contains some data, including that for MySQL, but
it needs to be uncommented and requires a couple of changes. Replace the existing text
with the following:

[MySQL]
Description = ODBC for MySQL
Driver = /usr/lib/libmyodbc3.so
Setup = /usr/lib/libodbcmyS.so
FileUsage = 1

On Ubuntu, the /etc/odbcinst.ini file will be blank, so you’ll need to add the data to that
configuration file. Add the following to the odbcinst.ini file:

[MySQL]
Description = ODBC for MySQL
Driver = /usr/lib/odbc/libmyodbc.so
Setup = /usr/lib/odbc/libodbcmyS.so
FileUsage = 1

On 64-bit systems, you will need to change the path of the libraries
from /usr/lib/ to /usr/lib64/ in order to access the correct library files.

In either case, you can use cat > /etc/odbcinst.ini to write a clean configuration file, as
we’ve done in other chapters. Just use Ctrl + D to save the file once you’re done.

Verify that the system is able to see the driver by running the following command. It
should return the label name MySQL if all is well:

odbcinst -q -d
[MySQL]

Next, configure the /etc/odbc.ini file, which is used to create an identifier that Asterisk
will use to reference this configuration. If at any point in the future you need to change
the database to something else, you simply need to reconfigure this file, allowing
Asterisk to continue to point to the same place:

[asterisk-connector]
Description = MySQL connection to 'asterisk' database
Driver = MySQL
Database = asterisk
Server = localhost
UserName = asterisk
Password = welcome
Port = 3306
Socket = /var/lib/mysql/mysql.sock

Installing and Configuring ODBC | 349

On Ubuntu 10.10, the socket location is /var/run/mysqld/mysqld.sock.

Configuring ODBC for Microsoft SQL
Connecting to Microsoft SQL (MS SQL) is similar to connecting to either MySQL or
PostgreSQL, as we’ve previously discussed. The configuration of MS SQL is beyond
the scope of this book, but the following information will get your Asterisk box con-
figured to connect to your MS SQL database once you’ve enabled the appropriate per-
missions on your database.

To connect to MS SQL, you need to install the FreeTDS drivers using the package
manager (or by compiling via the source files available at http://www.freetds.org).

On CentOS:

$ sudo yum install freetds

On Ubuntu:

$ sudo apt-get install freetds

After installing the drivers, you need to configure the /etc/odbcinst.ini file, which tells
the system where the driver files are located.

Insert the following text into the /etc/odbcinst.ini file with your favorite text editor or
with the following command:

$ sudo cat > /etc/odbcinst.ini
[FreeTDS]
Description = ODBC for Microsoft SQL
Driver = /usr/lib/libtdsodbc.so
UsageCount = 1
Threading = 2
Ctrl + D

If you compiled via source, the files may be located in /usr/local/lib/ or
(if you compiled on a 64-bit system) /usr/local/lib64/.

Verify that the system is able to see the driver by running the following command. It
should return the label name FreeTDS if all is well:

$ odbcinst -q -d
[FreeTDS]

350 | Chapter 16: Relational Database Integration

http://www.freetds.org

Once you’ve configured the drivers, you need to modify the /etc/odbc.ini file to control
how to connect to the database:

[asterisk-connector]
Description = MS SQL connection to 'asterisk' database
Driver = FreeTDS
Database = asterisk
Server = 192.168.100.1
UserName = asterisk
Password = welcome
Trace = No
TDS_Version = 7.0
Port = 1433

In the next section, you will be able to validate your connection to the MS SQL server.

Validating the ODBC Connector
Now, verify that you can connect to your database using the isql application. echo the
select 1 statement and pipe it into isql, which will then connect using the asterisk-
connector section you added to /etc/odbc.ini. You should get the following output (or
at least something similar; we’re looking for a result of 1 rows fetched):

$ echo "select 1" | isql -v asterisk-connector
+---------------------------------------+
| Connected! |
| |
| sql-statement |
| help [tablename] |
| quit |
| |
+---------------------------------------+
SQL> +------------+
| ?column? |
+------------+
| 1 |
+------------+
SQLRowCount returns 1
1 rows fetched
$ exit

With unixODBC installed, configured, and verified to work, you need to recompile
Asterisk so that the ODBC modules are created and installed. Change back to your
Asterisk source directory and run the ./configure script so it knows you have installed
unixODBC:

$ cd ~/src/asterisk-complete/asterisk/1.8
$./configure
$ make menuselect
$ make install

Installing and Configuring ODBC | 351

Almost everything in this chapter is turned on by default. You will want
to run make menuselect to verify that the ODBC-related modules are
enabled. These include cdr_odbc, cdr_adaptive_odbc, func_odbc,
func_realtime, pbx_realtime, res_config_odbc, and res_odbc. For voi-
cemail stored in an ODBC database, be sure to select ODBC_STORAGE from
the Voicemail Build Options menu. You can verify that the modules exist
in the /usr/lib/asterisk/modules/ directory.

Configuring res_odbc to Allow Asterisk to Connect Through ODBC
Asterisk ODBC connections are configured in the res_odbc.conf file located in /etc/
asterisk. The res_odbc.conf file sets the parameters that various Asterisk modules will
use to connect to the database.

The pooling and limit options are quite useful for MS SQL and Sybase
databases. These permit you to establish multiple connections (up to
limit connections) to a database while ensuring that each connection
has only one statement executing at once (this is due to a limitation in
the protocol used by these database servers).

Modify the res_odbc.conf file so it looks like the following:

[asterisk]
enabled => yes
dsn => asterisk-connector
username => asterisk
password => welcome
pooling => no
limit => 0
pre-connect => yes

The dsn option points at the database connection you configured in /etc/odbc.ini, and
the pre-connect option tells Asterisk to open up and maintain a connection to the
database when loading the res_odbc.so module. This lowers some of the overhead that
would come from repeatedly setting up and tearing down the connection to the
database.

Once you’ve configured res_odbc.conf, start Asterisk and verify the database connec-
tion with the odbc show CLI command:

*CLI> odbc show

ODBC DSN Settings

 Name: asterisk
 DSN: asterisk-connector

352 | Chapter 16: Relational Database Integration

 Last connection attempt: 1969-12-31 19:00:00
 Pooled: No
 Connected: Yes

Managing Databases
While it isn’t within the scope of this book to teach you about how to manage your
databases, it is worth at least noting briefly some of the applications you could use to
help with database management. Several exist, some of which are local client applica-
tions running from your computer and connecting to the database, and others of which
are web-based applications that could be served from the same computer running the
database itself, thereby allowing you to connect remotely.

Some of the ones we’ve used include:

• phpMyAdmin (http://www.phpmyadmin.net)

• MySQL Workbench (http://wb.mysql.com)

• pgAdmin (http://www.pgadmin.org)

• Navicat (commercial) (http://www.navicat.com)

Troubleshooting Database Issues
When working with ODBC database connections and Asterisk, it is important to re-
member that the ODBC connection abstracts some of the information passed between
Asterisk and the database. In cases where things are not working as expected, you may
need to enable logging on your database platform to see what Asterisk is sending to the
database (e.g., what SELECT, INSERT, or UPDATE statements are being triggered from
Asterisk), what the database is seeing, and why the database may be rejecting the
statements.

For example, one of the most common problems found with ODBC database integra-
tion is an incorrectly defined table, or a missing column that Asterisk expects to exist.
While great strides have been made in the form of adaptive modules, not all parts of
Asterisk are adaptive. In the case of ODBC voicemail storage, you may have missed a
column such as flag, which is a new column not previously found in versions of Asterisk
prior to 1.8.§ In order to debug why your data is not being written to the database as
expected, you should enable statement logging on the database side, and then deter-
mine what statement is being executed and why the database is rejecting it.

§ This was actually an issue one of the authors had while working on this book, and the flag column was found
by looking at the statement logging during PostgreSQL testing.

Managing Databases | 353

http://www.phpmyadmin.net
http://wb.mysql.com
http://www.pgadmin.org
http://www.navicat.com

A Gentle Introduction to func_odbc
The very first use of func_odbc, which occurred while its author was still writing it, is
also a good introduction to its use. A customer of one of the module’s authors noted
that some people calling into his switch had figured out a way to make free calls with
his system. While his eventual intent was to change his dialplan to avoid those prob-
lems, he needed to blacklist certain caller IDs in the meantime, and the database he
wanted to use for this was a Microsoft SQL Server database. With a few exceptions,
this is the actual dialplan‖:

[span3pri]
exten => _50054XX,1,NoOp()
 same => n,Set(CDR(accountcode)=pricall)
 same => n,GotoIf($[${ODBC_ANIBLOCK(${CALLERID(number)})}]?busy)
 same => n(dial),Dial(DAHDI/G1/${EXTEN})
 same => n(busy),Busy(10)
 same => n,Hangup

This dialplan, in a nutshell, passes through all calls to another system for routing pur-
poses, except those calls whose caller IDs are in a blacklist. The calls coming into this
system used a block of 100 7-digit DIDs. There is a mystery function in this dialplan,
though: ODBC_ANIBLOCK(). This function is defined in another configuration file,
func_odbc.conf, at runtime:

[ANIBLOCK]
dsn=telesys
readsql=SELECT IF(COUNT(1)>0, 1, 0) FROM Aniblock WHERE NUMBER='${ARG1}'

So, your ODBC_ANIBLOCK()# connects to a listing in res_odbc.conf named telesys and
selects a count of records that have the NUMBER specified by the argument, which is,
referring to our dialplan above, the caller ID. Nominally, this function should return
either a 1 (indicating the caller ID exists in the Aniblock table) or a 0 (if it does not).
This value also evaluates directly to true or false, which means we don’t need to use an
expression in our dialplan to complicate the logic.

Getting Funky with func_odbc: Hot-Desking
The func_odbc dialplan function is arguably the coolest and most powerful dialplan
function in Asterisk. It allows you to create and use fairly simple dialplan functions that
retrieve and use information from databases directly in the dialplan. There are all kinds

‖ This system is unfortunately no longer in service. Thus, any changes have been made for the sake of simplicity,
not to conceal the business for which it was designed.

#We’re using the IF() SQL function to make sure we return a value of 0 or 1. This works on MySQL 5.1 or
later. If it does not work on your SQL installation, you could also check the returned result in the dialplan
using the IF() function there.

354 | Chapter 16: Relational Database Integration

of ways in which this might be used, such as for managing users or allowing the sharing
of dynamic information within a clustered set of Asterisk machines.

What func_odbc allows you to do is define SQL queries to which you assign function
names. In effect, you are creating custom functions that obtain their results by executing
queries against a database. The func_odbc.conf file is where you specify the relationships
between the function names you create and the SQL statements you wish them to
perform. By referring to the named functions in the dialplan, you can retrieve and
update values in the database.

While using an external script to interact with a database (from which
a flat file is created that Asterisk will read) has advantages (if the database
goes down, your system will continue to function and the script will
simply not update any files until connectivity to the database is re-
stored), it also has disadvantages. A major disadvantage is that any
changes you make to a user will not be available until you run the update
script. This is probably not a big issue on small systems, but on large
systems waiting for changes to take effect can cause issues, such as
pausing a live call while a large file is loaded and parsed.

You can relieve some of this by utilizing a replicated database system.
Asterisk 1.6.0 and newer provide the ability to fail over to another da-
tabase system. This way, you can cluster the database backend utilizing
a master-master relationship (for PostgreSQL, pgcluster or Postgres-
R;* for MySQL it’s native†), or a master-slave (for PostgreSQL, Slony-I,
for MySQL it’s native) replication system.

In order to get you into the right frame of mind for what follows, we want you to picture
a Dagwood sandwich.‡

Can you relay the total experience of such a thing by showing someone a picture of a
tomato, or by waving a slice of cheese about? Not hardly. That is the conundrum we
faced when trying to give a useful example of why func_odbc is so powerful. So, we
decided to build the whole sandwich for you. It’s quite a mouthful, but after a few bites
of this, peanut butter and jelly is never going to be the same.

For our example, we decided to implement something we think could have some prac-
tical uses. Picture a small company with a sales force of five people who have to share
two desks. This is not as cruel as it seems, because these folks spend most of their time
on the road, and they are each only in the office for at most one day each week.

* pgcluster appears to be a dead project, and Postgres-R appears to be in its infancy, so there may
currently be no good solution for master-master replication using PostgreSQL.

† There are several tutorials on the Web describing how to set up replication with MySQL.

‡ And if you don’t know what a Dagwood is, that’s what Wikipedia is for. I am not that old.

Getting Funky with func_odbc: Hot-Desking | 355

http://pgcluster.projects.postgresql.org/
http://postgres-r.org/
http://postgres-r.org/
http://www.slony.info/

Still, when they do get into the office, they’d like the system to know which desks they
are sitting at, so that their calls can be directed there. Also, the boss wants to be able
to track when they are in the office and control calling privileges from those phones
when no one is there.

This need is typically solved by what is called a hot-desking feature, so we have built
one for you in order to show you the power of func_odbc.

Lets start with the easy stuff, and create two desktop phones in the sip.conf file:

; sip.conf
; HOT DESK USERS
[0000FFFF0001]
type=friend
host=dynamic
secret=my_special_secret
context=hotdesk
qualify=yes

[0000FFFF0002]
type=friend
host=dynamic
secret=my_special_secret
context=hotdesk
qualify=yes

; END HOT DESK USERS

These two desk phones both enter the dialplan at the hotdesk context in exten-
sions.conf. If you want to have these devices actually work, you will of course need to
set the appropriate parameters in the devices themselves, but we covered all that in
Chapter 5.

That’s all for sip.conf. We’ve got two slices of bread, which is hardly a sandwich yet.

Now let’s get the database part of it set up (we are assuming that you have an ODBC
database created and working, as outlined in the earlier parts of this chapter). First,
connect to the database console.

For PostgreSQL:

$ sudo su - postgres
$ psql -U asterisk -h localhost asterisk
Password:

Then create the table with the following bit of SQL:

CREATE TABLE ast_hotdesk
(
 id serial NOT NULL,
 extension int8,
 first_name text,
 last_name text,
 cid_name text,
 cid_number varchar(10),

356 | Chapter 16: Relational Database Integration

 pin int4,
 context text,
 status bool DEFAULT false,
 "location" text,
 CONSTRAINT ast_hotdesk_id_pk PRIMARY KEY (id)
)
WITHOUT OIDS;

For MySQL:

$ mysql -u asterisk -p asterisk
Enter password:

Then create the table with the following bit of SQL:

CREATE TABLE ast_hotdesk
(
 id serial NOT NULL,
 extension int8,
 first_name text,
 last_name text,
 cid_name text,
 cid_number varchar(10),
 pin int4,
 context text,
 status bool DEFAULT false,
 location text,
 CONSTRAINT ast_hotdesk_id_pk PRIMARY KEY (id)
);

The table information is summarized in Table 16-1.

Table 16-1. Summary of ast_hotdesk table

Column name Column type

id Serial, auto-incrementing

extension Integer

first_name Text

last_name Text

cid_name Text

cid_number Varchar 10

pin Integer

context Text

status Boolean, default false

location Text

After that, populate the database with the following information (some of the values
that you see actually will change only after the dialplan work is done, but we include
it here by way of example).

Getting Funky with func_odbc: Hot-Desking | 357

At the PostgreSQL console, run the following commands:

asterisk=> INSERT INTO ast_hotdesk ('extension', 'first_name', 'last_name',\
'cid_name','cid_number', 'pin', 'context', 'location') \
VALUES (1101, 'Leif', 'Madsen', 'Leif Madsen', '4165551101', '555',\
'longdistance','0000FFFF0001');

At the MySQL console, run the following commands:

mysql> INSERT INTO ast_hotdesk (extension, first_name, last_name, cid_name,
cid_number, pin, context, location)
VALUES (1101, 'Leif', 'Madsen', 'Leif Madsen',
'4165551101', '555', 'longdistance', '0000FFFF0001');

Repeat these commands, changing the VALUES as needed, for all entries you wish to have
in the database. You can view the data in the ast_hotdesk table by running a simple
SELECT statement from the database console:

mysql> SELECT * FROM ast_hotdesk;

which would give you something like the following output:

| id | extension | first_name | last_name | cid_name | cid_number
|----+-----------+------------+----------------+--------------------+--------------
| 1 | 1101 | "Leif" | "Madsen" | "Leif Madsen" | "4165551101"
| 2 | 1102 | "Jim" | "Van Meggelen" | "Jim Van Meggelen" | "4165551102"
| 3 | 1103 | "Russell" | "Bryant" | "Russell Bryant" | "4165551103"
| 4 | 1104 | "Mark" | "Spencer" | "Mark Spencer" | "4165551104"
| 5 | 1105 | "Kevin" | "Fleming" | "Kevin Fleming" | "4165551105"

| pin | context | status | location |$
+-------+-----------------+---------+----------------+
"555"	"longdistance"	"TRUE"	"0000FFFF0001"
"556"	"longdistance"	"FALSE"	""
"557"	"local"	"FALSE"	""
"558"	"international"	"FALSE"	""
"559"	"local"	"FALSE"	""

We’ve got the condiments now, so let’s get to our dialplan. This is where the magic is
going to happen.

Somewhere in extensions.conf we are going to have to create the hotdesk context. To
start, let’s define a pattern-match extension that will allow the users to log in:

; extensions.conf
; Hot-Desking Feature
[hotdesk]
; Hot Desk Login
exten => _#110[1-5],1,NoOp()
 same => n,Set(E=${EXTEN:1}) ; strip off the leading hash (#) symbol
 same => n,Verbose(1,Hot Desk Extension ${E} is changing status)
 same => n,Verbose(1,Checking current status of extension ${E})
 same => n,Set(${E}_STATUS=${HOTDESK_INFO(status,${E})})
 same => n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})

358 | Chapter 16: Relational Database Integration

We’re not done writing this extension yet, but let’s pause for a moment and see where
we’re at so far.

When a sales agent sits down at a desk, he logs in by dialing hash (#) plus his own
extension number. In this case we have allowed the 1101 through 1105 extensions to
log in with our pattern match of _#110[1-5]. You could just as easily make this less
restrictive by using _#11XX (allowing 1100 through 1199). This extension uses
func_odbc to perform a lookup with the HOTDESK_INFO() dialplan function. This custom
function (which we will define in the func_odbc.conf file) performs an SQL statement
and returns whatever is retrieved from the database.

We would define the new function HOTDESK_INFO() in func_odbc.conf like so:

[INFO]
prefix=HOTDESK
dsn=asterisk
readsql=SELECT ${ARG1} FROM ast_hotdesk WHERE extension = '${ARG2}'

That’s a lot of stuff in just a few lines. Let’s quickly cover them before we move on.

First of all, the prefix is optional. If you don’t configure the prefix, then Asterisk adds
“ODBC” to the name of the function (in this case, INFO), which means this function would
become ODBC_INFO(). This is not very descriptive of what the function is doing, so it
can be helpful to assign a prefix that helps to relate your ODBC functions to the tasks
they are performing. We chose HOTDESK, which means that this custom function will be
named HOTDESK_INFO().

The dsn attribute tells Asterisk which connection to use from res_odbc.conf. Since sev-
eral database connections could be configured in res_odbc.conf, we specify which one
to use here. In Figure 16-1, we show the relationship between the various file config-
urations and how they reference down the chain to connect to the database.

The func_odbc.conf.sample file in the Asterisk source contains addi-
tional information about how to handle multiple databases and control
the reading and writing of information to different DSN connections.
Specifically, the readhandle, writehandle, readsql, and writesql argu-
ments will provide you with great flexibility for database integration and
control.

Finally, we define our SQL statement with the readsql attribute. Dialplan functions
have two different formats that they can be called with: one for retrieving information,
and one for setting information. The readsql attribute is used when we call the HOT
DESK_INFO() function with the retrieve format (we could execute a separate SQL state-
ment with the writesql attribute; we’ll discuss the format for that attribute a little bit
later in this chapter).

Reading values from this function would take this format in the dialplan:

exten => s,n,Set(RETURNED_VALUE=${HOTDESK_INFO(status,1101)})

Getting Funky with func_odbc: Hot-Desking | 359

This would return the value located in the database within the status column where
the extension column equals 1101. The status and 1101 we pass to the
HOTDESK_INFO() function are then placed into the SQL statement we assigned to the
readsql attribute, available as ${ARG1} and ${ARG2}, respectively. If we had passed a
third option, this would have been available as ${ARG3}.

Multirow Functionality with func_odbc
As of Asterisk branch 1.6.0, a mode exists that allows Asterisk to handle multiple rows
of data returned from the database. For example, if we were to create a dialplan function
in func_odbc.conf that returned all available extensions, we would need to enable mul-
tirow mode for the function. This would cause the function to work a little differently,
returning an ID number that could then be passed to the ODBC_FETCH() function to
return each row in turn.

Prior to the 1.6.0 branch, we needed to use the SQL functions LIMIT and OFFSET in order
to control data being returned to Asterisk for iteration. This was resource-intensive (at
least in relation to multirow mode), as it required multiple queries to the database for
each row.

Figure 16-1. Relationships between func_odbc.conf, res_odbc.conf, /etc/odbc.ini (unixODBC), and
the database connection

360 | Chapter 16: Relational Database Integration

A simple example follows. Suppose we have the following func_odbc.conf:

[ALL_AVAIL_EXTENS]
prefix=GET
dsn=asterisk-connector
mode=multirow
readsql=SELECT extension FROM ast_hotdesk WHERE status = '${ARG1}'

and a dialplan in extensions.conf that looks something like this:

[multirow_example]
exten => start,1,Verbose(1,Looping example)
 same => n,Set(ODBC_ID=${GET_ALL_AVAIL_EXTENS(1)})
 same => n,GotoIf($[${ODBCROWS} < 1]?no_rows,1)
 same => n,Set(COUNTER=1)
 same => n,While($[${COUNTER} <= ${ODBCROWS}])
 same => n,Set(AVAIL_EXTEN_${COUNTER}=${ODBC_FETCH(${ODBC_ID})})
 same => n,Set(COUNTER=$[${COUNTER + 1])
 same => n,EndWhile()
 same => n,ODBCFinish()

exten => no_rows,1,Verbose(1,No rows returned)
 same => n,Playback(silence/1&invalid)
 same => n,Hangup()

The ODBC_FETCH() function will essentially treat the information as a stack, and each
call to it with the passed ODBC_ID will pop the next row of information off the stack. We
also have the option of using the ODBC_FETCH_STATUS channel variable, which is set once
the ODBC_FETCH() function (which returns SUCCESS if additional rows are available or
FAILURE if no additional rows are available) is called. This permits us to write a dialplan
like the following, which does not use a counter, but still loops through the data. This
may be useful if we’re looking for something specific and don’t need to look at all the
data. Once we’re done, the ODBCFinish() dialplan application should be called to clean
up any remaining data.

Here’s another extensions.conf example:

[multirow_example_2]
exten => start,1,Verbose(1,Looping example with break)
 same => n,Set(ODBC_ID=${GET_ALL_AVAIL_EXTENS(1)})
 same => n(loop_start),NoOp()
 same => n,Set(ROW_RESULT=${ODBC_FETCH(${ODBC_ID})})
 same => n,GotoIf($["${ODBC_FETCH_RESULT}" = "FAILURE"]?cleanup,1)
 same => n,GotoIf($["${ROW_RESULT}" = "1104"]?good_exten,1)
 same => n,Goto(loop_start)

exten => cleanup,1,Verbose(1,Cleaning up after all iterations)
 same => n,Verbose(1,We did not find the extension we wanted)
 same => n,ODBCFinish(${ODBC_ID})
 same => n,Hangup()

exten => good_exten,1,Verbose(1,Extension we want is available)
 same => n,ODBCFinish(${ODBC_ID})
 same => n,Verbose(1,Perform some action we wanted)
 same => n,Hangup()

We’ll be using multirow mode for one of our functions later in this chapter.

Getting Funky with func_odbc: Hot-Desking | 361

After the SQL statement is executed, the value returned (if any) is assigned to the
RETURNED_VALUE channel variable.

Using the ARRAY() Function
In our example, we are utilizing two separate database calls and assigning those values
to a pair of channel variables, ${E}_STATUS and ${E}_PIN. This was done to simplify the
example:

exten => _110[1-5],n,Set(${E}_STATUS=${HOTDESK_INFO(status,${E})})
 same => n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})

As an alternative, we could have returned multiple columns and saved them to separate
variables utilizing the ARRAY() dialplan function. If we had defined our SQL statement
in the func_odbc.conf file like so:

readsql=SELECT pin,status FROM ast_hotdesk WHERE extension = '${E}'

we could have used the ARRAY() function to save each column of information for the
row to its own variable with a single call to the database:

exten => _110[1-5],n,Set(ARRAY(${E}_PIN,${E}_STATUS)=${HOTDESK_INFO(${E})})

Using ARRAY() is handy any time you might get comma-separated values back and want
to assign the values to separate variables, such as with CURL().

So, in the first two lines of the following block of code, we are passing the value
status and the value contained in the ${E} variable (e.g., 1101) to the HOTDESK_INFO()
function. The two values are then replaced in the SQL statement with ${ARG1} and $
{ARG2}, respectively, and the SQL statement is executed. Finally the value returned is
assigned to the ${E}_STATUS channel variable.

OK, let’s finish writing the pattern-match extension now:

 same => n,Set(${E}_STATUS=${HOTDESK_INFO(status,${E})})
 same => n,Set(${E}_PIN=${HOTDESK_INFO(pin,${E})})
 same => n,GotoIf($[${ODBCROWS} < 0]?invalid_user,1)
; check if ${E}_STATUS is NULL
 same => n,GotoIf($[${${E}_STATUS} = 1]?logout,1:login,1)

After assigning the value of the status column to the ${E}_STATUS variable (if the user
dials extension 1101, the variable name will be 1101_STATUS), we check if we’ve received
a value back from the database (error checking) using the ${ODBCROWS} channel variable.

The last row in the block checks the status of the phone and, if the agent is currently
logged in, logs him off. If the agent is not already logged in, it will go to extension
login, priority 1 within the same context.

362 | Chapter 16: Relational Database Integration

Remember that in a traditional phone system all extensions must be
numbers, but in Asterisk, extensions can have names as well. A possible
advantage of using an extension that’s not a number is that it will be
much harder for a user to dial it from her phone and, thus, more secure.
We’re going to use several named extensions in this example. If you
want to be absolutely sure that a malicious user cannot access those
named extensions, simply use the trick that the AEL loader uses: start
with a priority other than 1. You can access the first line of the extension
by assigning it a priority label and referencing it via the extension name/
priority label combination.

The login extension runs some initial checks to verify the pin code entered by the agent.
We allow him three tries to enter the correct pin, and if all tries are invalid we send the
call to the login_fail extension (which we will be writing later):

exten => login,1,NoOp() ; set initial counter values
 same => n,Set(PIN_TRIES=1) ; pin tries counter
 same => n,Set(MAX_PIN_TRIES=3) ; set max number of login attempts
 same => n,Playback(silence/1) ; play back some silence so first prompt is
 ; not cut off
 same => n(get_pin),NoOp()
 same => n,Set(PIN_TRIES=$[${PIN_TRIES} + 1]) ; increase pin try counter
 same => n,Read(PIN_ENTERED,enter-password,${LEN(${${E}_PIN})})
 same => n,GotoIf($["${PIN_ENTERED}" = "${${E}_PIN}"]?valid_login,1)
 same => n,Playback(pin-invalid)
 same => n,GotoIf($[${PIN_TRIES} <= ${MAX_PIN_TRIES}]?get_pin:login_fail,1)

If the pin entered matches, we validate the login with the valid_login extension. First
we utilize the CHANNEL variable to figure out which phone device the agent is calling
from. The CHANNEL variable is usually populated with something like SIP/0000FFFF0001-
ab4034c, so we make use of the CUT() function to first pull off the SIP/ portion of the
string and assign that to LOCATION. We then strip off the -ab4034c part of the string,
discard it, and assign the remainder (0000FFFF0001) to the LOCATION variable:

exten => valid_login,1,NoOp()
; CUT off the channel technology and assign it to the LOCATION variable
 same => n,Set(LOCATION=${CUT(CHANNEL,/,2)})
; CUT off the unique identifier and save the remainder to the LOCATION variable
 same => n,Set(LOCATION=${CUT(LOCATION,-,1)})

We utilize yet another custom function created in the func_odbc.conf file, HOT
DESK_CHECK_PHONE_LOGINS(), to check if any other users were previously logged into this
phone and forgot to log out. If the number of logged-in users is greater than 0 (it should
never be more than 1, but we check for higher values anyway and reset those, too), it
runs the logic in the logout_login extension:

; func_odbc.conf
[CHECK_PHONE_LOGINS]
prefix=HOTDESK
dsn=asterisk

Getting Funky with func_odbc: Hot-Desking | 363

; *** This line should have no line breaks
readsql=SELECT COUNT(status) FROM ast_hotdesk WHERE status = '1' AND
location = '${ARG1}'

If there are no other agents logged into the device, we update the login status for this
user with the HOTDESK_STATUS() function:

; Continuation of the valid_login extension below
 same => n,Set(USERS_LOGGED_IN=${HOTDESK_CHECK_PHONE_
LOGINS(${LOCATION})})
 same => n,GotoIf($[${USERS_LOGGED_IN} > 0]?logout_login,1)
 same => n(set_login_status),NoOp()

; Set the status for the phone to '1' and where the agent is logged into
 same => n,Set(HOTDESK_STATUS(${E})=1,${LOCATION})
 same => n,GotoIf($[${ODBCROWS} < 1]?error,1)
 same => n,Playback(agent-loginok)
 same => n,Hangup()

We create a write function in func_odbc.conf like so:

[STATUS]
prefix=HOTDESK
dsn=asterisk

; *** This line should have no line breaks
writesql=UPDATE ast_hotdesk SET status = '${VAL1}',
location = '${VAL2}' WHERE extension = '${ARG1}'

The syntax is very similar to the readsql syntax discussed earlier in the chapter, but
there are a few new things here, so let’s discuss them before moving on.

The first thing you may have noticed is that we now have both ${VALx} and ${ARGx}
variables in our SQL statement. These contain the values we pass to the function from
the dialplan. In this case, we have two VAL variables and a single ARG variable that were
set from the dialplan via this statement:

Set(HOTDESK_STATUS(${E})=1,${LOCATION})

Notice the syntax is slightly different from that of the read-style function. This signals
to Asterisk that you want to perform a write (this is the same syntax as that used for
other dialplan functions).

We are passing the value of the ${E} variable to the HOTDESK_STATUS() function, whose
value is then accessible in the SQL statement within func_odbc.conf with the ${ARG1}
variable. We then pass two values: 1 and ${LOCATION}. These are available to the SQL
statement in the ${VAL1} and ${VAL2} variables, respectively.

As mentioned previously, if we had to log out one or more agents before logging this
one in, we would check this with the logout_login extension. This dialplan logic will
utilize the ODBC_FETCH() function to pop information off the information stack returned
by the HOTDESK_LOGGED_IN_USER() function. More than likely this will execute only one

364 | Chapter 16: Relational Database Integration

loop, but it’s a good example of how you might update or parse multiple rows in the
database.§

The first part of our dialplan returns an ID number that we can use with the
ODBC_FETCH() function to iterate through the values returned. We’re going to assign this
ID to the LOGGED_IN_ID channel variable:

 same => n,Set(LOGGED_IN_ID=${HOTDESK_LOGGED_IN_USER(${LOCATION})})

Here is the logout_login extension, which could potentially loop through multiple
rows:

exten => logout_login,1,NoOp()
; set all logged-in users on this device to logged-out status
 same => n,Set(LOGGED_IN_ID=${HOTDESK_LOGGED_IN_USER(${LOCATION})})
 same => n(start_loop),NoOp()
 same => n,Set(WHO=${ODBC_FETCH(${LOGGED_IN_ID})})
 same => n,GotoIf($["${ODBC_FETCH_STATUS}" = "FAILURE"]?cleanup)
 same => n,Set(HOTDESK_STATUS(${WHO})=0) ; log out phone
 same => n,Goto(start_loop)
 same => n(cleanup),ODBCFinish(${LOGGED_IN_ID})
 same => n,Goto(valid_login,set_login_status) ; return to logging in

We assign the first value returned from the database (e.g., the extension 1101) to the
WHO channel. Before doing anything, though, we check to see if the ODBC_FETCH() func-
tion was successful in returning data. If the ODBC_FETCH_STATUS channel variable con-
tains FAILURE, we have no data to work with, so we move to the cleanup priority label.

If we have data, we then pass the value of ${WHO} as an argument to the
HOTDESK_STATUS() function, which contains a value of 0. This is the first value passed
to HOTDESK_STATUS() and is shown as ${VAL1} in func_odbc.conf, where the function is
declared.

If you look at the HOTDESK_STATUS() function in func_odbc.conf you will see we could
also pass a second value, but we’re not doing that here since we want to remove any
values from that column in order to log out the user, which setting no value does
effectively.

After using HOTDESK_STATUS() to log out the user, we return to the start_loop priority
label to loop through all values, which simply executes a NoOp(). After attempting to
retrieve a value, we again check ODBC_FETCH_STATUS for FAILURE. If that value is found,
we move to the cleanup priority label, where we execute the ODBCFinish() dialplan
application to perform cleanup. We then return to the valid_login extension at the
set_login_status priority label.

The rest of the context should be fairly straightforward (if some of this doesn’t make
sense, we suggest you go back and refresh your memory with Chapters 6 and 10). The
one trick you may be unfamiliar with could be the usage of the ${ODBCROWS} channel

§ Also see “Multirow Functionality with func_odbc” on page 360 for more information and examples of parsing
multiple rows returned from the database.

Getting Funky with func_odbc: Hot-Desking | 365

variable, which is set by the HOTDESK_STATUS() function. This tells us how many rows
were affected in the SQL UPDATE, which we assume to be 1. If the value of ${ODB
CROWS} is less than 1, we assume an error and handle it appropriately:

exten => logout,1,NoOp()
 same => n,Set(HOTDESK_STATUS(${E})=0)
 same => n,GotoIf($[${ODBCROWS} < 1]?error,1)
 same => n,Playback(silence/1&agent-loggedoff)
 same => n,Hangup()

exten => login_fail,1,NoOp()
 same => n,Playback(silence/1&login-fail)
 same => n,Hangup()

exten => error,1,NoOp()
 same => n,Playback(silence/1&connection-failed)
 same => n,Hangup()

exten => invalid_user,1,NoOp()
 same => n,Verbose(1,Hot Desk extension ${E} does not exist)
 same => n,Playback(silence/2&invalid)
 same => n,Hangup()

We also include the hotdesk_outbound context, which will handle our outgoing calls
after we have logged the agent into the system:

include => hotdesk_outbound

The hotdesk_outbound context utilizes many of the same principles discussed previ-
ously, so we won’t approach it quite so thoroughly; essentially, this context will catch
all numbers dialed from the desk phones. We first set our LOCATION variable using the
CHANNEL variable, then determine which extension (agent) is logged into the system and
assign that value to the WHO variable. If this variable is NULL, we reject the outgoing call.
If it is not NULL, then we get the agent information using the HOTDESK_INFO() function
and assign it to several CHANNEL variables, including the context to handle the call with,
where we perform a Goto() to the context we have been assigned (which controls our
outbound access).

We will make use of the HOTDESK_PHONE_STATUS() dialplan function, which you can
define in func_odbc.conf like so:

[PHONE_STATUS]
prefix=HOTDESK
dsn=asterisk
readsql=SELECT extension FROM ast_hotdesk WHERE status = '1'
readsql+= AND location = '${ARG1}'

If we try to dial a number that is not handled by our context (or one of the transitive
contexts—i.e., international contains long distance, which also contains local), the
built-in extension i is executed, which plays back a message stating that the action
cannot be performed and hangs up the call:

366 | Chapter 16: Relational Database Integration

[hotdesk_outbound]
exten => _X.,1,NoOp()
 same => n,Set(LOCATION=${CUT(CHANNEL,/,2)})
 same => n,Set(LOCATION=${CUT(LOCATION,-,1)})
 same => n,Set(WHO=${HOTDESK_PHONE_STATUS(${LOCATION})})
 same => n,GotoIf($[${ISNULL(${WHO})}]?no_outgoing,1)
 same => n,Set(${WHO}_CID_NAME=${HOTDESK_INFO(cid_name,${WHO})})
 same => n,Set(${WHO}_CID_NUMBER=${HOTDESK_INFO(cid_number,${WHO})})
 same => n,Set(${WHO}_CONTEXT=${HOTDESK_INFO(context,${WHO})})
 same => n,Goto(${${WHO}_CONTEXT},${EXTEN},1)

[international]
exten => _011.,1,NoOp()
 same => n,Set(E=${EXTEN})
 same => n,Goto(outgoing,call,1)

exten => i,1,NoOp()
 same => n,Playback(silence/2&sorry-cant-let-you-do-that2)
 same => n,Hangup()

include => longdistance

[longdistance]
exten => _1NXXNXXXXXX,1,NoOp()
 same => n,Set(E=${EXTEN})
 same => n,Goto(outgoing,call,1)

exten => _NXXNXXXXXX,1,Goto(1${EXTEN},1)

exten => i,1,NoOp()
 same => n,Playback(silence/2&sorry-cant-let-you-do-that2)
 same => n,Hangup()

include => local

[local]
exten => _416NXXXXXX,1,NoOp()
 same => n,Set(E=${EXTEN})
 same => n,Goto(outgoing,call,1)

exten => i,1,NoOp()
 same => n,Playback(silence/2&sorry-cant-let-you-do-that2)
 same => n,Hangup()

If the call is allowed to be executed, it is sent to the [outgoing] context for processing
and the caller ID name and number are set with the CALLERID() function. The call is
then placed via the SIP channel using the service_provider we created in the sip.conf
file:

[outgoing]
exten => call,1,NoOp()
 same => n,Set(CALLERID(name)=${${WHO}_CID_NAME})
 same => n,Set(CALLERID(number)=${${WHO}_CID_NUMBER})
 same => n,Dial(SIP/service_provider/${E})

Getting Funky with func_odbc: Hot-Desking | 367

 same => n,Playback(silence/2&pls-try-call-later)
 same => n,Hangup()

Our service_provider might look something like this in sip.conf:

[service_provider]
type=friend
host=switch1.service_provider.net
defaultuser=my_username
fromuser=my_username
secret=welcome
context=incoming
canreinvite=no
disallow=all
allow=ulaw

Now that we’ve implemented a fairly complex feature in the dialplan with the help of
func_odbc to retrieve and store data in a remote relational database, hopefully you’re
starting to get why we think this is so cool. With a handful of self-defined dialplan
functions in the func_odbc.conf file and a couple of tables in a database, we can create
some fairly rich applications!

How many things have you just thought of that you could apply func_odbc to?

Using Realtime
The Asterisk Realtime Architecture (ARA) enables you to store the configuration files
(that would normally be found in /etc/asterisk) and their configuration options in a
database table. There are two types of realtime: static and dynamic.

The static version is similar to the traditional method of reading a configuration file,
except that the data is read from the database instead.

The dynamic realtime method, which loads and updates the information as it is re-
quired, is used for things such as SIP/IAX2 user and peer objects and voicemail.

Making changes to static information requires a reload, just as if you had changed a
text file on the system, but dynamic information is polled by Asterisk as needed, so no
reload is required when changes are made to this data. Realtime is configured in the
extconfig.conf file located in the /etc/asterisk directory. This file tells Asterisk what to
load from the database and where to load it from, allowing certain files to be loaded
from the database and other files to be loaded from the standard configuration files.

Static Realtime
Static realtime is useful when you want to load from a database the configuration that
you would normally place in the configuration files in /etc/asterisk. The same rules that
apply to flat files on your system still apply when using static realtime. For example,
after making changes to the configuration you must either run the reload command

368 | Chapter 16: Relational Database Integration

from the Asterisk CLI, or reload the module associated with the configuration file (e.g.,
using module reload chan_sip.so).

When using static realtime, we tell Asterisk which files we want to load from the da-
tabase using the following syntax in the extconfig.conf file:

; /etc/asterisk/extconfig.conf
filename.conf => driver,database[,table]

If the table name is not specified, Asterisk will use the name of the file
as the table name instead.

The static realtime module uses a specifically formatted table to read the configuration
of static files in from the database. Table 16-2 illustrates the columns as they should
be defined in your database:

Table 16-2. Table layout and description of ast_config

Column name Column type Description

id Serial, auto-
incrementing

An auto-incrementing unique value for each row in the table.

cat_metric Integer The weight of the category within the file. A lower metric means it appears higher in
the file (see the sidebar on page 370).

var_metric Integer The weight of an item within a category. A lower metric means it appears higher in the
list (see the sidebar on page 370). This is useful for things like codec order in sip.conf, or
iax.conf where you want disallow=all to appear first (metric of 0), followed by
allow=ulaw (metric of 1), then allow=gsm (metric of 2).

filename Varchar 128 The filename the module would normally read from the hard drive of your system (e.g.,
musiconhold.conf, sip.conf, iax.conf, etc.).

category Varchar 128 The section name within the file, such as [general]. Do not include the square
brackets around the name when saving to the database.

var_name Varchar 128 The option on the left side of the equals sign (e.g., disallow is the var_name in
disallow=all).

var_val Varchar 128 The value of an option on the right side of the equals sign (e.g., all is the var_val
in disallow=all).

commented Integer Any value other than 0 will evaluate as if it were prefixed with a semicolon in the flat
file (commented out).

Using Realtime | 369

A Word About Metrics
The metrics in static realtime are used to control the order in which objects are read
into memory. Think of the cat_metric and var_metric as the original line numbers in
the flat file. A higher cat_metric is processed first, because Asterisk matches categories
from bottom to top. Within a category, through, a lower var_metric is processed first,
because Asterisk processes the options top-down (e.g., disallow=all should be set to
a value lower than the allow’s value within a category to make sure it is processed first).

A simple file we can load from static realtime is the musiconhold.conf‖ file. Let’s start
by moving this file to a temporary location:

$ cd /etc/asterisk
$ mv musiconhold.conf musiconhold.conf.old

In order for the classes to be removed from memory, we need to restart Asterisk. Then
we can verify that our classes are blank by running moh show classes:

*CLI> core restart now
*CLI> moh show classes
*CLI>

Let’s put the [default] class back into Asterisk, but now we’ll load it from the database.
Connect to your database and execute the following INSERT statements:

> INSERT INTO ast_config (filename,category,var_name,var_val)
 VALUES ('musiconhold.conf','default','mode','files');

> INSERT INTO ast_config (filename,category,var_name,var_val)
 VALUES ('musiconhold.conf','default','directory','/var/lib/asterisk/moh');

You can verify that your values have made it into the database by running a SELECT
statement:

asterisk=# SELECT filename,category,var_name,var_val FROM ast_config;

 filename | category | var_name | var_val
------------------+----------------+--------------+------------------------
 musiconhold.conf | default | mode | files
 musiconhold.conf | default | directory | /var/lib/asterisk/moh
(2 rows)

There’s one last thing to modify in the extconfig.conf file in the /etc/asterisk directory
to tell Asterisk to get the data for musiconhold.conf from the database using the ODBC
connection. The first column states that we’re using the ODBC drivers to connect
(res_odbc.conf) and that the connection name is asterisk (as defined with [asterisk]
in res_odbc.conf). Add the following line to the end of the extconfig.conf file, and then
save it:

‖ The musiconhold.conf file can also be loaded via dynamic realtime, but we’re using it statically as it’s a simple
file that makes a good example.

370 | Chapter 16: Relational Database Integration

musiconhold.conf => odbc,asterisk,ast_config

Then connect to the Asterisk console and perform a reload:

*CLI> module reload res_musiconhold.so

You can now verify that your music on hold classes are loading from the database by
running moh show classes:

*CLI> moh show classes
Class: general
 Mode: files
 Directory: /var/lib/asterisk/moh

And there you go: musiconhold.conf loaded from the database. If you have issues with
the reload of the module loading the data into memory, try restarting Asterisk. You can
perform the same steps in order to load other flat files from the database, as needed.

Dynamic Realtime
The dynamic realtime system is used to load objects that may change often, such as
SIP/IAX2 users and peers, queues and their members, and voicemail messages. Like-
wise, when new records are likely to be added on a regular basis, we can utilize the
power of the database to let us load this information on an as-needed basis.

All of realtime is configured in the /etc/asterisk/extconfig.conf file, but dynamic realtime
has well-defined configuration names. Defining something like SIP peers is done with
the following format:

; extconfig.conf
sippeers => driver,database[,table]

The table name is optional. If it is omitted, Asterisk will use the predefined name (i.e.,
sippeers) to identify the table in which to look up the data.

Remember that we have both SIP peers and SIP users: peers are end-
points we send calls to, and a user is something we receive calls from.
A friend is shorthand that defines both.

In our example, we’ll be using the ast_sippeers table to store our SIP peer information.
So, to configure Asterisk to load all SIP peers from our database using realtime, we
would define something like this:

; extconfig.conf
sippeers => odbc,asterisk,ast_sipfriends

To also load our SIP users from the database, we would define the sipusers object
like so:

sipusers => odbc,asterisk,ast_sipfriends

Using Realtime | 371

You may have noticed we used the same table for both the sippeers and sipusers. This
is because there will be a type field (just as if we were defining the type in the sip.conf
file) that will let us define a type of user, peer, or friend. If you unload chan_sip.so and
then load it back into memory (i.e., using module unload chan_sip.so followed by mod-
ule load chan_sip.so) after configuring extconfig.conf, you will be greeted with some
warnings telling you which columns you’re missing for the realtime table. Since we’ve
enabled sippeers and sipusers in extconfig.conf, we will get the following on the con-
sole (which has been trimmed due to space requirements):

WARNING: Realtime table ast_sipfriends@asterisk requires column
'name', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'ipaddr', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'port', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'regseconds', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'defaultuser', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'fullcontact', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'regserver', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'useragent', but that column does not exist!

WARNING: Realtime table ast_sipfriends@asterisk requires column
'lastms', but that column does not exist!

As you can see, we are missing several columns from the table ast_sipfriends, which
we’ve defined as connecting to the asterisk object as defined in res_odbc.conf. The
next step is to create our ast_sipfriends table with all the columns listed by the warning
messages, in addition to the following: the type column, which is required to define
users, peers, and friends; the secret column, which is used for setting a password; and
the host column, which allows us to define whether the peer is dynamically registering
to us or has a static IP address. Table 16-3 lists all of the columns that should appear
in our table, and their types.

Table 16-3. Minimal sippeers/sipusers realtime table

Column name Column type

type Varchar 6

name Varchar 128

372 | Chapter 16: Relational Database Integration

Column name Column type

secret Varchar 128

context Varchar 128

host Varchar 128

ipaddr Varchar 128

port Varchar 5

regseconds Bigint

defaultuser Varchar 128

fullcontact Varchar 128

regserver Varchar 128

useragent Varchar 128

lastms Integer

For each peer you want to register, you need to insert data in the columns type, name,
secret, context, host, and defaultuser. The rest of the columns will be populated au-
tomatically when the peer registers.

The port, regseconds, and ipaddr fields are required to let Asterisk store the registration
information for the peer so it can determine where to send the calls. (Note that if the
peer is static, you will have to populate the ipaddr field yourself.) The port field is
optional and defaults to the standard port defined in the [general] section, and the
regseconds will remain blank. Table 16-4 lists some sample values that we’ll use to
populate our ast_sipfriends table.

Table 16-4. Example information used to populate the ast_sipfriends table

Column name Value

type friend

name 0000FFFF0008

defaultuser 0000FFFF0008

host dynamic

secret welcome

context LocalSets

Prior to registering your peer, though, you need to enable realtime caching in
sip.conf. Otherwise, the peer will not be loaded into memory, and the registration will
not be remembered. If your peers only place calls and don’t need to register to your
system, you don’t need to enable realtime caching because the peers will be checked
against the database each time they place a call. However, if you load your peers into
memory, the database will only need to be contacted on initial registration, and after
the registration expires.

Using Realtime | 373

Additional options in sip.conf exist for realtime peers. These are defined in the
[general] section and described in Table 16-5.

Table 16-5. Realtime options in sip.conf

Configuration option Description

rtcachefriends Caches peers in memory on an as-needed basis after they have contacted the server. That is, on Asterisk
start, the peers are not loaded into memory automatically; only after a peer has contacted the server
(e.g., via a registration or phone call) is it loaded in memory. Values are yes or no.

rtsavesysname When a peer registers to the system, saves the systemname (as defined in asterisk.conf) into the
regserver field within the database. (See “Setting the systemname for Globally Unique
IDs” on page 375 for more information.) Using regserver is useful when you have multiple servers
registering peers to the same table. Values are yes or no.

rtupdate Sends registration information such as the IP address, the origination port, the registration period,
and the username of the user-agent to the database when a peer registers to Asterisk. Values are
yes or no, and the default is yes.

rtautoclear Automatically expires friends on the same schedule as if they had just registered. This causes a peer
to be removed from memory when the registration period has expired, until that peer is requested
again (e.g., via registration or placing a call). Values are yes, no, or an integer value that causes the
peers to be removed from memory after that number of seconds instead of the registration interval.

ignoreregexpire When enabled, peers are not removed from memory when the registration period expires. Instead,
the information is left in memory so that if a call is requested to an endpoint that has an expired
registration, the last known information (IP address, port, etc.) will be tried.

After enabling rtcachefriends=yes in sip.conf and reloading chan_sip.so (using module
reload chan_sip.so), you can register your peer to Asterisk using realtime, and the peer
should then be populated into memory. You will be able to verify this by executing the
sip show peers command on the Asterisk console:

Name/username Host Dyn Port Status Realtime
0000FFFF0008/0000FFFF0008 172.16.0.160 D 5060 Unmonitored Cached RT

If you were to look at the table in the database directly, you would see something
like this:

+--------+--------------+---------+-----------+---------+--------------+
| type | name | secret | context | host | ipaddr |
+--------+--------------+---------+-----------+---------+--------------+
| friend | 0000FFFF0008 | welcome | LocalSets | dynamic | 172.16.0.160 |
+--------+--------------+---------+-----------+---------+--------------+
+------+------------+--------------+-------------------------------------+
| port | regseconds | defaultuser | fullcontact |
+------+------------+--------------+-------------------------------------+
| 5060 | 1283928895 | 0000FFFF0008 | sip:0000FFFF0008@172.16.0.160:52722 |
+------+------------+--------------+-------------------------------------+
+-----------+-----------------+--------+
| regserver | useragent | lastms |
+-----------+-----------------+--------+
| NULL | Zoiper rev.6739 | 0 |
+-----------+-----------------+--------+

374 | Chapter 16: Relational Database Integration

There are many more options for that we can define for SIP friends, such as the caller
ID; adding that information is as simple as adding a callerid column to the table. See
the sip.conf.sample file for more options that can be defined for SIP friends.

Storing Call Detail Records (CDRs)
Call detail records (CDRs) contain information about calls that have passed through
your Asterisk system. They are discussed further in Chapter 24. Storing CDRs is a
popular use of databases in Asterisk, because it makes them easier to manage (for ex-
ample, you can keep track of many Asterisk systems in a single table). Also, by placing
records into a database you open up many possibilities, including building your own
web interface for tracking statistics such as call usage and most-called locations, billing,
or phone company invoice verification.

Setting the systemname for Globally Unique IDs
A CDR consists of a unique identifier and several fields of information about the call
(including the source and destination channel, length of call, last application executed,
and so forth). In a clustered set of Asterisk boxes, it is theoretically possible to have
duplication among unique identifiers, since each Asterisk system considers only itself.
To address this, we can automatically append a system identifier to the front of the
unique IDs by adding an option to /etc/asterisk/asterisk.conf. For each of your boxes,
set an identifier by adding something like:

[options]
systemname=toronto

The best way to store your call detail records is via the cdr_adaptive_odbc module. This
module allows you to choose which columns of data built into Asterisk are stored in
your table, and permits you to add additional columns that you can populate with the
CDR() dialplan function. You can even store different parts of CDR data to different
tables and databases, if that is required.

More information about the standard CDR columns in Asterisk is available in Ta-
ble 24-2. You can define all or any subset of these records in the database, and Asterisk
will work around what is available. You can also add additional columns to store other
data relevant to the calls. For example, if you wanted to implement least cost routing
(LCR), you could add columns for route, per-minute cost, and per-minute rate. Once
you’ve added those columns, they can be populated via the dialplan by using the
CDR() function (e.g., Set(CDR(per_minute_rate)=0.01)).

Storing Call Detail Records (CDRs) | 375

After the alteration to your database and dialplan, you can place a call and then look
at your CDRs. You should see something like the following:

+--------------+----------+---------+------------+
| src | duration | billsec | route_rate |
+--------------+----------+---------+------------+
| 0000FFFF0008 | 37 | 30 | 0.01 |
+--------------+----------+---------+------------+

You now have enough information to calculate how much the call should have cost
you, which enables you to either bill customers or check your records against what the
phone company is sending you, so you can do monthly auditing of your phone bills.

Additional Configuration Options for cdr_adaptive_odbc.conf
Some extra configuration options exist in the cdr_adaptive_odbc.conf file that may be
useful. The first is that you can define multiple databases or tables to store information
into, so if you have multiple databases that need the same information, you can simply
define them in res_odbc.conf, create tables in the databases, and then refer to them in
separate sections of the configuration:

[mysql_connection]
connection=asterisk_mysql
table=cdr

[mssql_connection]
connection=production_mssql
table=call_records

If you specify multiple sections using the same connection and table,
you will get duplicate records.

Beyond just configuring multiple connections and tables (which of course may or may
not contain the same information; the CDR module we’re using is adaptive to situations
like that), we can define aliases for the built-in variables, such as accountcode, src, dst,
billsec, etc.

If we were to add aliases for column names for our MS SQL connection, we might alter
our connection definition like so:

[mssql_connection]
connection=production_mssql
table=call_records
alias src => Source
alias dst => Destination
alias accountcode => AccountCode
alias billsec => BillableTime

Storing Call Detail Records (CDRs) | 377

In some situations you may specify a connection where you only want to log calls from
a specific source, or to a specific destination. We can do this with filters:

[logging_for_device_0000FFFF0008]
connection=asterisk_mysql
table=cdr_for_0000FFFF0008
filter src => 0000FFFF0008

If you need to populate a certain column with information based on a section name,
you can set it statically with the static option, which you may utilize with the filter
option:

[mysql_connection]
connection=asterisk_mysql
table=cdr

[filtered_mysql_connection]
connection=asterisk_mysql
table=cdr
filter src => 0000FFFF0008
static "DoNotCharge" => accountcode

In the preceding example you will get duplicate records in the same
table, but all the information will be the same except for the popu-
lated accountcode column, so you should be able to filter it out using
SQL.

ODBC Voicemail
Asterisk enables you to store voicemail inside the database using the ODBC connector.
This is useful in a clustered environment where you want to abstract the voicemail data
from the local system so that multiple Asterisk boxes have access to the same data. Of
course, you have to take into consideration that you are centralizing a part of Asterisk,
and you need to take actions to protect that data, such as making regular backups and
possibly clustering the database backend using replication.

Asterisk stores each voicemail message inside a Binary Large Object (BLOB). When
retrieving the data, it pulls the information out of the BLOB and temporarily stores it
on the hard drive while it is being played back to the user. Asterisk then removes the
BLOB and the record from the database when the user deletes the voicemail. Many
databases, such as MySQL, contain native support for BLOBs, but as you’ll see, with
PostgreSQL a couple of extra steps are required to utilize this functionality that we’ll
explore in this section. When you’re done, you’ll be able to record, play back, and
delete voicemail data from the database just as if it were stored on the local hard drive.

378 | Chapter 16: Relational Database Integration

This section builds upon previous configuration sections in this chapter.
If you have not already done so, be sure to follow the steps in the sections
“Installing PostgreSQL for CentOS” on page 342 and “Installing and
Configuring ODBC” on page 346 before continuing. In the latter sec-
tion, be sure you have enabled ODBC_STORAGE in the menuselect system
under Voicemail Options.

Alternate Centralization Method
Storing voicemail in a database is one way to centralize voicemail. Another method is
to run a standalone voicemail server, as we discussed in Chapter 8.

Creating the Large Object Type for PostgreSQL
While MySQL has a BLOB (Binary Large OBject) type, we have to tell PostgreSQL how
to handle large objects. This includes creating a trigger to clean up the data when we
delete from the database a record that references a large object.

Connect to the database as the asterisk user from the console:

$ psql -h localhost -U asterisk asterisk
Password:

You must be a superuser to execute the following code. Also, if you use
the postgres user to create the table, you will need to use the ALTER
TABLE SQL directive to change the owner to the asterisk user.

At the PostgreSQL console, run the following script to create the large object type:

CREATE FUNCTION loin (cstring) RETURNS lo AS 'oidin' LANGUAGE internal
IMMUTABLE STRICT;

CREATE FUNCTION loout (lo) RETURNS cstring AS 'oidout' LANGUAGE internal
IMMUTABLE STRICT;

CREATE FUNCTION lorecv (internal) RETURNS lo AS 'oidrecv' LANGUAGE internal
IMMUTABLE STRICT;

CREATE FUNCTION losend (lo) RETURNS bytea AS 'oidrecv' LANGUAGE internal
IMMUTABLE STRICT;

CREATE TYPE lo (INPUT = loin, OUTPUT = loout, RECEIVE = lorecv, SEND = losend,
INTERNALLENGTH = 4, PASSEDBYVALUE);

CREATE CAST (lo AS oid) WITHOUT FUNCTION AS IMPLICIT;
CREATE CAST (oid AS lo) WITHOUT FUNCTION AS IMPLICIT;

ODBC Voicemail | 379

We’ll be making use of the PostgreSQL procedural language called pgSQL/PL to create
a function. This function will be called from a trigger that gets executed whenever we
modify or delete a record in the table used to store voicemail messages. This is so the
data is cleaned up and not left as an orphan in the database:

CREATE FUNCTION vm_lo_cleanup() RETURNS "trigger"
 AS $$
 declare
 msgcount INTEGER;
 begin
 -- raise notice 'Starting lo_cleanup function for large object with oid
 %',old.recording;
 -- If it is an update action but the BLOB (lo) field was not changed,
 don't do anything
 if (TG_OP = 'UPDATE') then
 if ((old.recording = new.recording) or (old.recording is NULL)) then
 raise notice 'Not cleaning up the large object table,
 as recording has not changed';
 return new;
 end if;
 end if;
 if (old.recording IS NOT NULL) then
 SELECT INTO msgcount COUNT(*) AS COUNT FROM voicemessages WHERE recording
 = old.recording;
 if (msgcount > 0) then
 raise notice 'Not deleting record from the large object table, as object
 is still referenced';
 return new;
 else
 perform lo_unlink(old.recording);
 if found then
 raise notice 'Cleaning up the large object table';
 return new;
 else
 raise exception 'Failed to clean up the large object table';
 return old;
 end if;
 end if;
 else
 raise notice 'No need to clean up the large object table,
 no recording on old row';

 return new;
 end if;
 end$$
 LANGUAGE plpgsql;

We’re going to create a table called voicemessages where the voicemail information will
be stored:

CREATE TABLE voicemessages
(
 uniqueid serial PRIMARY KEY,
 msgnum int4,
 dir varchar(80),

380 | Chapter 16: Relational Database Integration

 context varchar(80),
 macrocontext varchar(80),
 callerid varchar(40),
 origtime varchar(40),
 duration varchar(20),
 mailboxuser varchar(80),
 mailboxcontext varchar(80),
 recording lo,
 label varchar(30),
 "read" bool DEFAULT false,
 flag varchar(10)
);

And now we need to associate a trigger with our newly created table in order to perform
cleanup whenever we change or delete a record in the voicemessages table:

CREATE TRIGGER vm_cleanup AFTER DELETE OR UPDATE ON voicemessages FOR EACH ROW
EXECUTE PROCEDURE vm_lo_cleanup();

ODBC Voicemail Storage Table Layout
We’ll be utilizing the voicemessages table for storing our voicemail information in an
ODBC-connected database. Table 16-6 describes the table configuration for ODBC
voicemail storage. If you’re using a PostgreSQL database, the table definition and large
object support were configured in the preceding section.

Table 16-6. ODBC voicemail storage table layout

Column name Column type

uniqueid Serial, primary key

dir Varchar 80

msgnum Integer

recording BLOB (Binary Large OBject)

context Varchar 80

macrocontext Varchar 80

callerid Varchar 40

origtime Varchar 40

duration Varchar 20

mailboxuser Varchar 80

mailboxcontext Varchar 80

label Varchar 30

read Boolean, default falsea

flag Varchar 10
a read is a reserved word in both MySQL and PostgreSQL (and likely other databases), which means you need to escape the column name

when you create it. In MySQL this is done with backticks (`) around the word read when you create the table, and in PostgreSQL with
double quotes ("). In MS SQL you would use square brackets, e.g., [read].

ODBC Voicemail | 381

Configuring voicemail.conf for ODBC Storage
There isn’t much to add to the voicemail.conf file to enable the ODBC voicemail storage.
In fact, it’s only three lines! Normally, you probably have multiple format types defined
in the [general] section of voicemail.conf, but we need to set this to a single format
because we can only save one file (format) to the database. The wav49 format is a
compressed WAV file format that should be playable on both Linux and Microsoft
Windows desktops.

The odbcstorage option points at the name you defined in the res_odbc.conf file (if
you’ve been following along in this chapter, then we called it asterisk). The odbctable
option refers to the table where voicemail information should be stored. In the examples
in this chapter we use the table named voicemessages:

[general]
format=wav49
odbcstorage=asterisk
odbctable=voicemessages

You may want to create a separate voicemail context, or you can utilize the default
voicemail context. Alternatively, you can skip creating a new user and use an existing
user, such as 0000FFFF0001. We’ll define the mailbox in the default voicemail context
like so:

[default]
1000 => 1000,J.P. Wiser

You can also use the voicemail definition in extconfig.conf to load your
users from the database. See “Dynamic Realtime” on page 371 for more
information about setting up certain module configuration options in
the database, and “Static Realtime” on page 368 for details on loading
the rest of the configuration file.

Now connect to your Asterisk console and unload then reload the app_voicemail.so
module:

*CLI> module unload app_voicemail.so
 == Unregistered application 'VoiceMail'
 == Unregistered application 'VoiceMailMain'
 == Unregistered application 'MailboxExists'
 == Unregistered application 'VMAuthenticate'

*CLI> module load app_voicemail.so
 Loaded /usr/lib/asterisk/modules/app_voicemail.so =>
(Comedian Mail (Voicemail System))
 == Registered application 'VoiceMail'
 == Registered application 'VoiceMailMain'
 == Registered application 'MailboxExists'
 == Registered application 'VMAuthenticate'
 == Parsing '/etc/asterisk/voicemail.conf': Found

382 | Chapter 16: Relational Database Integration

Then verify that your new mailbox loaded successfully:

*CLI> voicemail show users for default
Context Mbox User Zone NewMsg
default 1000 J.P. Wiser 0

Testing ODBC Voicemail
Let’s create some simple dialplan logic to leave and retrieve some voicemail from our
test voicemail box. You can use the simple dialplan logic that follows (or, of course,
any voicemail delivery and retrieval functionality you defined earlier in this book):

[odbc_vm_test]
exten => 100,1,VoiceMail(1000@default) ; leave a voicemail
exten => 200,1,VoiceMailMain(1000@default) ; retrieve a voicemail

Once you’ve updated your extensions.conf file, be sure to reload the dialplan:

*CLI> dialplan reload

You can either include the odbc_vm_test context into a context accessible by an existing
user, or create a separate user to test with. If you wish to do the latter, you could define
a new SIP user in sip.conf like so (this will work assuming the phone is on the local LAN):

[odbc_test_user]
type=friend
secret=supersecret
context=odbc_vm_test
host=dynamic
qualify=yes
disallow=all
allow=ulaw
allow=gsm

One of the ways that unsavory folks get into systems is via test users that
are not immediately removed from the system after testing. Whenever
you’re utilizing a test extension, you should be doing it on a system that
is removed from the Internet, or at the very least, place it into a context
that does not have access to outbound dialing and has a strong
password.

Don’t forget to reload the SIP module:

*CLI> module reload chan_sip.so

And verify that the SIP user exists:

*CLI> sip show users like odbc_test_user
Username Secret Accountcode Def.Context ACL NAT
odbc_test_user supersecret odbc_vm_test No RFC3581

ODBC Voicemail | 383

Then configure your phone or client with the username odbc_test_user and password
<supersecret>, and place a call to extension 100 to leave a voicemail. If successful, you
should see something like:

 -- Executing VoiceMail("SIP/odbc_test_user-10228cac", "1000@default") in new
 stack
 -- Playing 'vm-intro' (language 'en')
 -- Playing 'beep' (language 'en')
 -- Recording the message
 -- x=0, open writing: /var/spool/asterisk/voicemail/default/1000/tmp/dlZunm
 format: wav49, 0x101f6534
 -- User ended message by pressing #
 -- Playing 'auth-thankyou' (language 'en')
 == Parsing '/var/spool/asterisk/voicemail/default/1000/INBOX/msg0000.txt': Found

At this point you can check the database to verify that your data was
successfully written. See the upcoming sections for more information.

Now that you’ve confirmed everything was stored in the database correctly, you can
try listening to it via the VoiceMailMain() application by dialing extension 200:

*CLI>
 -- Executing VoiceMailMain("SIP/odbc_test_user-10228cac",
 "1000@default") in new stack
 -- Playing 'vm-password' (language 'en')
 -- Playing 'vm-youhave' (language 'en')
 -- Playing 'digits/1' (language 'en')
 -- Playing 'vm-INBOX' (language 'en')
 -- Playing 'vm-message' (language 'en')
 -- Playing 'vm-onefor' (language 'en')
 -- Playing 'vm-INBOX' (language 'en')
 -- Playing 'vm-messages' (language 'en')
 -- Playing 'vm-opts' (language 'en')
 -- Playing 'vm-first' (language 'en')
 -- Playing 'vm-message' (language 'en')
 == Parsing '/var/spool/asterisk/voicemail/default/1000/INBOX/msg0000.txt': Found

384 | Chapter 16: Relational Database Integration

Verifying binary data stored in PostgreSQL

To make sure the recording really did make it into the database, use the psql application:

$ psql -h localhost -U asterisk asterisk
Password:

then run a SELECT statement to verify that you have some data in the voicemessages table:

localhost=# SELECT uniqueid,dir,callerid,mailboxcontext,recording FROM voicemessages;
uniqueid | dir | callerid
---------+--+--------------
1 | /var/spool/asterisk/voicemail/default/1000/INBOX | +18005551212

| mailboxcontext | recording |
+----------------+-----------+
| default | 47395 |
(1 row)

If the recording was placed in the database, you should get a row back. You’ll notice
that the recording column contains a number (which will most certainly be different
from that listed here), which is really the object ID of the large object stored in a system
table. You can verify that the large object exists in this system table with the lo_list
command:

localhost=# \lo_list
 Large objects
 ID | Description
-------+-------------
 47395 |
(1 row)

What you’re verifying is that the object ID in the voicemessages table matches that listed
in the large object system table. You can also pull the data out of the database and store
it to the hard drive:

localhost=# \lo_export 47395 /tmp/voicemail-47395.wav
lo_export

Then verify the audio with your favorite audio application, such as play:

$ play /tmp/voicemail-47395.wav

Input Filename : /tmp/voicemail-47395.wav
Sample Size : 8-bits
Sample Encoding: wav
Channels : 1
Sample Rate : 8000

Time: 00:06.22 [00:00.00] of 00:00.00 (0.0%) Output Buffer: 298.36K

Done.

ODBC Voicemail | 385

Verifying binary data stored in MySQL

To verify that your data is being written correctly, you can use the mysql application
to log into your database and export the voicemail recording to a file:

$ mysql -u asterisk -p asterisk
Enter password:

Once logged into the database, you can use a SELECT statement to dump the contents
of the recording to a file. First, though, make sure you have at least a single recording
in your voicemessages table:

mysql> SELECT uniqueid, msgnum, callerid, mailboxuser, mailboxcontext, `read`
 -> FROM voicemessages;
+----------+--------+------------------------------+-------------
| uniqueid | msgnum | callerid | mailboxuser
+----------+--------+------------------------------+-------------
| 1 | 0 | "Leif Madsen" <100> | 100
| 2 | 1 | "Leif Madsen" <100> | 100
| 3 | 2 | "Leif Madsen" <100> | 100
| 5 | 0 | "Julie Bryant" <12565551111> | 100
+----------+--------+------------------------------+-------------
+----------------+------+
| mailboxcontext | read |
+----------------+------+
shifteight.org	0
shifteight.org	0
shifteight.org	0
default	0
+----------------+------+

You can also add the recording column to the SELECT statement, but
you’ll end up with a lot of gibberish on your screen.

Having verified that you have data in your voicemessages table, you can export one of
the recordings and play it back from the console.

mysql> SELECT recording FROM voicemessages WHERE uniqueid = '5'
 -> DUMPFILE '/tmp/voicemail_recording.wav';

The user you’re exporting data with needs to have the FILE permission
in MySQL, which means it must have been granted ALL access. If you
did not grant ALL privileges to the asterisk user, you will need to utilize
the root user for file export.

Now exit the MySQL console, and use the play application from the console (assuming
you have speakers and a sound card configured on your Asterisk system, which you

386 | Chapter 16: Relational Database Integration

might if you are going to use it for overhead paging), or copy the file to another system
and listen to it there:

$ play /tmp/voicemail_recording.wav

voicemail_recording.wav:

 File Size: 7.28k Bit Rate: 13.1k
 Encoding: GSM
 Channels: 1 @ 16-bit
Samplerate: 8000Hz
Replaygain: off
 Duration: 00:00:04.44

In:100% 00:00:04.44 [00:00:00.00] Out:35.5k [|] Hd:4.4 Clip:0
Done.

Conclusion
In this chapter, we learned about several areas where Asterisk can integrate with a
relational database. This is useful for systems where you need to start scaling by clus-
tering multiple Asterisk boxes working with the same centralized information, or when
you want to start building external applications to modify information without requir-
ing a reload of the system (i.e., not requiring the modification of flat files).

Conclusion | 387

CHAPTER 17

Interactive Voice Response

One day Alice came to a fork in the road and saw a
Cheshire cat in a tree. “Which road do I take?”

she asked.

“Where do you want to go?” was his response.

“I don’t know,” Alice answered.

“Then,” said the cat, “it doesn’t matter.”

—Lewis Carroll

In this chapter we will talk about IVR. If what you want is an automated attendant, we
have written a chapter for that as well (Chapter 15). The term IVR is often misused to
refer to an automated attendant, but the two are very different things.*

What Is IVR?
The purpose of an Interactive Voice Response (IVR) system is to take input from a
caller, perform an action based on that input (commonly, looking up data in an external
system such as a database), and return a result to the caller.† Traditionally, IVR systems
have been complex, expensive, and annoying to implement. Asterisk changes all that.

Asterisk blurs the lines between traditional PBXs and IVR systems. The
power and flexibility of the Asterisk dialplan results in a system where
nearly every extension could be considered an IVR in the traditional
sense of the term.

* We suspect this is because “IVR” is much easier to say than “automated attendant.”

† In contrast to an auto attendant, the purpose of which is to route calls.

389

Components of an IVR
The most basic elements of an IVR are quite similar to those of an automated attendant,
though the goal is different. We need at least one prompt to tell the caller what the IVR
expects from him, a method of receiving input from the caller, logic to verify that the
caller’s response is valid input, logic to determine what the next step of the IVR should
be, and finally, a storage mechanism for the responses, if applicable. We might think
of an IVR as a decision tree, although it need not have any branches. For example, a
survey may present exactly the same set of prompts to each caller, regardless of what
choices the callers make, and the only routing logic involved is whether the responses
given are valid for the questions.

From the caller’s perspective, every IVR needs to start with a prompt. This initial
prompt will tell the caller what the IVR is for and ask the caller to provide the first input.
We discussed prompts in the automated attendant in Chapter 15. Later, we’ll create a
dialplan that will allow you to better manage multiple voice prompts.

The second component of an IVR is a method for receiving input from the caller. Recall
that in Chapter 15 we discussed the Background() and WaitExten() applications for
receiving a new extension. While you could create an IVR using Background() and
WaitExten(), it is generally easier and more practical to use the Read() application,
which handles both the prompt and the capture of the response. The Read() application
was designed specifically for use with IVR systems. Its syntax is as follows:

Read(variable[,filename[&filename2...]][,maxdigits][,option][,attempts][,timeout])

The arguments are described in Table 17-1.

Table 17-1. The Read() application

Argument Purpose

variable The variable into which the caller’s response is stored. It is best practice to give each variable in your IVR a name
that is similar to the prompt associated with that variable. This will help later if, for business reasons or ease of
use, you need to reorder the steps of the IVR. Naming your variables var1, var2, etc. may seem easy in the
short term, but later in your life cycle it will make fixing bugs more difficult.

prompt A file (or list of files, joined together with the & character) to play for the caller, requesting input. Remember
to omit the format extension on the end of each filename.

maxdigits The maximum number of characters to allow as input. In the case of yes/no and multiple choice questions, it’s
best practice to limit this value to 1. In the case of larger lengths, the caller may always terminate input by
pressing the pound key.

options s (skip) Exit immediately if the channel has not been
answered.

i (indication) Rather than playing a prompt, play an indication tone
of some sort (such as the dialtone).

n (noanswer) Read digits from the caller, even if the line is not yet
answered.

390 | Chapter 17: Interactive Voice Response

Argument Purpose

attempts The number of times to play the prompt. If the caller fails to enter anything, the Read() application can
automatically re-prompt the user. The default is one attempt.

timeout The number of seconds the caller has to enter his input. The default value in Asterisk is 10 seconds, although it
can be altered for a single prompt using this option, or for the entire session by assigning a value using the
dialplan function TIMEOUT(response).

Once the input is received, it must be validated. If you do not validate the input, you
are most likely going to find your callers complaining of an unstable application. It is
not enough to handle the inputs you are expecting; you also need to handle inputs you
do not expect. For example, callers may get frustrated and dial 0 when in your IVR; if
you’ve done a good job, you will handle this gracefully and connect them to somebody
who can help them, or provide a useful alternative. A well-designed IVR (just like any
program) will try to anticipate every possible input and provide mechanisms to grace-
fully handle that input.

Once the input is validated, you can submit it to an external resource for processing.
This could be done via a database query, a submission to a URI, an AGI program, or
many other things. This external application should produce a result, which you will
want to relay back to the caller. This could be a detailed result, such as “Your account
balance is…,” or a simple confirmation, such as “Your account has been updated.” We
can’t think of any case where some sort of result returned to the caller is not required.

Sometimes the IVR may have multiple steps, and therefore a result might include a
request for more information from the caller in order to move to the next step of the
IVR application.

It is possible to design very complex IVR systems, with dozens or even hundreds of
possible paths. We’ve said it before and we’ll say it again: people don’t like talking to
your phone system, regardless of how clever it is. Keep your IVR simple for your callers,
and they are much more likely to get some benefit from it.

A Perfectly Tasty IVR
An excellent example of an IVR that people love to use is one that many pizza delivery
outfits use: when you call to place your order, an IVR looks up your caller ID and says
“If you would like the exact same order as last time, press 1.”

That’s all it does, and it’s perfect.

Obviously, these companies could design massively complex IVRs that would allow
you to select each and every detail of your pie (“for seven-grain crust, press 7”), but
how many drunken frat boys are going to successfully navigate that?

The best IVRs are the ones that require the least input from the caller. Mash that 1
button and your ’za is on its way! Woo hoo!

Components of an IVR | 391

IVR Design Considerations
When designing your own IVR, there are some important things to keep in mind. We’ve
put together this list of some things to do, and things not to do in your IVR.

Do
• Keep it simple.

• Have an option to dial 0 to reach a live person.

• Handle errors gracefully.

Don’t
• Think that an IVR can completely replace people.

• Use your IVR to show people how clever you are.

• Try to replicate your website with an IVR.

• Bother building an IVR if you can’t take numeric input. Nobody wants to have to
spell her name on the dialpad of her phone.‡

• Force your callers to listen to advertising. Remember that they can hang up at any
moment they wish.

Asterisk Modules for Building IVRs
The “front end” of the IVR (the parts that interact with the callers) can be handled in
the dialplan. In theory, it might be possible to build an IVR system using the dialplan
alone (perhaps with the astdb to store and retrieve data). In practice, your IVR is going
to need to communicate with something external to Asterisk.

CURL
The CURL() dialplan function in Asterisk allows you to span entire web applications
with a single line of dialplan code. We’ll use it in our sample IVR later in this chapter.

While you’ll find CURL() itself to be quite simple to use, the creation of the web appli-
cation will require experience with web development.

func_odbc
Using func_odbc, it is possible to develop extremely complex applications in Asterisk
using nothing more than dialplan code and database lookups. If you are not a strong

‡ Especially if it’s something like Van Meggelen.

392 | Chapter 17: Interactive Voice Response

programmer but are very adept with Asterisk dialplans and databases, you’ll love
func_odbc just as much as we do. Check it out in Chapter 16.

AGI
The Asterisk Gateway Interface is such an important part of integrating external ap-
plications with Asterisk that we gave it its own chapter. You can find more information
in Chapter 21.

AMI
The Asterisk Manager Interface is a socket interface that you can use to get configura-
tion and status information, request actions to be performed, and get notified about
things happening to calls. We’ve written an entire chapter on AMI, as well. You can
find more information in Chapter 20.

A Simple IVR Using CURL
The GNU/Linux program cURL is useful for retrieving data from a URI. In Asterisk,
CURL() is a dialplan function.

We’re going to use CURL() as an example of what an extremely simple IVR can look
like. We’re going to request our external IP address from the website http://www.what
ismyip.org.

In reality, most IVR applications are going to be far more complex. Even
most uses of CURL() will tend to be complex, since a URI can return a
massive and highly variable amount of data, the vast majority of which
will be incomprehensible to Asterisk. The point being that an IVR is not
just about the dialplan; it is also very much about the external applica-
tions that are triggered by the dialplan, which are doing the real work
of the IVR.

Before you can use CURL(), you have to ensure it is installed.

Installing the cURL Module
Installing cURL is easy. If it was not on your system when you last compiled Asterisk,
after installing it you’ll need to recompile Asterisk so that it can locate the cURL de-
pendencies and compile the func_curl.so module.

On CentOS:

$ sudo yum -y install libcurl-devel

A Simple IVR Using CURL | 393

http://www.whatismyip.org
http://www.whatismyip.org

On Ubuntu:

$ sudo apt-get install libcurl4-openssl-dev

The Dialplan
The dialplan for our example IVR is very simple. The CURL() function will retrieve our
IP address from http://www.whatismyip.org, and then SayAlpha() will speak the results
to the caller:

exten => *764,1,Verbose(2, Run CURL to get IP address from whatismyip.org)
 same => n,Answer()
 same => n,Set(MyIPAddressIs=${CURL(http://www.whatismyip.org/)})
 same => n,SayAlpha(${MyIPAddressIs})
 same => n,Hangup()

The simplicity of this is impossibly cool. In a traditional IVR system, this sort of thing
could take days to program.

A Prompt-Recording Application
In Chapter 15 we created a simple bit of dialplan to record prompts. It was fairly limited
in that it only recorded one filename, and thus for each prompt the file needed to be
copied before a new prompt could be recorded. Here, we expand upon that to create
a complete menu for recording prompts:

[prompts]
exten => s,1,Answer
exten => s,n,Set(step1count=0) ; Initialize counters

; If we get no response after 3 times, we stop asking
 same => n(beginning),GotoIf($[${step1count} > 2]?end)
 same => n,Read(which,prompt-instructions,3)
 same => n,Set(step1count=$[${step1count} + 1])

; All prompts must be 3 digits in length
 same => n,GotoIf($[${LEN(${which})} < 3]?beginning)
 same => n,Set(step1count=0) ; We have a successful response, so reset our counters
 same => n,Set(step2count=0)

 same => n(step2),Set(step2count=$[${step2count} + 1])
 same => n,GotoIf($[${step2count} > 2]?beginning) ; No response after 3 tries

; If the file doesn't exist, then don't ask whether to play it
 same => n,GotoIf($[${STAT(f,${which}.wav)} = 0]?recordonly)
 same => n,Background(prompt-tolisten)

 same => n(recordonly),Background(prompt-torecord)
 same => n,WaitExten(10) ; Wait 10 seconds for a response
 same => n,Goto(step2)

exten => 1,1,Set(step2count=0)

394 | Chapter 17: Interactive Voice Response

http://www.whatismyip.org

 same => n,Background(${which})
 same => n,Goto(s,step2)

exten => 2,1,Set(step2count=0)
 same => n,Playback(prompt-waitforbeep)
 same => n,Record(${CHANNEL(uniqueid)}.wav)

 same => n(listen),Playback(${CHANNEL(uniqueid)})
 same => n,Set(step3count=0)
 same => n,Read(saveornot,prompt-1tolisten-2tosave-3todiscard,1)
 same => n,GotoIf($["${saveornot}" = "1"]?listen)
 same => n,GotoIf($["${saveornot}" = "2"]?saveit)
 same => n,System(rm -f /var/lib/asterisk/sounds/${CHANNEL(uniqueid)}.wav)
 same => n,Goto(s,beginning)

 same => n(saveit),System(mv -f ${CHANNEL(uniqueid)}.wav ${which}.wav)
 same => n,Playback(prompt-saved)
 same => n,Goto(s,beginning)

In this system, the name of the prompt is no longer descriptive, but rather it is a number.
This means that you can record a far greater variety of prompts using the same mech-
anism, but the tradeoff is that your prompts will no longer have descriptive names.

Speech Recognition and Text-to-Speech
Although in most cases an IVR system presents prerecorded prompts to the caller and
accepts input by way of the dialpad, it is also possible to: a) generate prompts artificially,
popularly known as text-to-speech; and b) accept verbal inputs through a speech rec-
ognition engine.

While the concept of being able to have an intelligent conversation with a machine is
something sci-fi authors have been promising us for many long years, the actual science
of this remains complex and error-prone. Despite their amazing capabilities, computers
are ill-suited to the task of appreciating the subtle nuances of human speech.

Having said that, it should be noted that over the last 50 years or so, amazing advances
have been made in both text-to-speech and speech recognition. A well-designed system
created for a very specific purpose can work very well indeed.

Despite what the marketing people will say, your computer still can’t talk to you, and
you need to bear this in mind if you are contemplating any sort of system that combines
your telephone system with these technologies.

Text-to-Speech
Text-to-speech (also known as speech synthesis) requires that a system be able to ar-
tificially construct speech from stored data. While it would be nice if we could simply
assign a sound to a letter and have the computer produce each sound as it reads the
letters, the written English language is not totally phonetic.

Speech Recognition and Text-to-Speech | 395

While on the surface, the idea of a speaking computer is very attractive, the reality is
that it has limited usefulness. More information about integration of text-to-speech
with Asterisk can be found in Chapter 18.

Speech Recognition
As soon as we’ve convinced computers to talk to us, we will naturally want to be able
to talk to them.§ Anyone who has tried to learn a foreign language can begin to recognize
the complexity of teaching a computer to understand words; however, speech recog-
nition also has to take into account the fact that before a computer can even attempt
the task of understanding the words, it must first convert the audio into a digital format.
This challenge is larger than one might at first think. For example, as humans we are
naturally able to recognize speech as distinct from, say, the sound of a barking dog or
a car horn. For a computer, this is a very complicated thing. Additionally, for a tele-
phone-based speech recognition system, the audio that is received is always going to
be of very low fidelity, and thus the computer will have that much less information to
work with.‖

Asterisk does not have speech recognition built in, but there are many third-party
speech recognition packages that integrate with Asterisk.

Conclusion
Asterisk has become extremely popular as an IVR platform. While the media only really
pays attention to Asterisk as a “free PBX,” the reality is that Asterisk is quietly taking
the IVR industry by storm. Within any respectable-sized organization, it is very likely
that the Linux system administrators are using Asterisk to solve telecom problems that
previously were either unsolvable or impossibly expensive to solve. This is a stealthy
revolution, but no less significant for its relative obscurity.

If you are in the IVR business, you need to get to know Asterisk.

§ Actually, most of us talk to our computers, but this is seldom polite.

‖ If the speech recognition has to happen from a cell phone in a noisy conference hall, it becomes near-
impossible.

396 | Chapter 17: Interactive Voice Response

CHAPTER 18

External Services

Correct me if I’m wrong—the gizmo is connected to the
flingflang connected to the watzis, watzis connected to

the doo-dad connected to the ding dong.

—Patrick B. Oliphant

Asterisk is pretty nifty all by itself, but one of the most powerful, industry-changing,
revolutionary aspects of Asterisk is the sheer number of wonderful ways it may be
connected to external applications and services. This is truly unprecedented in the
world of telecom. In this chapter we’ll explore some popular services and applications
that you can integrate with your Asterisk system. Here are some of the external con-
nections we’ve decided to cover (Asterisk has more, but our editor is waiting for us to
finish this edition, which is already the largest Asterisk book yet):

• If you use LDAP in your network (such as with Active Directory), we’ll show you
how to load your SIP users from your LDAP services.

• For the person on the go with a dynamically changing calendar, we’ll sample some
ideas on how you can integrate Asterisk with your calendaring server (allowing for
automatic call redirection based on your current status).

• If you’re a fan of instant messaging, there is a section on how to communicate with
Asterisk via the XMPP (Jabber) protocol.

• Skype fans? Asterisk has a channel for that. We’ll show you how to get it going.

• If you want to tie your voicemail into your IMAP server, we’ll take you through the
basics.

• Want to teach your phone system to read? We’ll cover the basics of text-to-speech.

There are many more external services that Asterisk can connect to, but these are the
ones we feel will give you the best sense of what it takes to integrate an external service
with Asterisk.

397

Calendar Integration
Asterisk can be integrated with several different kinds of calendar formats, such as iCal,
CalDAV, MS Exchange (Exchange 2003), and MS Exchange Web Services (Exchange
2007 and later). Integrating Asterisk with your calendar gives you the ability to ma-
nipulate call routing based on your current calendar information. For example, if you’re
not going to be in your office for the afternoon it may make sense for people ringing
your desk phone to be routed directly to your voicemail.

Another advantage to calendar integration is the ability to originate calls based on
calendar information. For example, if you set up a meeting on your conference server,
you can arrange to have a reminder call five minutes before the meeting starts, which
then places you into the conference room. We think this type of flexibility and inte-
gration is pretty nifty and quite useful.

Compiling Calendaring Support into Asterisk
As there are several modules for calendaring support (allowing us to provide support
for different backends, such as MS Exchange, CalDAV, iCal, etc.), you’ll need to install
the dependencies for the backends you want to support. This modularized setup has
the advantage that you only need to install dependencies for the modules you need;
also other backends can easily be integrated with the primary calendaring backend in
the future.

Because of the different dependencies of each module, we need to check menuselect for
what needs to be installed for each of the calendaring modules we wish to support. All
modules require the neon development library, available from http://www.webdav.org/
neon/. res_calendar_ews (Exchange Web Services) requires version 0.29 or later, which
means some distributions will require you to compile the neon library from source in-
stead of using the precompiled package available from the distribution.

While the configuration for all the calendaring modules is similar, we’ll be discussing
CalDAV integration specifically since it is widely supported by a range of calendar
software and servers.*

CentOS dependencies

Since all the modules require the neon library, we’ll install that first. Be sure to ap-
pend .x86_64 to the end of the package name if installing on a 64-bit machine:

$ sudo yum install neon-devel

* And because the authors of this book do not have access to Exchange servers for testing. :)

398 | Chapter 18: External Services

http://www.webdav.org/neon/
http://www.webdav.org/neon/

If you are planning on compiling the res_calendar_ews module, you will
need to have a version of neon greater than or equal to 0.29. Currently
CentOS is shipping with 0.25, so you will have to compile the neon
library and link to it from the configure script. This can be done via ./
configure --with-neon29=<path to neon>.

The next step is to install the libical-devel dependency. Unfortunately, this module
is not shipped with CentOS and requires a third-party repository (see “Third-Party
Repositories” on page 46). In this case, we need to install libical-devel from the EPEL
(Extra Packages for Enterprise Linux) repository:

$ sudo yum --enablerepo=epel install libical-devel

After installing our dependencies, we can run the configure script in our Asterisk source
directory and enable both the res_calendar and res_calendar_caldav modules from
within the Resource Modules section of menuselect.

Ubuntu dependencies

Because all the modules require the neon development library, we’re going to install
that first. On Ubuntu, you will typically be given several different versions (e.g., on
10.04 we have the option of libneon 2.5, 2.6, and 2.7). We’re going to install the latest
version available to us:

$ sudo apt-get install libneon27-dev

If you are planning on compiling the res_calendar_ews module, you will
need to have neon 0.29 or greater. Currently Ubuntu is shipping with
0.27, so you will have to compile the neon library and link to it from the
configure script. This can be done via ./configure --with-neon29=<path
to neon>.

With libneon installed, we can now install the libical-dev package and its dependencies
with apt-get:

$ sudo apt-get install libical-dev

After installing our dependencies, we can run the configure script in our Asterisk source
directory and enable both the res_calendar and res_calendar_caldav modules from
within the Resource Modules section of menuselect.

Configuring Calendar Support for Asterisk
In this section we’re going to discuss how to connect your Asterisk system to a Google
calendar. We’re using calendars from Google for the simple reason that they don’t
require any other configuration (such as setting up a calendaring server), which gets us

Calendar Integration | 399

up and running far quicker. Of course, once you’re comfortable with configuring cal-
endaring support in Asterisk, you can connect it to any calendaring server you desire.

The first step is to make sure you have a Gmail (http://www.gmail.com) account with
Google, which will get you access to a calendaring server. Once you’ve logged into your
Gmail account, there should be a link to your calendar in the upper-left corner. Click
on the Calendar link and insert a couple of items for the next hour or two. When we
configure our calendar.conf file we’ll be instructing Asterisk to check for new events
every 15 minutes, and pulling in 60 minutes’ worth of data.

Be sure to verify the time on your server. If the time is not in sync with
the rest of the world—e.g., if is not updated via the Network Time Pro-
tocol (NTP)—your events may not show, or may show at the wrong
times. This tip is the result of running into this very issue while testing
and documenting. :)

The next step is to configure our calendar.conf file for polling our calendar server.

The calendar.conf.sample file has several examples for calendaring serv-
ers, such as those supplied by Microsoft Exchange–, iCal-, and CalDAV-
based calendar servers.

The following configuration will connect to the Google calendaring server and poll for
new events every 15 minutes, retrieving 60 minutes’ worth of data. Feel free to change
these settings as necessary, but be aware that pulling more data (especially if you have
multiple calendars for people in your company) will utilize more memory:

$ cat >> calendar.conf
[myGoogleCal]
type=caldav
url=https://www.google.com/calendar/dav/<Gmail Email Address>/events/
user=<Gmail Email Address>
secret=<Gmail Password>
refresh=15
timeframe=60
Ctrl + D

With your calendar.conf file configured, let’s load the calendaring modules into
Asterisk. First we’ll load the res_calendar.so module into memory, then we’ll follow it
up by doing a module reload, which will load the sister modules (such as res_calen-
dar_caldav.so) correctly.†

† As of this writing, there is a bug in the process of loading of the calendar modules after Asterisk has been
started. It was filed as issue 18067 at https://issues.asterisk.org and hopefully will have been resolved by the
time you read this. If not, be aware that you may need to restart Asterisk to get the modules loaded into
memory correctly.

400 | Chapter 18: External Services

http://www.gmail.com
https://issues.asterisk.org

$ asterisk -r
*CLI> module load res_calendar.so
*CLI> module reload

After loading the modules we can check to make sure our calendar has connected to
the server and been loaded into memory correctly, by executing calendar show
calendars:

*CLI> calendar show calendars
Calendar Type Status
-------- ---- ------
myGoogleCal caldav busy

Our status is currently set to busy (which doesn’t have any bearing on our dialplan at
the moment, but simply means we have an event that has marked us as busy in the
calendar), and we can see the currently loaded events for our time range by running
calendar show calendar <myGoogleCal> from the Asterisk console:

*CLI> calendar show calendar myGoogleCal
Name : myGoogleCal
Notify channel :
Notify context :
Notify extension :
Notify applicatio :
Notify appdata :
Refresh time : 15
Timeframe : 60
Autoreminder : 0
Events

Summary : Awesome Call With Russell
Description :
Organizer :
Location :
Cartegories :
Priority : 0
UID : hlfhcpi0j360j8fteop49cvk68@google.com
Start : 2010-09-28 08:30:00 AM -0400
End : 2010-09-28 09:00:00 AM -0400
Alarm : 2010-09-28 04:20:00 AM -0400

The first field in the top section is the Name of our calendar. Following that are several
Notify fields, which are used to dial a destination upon the start of a meeting, that we’ll
discuss in more detail shortly. The Refresh time and Timeframe fields are the values we
configured for how often to check for new events and how long of a range we should
look at for data, respectively. The Autoreminder field controls how long prior to an
event we should execute the Notify options.

Calendar Integration | 401

If you have not configured any of the Notify options but have an alarm
set to remind you in the calendar, you may get a WARNING message such
as:

WARNING[5196]: res_calendar.c:648 do_notify: Channel should be in
form Tech/Dest (was '')

The reason for the warning is that an alarm was set for notification about
the start of the meeting, but Asterisk was unable to generate a call due
to values not being configured to place the call. This warning message
can be safely ignored if you don’t plan on placing calls for event
notifications.

The rest of the screen output is a listing of events available within our Timeframe, along
with information about the events. The next steps are to look at some dialplan examples
of what you can do now that you have your calendaring information in Asterisk, and
to configure dialing notifications to remind you about upcoming meetings.

Triggering Calendar Reminders to Your Phone
In this section we’ll discuss how to configure the calendar.conf file to execute some
simple dialplan that will call your phone prior to a calendar event. While the dialplan
we’ll provide might not be ready for production, it certainly gives you a good taste of
the possibilities that exist for triggering calls based on calendar state.

Triggering a wakeup call

In our first example, we’re going to call a device and play back a reminder notice for a
particular calendar event. It might be useful to get this type of reminder if you’re likely
to be napping at your desk when your weekly Monday meeting rolls around. To set up
a wakeup call reminder, we simply need to add the following lines to our calendar
configuration in calendar.conf:

channel=SIP/0000FFFF0001
app=Playback
appdata=this-is-yr-wakeup-call

In your calendar, you need to make sure the event you’re adding has an
alarm or reminder associated with it. Otherwise, Asterisk won’t try to
generate a call.

After making this change, reload the res_calendar.so module from the Asterisk console:

*CLI> module reload res_calendar.so

402 | Chapter 18: External Services

When the event rolls around, Asterisk will generate a call to you and play back the
sound file this-is-yr-wakeup-call. The output on the console would look like this:

 -- Dialing SIP/0000FFFF0001 for notification on calendar myGoogleCal
 == Using SIP RTP CoS mark 5
 -- Called 0000FFFF0001
 -- SIP/0000FFFF0001-00000001 is ringing
 -- SIP/0000FFFF0001-00000001 connected line has changed, passing it to
 Calendar/myGoogleCal-5fd3c52
 -- SIP/0000FFFF0001-00000001 answered Calendar/myGoogleCal-5fd3c52
 -- <SIP/0000FFFF0001-00000001> Playing 'this-is-yr-wakeup-call.ulaw'
 (language 'en')

If you modify the calendar event so it’s just a couple of minutes in the
future, you can trigger the events quickly by unloading and then loading
the res_calendar_caldav.so module from the Asterisk console. By doing
that, you’ll trigger Asterisk to generate the call immediately.

Remember that our refresh rate is set to 15 minutes and we’re gathering 60 minutes’
worth of events. You might have to adjust these numbers if you wish to test this out on
your development server.

Scheduling calls between two participants

In this example we’re going to show how you can use a combination of some simple
dialplan and the CALENDAR_EVENT() dialplan function to generate a call between two
participants based on the information in the location field. We’re going to fill in the
location field with 0000FFFF0002, which is the SIP device we wish to call after answering
our reminder.

We haven’t specified SIP/0000FFFF0002 directly in the calendar event
because we want to be a bit more secure with what we accept. Because
we’re going to filter out anything but alphanumeric characters, we won’t
be able to accept a forward slash as the separator between the technology
and the location (e.g., SIP/0000FFFF0001). We could certainly allow this,
but then we would run the risk of people making expensive outbound
calls, especially if a user opens his calendar publicly or is compromised.
With the method we’re going to employ, we simply limit our risk.

Add the following dialplan to your extensions.conf file:

[AutomatedMeetingSetup]
exten => start,1,Verbose(2,Triggering meeting setup for two participants)
 same => n,Set(DeviceToDial=${FILTER(0-9A-Za-z,${CALENDAR_EVENT(location)})})
 same => n,Dial(SIP/${DeviceToDial},30)
 same => n,Hangup()

Calendar Integration | 403

When the event time arrives, our device will receive a call, and when that call is an-
swered another call will be placed to the endpoint with which we wish to have our
meeting. The console output looks like the following:

This is where our calendar triggers a call to our device

 -- Dialing SIP/0000FFFF0001 for notification on calendar myGoogleCal
 == Using SIP RTP CoS mark 5
 -- Called 0000FFFF0001
 -- SIP/0000FFFF0001-00000004 is ringing

And now we have answered the call from Asterisk triggered by an event

 -- SIP/0000FFFF0001-00000004 connected line has changed, passing it to
 Calendar/myGoogleCal-347ec99
 -- SIP/0000FFFF0001-00000004 answered Calendar/myGoogleCal-347ec99

Upon answer, we trigger some dialplan that looks up the endpoint to call

 -- Executing [start@AutomatedMeetingSetup:1] Verbose("SIP/0000FFFF0001-00000004",
 "2,Triggering meeting setup for two participants") in new stack
 == Triggering meeting setup for two participants

This is where we used CALENDAR_EVENT(location) to get the remote device

 -- Executing [start@AutomatedMeetingSetup:2] Set("SIP/0000FFFF0001-00000004",
 "DeviceToDial=0000FFFF0002") in new stack

And now we're dialing that endpoint

 -- Executing [start@AutomatedMeetingSetup:3] Dial("SIP/0000FFFF0001-00000004",
 "SIP/0000FFFF0002,30") in new stack
 == Using SIP RTP CoS mark 5
 -- Called 0000FFFF0002
 -- SIP/0000FFFF0002-00000005 is ringing

The other end answered the call, and Asterisk bridged us together

 -- SIP/0000FFFF0002-00000005 answered SIP/0000FFFF0001-00000004
 -- Locally bridging SIP/0000FFFF0001-00000004 and SIP/0000FFFF0002-00000005

Of course, the dialplan could be expanded to prompt the initial caller to acknowledge
being ready for the meeting prior to calling the other party. Likewise, we could add
some dialplan that plays a prompt to the other caller that lets her know that she has
scheduled a meeting and that if she presses 1 she will be connected with the other party
immediately. We could even have created a dialplan that would allow the original party
to record a message to be played back to the other caller.

Just for fun, we’ll show you an example of the functionality we just described. Feel free
to modify it to your heart’s content:

[AutomatedMeetingSetup]
exten => start,1,Verbose(2,Triggering meeting setup for two participants)

404 | Chapter 18: External Services

; *** This line should not have any line breaks
 same => n,Read(CheckMeetingAcceptance,to-confirm-wakeup&press-1&otherwise
&press-2,,1)

 same => n,GotoIf($["${CheckMeetingAcceptance}" != "1"]?hangup,1)

 same => n,Playback(silence/1&pls-rcrd-name-at-tone&and-prs-pound-whn-finished)

; We set a random number and assign it to the end of the recording
; so that we have a unique filename in case this is used by multiple
; people at the same time.
;
; We also prefix it with a double underscore because the channel
; variable also needs to be available to the channel we're going to call
;
 same => n,Set(__RandomNumber=${RAND()})
 same => n,Record(/tmp/meeting-invite-${RandomNumber}.ulaw)

 same => n,Set(DeviceToDial=${FILTER(0-9A-Za-z,${CALENDAR_EVENT(location)})})
 same => n,Dial(SIP/${DeviceToDial},30,M(CheckConfirm))
 same => n,Hangup()

exten => hangup,1,Verbose(2,Call was rejected)
 same => n,Playback(vm-goodbye)
 same => n,Hangup()

[macro-CheckConfirm]
exten => s,1,Verbose(2,Allowing called party to accept or reject)
 same => n,Playback(/tmp/meeting-invite-${RandomNumber})

; *** This line should not have any line breaks
 same => n,Read(CheckMeetingAcceptance,to-confirm-wakeup&press-1&otherwise
&press-2,,1)

 same => n,GotoIf($["${CheckMeetingAcceptance}" != "1"]?hangup,1)

exten => hangup,1,Verbose(2,Call was rejected by called party)
 same => n,Playback(vm-goodbye)
 same => n,Hangup()

We hope you’ll be able to use this simple dialplan example as a jumping-off point. With
a little creativity and some dialplan skills, the possibilities are endless!

Calling meeting participants and placing them into a conference

To expand upon the functionality in the previous section, we’re going to delve into the
logic problem of how you might be able to place multiple participants into a meeting.
Our goal is to use our calendar to call us when the meeting is scheduled to start, and
then, when we answer, to place calls to all the other members of the conference. As the
other participants answer their phones, they will be placed into a virtual conference
room, where they will wait for the meeting organizer to join. After all participants have

Calendar Integration | 405

been dialed and answered (or perhaps not answered), the organizer will be placed into
the call, at which point the meeting will start.

This type of functionality increases the likelihood that the meeting will start on time,
and it means the meeting organizer doesn’t have to continually perform roll call as new
participants continue to join after the call is supposed to start (which invariably hap-
pens, with people’s schedules typically being fairly busy).

The dialplan we’re going to show you isn’t necessarily a polished, production-ready
installation (for example, the data returned from the calendar comes from the descrip-
tion field, only deals with device names, and assumes the technology is SIP). However,
we’ve done the hard work for you by developing the Local channel usage, along with
the M() flag (macro) usage with Dial(). With some testing and tweaks this code could
certainly be developed more fully for your particular installation, but we’ve kept it
general to allow for it to be usable for more people in more situations. The example
dialplan looks like this:

[AutomatedMeetingSetup]
exten => start,1,Verbose(2,Calling multiple people and placing into a conference)

; Get information from calendar and save that information. Prefix
; CalLocation with an underscore so it is available to the Local
; channel (variable inheritance).
;
 same => n,Set(CalDescription=${CALENDAR_EVENT(description)})
 same => n,Set(_CalLocation=${CALENDAR_EVENT(location)})
 same => n,Set(X=1)

; Our separator is a caret (^), so the description should be in the
; format of: 0000FFFF0001^0000FFFF0002^etc...
;
 same => n,Set(EndPoint=${CUT(CalDescription,^,${X})})

; This loop is used to build the ${ToDial} variable, which contains
; a list of Local channels to be dialed, thereby triggering the multiple
; Originate() actions simultaneously instead of linearly
;
 same => n,While($[${EXISTS(${EndPoint})}])

; This statement must be on a single line
 same => n,Set(ToDial=${IF($[${ISNULL(${ToDial})}]?
 :${ToDial}&)}Local/${EndPoint}@MeetingOriginator)
 same => n,Set(X=$[${X} + 1])
 same => n,Set(EndPoint=${CUT(CalDescription,^,${X})})
 same => n,EndWhile()

; If no values are passed back, then don't bother dialing
 same => n,GotoIf($[${ISNULL(${ToDial})}]?hangup)
 same => n,Dial(${ToDial})

; After our Dial() statement returns, we should be placed into
; the conference room. We are marked, so the conference can start
; (which is indicated by the 'A' flag to MeetMe).

406 | Chapter 18: External Services

;
 same => n,MeetMe(${CalLocation},dA)
 same => n(hangup),Hangup()

[MeetingOriginator]
exten => _[A-Za-z0-9].,1,NoOp()
 same => n,Set(Peer=${FILTER(A-Za-z0-9,${EXTEN})})

; Originate calls to a peer as passed to us from the Local channel. Upon
; answer, the called party should execute the dialplan located at the
; _meetme-XXXX extension, where XXXX is the conference room number.
;
 same => n,Originate(SIP/${Peer},exten,MeetingOriginator,meetme-${CalLocation},1)
 same => n,Hangup()

; Join the meeting; using the 'w' flag, which means 'wait for marked
; user to join before starting'
;
exten => _meetme-XXXX,1,Verbose(2,Joining a meeting)
 same => n,Answer()
 same => n,MeetMe(${EXTEN:7},dw)
 same => n,Hangup()

Controlling Calls Based on Calendar Information
Sometimes it is useful to redirect calls automatically—for example, when you’re in a
meeting, or on vacation. In this section we’ll be making use of the CALENDAR_BUSY()
dialplan function, which allows us to check the current status of our calendar to de-
termine if we’re busy or not. A simple example of this would be to send all calls to
voicemail using the busy message whenever an event that marks us as busy has been
scheduled.

The following dialplan shows a simple example where we check our calendar for busy
status prior to sending a call to a device. Notice that a lot of the information in this
example is static, and additional effort would be required to make it dynamic and
suitable for production:

exten => 3000,1,Verbose(2,Simple calendar busy check example)
 same => n,Set(CurrentExten=${EXTEN})
 same => n,Set(CalendarBusy=${CALENDAR_BUSY(myGoogleCal)})
 same => n,GotoIf($["${CalendarBusy}" = "1"]?voicemail,1)
 same => n,Dial(SIP/0000FFFF0002,30)
 same => n,Goto(voicemail,1)

exten => voicemail,1,Verbose(2,Caller sent to voicemail)

; *** This line should not have any line breaks
 same => n,GotoIf($["${DIALSTATUS}" = "BUSY" |
"${CalendarBusy}" = "1"]?busy:unavail)

 same => n(busy),VoiceMail(${CurrentExten}@shifteight,b)
 same => n,Hangup()

Calendar Integration | 407

 same => n(unavail),VoiceMail(${CurrentExten}@shifteight,u)
 same => n,Hangup()

And here is a slightly more elaborate section of dialplan that utilizes a few of the tools
we’ve learned throughout the book, including DB_EXISTS(), GotoIf(), and the IF()
function:

exten => _3XXX,1,Verbose(2,Simple calendar busy check example)
 same => n,Set(CurrentExten=${EXTEN})
 same => n,GotoIf($[${DB_EXISTS(extension/${CurrentExten}/device)}]?:no_device,1)
 same => n,Set(CurrentDevice=${DB_RESULT})
 same => n,GotoIf($[${DB_EXISTS(extension/${CurrentExten}/calendar)}]?:no_calendar)
 same => n,Set(CalendarBusy=${CALENDAR_BUSY(${DB_RESULT})})
 same => n,GotoIf($[${CalendarBusy}]?voicemail,1)
 same => n(no_calendar),Verbose(2,No calendar was found for this user)
 same => n,Dial(SIP/${CurrentDevice},30)
 same => n,Goto(voicemail,1)

exten => voicemail,1,Verbose(2,Sending caller to voicemail)

; *** This line should not have any line breaks
 same => n,GotoIf($[${DB_EXISTS(extension/${CurrentExten}/voicemail_context)}]
?:no_voicemail)

 same => n,Set(VoiceMailContext=${DB_RESULT})
; *** This line should not have any line breaks
 same => n,Set(VoiceMailStatus=${IF($["${DIALSTATUS}" = "BUSY" |
0${CalendarBusy}]?b:u)})
 same => n,VoiceMail(${CurrentExten}@${VoiceMailContext},${VoiceMailStatus})
 same => n,Hangup()

 same => n(no_voicemail),Playback(number-not-answering)
 same => n,Hangup()

exten => no_device,1,Verbose(2,No device found in the DB)
 same => n,Playback(invalid)
 same => n,Hangup()

Writing Call Information to a Calendar
Using the CALENDAR_WRITE() function opens some other possibilities in terms of calendar
integration. From the Asterisk dialplan, we can insert information into a calendar,
which can be consumed by other devices and applications. Our next example is a cal-
endar that tracks call logs. For anyone who may be on the phone a fair amount who
needs to track time for clients, writing all calls to a calendar for a visual reference can
be useful when verifying things at the end of the day.

We’re going to utilize the Google web calendar again for this example, but we’re going
to create a new, separate calendar just for tracking calls. In order to write to the calendar,
we’ll need to set up our calendar.conf file a little bit differently, by using the CalDAV
calendar format. First, though, we need to create our new calendar.

408 | Chapter 18: External Services

On the left side of the Google calendar interface will be a link labeled Add. Clicking on
this will open a new window where you can create the calendar. Go ahead and do that
now. We’ve called ours “Phone Calls.”

Now we need to enable CalDAV calendar syncing for our calendar. Information about
how to do this is located at http://www.google.com/support/mobile/bin/answer.py?an
swer=151674. This page notes that only your primary calendar will be synced to the
device, but we want to make sure our calls are logged to a separate calendar so we can
easily hide them (and so our smartphone doesn’t synchronize the phone’s calls either,
which may cause confusion). There are two links near the bottom of the page: one for
regular Google calendar users, and the other for Google Apps users. Select the appro-
priate link and open it. You will then be presented with a page that contains your
calendars. Select the Phone Calls calendar and then select Save.

Next up is configuring our calendar.conf file for Asterisk. One of the parameters we
need is the link to the CalDAV calendar. There is a Calendar ID value that we need that
will identify our calendar specifically. To find the calendar ID, click the down arrow
beside the calendar name on the lefthand side of the calendar page and select Calendar
Settings. Near the bottom of the calendar settings will be two rows that contain the
icons for sharing the calendar (XML, ICAL, HTML). Beside the first set of icons inside
the Calendar Address box will be the calendar ID. It will look like this:

(Calendar ID: 2hfb6p5974gds924j61cmg4gfd@group.calendar.google.com)

If you’re setting this up via Google Apps, the calendar ID will be prefixed with your
domain name and an underscore (e.g., shifteight.org_). Make a note of this string, as
we’re going to use it next.

Open up the calendar.conf file and add a new calendar section. In our case we’ve called
it [phone_call_calendar]. You’ll recognize the formatting of the calendar from earlier,
so we won’t go through all the settings here. The key setting to note is the url parameter.
The format of this parameter is:

https://www.google.com/calendar/dav/<calendar_id>/events/

We need to replace the <calendar_id> with the calendar ID we recently made a note
of. The full configuration then ends up looking like so:

[phone_call_calendar]
type=caldav

; The URL must be on a single line
url=https://www.google.com/calendar/dav/
 shifteight.org_2hfb6p5974gds924j61cmg4gfd@group.calendar.google.com/events/

user = leif@shifteight.org
secret = my_secret_password
refresh=15
timeframe=120

Calendar Integration | 409

http://www.google.com/support/mobile/bin/answer.py?answer=151674
http://www.google.com/support/mobile/bin/answer.py?answer=151674

Now that we have our calendar configured, we need to load it into memory, which can
be done by reloading the res_calendar.so module:

*CLI> module reload res_calendar.so

Verify that the calendar has been loaded into memory successfully with the calendar
show command:

*CLI> calendar show calendars
Calendar Type Status
-------- ---- ------
phone_call_calendar caldav free

With our calendar successfully loaded into memory, we can write some dialplan around
our Dial() command to save our call information to the calendar with the CALEN
DAR_WRITE() function:

[LocalSets]
exten => _NXXNXXXXXX,1,Verbose(2,Outbound calls)
 same => n,Set(CalendarStart=${EPOCH}) ; Used by CALENDAR_WRITE()
 same => n,Set(X=${EXTEN}) ; Used by CALENDAR_WRITE()
 same => n,Dial(SIP/ITSP/${EXTEN},30)
 same => n,NoOp(Handle standard voicemail stuff here)
 same => n,Hangup()

exten => h,1,Verbose(2,Call cleanup)

; Everything that follows must be on a single line
 same => n,Set(CALENDAR_WRITE(phone_call_calendar,summary,description,start,end)=
 OUTBOUND: ${X},Phone call to ${X} lasted for ${CDR(billsec)} seconds.,
 ${CalendarStart},${EPOCH})

In our dialplan we’ve created a simple scenario where we place an outbound call
through our Internet Telephony Service Provider (ITSP), but prior to placing the call,
we save the epoch‡ to a channel variable (so we can use it later when we write our
calendar entry at the end of the call). After our call, we write our calendar entry to the
phone_call_calendar with the CALENDAR_WRITE() dialplan function within the built-in
h extension. There are several options we can pass to the calendar, such as the summary,
description, and start and end times. All of this information is then saved to the
calendar.

We’ve also used the CDR() dialplan function in our description to show the number of
seconds the answered portion of the call lasted for, so we can get a more accurate
assessment of whether a call was answered and, if so, how long the answered portion
lasted for. We could also be clever and only write to the calendar if ${CDR(billsec)}
was greater than 0 by wrapping the Set() application in an ExecIf(); e.g., same =>
n,ExecIf($[${CDR(billsec)} > 0]?Set(CALENDAR_WRITE...)).

‡ In Unix, the epoch is the number of seconds that have elapsed since January 1, 1970, not counting leap
seconds.

410 | Chapter 18: External Services

Many possibilities exist for the CALENDAR_WRITE() function; this is just one that we’ve
implemented and enjoy.

Conclusion
In this section we’ve learned how to integrate Asterisk with an external calendar server
such as that provided by Google, but the concepts for attaching to other calendaring
servers remain the same. We explored how to set up a meeting between two partici-
pants, and how to set up a multiparty conference using information obtained from the
description field in the calendar. We also looked at how to control calls using the
CALENDAR_BUSY() function, to redirect calls to voicemail when our current event de-
scribes us as busy. By implementing this type of functionality in Asterisk, you can see
the power we have to control call flow using external services such as those supplied
by a calendar server.

And we didn’t even get to dive into every use of the calendar implementation—there
exist other calendar functions, such as CALENDAR_QUERY(), which allows you to pull back
a list of events within a given time period for a particular calendar, and CALEN
DAR_QUERY_RESULT(), which allows you to access the specifics of those calendar events.
Additionally, you could create functionality that writes events into your calendar with
the CALENDAR_WRITE() function: for example, you may wish to develop some dialplan
that allows you to set aside blocks of times in your calendar from your phone when
you’re on the road without access to your laptop. Many possibilities exist, and all it
takes is a little creativity.

VoiceMail IMAP Integration
“Unified messaging” has been a buzzword in the telecommunications industry for ages.
It’s all about integrating services together so users can access the same types of data in
multiple locations, using different methods. One of the most touted applications is the
integration of email and voicemail. Asterisk has been doing this for years, but many of
the larger companies are still trying to get this right. Asterisk has had the ability to send
users voicemails via email, using the Mail Transport Agent (MTA) in your Linux distro
(this always used to be sendmail, but Postfix has become increasingly popular as an
MTA). Voicemail to email is one of the oldest features in Asterisk, and it normally works
without any configuration at all.§

Internet Message Access Protocol (IMAP) integration has existed in Asterisk (and been
steadily evolving) since version 1.4. IMAP voicemail integration means your users can
access their voicemails via a folder within their email accounts, which gives them the

§ When we say “it works,” what we mean is that Asterisk will compose the email and submit it to the MTA,
and the email will successfully be passed out of the system. What happens to it after it leaves the system is a
bit more complicated, and will often involve spam filters treating the mail as suspect and not actually
delivering it. This is not really Asterisk’s fault, but it’s something you’ll have to deal with.

VoiceMail IMAP Integration | 411

ability to listen to, forward, and mark voicemail messages with the same flexibility that
the Asterisk VoiceMail() dialplan application gives. Asterisk will be aware of the sta-
tuses of those messages when the users next log in via the phone system.

As the number of administrators integrating Asterisk with their IMAP servers has in-
creased, the number of bugs filed and fixed has first increased and then decreased, to
the point where IMAP integration can be considered stable enough for production use.
In this section we’ll discuss how to compile in IMAP voicemail support and connect
your voicemail system to your IMAP server.

Compiling IMAP VoiceMail Support into Asterisk
To get IMAP voicemail support into Asterisk, we need to compile the University of
Washington’s IMAP library. The UW IMAP toolkit will give us the functionality in
Asterisk to connect to our IMAP server. Before compiling the software, though, we
need to install some dependencies.

The dependencies for building the IMAP library include the tools required to build
Asterisk, but the way we’re building it also requires the development libraries for
OpenSSL and Pluggable Authentication Modules (PAM). We’ve included instructions
for both CentOS and Ubuntu.

CentOS dependencies

Installing both the OpenSSL and PAM development libraries on CentOS can be done
with the following command:

$ sudo yum install openssl-devel pam-devel

Remember to add .x86_64 to the name of each package if installing on
a 64-bit machine.

Ubuntu dependencies

Installing both the OpenSSL and PAM development libraries on Ubuntu can be done
with the following command:

$ sudo apt-get install libssl-dev libpam0g-dev

If you try to install libpam-dev on Ubuntu, it will warn you that libpam-
dev is a virtual package and that you should explicitly install one of the
packages in the list it presents you with (which in our case contained
only a single package). If libpam0g-dev is not the correct package on
your version of Ubuntu, try installing the virtual package. This should
give you a list of valid packages for the PAM development library.

412 | Chapter 18: External Services

Compiling the IMAP library

Now that we have our dependencies satisfied, we can compile the IMAP library that
Asterisk will use to connect to our IMAP server.

The first thing to do is change to the thirdparty directory located under the asterisk-
complete directory. If you have not already created this directory, do so now:

$ cd ~/src/asterisk-complete
$ mkdir thirdparty
$ cd thirdparty

Next up is downloading the IMAP toolkit and compiling it. The next steps will get the
latest version of the IMAP toolkit from the University of Washington’s server (more
information about the toolkit is available at http://www.washington.edu/imap/):

$ wget ftp://ftp.cac.washington.edu/mail/imap.tar.Z
$ tar zxvf imap.tar.Z
$ cd imap-2007e

The directory name imap-2007e may change as new versions of the
toolkit become available.

There are a few options we need to pass to the make command when building the IMAP
library, and the values you should pass will depend on what platform you’re building
on (32-bit vs. 64-bit), if you need OpenSSL support, and whether you need IPv6 support
or just IPv4. Table 18-1 shows some of the various options you could pass on different
platforms.

Table 18-1. IMAP library compile time options

Option Description

EXTRACFLAGS="-fPIC" Required when building on 64-bit platforms.

EXTRACFLAGS="-I/usr/include/openssl" Used for building in OpenSSL support.

IP6=4 Many platforms that support IPv6 prefer that method of connection,
which may not be desirable for all servers. If you would like to force
IPv4 as the preferred connection method, set this option.

If you look in the Makefile shipped with the IMAP library, you will find a list of platforms
for which the library can be compiled. In our case, we’ll be compiling for either CentOS
or Ubuntu with PAM support. If you’re compiling on other systems, take a look in the
Makefile for the three-letter code that tells the library how to compile for your platform.

To compile for a 64-bit platform with OpenSSL support and a preference for connecting
via IPv4:

$ make lnp EXTRACFLAGS="-fPIC -I/usr/include/openssl" IP6=4

VoiceMail IMAP Integration | 413

http://www.washington.edu/imap/

To compile for a 32-bit platform with OpenSSL support and a preference for connecting
via IPv4:

$ make lnp EXTRACFLAGS="-I/usr/include/openssl" IP6=4

If you don’t wish to compile with OpenSSL support, simply remove the -I/usr/
include/openssl from the EXTRACFLAGS option. If you would prefer connecting by IPv6
by default, simply don’t specify the IP6=4 option.

When installing IMAP support, we have always compiled the c-client
library from source. However, it may be available as a package for your
distribution. For example, Ubuntu has a libc-client-dev package availa-
ble. It may work and save you some trouble, but we have not tested it.

Compiling Asterisk

After compiling the IMAP library, we need to recompile the app_voicemail.so module
with IMAP support. The first step is to run the configure script and pass it the --with-
imap option to tell it where the IMAP library exists:

$ cd ~/src/asterisk-complete/asterisk/1.8.0
$./configure --with-imap=/usr/src/asterisk-complete/thirdparty/imap-2007e/

Once the configure script has finished executing, we need to enable IMAP voicemail
support in menuselect:

$ make menuselect

From the menuselect interface, go to Voicemail Build Options. Within that menu, you
should have the option to select IMAP_STORAGE.

If you don’t have the ability to select that option, check to make sure
your IMAP library was built successfully (i.e., that you have all the re-
quired dependencies installed and that it didn’t error out when building)
and that you correctly specified the path to the IMAP library when run-
ning the configure script. You can also verify that the IMAP library was
found correctly by looking in the config.log file (located in your Asterisk
build directory) for IMAP.

After selecting IMAP_STORAGE, save and exit from menuselect and run make install, which
will recompile the app_voicemail.so module and install it to the appropriate location.
The next step is to configure the voicemail.conf file located in /etc/asterisk/.

Configuring Asterisk

Now that we’ve compiled IMAP support into Asterisk, we need to enable it by con-
necting to an IMAP-enabled server. There are many IMAP servers that you could use,
including those supplied with Microsoft servers, Dovecot, and Cyrus on Unix, or a

414 | Chapter 18: External Services

http://www.dovecot.org
http://www.cyrusimap.org

web-based IMAP server such as that supplied by Google’s Gmail.‖ Our instructions are
going to show how to connect Asterisk to a Gmail account with IMAP enabled, as it
requires the least amount of effort to get up and running with IMAP voicemail, but
these instructions can easily be adapted for use with any existing IMAP server.

Enabling IMAP support on your Gmail account is
straightforward (see Figure 18-1). Once logged into your account, select Settings from
the upper-right corner. Then select Forwarding and POP/IMAP support from the task
bar under the Settings header. In the IMAP Access section, enable IMAP support by
selecting Enable IMAP. After enabling it, click the Save Changes button at the bottom
of the screen.

Figure 18-1. Enabling Gmail IMAP

To enable our voicemail system to connect to an IMAP
system, we need to make sure IMAP support has been built into the app_voicemail.so
module per the instructions in “Compiling Asterisk” on page 414. With IMAP support
compiled into Asterisk, we just need to instruct the voicemail module how to connect
to our IMAP server.

Enabling IMAP on your Gmail account.

Configuring voicemail.conf for IMAP.

‖ We recently checked out the open source webmail project roundcube project as well, and we were quite
impressed.

VoiceMail IMAP Integration | 415

http://www.gmail.com
http://www.roundcube.net

We’re going to demonstrate how to connect to an IMAP-enabled Gmail account and
use that to store and retrieve our voicemail messages. If you haven’t already, read the
section “Enabling IMAP on your Gmail account” before proceeding. The final step is
configuring voicemail.conf to connect to the server.

In voicemail.conf, add the following lines to the [general] section. Be sure you only
specify a single format (we recommend wav49) for voicemail recordings, and remove
any references to ODBC voicemail storage if you’ve enabled that previously:

[general]
format=wav49 ; format to store files
imapserver=imap.gmail.com ; IMAP server location
imapport=993 ; port IMAP server listens to
imapflags=ssl ; flags required for connecting
expungeonhangup=yes ; delete messages on hangup
pollmailboxes=yes ; used for message waiting indication
pollfreq=30 ; how often to check for message changes

Before we configure our user for connecting to the Gmail IMAP server, let’s discuss the
options we’ve just set in the [general] section. These are the basic options that will get
us started; we’ll do some more customization shortly, but let’s see what we’ve done
so far.

First, the format=wav49 option has declared that we’re going to save our files as GSM
with a WAV header, which can be played on most desktops (including Microsoft Win-
dows) while retaining a small file size.

Next, we’ve configured Asterisk to connect to an imapserver located at
imap.gmail.com on imapport 993. We’ve also set imapflags to ssl, as Gmail requires a
secure connection. Without the ssl IMAP flag being set, the server will reject our con-
nection attempts (which is why it was important that we compiled our IMAP library
with OpenSSL support). Another option that may be required on private IMAP servers
such as Dovecot is to specify novalidate-cert for imapflags when an SSL connection
is necessary, but the certificate is not generated by a certificate authority.

Next, we’ve set expungeonhangup=yes, which causes messages marked for deletion to be
removed from the server upon hangup from the VoiceMail() application. Without this
option, messages are simply marked as read and left on the server until they have been
removed via an email application or web interface.

In order to get message waiting indication (MWI) updates correctly, we need to enable
pollmailboxes=yes, which causes Asterisk to check with the server for any changes to
the status of a message. For example, when someone leaves us a voicemail and we listen
to it by opening the message via our email application, the message will be marked as
read, but without polling the mailbox Asterisk will have no way of knowing this and
will enable the MWI light on the associated device indefinitely. Finally, we’ve set the
related option pollfreq to 30 seconds. This option controls how often Asterisk will ask
the server for the status of messages: set it appropriately to control the amount of traffic
going to the voicemail server.

416 | Chapter 18: External Services

Table 18-2 shows some of the other options available to us.

Table 18-2. Additional IMAP voicemail options

Option Description

imapfolder Provides the name of the folder in which to store voicemail messages on your IMAP server. By default
they are stored in the INBOX.a

imapgreetings Defines whether voicemail greetings are stored on the IMAP server or stored locally on the server.
Valid values are yes or no.

imapparentfolder Defines the parent folder on the IMAP server. Usually this configured as INBOX on the server, but if
it is called something else, you can specify it here.

greetingfolder Specifies the folder in which to save the voicemail greetings, if you’ve enabled the imapgreet
ings option by setting it to yes. By default greetings are saved in the INBOX.

authuser Specifies the master user to use for connecting to your IMAP server, if the server is configured with
a single user that has access to all mailboxes.

authpassword Complement to the authuser directive. See authuser for more information.

opentimeout Specifies the TCP open timeout (in seconds).

closetimeout Specifies the TCP close timeout (in seconds).

readtimeout Specifies the TCP read timeout (in seconds).

writetimeout Specifies the TCP write timeout (in seconds).
a It is important to store your voicemail messages in a folder other than the INBOX if the number of messages contained in the INBOX could

be rather large. Asterisk will try to gather information about all the emails contained in the INBOX, and could either time out before retrieving
all the information or just take a very long time to store or retrieve voicemail messages, which is not desirable.

With our [general] section configured, let’s define a mailbox for connecting to the
IMAP server.

In Chapter 8 we defined some users in the [shifteight] voicemail context. Here is the
original configuration as defined in that chapter:

[shifteight]
100 => 0107,Leif Madsen,leif@shifteight.org
101 => 0523,Jim VanMeggelen,jim@shifteight.org,,attach=no|maxmsg=100
102 => 11042,Tilghman Lesher,,,attach=no|tz=central

We’re going to modify mailbox 100 in such a way that it connects to the Gmail IMAP
server to store and retrieve voicemail messages:

[shifteight]
100 => 0107,Leif Madsen,,,|imapuser=leif@shifteight.org|imappassword=secret

The voicemail.conf file uses both commas and pipes as separators, de-
pending on which field is being used. The first few fields have specific
settings in them, and the last field can contain extra information about
the mailbox, which is separated by the pipe character (|).

VoiceMail IMAP Integration | 417

We’ve removed the email address from the third field because we’re not going to use
sendmail to email us voicemails anymore: they are just going to be stored on the email
server directly now. We’ve configured the mailbox to connect with the IMAP username
of leif@shifteight.org (because we’ve enabled Google Apps for the domain that hosts
our email) and are connecting using the IMAP password secret.

After configuring Asterisk, we need to reload the app_voicemail.so module. If you en-
able console debugging, you should see output similar to the following upon connec-
tion to the voicemail server:

*CLI> core set debug 10
*CLI> module reload app_voicemail.so
DEBUG[3293]: app_voicemail.c:2734 mm_log: IMAP Info: Trying IP address [74.125.53.109]
DEBUG[3293]: app_voicemail.c:2734 mm_log: IMAP Info: Gimap ready for requests
 from 99.228.XXX.XXX 13if2973206wfc.0
DEBUG[3293]: app_voicemail.c:2757 mm_login: Entering callback mm_login
DEBUG[3293]: app_voicemail.c:2650 mm_exists: Entering EXISTS callback for message 7
DEBUG[3293]: app_voicemail.c:3074 set_update: User leif@shifteight.org mailbox set for
update.
DEBUG[3293]: app_voicemail.c:2510 init_mailstream: Before mail_open, server:
 {imap.gmail.com:993/imap/ssl/user=leif@shifteight.org}INBOX, box:0
DEBUG[3293]: app_voicemail.c:2734 mm_log: IMAP Info: Reusing connection to
 gmail-imap.l.google.com/user="leif@shifteight.org"

If you get any ERRORs, check your configuration and verify that the IMAP library is
compiled with SSL support. Once app_voicemail.so is connected, try leaving yourself
a voicemail; then check your voicemail via the Gmail web interface and verify that your
message is stored correctly. You should also have an MWI light on your device if it
supports it, and if you’ve configured mailbox=100@shifteight for the device in
sip.conf. If you load the voicemail message envelope and mark it as read, the MWI light
should turn off within 30 seconds (or whatever value you set pollfreq to in voice-
mail.conf).

Using XMPP (Jabber) with Asterisk
The eXtensible Messaging and Presence Protocol (XMPP) (formerly called Jabber) is
used for instant messaging and communicating presence information across networks
in near-realtime. Within Asterisk, it is also used for call setup (signaling). There are
various cool things we can do with XMPP integration once it’s enabled, such as getting
a message whenever someone calls us. We can even send messages back to Asterisk,
redirecting our calls to voicemail or some other location. Additionally, with
chan_gtalk, we can accept and place calls over the Google Voice network or accept calls
from Google Talk users via the web client.

418 | Chapter 18: External Services

Compiling Jabber Support into Asterisk
The res_jabber module contains various dialplan applications and functions that are
useful from the Asterisk dialplan. It is also a dependency of the chan_gtalk and
chan_jingle channel modules. To get started with XMPP integration in Asterisk, we
need to compile res_jabber.

CentOS dependencies

To install res_jabber, we need the iksemel development library (http://code.google.com/
p/iksemel/). If the OpenSSL development library is installed, res_jabber will also utilize
that for secure connections (this is recommended). We can install both on CentOS with
the following command:

$ sudo yum install iksemel-devel openssl-devel

As always, be sure to append .x86_64 to the module names if installing
on a 64-bit machine.

Ubuntu dependencies

To install res_jabber, we need the iksemel development library. If the OpenSSL de-
velopment library is installed, res_jabber will also utilize that for secure connections
(this is recommended). We can install both on Ubuntu with the following command:

$ sudo apt-get install libiksemel-dev libssl-dev

Jabber Dialplan Commands
Several dialplan applications and functions can be used for communication using the
XMPP protocol via Asterisk. We’re going to explore how to connect Asterisk to an
XMPP server, how to send messages to the client from the dialplan, and how to route
calls based on responses to the initially sent messages. By sending a message via XMPP,
we’re essentially creating a simple screen pop application to let users know when calls
are coming to the system.

Connecting to an XMPP server

Before we can start sending messages to our XMPP buddies, we need to connect to an
XMPP-enabled server. We’re going to utilize the XMPP server at Google, as it is open
and easily accessible by anyone. To do so, we need to configure the jabber.conf file in
our /etc/asterisk/ configuration directory. The following example will connect us to the
XMPP server at Google.

Using XMPP (Jabber) with Asterisk | 419

http://code.google.com/p/iksemel/
http://code.google.com/p/iksemel/

You must already have a Gmail account, which you can get at http://
www.gmail.com.

Our jabber.conf file should look like this:

[general]
debug=no
autoprune=no
autoregister=yes
auth_policy=accept

[asterisk]
type=client
serverhost=talk.google.com
username=asterisk@shifteight.org
secret=<super_secret_password>
port=5222
usetls=yes
usesasl=yes
status=available
statusmessage="Ohai from Asterisk"

Let’s take a quick look at some of the options we just set so you understand what is
going on. The options are described in Table 18-3. Note that the first four options are
set in the [general] section, and the others are set in the peer section.

Table 18-3. jabber.conf options

Option Description

debug Enables/disables XMPP message debugging (which can be quite verbose). Available options are yes or no.

autoprune Enables/disables autoremoval of users from your buddy list each time res_jabber.so connects to your
accounts. Do not use this for accounts you might use outside of Asterisk (e.g., your personal account).
Available options are yes or no.

autoregister Specifies whether to automatically register users from your buddy list into memory. Available options
are yes or no.

auth_policy Determines whether or not we should automatically accept subscription requests. Available options are
accept or deny.

type Sets the type of client we will connect as. Available options are client or component. (You will almost
always want client.)

serverhost Indicates which host this connection should connect to (e.g., talk.google.com).

username Provides the username that will be used to connect to the serverhost (e.g., asterisk@gmail.com).

secret Specifies the password that will be used to connect to the serverhost.

port Indicates which port we will attempt the connection to serverhost on (e.g., 5222).

usetls Specifies whether to use TLS or not when connecting to serverhost. Available options are yes or no.

usesasl Specifies whether to use SASL or not when connecting to serverhost. Available options are yes or no.

420 | Chapter 18: External Services

http://www.gmail.com
http://www.gmail.com

Option Description

status Defines our default connection status when signed into our account. Available options are: chat,
available, away, xaway, and dnd.

statusmessage Sets a custom status message to use when connected with Asterisk, such as "Connected Via
Asterisk". Use double quotes around the message.

buddy Used to manually add buddies to the list upon connection to the server. You can specify multiple buddies
on multiple buddy lines (e.g., buddy=jim@shifteight.org).

timeout Specifies the timeout (in seconds) that messages are stored on the message stack. Defaults to 5 seconds.
This option only applies to incoming messages, which are intended to be processed by the
JABBER_RECEIVE() dialplan function.

priority Defines the priority of this resource in relation to other resources. The lower the number, the higher the
priority.

After configuring our jabber.conf file, we can load (or reload) the res_jabber.so module.
We can do this from the console with jabber reload:

*CLI> jabber reload
Jabber Reloaded.

and check the connection with the jabber show connections command:

*CLI> jabber show connections
Jabber Users and their status:
 User: asterisk@shifteight.org - Connected

 Number of users: 1

If you’re having problems getting connected, you can try unloading the module and
then loading it back into memory. If you’re still having problems, you can run the jabber
purge nodes command to remove any existing or bad connections from memory. Be-
yond that, check your configuration and verify that you don’t have any configuration
problems or typos. Once you’ve gotten connected, you can move on to the next sec-
tions, where the fun starts.

Sending messages with JabberSend()

The JabberSend() dialplan application is used for sending messages to buddies from
the Asterisk dialplan. You can use this application in any place that you would normally
utilize the dialplan, which makes it quite flexible. We’re going to use it as a screen pop
application for sending a message to a client prior to placing a call to the user’s phone.
Depending on the client used, you may be able to have the message pop up on the user’s
screen from the task bar.

Using XMPP (Jabber) with Asterisk | 421

Here is a simple example to get us started:

[LocalSets]
exten => 104,1,Answer()

; *** This line should not have any line breaks
 same => n,JabberSend(asterisk,jim@shifteight.org,Incoming call from
${CALLERID(all)})

 same => n,Dial(SIP/0000FFFF0002,30)
 same => n,Hangup()

This example demonstrates how to use the JabberSend() application to send a message
to someone prior to dialing a device. Let’s break down the values we’ve used. The first
argument, asterisk, is the section header we defined in the jabber.conf file as
[asterisk]. In our jabber.conf example, we set up a user called asterisk@shif-
teight.org to send messages via the Google XMPP server, and asterisk is the section
name we defined. The second argument, jim@shifteight.org, is the buddy we’re send-
ing the message to. We can define any buddy here, either as a bare JID (as we’ve done
above) or as a full JID with a resource (e.g., jim@shifteight.org/laptop). The third ar-
gument to JabberSend() is the message we want to send to the buddy. In this case we’re
sending Incoming call from ${CALLERID(all)}, with the CALLERID() dialplan function
being used to enter the caller ID information in the message.

Obviously, we would have to further build out our dialplan to make this useful: spe-
cifically, we’d have to associate the buddy name (e.g., jim@shifteight.org) with the
device we’re calling (SIP/0000FFFF0002) so that we’re sending the message to the correct
buddy. You can save these associations in any one of several locations, such as the in
AstDB, in a relational database retrieved with func_odbc, or even in a global variable.

Receiving messages with JABBER_RECEIVE()

The JABBER_RECEIVE() dialplan function allows us to receive responses via XMPP mes-
sages, capture those responses, and presumably act on them. We would typically use
the JABBER_RECEIVE() function in conjunction with the JabberSend() dialplan applica-
tion, as we are likely to need to send a message to someone and prompt him with the
acceptable values he can return. We could use the JABBER_RECEIVE() function either
personally, to direct calls to a particular device such as a cell phone or desk phone, or
as a text version of an auto attendant to be used when people who are likely to have
difficulty hearing the prompts dial in (e.g., users who are deaf or work at noisy job
sites). In the latter case, the system would have to be preconfigured to know where to
send the messages to, perhaps based on the caller ID of the person calling.

Here is a simple example that sends a message to someone, waits for a response, and
then routes the call based on the response:

exten => 106,1,Answer()

 ; All text must be on a single line.

422 | Chapter 18: External Services

 same => n,JabberSend(asterisk,leif.madsen@gmail.com,Incoming call from
${CALLERID(all)}. Press 1 to route to desk. Press 2 to send to voicemail.)

 same => n,Set(JabberResponse=${JABBER_RECEIVE(asterisk,leif@shifteight.org)})
 same => n,GotoIf($["${JabberResponse}" = "1"]?dial,1)
 same => n,GotoIf($["${JabberResponse}" = "2"]?voicemail,1)
 same => n,Goto(dial,1)

exten => dial,1,Verbose(2,Calling our desk)
 same => n,Dial(SIP/0000FFFF0002,6)
 same => n,Goto(voicemail,1)

exten => voicemail,1,Verbose(2,VoiceMail)

; *** This line should not have any line breaks
 same => n,Set(VoiceMailStatus=${IF($[${ISNULL(${DIALSTATUS})}
| "${DIALSTATUS}" = "BUSY"]?b:u)})

 same => n,Playback(silence/1)
 same => n,VoiceMail(100@lmentinc,${VoiceMailStatus})
 same => n,Hangup()

Unfortunately, the JabberSend() application requires all of the message
to be sent on a single line. If you wish to break up the text onto multiple
lines, you will need to send it as multiple messages on separate lines
using JabberSend().

Our simple dialplan first sends a message to a Jabber account (leif@shifteight.org) via
our systems’ Jabber account (asterisk), as configured in jabber.conf. We then use the
JABBER_RECEIVE() dialplan function to wait for a response from leif@shifteight.org. The
default timeout is 5 seconds, but you can specify a different timeout with a third argu-
ment to JABBER_RECEIVE(). For example, to wait 10 seconds for a response, we could
have used a line like this:

Set(JabberResponse=${JABBER_RECEIVE(asterisk,leif@shifteight.org,10)})

Once we’ve either received a response or the timeout has expired, we move on to the
next line of the dialplan, which starts checking the response saved to the
${JabberResponse} channel variable. If the value is 1, we continue our dialplan at dial,
1 of the current context. If the response is 2, we continue our dialplan at voicemail,1.
If no response (or an unknown response) is received, we continue the dialplan at
dial,1.

The dialplan at dial,1 and voicemail,1 should be fairly self-evident. This is a non-
production example; some additional dialplan should be implemented to make the
values dynamic.

There is a disadvantage to the way we’ve implemented the JABBER_RECEIVE() function,
though. Our function blocks, or waits, for a response from the endpoint. If we set the
response value low to minimize delay, we don’t give the user we sent the message to

Using XMPP (Jabber) with Asterisk | 423

much time to respond. However, if we set the response long enough to make it
comfortable for the user to send a response, we cause unnecessary delay in calling a
device or sending to voicemail.

We can skirt around this issue by using a Local channel. This allows us to execute two
sections of dialplan simultaneously, sending a call to the device at the same time we’re
waiting for a response from JABBER_RECEIVE(). If we get a response from JAB
BER_RECEIVE() and we need to do something, we can Answer() the line and cause that
section of dialplan to continue. If the device answers the phone, our dialplan with
JABBER_RECEIVE() will just be hung up. Let’s take a look at a modified dialplan that
implements the Local channel:

exten => 106,1,Verbose(2,Example using the Local channel)
 same => n,Dial(Local/jabber@${CONTEXT}/n&Local/dial@${CONTEXT}/n)

exten => jabber,1,Verbose(2,Send an XMPP message and expect a response)

; *** This line should not have any line breaks
 same => n,JabberSend(asterisk,leif.madsen@gmail.com,Incoming call from
${CALLERID(all)}. Press 2 to send to voicemail.)

 same => n,Set(JabberResponse=${JABBER_RECEIVE(asterisk,leif@shifteight.org,6)})
 same => n,GotoIf($["${JabberResponse}" = "2"]?voicemail,1)
 same => n,Hangup()

exten => dial,1,Verbose(2,Calling our desk)
 same => n,Dial(SIP/0000FFFF0002,15)
 same => n,Goto(voicemail,1)

exten => voicemail,1,Verbose(2,VoiceMail)
 same => n,Answer()

; *** This line should not have any line breaks
 same => n,Set(VoiceMailStatus=${IF($[${ISNULL(${DIALSTATUS})}
| "${DIALSTATUS}" = "BUSY"]?b:u)})

 same => n,Playback(silence/1)
 same => n,VoiceMail(100@lmentinc,${VoiceMailStatus})
 same => n,Hangup()

By adding a Dial() statement at the beginning and shifting our Jabber send and receive
functionality into a new extension called jabber, we ensure that we can simultaneously
call the dial extension and the jabber extension.

Notice that we removed the Answer() application from the first line of the example. The
reason for this is because we want to Answer() the line only after a device has answered
(which causes the jabber extension to be hung up); otherwise, we want the voicemail
extension to Answer() the line. If the voicemail extension has answered the line, that
means either the jabber extension has received a response and was told to Goto() the
voicemail extension, or the Dial() to our device timed out, causing the voicemail ex-
tension to be executed, thereby causing the line to be Answer()ed.

424 | Chapter 18: External Services

With the examples provided here serving as a springboard, you should be able to de-
velop rich applications that make use of sending and receiving messages via XMPP
servers. Some other dialplan applications and functions exist that may help in the de-
velopment of your application, such as JABBER_STATUS() (or the JabberStatus() dialplan
application), which is used for checking on the status of a buddy; the JabberJoin() and
JabberLeave() applications, which are used for joining and leaving XMPP conference
rooms; and the JabberSendGroup() application, which allows you to send messages to
an XMPP chat room.

chan_gtalk
The chan_gtalk module can be used for connecting to Google Talk (GTalk) clients or
for sending and receiving calls via the Google Voice network, which is a PSTN-
connected network where you can purchase minutes just like you would from any other
ITSP. GTalk is the web-based voice system typically found in GMail web interfaces.
Other clients and addons do exist for external applications such as Pidgin, but we’ll be
testing with the web-based client from Google.

As of the beginning of 2011, the Google Voice system can only be used
in the US.

chan_gtalk’s Cousin, chan_jingle
Another channel module that is similar to chan_gtalk exists, and that is chan_jingle.
Both modules utilize the same type of underlying system: XMPP signaling. However,
the chan_jingle module was written long ago and implements a specification that is
not widely supported. You may find the implementation of chan_jingle incompatible
with many endpoints, and thus at this time you may not find it all that useful. However,
work is being done to update chan_jingle to the current specifications, so it may be
more useful in a future version of Asterisk.

Before we can get connected to chan_gtalk, we need to make sure we’re connected via
res_jabber, so if you haven’t already done so, review “Connecting to an XMPP
server” on page 419 for information about how to connect to the Google XMPP servers.

Configuring gtalk.conf

Once we’re connected via res_jabber, we can configure the gtalk.conf file, which is
used for accepting incoming calls from the Google network. The following configura-
tion enables the guest account, which is required to accept incoming calls. There is
currently no support for authenticating incoming calls and then separating and sending
them to different contexts, which you may be used to from the configuration of other

Using XMPP (Jabber) with Asterisk | 425

channel drivers in Asterisk. For now chan_gtalk is fairly simple, but future versions of
Asterisk may add this feature.

Our gtalk.conf file looks like this:

[general]
bindaddr=0.0.0.0 ; Address to bind to
allowguests=yes ; Allow calls from people not in contact list

; Optional arguments
; externip=<external IP of server>
; stunaddr=<stun.yourdomain.tld>

[guest] ; special account for options on guest account
disallow=all
allow=ulaw
context=gtalk_incoming
connection=asterisk ; connection name defined in jabber.conf

If your Asterisk system lives behind NAT, you may need to add some additional options
to the [general] section in order to place the correct IP address into the headers. If you
have a static external IP address, you can use the externip option to specify it. Alter-
natively, you could use the stunaddr option to specify the address of your STUN server,
which will then look up your address from an external server and place that information
into the headers.

If you configure the stunaddr option in gtalk.conf and the lookup is suc-
cessful, it will override any value specified in the externip option.

Let’s discuss briefly the options we’ve configured in gtalk.conf. In the [general] section,
we have set the bindaddr option to 0.0.0.0, which means to listen on all interfaces.#

You can also specify a single interface to listen on by specifying the IP address of that
interface. The next line is allowguests, which can be set to either yes or no but is only
useful when set to yes. Because the module does not offer the ability to specify different
control mechanisms for different users, all users are treated as guests.*

Next we’ve specified the [guest] account, which will let us accept calls from Google
Voice and Google Talk users. This account is only used for incoming calls. When plac-
ing outgoing calls, we’ll use the account specified in the jabber.conf file. Within the
[guest] account, we’ve disabled all codecs with the disallow=all option, and then
specifically enabled the ulaw codec with allow=ulaw on the following line. Incoming
calls are then directed to the gtalk_incoming context with the context option. We

#The chan_gtalk module only support IPv4 interfaces.

* Future versions of Asterisk may offer more fine-grained control.

426 | Chapter 18: External Services

specify which account calls will be coming from with the connection option, which
we’ve set to the account created in jabber.conf.

The chan_gtalk module does not support reloading the configuration. If you change
the configuration, you will have to either restart Asterisk or unload and reload the
module, which can only be done when no GTalk calls are up. You can do that using
the following commands:

*CLI> module unload chan_gtalk.so
*CLI> module load chan_gtalk.so

Accepting calls from Google Talk

To allow calls from other Google Talk users, we need to configure our dialplan to accept
incoming calls. Inside your extensions.conf file, add the [gtalk_incoming] context:

[gtalk_incoming]
exten => s,1,Verbose(2,Incoming Gtalk call from ${CALLERID(all)})
 same => n,Answer()
 same => n,Dial(SIP/0000FFFF0001,30)
 same => n,Hangup()

We’ve now configured a simple test dialplan that will send calls to the SIP/
0000FFFF0001 device and wait 30 seconds before hanging up the line. The s extension
can be used to match any incoming call from Google Talk or Google Voice, but if you
have multiple accounts that could be coming into this context, you can match different
users by specifying the username portion of the Gmail email address as the extension.
So, for example, if we had a user my_asterisk_user@gmail.com, the username portion
would be my_asterisk_user, and this is what we’d specify in [gtalk_incoming]:

[gtalk_incoming]
exten => my_asterisk_user,1,Verbose(2,Gtalk call from ${CALLERID(all)})
 same => n,Answer()
 same => n,Dial(SIP/0000FFFF0001,3)
 same => n,Hangup()

The order of rules used for matching incoming calls to chan_gtalk is:

1. Match the username portion of the Gmail account in the context specified for the
[guest] account.

2. Match the s extension in the context specified for the [guest] account.

3. Match the s extension in the [default] context.

Accepting calls from Google Voice

The configuration for accepting calls from Google Voice is similar (if not identical) to
that for Google Talk, which we set up in the preceding section. A little tip, though, is
that sometimes you can’t disable the call screening functionality (for some reason we
still got it even when we’d disabled it in the Google Voice control panel). If you run
into this problem but don’t want to have to screen your calls, you can automatically

Using XMPP (Jabber) with Asterisk | 427

send the DTMF prior to ringing your device by adding the two boldface lines shown
here prior to performing the Dial():

[gtalk_incoming]
exten => s,1,Verbose(2,Incoming call from ${CALLERID(all)})
 same => n,Answer()
 same => n,Wait(2)
 same => n,SendDTMF(2)
 same => n,Dial(SIP/0000FFFF0001,30)
 same => n,Hangup()

Here, we’re using the Wait() and SendDTMF() applications to first wait 2 seconds after
answering the call (which is the time when the call screening message will start) and
then accept the call automatically (by sending DTMF tones for the number 2). After
that, we then send the call off to our device.

Outgoing calls via Google Talk

To place a call to a Google Talk user, configure your dialplan like so:

[LocalSets]
exten => 123,1,Verbose(2,Extension 123 calling some_user@gmail.com)
 same => n,Dial(Gtalk/asterisk/some_user@gmail.com,30)
 same => n,Hangup()

The Gtalk/asterisk/some_user@gmail.com part of the Dial() line can be broken into
three parts. The first part, Gtalk, is the protocol we’re using for placing the outgoing
call. The second part, asterisk, is the account name as defined in the jabber.conf file.
The last part, some_user@gmail.com, is the location we’re attempting to place a call to.

Outgoing calls via Google Voice

To place calls using Google Voice to PSTN numbers, create a dialplan like the following:

[LocalSets]
exten => _1NXXNXXXXXX,1,Verbose(2,Placing call to ${EXTEN} via Google Voice)
 same => n,Dial(Gtalk/asterisk/+${EXTEN}@voice.google.com)
 same => n,Hangup()

Let’s discuss the Dial() line briefly, so you understand what is going on. We start with
Gtalk, which is the technology we’ll use to place the call. Following that, we have
defined the asterisk user as the account we’ll use to authenticate with when placing
our outgoing call (this is configured in jabber.conf). Next is the number we’re attempt-
ing to place a call to, as defined in the ${EXTEN} channel variable. We’ve prefixed the
${EXTEN} channel variable with a plus sign (+), as it’s required by the Google network
when placing calls. We’ve also appended @voice.google.com to let the Google servers
know this is a call that should be placed through Google Voice† as opposed to to another
Google Talk user.

† You may have to purchase credits from Google Voice in the control panel in order to place calls to certain
destinations.

428 | Chapter 18: External Services

Skype Integration
Skype integration now exists with Asterisk through a commercial module from Digium
called Skype for Asterisk (SFA).‡ The SFA module loads directly into Asterisk and al-
lows communication with all users on the Skype network directly by using an account
created on the Skype Manager. Previous methods were messy, requiring the use of a
Windows-based computer running another instance of Skype controlled via an API
(application programming interface) and directing media to a sound card and into
Asterisk via chan_oss or chan_alsa. Now, two methods exist: SFA and Skype Connect
(formerly known as Skype for SIP).

As an Asterisk module, Skype for Asterisk does have some features that Skype Connect
does not, including text chat, presence updates, and the ability to call a Skype user
directly rather an via SkypeIn number. Additionally, Skype for Asterisk utilizes Skype’s
encryption for calls, which provides security benefits without the need to use SRTP
(secure RTP) with SIP.

Installation of Skype for Asterisk
Since Skype for Asterisk is a commercial product, documentation for installing and
configuring the module is available from Digium directly. For the most up-to-date in-
stallation documentation and information about the Skype for Asterisk module, see
http://www.digium.com/en/products/software/skypeforasterisk.php.

You can download the modules from http://downloads.digium.com/pub/telephony/sky
peforasterisk, and the registration utility for registering commercial modules from Dig-
ium is available at http://downloads.digium.com/pub/register.

Using Skype for Asterisk
In this section we’ll explore the various ways we can utilize Skype from our dialplan,
such as sending calls to and receiving calls from users on the Skype network and ex-
changing messages with our Skype buddies. We’ll also show you how to implement a
clever dialplan that will make it easier to call your friends on the Skype network without
having to assign everyone an extension number.

Configuring chan_skype.conf

While the README file that comes with the Skype module helps to document
the chan_skype.conf configuration, and the sample chan_skype.conf file is well-
documented, it is worth showing a simple version of the configuration for the purposes
of documenting the usage of Skype from the dialplan.

‡ Skype for Asterisk currently retails for $66 per license, and includes a G.729 license. Each license permits
one simultaneous call.

Skype Integration | 429

http://www.digium.com/en/products/software/skypeforasterisk.php
http://downloads.digium.com/pub/telephony/skypeforasterisk
http://downloads.digium.com/pub/telephony/skypeforasterisk
http://downloads.digium.com/pub/register

Users configured in chan_skype.conf must be created with the Skype
Manager interface. Personal Skype IDs are not allowed.

Our example Skype user will be pbx.shifteight.org. We’ll configure this user in
chan_skype.conf. There are additional options that could be set here, but for our pur-
poses we’re keeping it simple:

[general]
default_user=pbx.shifteight.org

[pbx.shifteight.org]
secret=my_secret_pass
context=skype_incoming
exten=start
buddy_autoadd=true

The default_user option in the [general] section is used to control which account we
should use when placing calls via Skype. If we had multiple accounts, the
default_user would be used when placing calls unless we specified a different user to
place the call as (we’ll discuss this further in the next section).

We’ve also defined the password (secret), the context incoming calls will enter into,
and the extension (exten) that will be executed within the context. If we had multiple
Skype users and wanted to control all of them from the same context, we could
give them each different extension values, such as exten=leifmadsen or
exten=russellbryant.

Additionally, we’ve enabled the ability to automatically add people who contact us to
our buddies list.

Placing and receiving calls via Skype

Placing a call to a Skype buddy is relatively straightforward. Like with other channel
types in Asterisk, the Skype channel type is used to place calls to endpoints on the Skype
network.

Utilizing the Dial() application from the dialplan, we can place calls to other Skype
users:

[LocalSets]
exten => 100,1,Answer()
 same => n,Dial(Skype/vuc.me,30)
 same => n,Playback(silence/1&user&is-curntly-unavail)
 same => n,Hangup()

430 | Chapter 18: External Services

Our dialplan simply answers the call and attempts to place a call to vuc.me,§ wait 30
seconds for that user to answer, and, if there is no answer, play back a message saying
that the user is currently unavailable before hanging up. We could, of course, be more
elaborate with our dialplan; for example, we could turn this into a Macro() or GoSub()
routine so we just needed to pass in the name of the person we wish to call.

Unfortunately, if you’re utilizing a device that only has a number pad for dialing, you’ll
need to assign extension numbers to all your favorite Skype buddies. However, we’ve
come up with a clever way of reading back your online buddies to you, which we’ll
describe in “Calling your Skype buddies without assigning extension num-
bers” on page 433.

If you have a softphone, though, you should have the ability to place calls by dialing
names directly. We can use this to our advantage by creating a pattern match in our
dialplan with the prefix of SKYPE:

[LocalSets]
exten => _SKYPE-.,1,Verbose(2,Dialing via Skype)
 same => n,Set(NameToDial=${FILTER(a-zA-Z0-9.,${EXTEN:6})})
 same => n,Playback(silence/1&pls-wait-connect-call)
 same => n,Dial(Skype/${NameToDial},30)
 same => n,Playback(user&is-curntly-unavail)
 same => n,Hangup()

By dialing SKYPE-vuc.me, we can dial the VoIP Users Conference via Skype from our
softphone. The FILTER() function is used here to control what we’re allowed to pass
to the Dial() application. If we didn’t do any filtering, someone could potentially send
a string like SKYPE-nobody&SIP/my_itsp/4165551212, replacing the number 4165551212
with a number that is very expensive to call. By using FILTER(), we restrict the allowable
characters to alphanumeric characters and periods.

After that, we’re simply passing the string to the Dial() application and waiting for an
answer for 30 seconds. If no one answers, an audio message is played back to the caller
stating that the user is unavailable and then the call is hung up.

To receive calls, you simply need to configure your user in the chan_skype.conf file as
described in “Configuring chan_skype.conf” on page 429. Once you’ve done that, you
can configure your dialplan to answer calls like so:

[skype_incoming]
exten => start,1,Verbose(2,Incoming Skype Call)
 same => n,Answer()
 same => n,Dial(SIP/0000FFFF0001,30)
 same => n,Playback(user&is-curntly-unavail)
 same => n,Hangup()

Obviously, you can change this section of the dialplan to be more elaborate; all we’ve
done is configured the dialplan to call our SIP device at 0000FFFF0001, wait for an answer

§ The VUC is the VoIP Users Conference, which runs weekly at 12:00 noon Eastern time (–0500 GMT). More
information is available at http://vuc.me.

Skype Integration | 431

http://vuc.me

for 30 seconds, and then (if there is no answer or the device is busy or unavailable) play
back a prompt that says the user is currently unavailable, followed by a hangup.

We’ve just shown you how to place and receive calls via Skype. The following sections
will show you how to send and receive messages via the Skype network, and how to
place calls to your Skype buddies without assigning extension numbers to them.

Sending and receiving messages via Skype

Sending and receiving messages via Skype is similar to doing this via XMPP (Jabber),
which we described in “Sending messages with JabberSend()” on page 421 and “Re-
ceiving messages with JABBER_RECEIVE()” on page 422, so we won’t go into quite
the detail in these sections as we did there. Please review the sections about XMPP
messaging before continuing, as we’ll be using the same basic dialplans to accomplish
sending and receiving of messages via Skype, while making adjustments to use the
appropriate dialplan applications and functions.

The primary thing to remember is that messages are sent with the dialplan application
SkypeChatSend() and received with the dialplan function SKYPE_CHAT_RECEIVE(). Addi-
tionally, messages can only be received when the SKYPE_CHAT_RECEIVE() function has
been called from the dialplan, and it blocks (does not continue in the dialplan) while
waiting for a message.

Sending a message from the dialplan to a Skype buddy is relatively straightforward.
Here is a simple dialplan we can use to send a message from Asterisk to someone on
the Skype network:

[LocalSets]
exten => 104,1,Answer()

; *** This line should not have any line breaks
 same => n,SkypeChatSend(pbx.shifteight.org,tfot.madsen,Incoming call from
${CALLERID(all)})

 same => n,Dial(SIP/0000FFFF0002,30)
 same => n,Hangup()

Our dialplan is simple. We created a test extension of 104 that answers the line, then
sends a message to Skype user tfot.madsen from the pbx.shifteight.org account
(which we configured in the chan_skype.conf file). The message sent is “Incoming call
from ${CALLERID(all)}”, where the caller ID is provided by the CALLERID() func-
tion. After sending our message, we then dial the device located at 0000FFFF0002 and
hang up if no one answers within 30 seconds.

That’s it for sending messages via Skype. Now let’s look at some of the ways we can
receive messages from Skype. Here is the simple example we explored in “Receiving
messages with JABBER_RECEIVE()” on page 422), with a few changes made to reflect
the technology. This time, we’ll be replacing JabberSend() and JABBER_RECEIVE() with

432 | Chapter 18: External Services

the SkypeChatSend() and SKYPE_CHAT_RECEIVE() dialplan application and function,
respectively:

exten => 106,1,Answer()

 ; All text must be on a single line.
 same => n,SkypeChatSend(pbx.shifteight.org,tfot.madsen,Incoming call from
${CALLERID(all)}. Press 1 to route to desk. Press 2 to send to voicemail.)

 ; Wait for a response for 6 seconds.
 ; *** This line should not have any line breaks
 same => n,Set(SkypeResponse=
${SKYPE_CHAT_RECEIVE(pbx.shifteight.org,tfot.madsen,6)})

 same => n,GotoIf($["${SkypeResponse}" = "1"]?dial,1)
 same => n,GotoIf($["${SkypeResponse}" = "2"]?voicemail,1)
 same => n,Goto(dial,1)

exten => dial,1,Verbose(2,Calling our desk)
 same => n,Dial(SIP/0000FFFF0002,6)
 same => n,Goto(voicemail,1)

exten => voicemail,1,Verbose(2,VoiceMail)

; *** This line should not have any line breaks
 same => n,Set(VoiceMailStatus=${IF($[${ISNULL(${DIALSTATUS})}
| "${DIALSTATUS}" = "BUSY"]?b:u)})

 same => n,Playback(silence/1)
 same => n,VoiceMail(100@lmentinc,${VoiceMailStatus})
 same => n,Hangup()

There you have it—sending and receiving messages via the Skype network!

You can also send and receive messages with the Asterisk Manager In-
terface, the topic of Chapter 20.

We’ve essentially implemented a screen pop solution for incoming calls, but by allow-
ing messages to be sent back to Asterisk via Skype within a defined period of time,
we’ve also created a solution for redirecting calls prior to ringing any devices. A more
functional version of the dynamic routing dialplan we just explored was developed in
the section about JABBER_RECEIVE() earlier in this chapter: it used the Local channel to
get around the dialplan blocking issue, enabling calls can be routed even after a device
has started to be rung.

Calling your Skype buddies without assigning extension numbers

While working on this book, we had some issues with trying to come up with clever
ways to use a text-to-speech engine. It seemed that dynamic data would need to be

Skype Integration | 433

involved for text-to-speech to really make a lot of sense—otherwise, why not use pre-
recorded prompts instead? However, an idea finally came to us, based on the fact that
having to assign extension numbers to each Skype user we wanted to call was not only
cumbersome, but was a mental exercise we weren’t willing to take on.

The following dialplan makes use of the SKYPE_BUDDIES() and SKYPE_BUDDY_FETCH()
dialplan functions to retrieve all the Skype buddies in memory on the server, and to
read those buddies’ names back to you along with their statuses. After each buddy
name is read, a prompt asking if this is who you wish to call is presented, with the
option of asking for another buddy from the list. We’ve utilized the Festival() appli-
cation for this example (the configuration and setup of which can be found in “Festi-
val” on page 440) to read back the users’ names. Once a buddy has been marked as
selected, it is then dialed using the Dial() application.

Our implementation is as follows:

[LocalSets]
exten => 75973,1,Verbose(2,Read off list of Skype accounts)
 same => n,Answer()
 same => n,Set(ID=${SKYPE_BUDDIES(pbx.shifteight.org)})
 same => n(new_buddy),Set(ARRAY(buddy,status)=${SKYPE_BUDDY_FETCH(${ID})})
 same => n,GotoIf($[${ISNULL(${buddy})}]?no_more_buddies)
 same => n,Festival(${buddy} is ${status})
 same => n,Read(Answer,if-correct-press&digits/1&otherwise-press&digits/2,1)
 same => n,GotoIf($[${Answer} = 2]?new_buddy)
 same => n,Dial(Skype/${buddy},30)
 same => n,Playback(user&is-curntly-unavail)
 same => n,Hangup()

exten => no_more_buddies,1,Verbose(2,No more buddies to find)
 same => n,Playback(dir-nomore)
 same => n,Hangup()

LDAP Integration
Asterisk supports the ability to connect to an existing Lightweight Directory Access
Protocol (LDAP) server to load information into your Asterisk server using the Asterisk
Realtime Architecture (ARA). The advantage of integrating Asterisk and LDAP will
become immediately obvious when you start centralizing your authentication mecha-
nisms to the LDAP server and utilizing it for several applications: you significantly cut
down the administrative overhead of managing your users by placing all their infor-
mation into a central location.

There are both commercial and open source LDAP servers available, the most popular
commercial solution likely being that implemented by Microsoft Windows servers. A
popular open source LDAP server is OpenLDAP (http://www.openldap.org). We will
not delve into the configuration of the LDAP server here, but we will show you the
schema required to connect Asterisk to your server and to use it to provide SIP con-
nections and voicemail service to your existing user base.

434 | Chapter 18: External Services

http://www.openldap.org

Configuring OpenLDAP
While a discussion of the installation and configuration of an LDAP server is beyond
the scope of this chapter, it is certainly applicable to show you how we expanded our
initial LDAP schema to include the information required for Asterisk integration. Our
initial installation followed instructions from the Ubuntu documentation page located
at https://help.ubuntu.com/10.04/serverguide/C/openldap-server.html. We only needed
to follow the instructions up to and including the backend.example.com.ldif import; the
next step after importing the backend configuration is installing the Asterisk-related
schemas.

If you’re following along, with the backend imported, change into your Asterisk source
directory. Then copy the asterisk.ldap-schema file into the /etc/ldap/schema/ directory:

$ cd ~/src/asterisk-complete/asterisk/1.8/contrib/scripts/
$ sudo cp asterisk.ldap-schema /etc/ldap/schema/asterisk.schema

With the schema file copied in, restart the OpenLDAP server:

$ sudo /etc/init.d/slapd restart

Now we’re ready to import the contents of asterisk.ldif into our OpenLDAP server. The
asterisk.ldif file is located in the contrib/scripts/ folder of the Asterisk source directory:

$ sudo ldapadd -Y EXTERNAL -H ldapi:/// -f asterisk.ldif

We can now continue with the instructions at https://help.ubuntu.com/10.04/server
guide/C/openldap-server.html and import the frontend.example.com.ldif file. Within
that file is an initial user, which we can omit for now as we’re going to modify the user
import portion to include an objectClass for Asterisk (i.e., in the example file, the
section of text that starts with uid=john can be deleted).

We’re going to create a user and add the configuration values that will allow the user
to register his phone (which will likely be a softphone, since the hardphone on the user’s
desk will, in most cases, be configured from a central location) via SIP by using his
username and password, just as he would normally log in to check email and such.

The configuration file we’ll create next will get imported with the ldapadd command
and will be added into the people object unit within the shifteight.org space. Be sure to
change the values to match those of the user you wish to set up in LDAP and to sub-
stitute dc=shifteight,dc=org with your own location.

Before we create our file, though, we need to convert the password into an MD5 hash.
Asterisk will not authenticate phones using plain-text passwords when connecting via
LDAP. We can convert the password using the md5sum command:

$ echo "my_secret_password" | md5sum
a7be810a28ca1fc0668effb4ea982e58 -

LDAP Integration | 435

https://help.ubuntu.com/10.04/serverguide/C/openldap-server.html
https://help.ubuntu.com/10.04/serverguide/C/openldap-server.html
https://help.ubuntu.com/10.04/serverguide/C/openldap-server.html

We’ll insert the returned value (without the hyphen) into the following file within the
userPassword field, prefixed with {md5}:

$ cat > astuser.ldif

dn: uid=rbryant,ou=people,dc=shifteight,dc=org
objectClass: inetOrgPerson
objectClass: posixAccount
objectClass: shadowAccount
objectClass: AsteriskSIPUser
uid: rbryant
sn: Bryant
givenName: Russell
cn: RussellBryant
displayName: Russell Bryant
uidNumber: 1001
gidNumber: 10001
userPassword: {md5}a7be810a28ca1fc0668effb4ea982e58
gecos: Russell Bryant
loginShell: /bin/bash
homeDirectory: /home/russell
shadowExpire: -1
shadowFlag: 0
shadowWarning: 7
shadowMin: 8
shadowMax: 999999
shadowLastChange: 10877
mail: russell.bryant@shifteight.org
postalCode: 31000
l: Huntsville
o: shifteight
title: Asterisk User
postalAddress:
initials: RB
AstAccountCallerID: Russell Bryant
AstAccountContext: LocalSets
AstAccountDTMFMode: rfc2833
AstAccountMailbox: 101@shifteight
AstAccountNAT: yes
AstAccountQualify: yes
AstAccountType: friend
AstAccountDisallowedCodec: all
AstAccountAllowedCodec: ulaw
AstAccountMusicOnHold: default

Ctrl + D

The one field we should explicitly mention here is the userPassword field.
We require that the value in the LDAP server contain the password we’re
going to authenticate from the phone with to be in the format of an MD5
hash. In versions prior to Asterisk 1.8.0, the prefix of {md5} in front of
the hash was required. While it is no longer necessary, it is still
recommended.

436 | Chapter 18: External Services

With the file created, we can add the user to our LDAP server:

$ sudo ldapadd -x -D cn=admin,dc=shifteight,dc=org -f astusers.ldif -W
Enter LDAP Password:
adding new entry "uid=rbryant,ou=people,dc=shifteight,dc=org"

Our user has now been imported into LDAP. The next step is to configure Asterisk to
connect to the LDAP server and allow users to authenticate and register their phones.

Compiling LDAP Support into Asterisk
With our OpenLDAP server configured and the schema imported, we need to install
the dependencies for Asterisk and compile the res_config_ldap module. This module
is the key that will allow us to configure Asterisk realtime for accessing our peers
via LDAP.

Once we’ve installed the dependency, we need to rerun the ./configure script inside the
Asterisk source directory, then verify that the res_config_ldap module is selected. Then
we can run make install to compile and install the new module.

Ubuntu dependencies

On Ubuntu, we need to install the openldap-dev package to provide the dependency
for the res_config_ldap module:

$ sudo apt-get install openldap-dev

CentOS dependencies

On CentOS, we need to install the openldap-devel package to provide the dependency
for the res_config_ldap module:

$ sudo yum install openldap-devel

Configuring Asterisk for LDAP Support
Now that we’ve configured our LDAP server and installed the res_config_ldap module,
we need to configure Asterisk to support loading of peers from LDAP. To do this, we
need to configure the res_ldap.conf file to connect to the LDAP server and the extcon-
fig.conf file to tell Asterisk what information to get from the LDAP server, and how.
Once that is done, we can configure any remaining module configuration files, such as
sip.conf, iax.conf, voicemail.conf, and so on, where appropriate. In our example we’ll
be configuring Asterisk to load our SIP peers from realtime using the LDAP server as
our database.

Configuring res_ldap.conf

The res_ldap.conf.sample file is a good place to start because it contains a good set of
templates. At the top of the file, though, under the [_general] section, we need to

LDAP Integration | 437

configure how Asterisk is going to connect to our LDAP server. Our first option is
url, which will determine how to connect to the server. We have defined a connection
as ldap://172.16.0.103:389, which will connect to the LDAP server at IP address
172.16.0.103 on port 389. If you have a secure connection to your LDAP server, you
can replace ldap:// with ldaps://. Additionally, we have set protocol=3 to state that
we’re connecting with protocol version 3, which in most (if not all) cases will be correct.

The last three options, basedn, user, and pass, are used for authenticating to our LDAP
server. We need to specify:

• The basedn (dc=shifteight,dc=org), which is essentially our domain name

• The user name we’re going to authenticate to the LDAP server as (admin)

• The password for the user to authenticate with (canada)

If we put it all together, we end up with something like the following:

[_general]
url=ldap://172.16.0.103:389
protocol=3
basedn=dc=shifteight,dc=org
user=cn=admin,dc=shifteight,dc=org
pass=canada

Beyond this, in the rest of the sample configuration file we’ll see lots of templates we
can use for mapping the information in Asterisk onto our LDAP schema. Lets take a
look at the first lines of the [sip] template that we’ll be using to map the information
of our SIP peers into the LDAP database:

[sip]
name = cn
amaflags = AstAccountAMAFlags
callgroup = AstAccountCallGroup
callerid = AstAccountCallerID
...
lastms = AstAccountLastQualifyMilliseconds
useragent = AstAccountUserAgent
additionalFilter=(objectClass=AsteriskSIPUser)

On the left side we have the field name Asterisk will be looking up, and on the right is
the mapping to the LDAP schema for the request. Our first set of fields is mapping the
name field to the cn field on the LDAP server. If you look back at the data we imported
in “Configuring OpenLDAP” on page 435, you’ll see that we have created a user and
assigned the value of RussellBryant to the cn field. So, in this case, we’re mapping the
authentication name (the name field) from the SIP user to the value of the cn field in the
LDAP server (RussellBryant).

This goes for the rest of the values all the way down, with some fields (i.e., useragent,
lastms, ipaddr, etc.) simply needing to exist so Asterisk can write information (e.g.,
registration information) to the LDAP server.

438 | Chapter 18: External Services

Configuring extconfig.conf

Our next step is to tell Asterisk what information to load via realtime and what tech-
nology to use. Using the extconfig.conf file, we have the option of loading several mod-
ules dynamically (and we can also load files statically). For more information about
Asterisk realtime, see “Using Realtime” on page 368.

For our example, we’re going to configure the sipusers and sippeers dynamic realtime
objects to load our SIP peers from LDAP. In the following example, we have a line
like this:

ldap,"ou=people,dc=shifteight,dc=org",sip

We’ve specified three arguments. The first is ldap, which is the technology we’re going
to use to connect to our realtime object. There are other technologies available, such
as odbc, pgsql, curl, and so on. Our second argument, enclosed in double quotes,
specifies which database we’re connecting to. In the case of LDAP, we’re connecting
to the object-unit people within the domain shifteight.org. Lastly, our third argument,
sip, defines which template we’re using (as defined in res_ldap.conf) to map the realtime
data to the LDAP database.

Additionally, you can specify a fourth argument, which is the priority.
If you define multiple realtime objects, such as when defining queues or
sippeers, you can utilize the priority argument to control failover if a
particular storage engine becomes unavailable. Priorities must start at
1 and increment sequentially.

To define the use of sipusers and sippeers from the LDAP server, we would enable
these lines in extconfig.conf:

sipusers => ldap,"ou=people,dc=shifteight,dc=org",sip
sippeers => ldap,"ou=people,dc=shifteight,dc=org",sip

Configuring sip.conf for realtime

These steps are optional for configuring SIP for realtime, although you will likely expect
things to work in the manner we’re going to describe. In the sip.conf file, we will enable
a few realtime options that will cache information into memory as it is loaded from the
database. By doing this, we’ll allow Asterisk to place calls to devices by simply looking
at the information stored in memory. Not only does caching make realtime potentially
more efficient, but things like device state updates simply can’t work unless the devices
are cached in memory.

A peer is only loaded into memory upon registration of the device or
placing a call to the device. If you run the command sip reload on the
console, the peers will be cleared from memory as well, so you may need
to adjust your registration times if that could cause issues in your system.

LDAP Integration | 439

To enable peer caching in Asterisk, use the rtcachefriends option in sip.conf:

rtcachefriends=yes

There are additional realtime options as well, such as rtsavesysname, rtupdate, rtauto
clear, and ignoreregexpire. These are all explained in the sip.conf.sample file located
within your Asterisk source.

Text-to-Speech Utilities
Text-to-speech utilities are used to convert strings of words into audio that can be
played to your callers. Text-to-speech has been around for many years, and has been
continually improving. While we can’t recommend text-to-speech utilities to take the
place of professionally recorded prompts, they do offer some degree of usefulness in
applications where dynamic data needs to be communicated to a caller.

Festival
Festival is one of the oldest running applications for text-to-speech on Linux. While
the quality of Festival is not sufficient for us to recommend it for production use, it is
certainly a useful way of testing a text-to-speech-based application. If a more polished
sound is required for your application, we recommend you look at Cepstral (covered
next).

Installing Festival on CentOS

Installing Festival and its dependencies on CentOS is straightforward. Simply use
yum to install the festival package:

$ sudo yum install festival

Installing Festival on Ubuntu

To install Festival and its dependencies on Ubuntu, simply use apt-get to install the
festival package:

$ sudo apt-get install festival

Using Festival with Asterisk

With Festival installed, we need to module the festival.scm file in order to enable
Asterisk to connect to the Festival server. On both CentOS and Ubuntu, the file is
located in /usr/share/festival/. Open the file and place the following text just above the
last line, (provide 'festival):

(define (tts_textasterisk string mode)
"(tts_textasterisk STRING MODE)
Apply tts to STRING. This function is specifically designed for
use in server mode so a single function call may synthesize the string.

440 | Chapter 18: External Services

This function name may be added to the server safe functions."
(let ((wholeutt (utt.synth (eval (list 'Utterance 'Text string)))))
(utt.wave.resample wholeutt 8000)
(utt.wave.rescale wholeutt 5)
(utt.send.wave.client wholeutt)))

After adding that, you need to start the Festival server:

$ sudo festival_server 2>&1 > /dev/null &

Using menuselect from your Asterisk source directory, verify that the app_festival ap-
plication has been selected under the Applications heading. If it was not already selected,
be sure to run make install after selecting it to install the Festival() dialplan application.

Before you can use the Festival() application, you need to tell Asterisk how to connect
to the Festival server. The festival.conf file is used for controlling how Asterisk connects
to and interacts with the Festival server. The sample festival.conf file located in the
Asterisk source directory is a good place to start, so copy festival.conf.sample from the
configs/ subdirectory of your Asterisk source to the /etc/asterisk/ configuration directory
now:

$ cp ~/asterisk-complete/asterisk/1.8/configs/festival.conf.sample \
/etc/asterisk/festival.conf

The default configuration is typically enough to connect to the Festival server running
on the local machine, but you can optionally configure parameters such as the host
where the Festival server is running (if remote), the port to connect to, whether to
enable caching of files (defaults to no), the location of the cache directory (defaults
to /tmp), and the command Asterisk passes to the Festival server.

You can verify that the Festival() dialplan application is accessible by running core
show application festival from the Asterisk console:

*CLI> core show application festival

If you don’t get output, you may need to load the app_festival.so module:

*CLI> module load app_festival.so

Verify that the app_festival.so module exists in /usr/lib/asterisk/modules/ if you’re still
having issues with loading the module.

After loading the Festival() application into Asterisk, you need to create a test dialplan
extension to verify that Festival() is working:

[LocalSets]
exten => 203,1,Verbose(2,This is a Festival test)
 same => n,Answer()
 same => n,Playback(silence/1)
 same => n,Festival(Hello World)
 same => n,Hangup()

Reload the dialplan with the dialplan reload command from the Asterisk console, and
test out the connection to Festival by dialing extension 203.

Text-to-Speech Utilities | 441

Alternatively, if you’re having issues with the Festival server, you could use the follow-
ing method to generate files with the text2wave application supplied with the festival
package:

exten => 202,1,Verbose(2,Trying out Festival)
 same => n,Answer()

; *** This line should not have any line breaks
 same => n,System(echo "This is a test of Festival"
| /usr/bin/text2wave -scale 1.5 -F 8000 -o /tmp/festival.wav)

 same => n,Playback(/tmp/festival)
 same => n,System(rm -f /tmp/festival.wav)
 same => n,Hangup()

You should now have enough to get started with generating text-to-speech audio for
your Asterisk system. The audio quality is not brilliant, and the speech generated is not
clear enough to be easy to understand over a telephone, but for development and testing
purposes Festival is an application that can fill the gap until you’re ready for a more
professional-sounding text-to-speech generator such as Cepstral.

Cepstral
Cepstral is a text-to-speech engine that works in a similar manner as the Festival()
application in the dialplan, but produces much higher-quality sound. Not only is the
quality significantly better, but Cepstral has developed a text-to-speech engine that
emulates Allison’s voice, so your text-to-speech engine can sound the same as the Eng-
lish sound files that ship with Asterisk by default, to give a consistent experience to the
caller.

Cepstral is commercial module, but for around $30 you can have a text-to-speech en-
gine that is clearer, is more consistent with other sound prompts on your system, and
provides a more pleasurable experience for your callers. The Cepstral software and
installation instructions can be downloaded from the Digium.com webstore at http://
www.digium.com/en/products/software/cepstral.php.

Conclusion
In this chapter we focused on integrating Asterisk with external services that may not
be directly related to generating or handling calls, but do enable tighter coupling with
existing services on your network by providing information for call routing, or infor-
mation about your users from your existing infrastructure.

442 | Chapter 18: External Services

http://www.digium.com/en/products/software/cepstral.php
http://www.digium.com/en/products/software/cepstral.php

CHAPTER 19

Fax

Have no fear of perfection. You’ll never reach it.

—Salvador Dali

The concept of facsimile transmission has been around for over 100 years, but it was
not until the 1980s that the use of fax machines became essential in business. This
lasted for perhaps two decades. Then the Internet came along, and very shortly after
that, the fax quickly became almost irrelevant.

What Is a Fax?
A fax machine allows a facsimile (copy) of a document to be transmitted across a tel-
ephone line. In the Internet age, this sort of functionality seems useless; however, prior
to ubiquitous Internet access, this was a very useful thing indeed. Fax machines scan
a document into a digital format, transmit the digital information in a manner similar
to that used by an analog modem, and then convert and print the received information
on the other end.

Ways to Handle Faxes in Asterisk
Asterisk offers the ability to both send and receive faxes, but it should be noted that all
Asterisk is doing is the basics of fax transport. This means that providing a complete
experience to your users will require external programs and resources beyond what
Asterisk delivers.

Asterisk Fax can:

• Recognize an incoming fax connection, and negotiate a session

• Store (receive) the incoming fax as a Tagged Image File Format (TIFF) file

• Accept TIFF files in a fax-compatible format

• Transmit TIFF files to another fax machine

443

Asterisk Fax cannot:

• Print faxes

• Accept documents for transmission in any format other than TIFF

Receiving is relatively simple, since the format of the document is determined at the
sending end, and thus all Asterisk needs to do is store the document.

Transmitting is somewhat more complex, since the transmitting end is responsible for
ensuring that the document to be sent is in the correct format for faxing. This typically
places a burden on the user to understand how to create a properly formatted docu-
ment, or requires complex client or server software to handle the formatting (for ex-
ample, through a print driver installed on the local PC) and placement of the fax job
in a location where the server can grab it and transmit it.

spandsp
Initially, the only way to handle faxing in Asterisk was through the spandsp library.
spandsp provides a multitude of Digital Signal Processing (DSP) capabilities, but in this
context all we are interested in is its fax functionality.

Asterisk has the hooks built in to make use of spandsp, but due to incompatible licenses,
the spandsp libraries must be downloaded and compiled separately from Asterisk. Also,
since spandsp was not written only for Asterisk, it will not assume that it is being
installed for Asterisk. This means that a few extra steps will be required to ensure
Asterisk can use spandsp.

Obtaining spandsp
As of this writing, the current version of spandsp is 0.0.6.

Download and extract the spandsp source code as follows:

$ mkdir ~/src/asterisk-complete/thirdparty
$ cd ~/src/asterisk-complete/thirdparty
$ wget http://www.soft-switch.org/downloads/spandsp/spandsp-0.0.6pre17.tgz
$ tar zxvf spandsp-0.0.6pre17.tgz
$ cd spandsp-0.0.6

Compiling and Installing spandsp
The spandsp software should compile and install with the following commands:

$./configure
$ make
$ sudo make install

444 | Chapter 19: Fax

This will install the library in the /usr/local/lib/ folder. On many Linux systems this
folder is not automatically part of the library path (libpath), so it will need to be added
manually.

Adding the spandsp Library to Your libpath
In order to make the spandsp library visible to all applications on the system, the folder
where it is located must be added to the libpath for the system. This is typically done
by editing files in the /etc/ld.so.conf.d/ directory. You simply need to ensure that one of
the files in that directory has /usr/local/lib listed. If not, the following command will
create a suitable file for you:

$ sudo cat >> /etc/ld.so.conf.d/usrlocallib.conf
/usr/local/lib

Press Ctrl + D to save the file, then run the ldconfig command to refresh the library
paths:

$ sudo ldconfig

You are now ready to recompile Asterisk for spandsp support.

Recompiling Asterisk with spandsp Support
Since the spandsp library was probably not installed on the system when Asterisk was
first compiled, you will need to do a quick recompile of Asterisk in order to have the
spandsp support added:

$ cd ~/src/asterisk-complete/asterisk/1.8/
$./configure
$ make menuselect

Ensure that under the Resource Modules heading, the section for spandsp looks like this:

[*] res_fax_spandsp

If you see this instead:

XXX res_fax_spandsp

It means that Asterisk was not able to find the spandsp library.

Once you have verified that Asterisk can see spandsp, you are ready to recompile. Save
and exit from menuselect, and run the following:

$ make
$ make install

You can verify that spandsp is working with Asterisk by issuing the following command
from the Asterisk CLI:

*CLI> module show like res_fax_spandsp.so

spandsp | 445

At this point the SendFAX() and ReceiveFAX() dialplan applications will be available
to you.

Disabling spandsp (Should You Want to Test Digium Fax)
The spandsp library and the Digium fax library, discussed in the next section, are mu-
tually exclusive. If you want to try out the Digium fax product, you will need to ensure
that spandsp does not load. To disable spandsp in Asterisk, simply edit your /etc/as-
terisk/modules.conf file as follows:

noload => res_fax_spandsp.so

Save the changes and restart Asterisk.

Digium Fax For Asterisk
Digium Fax For Asterisk (FFA) was developed out of a strong desire from the Asterisk
community to have a Digium-supported fax mechanism in Asterisk. Free for single-
channel use, this product can also be licensed from Digium to handle more than one
simultaneous fax channel.

Obtaining Digium FFA
Digium FFA can be obtained from the Digium website (http://www.digium.com). The
process of downloading, installing, and registering this library is thoroughly documen-
ted in the Fax For Asterisk Administrator Manual, which you can also download from
Digium. You will need to register at the Digium website in order to obtain your free
single-channel fax license key and download the admin manual. There is also a com-
prehensive README file included with the software, which details the steps necessary
to get Digium FFA going on your system.

Disabling Digium FFA (Should You Want to Test spandsp)
The Digium FFA library and the spandsp library are mutually exclusive. If you want to
try out spandsp, you will need to ensure that Digium FFA does not load. To disable
FFA, simply edit your /etc/asterisk/modules.conf file as follows:

noload => res_fax_digium.so

Save the changes and restart Asterisk.

446 | Chapter 19: Fax

http://www.digium.com

Incoming Fax Handling
Received faxes are commonly encoded in Tagged Image File Format (TIFF). This
graphics file format, while not as well known as JPEG or GIF, is not as obscure as one
might think. In fact, we suspect your computer (whether you’re running Windows,
Linux, or MacOS) will already have the ability to interpret TIFF files built in. While it
has become popular to offer PDF as a delivery format for received faxes, we’re not sure
this is strictly required, since TIFF is so ubiquitous.

Received faxes will be stored by Asterisk as files. Where those files are stored will de-
pend on several factors, including:

• What software you are using to simulate a fax modem (e.g., IAXmodem, Digium
ReceiveFAX, etc.)

• The location in your filesystem that you have configured for storage of received
faxes

• Any post-receipt processing you have decided to perform on the files

In the dialplan, you will need to build in enough intelligence to name faxes in such a
way that they will be distinct from each other. There are many channel variables and
functions that can be used for this purpose, such as the STRFTIME() function. Asterisk
can easily handle capturing the fax to a file, but you will need to make sense out of what
happens to that file once it is stored on the system.

Fax to TIFF
The Tagged Image File Format is not very well known, but it is actually more common
than you might realize, and since it is natively supported on Windows, MacOS, and
Linux, TIFF files can be viewed on pretty much any computer with the most basic
graphics viewer. A subset of the TIFF file format has for a long time been the de facto
file format used for faxes.

Since Asterisk will receive and store faxes in TIFF format, there is no post-processing
required. Once the incoming fax call has been completed, the resulting TIFF file can
be opened directly from the folder where it was stored (or perhaps emailed to the in-
tended user).

Fax to Email
Once Asterisk has received a fax, the resulting TIFF file needs a way to get to its final
destination: a person.

The key consideration is that unless the information that Asterisk knows about the fax
is sufficiently detailed, it may not be possible to deduce the intended recipient without
having someone actually read the fax (it is common for a fax to have a cover page with
the recipient’s information written on it, which even the most capable text recognition

Incoming Fax Handling | 447

software would have a difficult time making sense of). In other words, unless you ded-
icate a DID to each user who might receive a fax, Asterisk isn’t going to be able to do
much more than send all faxes to a single email address. You could code something in
the dialplan to handle this, though, or have an external cron job or other daemon handle
distributing the received faxes.

A simple dialplan to handle fax to email might look something like this (you will need
the mail program mutt installed on your system):

exten => fax,1,Verbose(3,Incoming fax)
; folder where your incoming faxes will initially be stored
 same => n,Set(FAXDEST=/tmp)

; put a timestamp on this call so the resulting file is unique
 same => n,Set(tempfax=${STRFTIME(,,%C%y%m%d%H%M)})
 same => n,ReceiveFax(${FAXDEST}/${tempfax}.tif)
 same => n,Verbose(3,- Fax receipt completed with status: ${FAXSTATUS})

; *** This line should not have any line breaks
 same => n,System(echo | mutt -a ${FAXDEST}/${tempfax}
-s "received fax" somebody@shifteight.org)

Obviously, this sample would not be suitable for production (for example, it does not
handle fax failure); however, it would be enough to start prototyping a more fully
featured incoming fax handler.

Fax to PDF
Delivering a fax to a user as a PDF is a popular request. Since PCs, Macs, and Linux
desktops can natively read TIFF files without any conversion required, this isn’t strictly
required. Nevertheless, many people insist on this functionality.

You can use a utility such as ghostscript to perform the conversion.

Fax Detection
You may have a dedicated phone number for receiving faxes. However, with Asterisk,
that is not a requirement. Asterisk has the ability to detect that an incoming call is a
fax and can handle it differently in the dialplan. Fax detection is available for both
DAHDI and SIP channels. To enable it for DAHDI, set the faxdetect option in /etc/
asterisk/chan_dahdi.conf. In most cases, you should set this option to incoming.
Table 19-1 lists the possible values for the faxdetect option in chan_dahdi.conf.

448 | Chapter 19: Fax

Table 19-1. Possible values for the faxdetect option in chan_dahdi.conf

Value Description

incoming Enables fax detection on inbound calls. When a fax is detected, applies the faxbuffers option if it has been
set and redirects the call to the fax extension in the dialplan. For more information on the faxbuffers option,
see “Using Fax Buffers in chan_dahdi.conf” on page 454.

outgoing Enables fax detection on outbound calls. The dialplan is not executing on an outbound channel. If a fax is detected,
the faxbuffers option will be applied and the channel will be redirected and start executing the dialplan at
the fax extension.

both Enables fax detection for both incoming and outgoing calls.

no Disables fax detection. This is the default.

To enable fax detection for SIP calls, you must set the faxdetect option in /etc/asterisk/
sip.conf. This option may be set in the [general] section, or for a specific peer.
Table 19-2 covers the possible values for the faxdetect option in sip.conf.

Table 19-2. Possible values for the faxdetect option in sip.conf

Value Description

cng Enables fax detection by watching the audio for a CNG tone. If a CNG tone is detected, redirects the call to the fax
extension in the dialplan.

t38 Redirects the call to the fax extension in the dialplan if a T.38 reinvite is received.

yes Enables both cng and t38 fax detection.

no Disables fax detection. This is the default.

Outgoing Fax Handling
Transmitting faxes from Asterisk is somewhat more difficult than receiving them. The
reason for this is simply due to the fact that the preparation of the fax prior to trans-
mission involves more work. There isn’t anything particularly complex about fax trans-
mittal, but you will need to make some design decisions about things like:

• How to get the source fax file formatted for Asterisk

• How to get the source fax file onto the Asterisk system (specifically, into some
folder where Asterisk can access it)

• What to do with transmitted faxes (save them? delete them? move them some-
where?)

• How to handle transmission errors

Outgoing Fax Handling | 449

Transmitting a Fax from Asterisk
To transmit a fax from Asterisk, you must have a TIFF file. How you generate this TIFF
is important, and may involve many steps. However, from Asterisk’s perspective the
sending of a fax is fairly straightforward. You simply run the SendFAX() dialplan appli-
cation, passing it the path to a valid TIFF file:

exten => faxthis,1,SendFAX(/path/to/fax/file,d)

In practice, you will normally want to set some parameters prior to transmission, so a
complete extension for sending a fax using Digium’s Fax For Asterisk might look
something like this:

exten => faxthis,1,Verbose(2,Set options and transmit fax)

; some folder where your outgoing faxes will be found
 same => n,Set(faxlocation=/tmp)

; In production you would probably not want to hardcode the filename
 same => n,Set(faxfile=faxfile.tif)
 same => n,Set(FAXOPT(headerinfo)=Fax from ShiftEight.org)
 same => n,Set(FAXOPT(localstationid=4169671111)
 same => n,SendFax(${faxlocation}/${faxfile})

File Format for Faxing
The real trick of sending a fax is having a source file that is in a format that the fax
engine can handle. At a basic level, these files are known as TIFF files; however, the
TIFF spec allows for all sorts of parameters, not all of which are compatible with fax
and not many of which are documented in any useful way. Additionally, the types of
TIFF formats that spandsp can handle are different from those Digium FFA will handle.

In the absence of one simple, clear specification of what TIFF file format will work for
sending faxes from Asterisk, we will instead document what we know to work, and
leave it up to the reader to perform any experimentation required to find other ways to
generate the TIFF.*

Digium’s Fax For Asterisk Administration Manual documents a process for converting
a PDF file into a TIFF using commonly available Linux command-line tools. While
kludgy, this method should allow you to build Linux scripts to handle the file conver-
sion, and your users will be able to submit PDFs as fax jobs.

You will need the ghostscript PDF interpreter, which can be installed in CentOS by the
command:

* One format we tried was using the Microsoft Office Document Image Writer, which offers “TIFF-
monochrome fax” as an output format. This seemed too good to be true, which is exactly what it turned out
to be (neither spandsp nor Digium FFA could handle the resulting file). It would have been ideal to have
found something common to Windows PCs that could be used by users to “print” an Asterisk-compatible
TIFF file.

450 | Chapter 19: Fax

$ sudo yum -y install ghostscript

and in Ubuntu with:

$ sudo apt-get install ghostscript

Once installed, ghostscript can convert the PDF into an Asterisk-compatible TIFF file
with the following command:

$ gs -q -dNOPAUSE -dBATCH -sDEVICE=tiffg4 -sPAPERSIZE=letter -sOutputFile=<dest> <src>

Replace <dest> with the name of the output file, and specify the location of your source
PDF with <src>.

The ghostscript program should create a TIFF file from your PDF that will be suitable
for transmission using Asterisk SendFax().

An Experiment in Email to Fax
Many users would like to be able to send emails as fax documents. The primary chal-
lenge with this is ensuring that what the users submit is in a format suitable for faxing.
This ultimately requires some form of application development, which is outside the
scope of this book.

What we have done is provided a simple example of some methods that at least provide
a starting point for delivering email to fax capabilities.

One of the first changes that you would need to make in order to handle this is a change
to your /etc/aliases file, which will redirect incoming faxes to an application that can
handle them. We are not actually aware of any app that can do this, so you’ll have to
write one. The change to your /etc/aliases file would look something like this:

fax: "| /path/to/program/that/will/handle/incoming/fax/emails"

In our case, Russell built a little Python script called fax.py, so our /etc/aliases file would
read something like this:

fax: "| /asteriskpbx/fax.py"

We have included a copy of the Python script we developed for your reference in
Example 19-1. Note that this file is not suitable for production, but merely serves as an
example of how a very basic kind of email to fax functionality might be implemented.

Example 19-1. Proof of concept email to fax gateway, fax.py

#!/usr/bin/env python
"""Poor Man's Email to Fax Gateway.

This is a proof of concept email to fax gateway. There are multiple aspects
that would have to be improved for it to be used in a production environment.

Copyright (C) 2010 - Russell Bryant, Leif Madsen, Jim Van Meggelen
Asterisk: The Definitive Guide
"""

Outgoing Fax Handling | 451

import sys
import os
import email
import base64
import shutil
import socket

AMI_HOST = "localhost"
AMI_PORT = 5038
AMI_USER = "hello"
AMI_PASS = "world"

This script will pull a TIFF out of an email and save it off to disk to allow
the SendFax() application in Asterisk to send it. This is the location on
disk where the TIFF will be stored.
TIFF_LOCATION = "/tmp/loremipsum.tif"

Read an email from stdin and parse it.
msg = email.message_from_file(sys.stdin)

For testing purposes, if you wanted to read an email from a file, you could
do this, instead.
#try:
f = open("email.txt", "r")
msg = email.message_from_file(f)
f.close()
#except IOError:
print "Failed to open email input file."
sys.exit(1)

This next part pulls out a TIFF file attachment from the email and saves it
off to disk in a format that can be used by the SendFax() application. This
part of the script is incredibly non-flexible. It assumes that the TIFF file
will be in a specific location in the structure of the message (the second
part of the payload, after the main body). Further, it assumes that the
encoding of the TIFF attachment is base64. This was the case for the test
email that we were using that we generated with mutt. Emails sent by users'
desktop email clients will vary in _many_ ways. To be used with user-
generated emails, this section would have to be much more flexible.
try:
 f2 = open(TIFF_LOCATION, "w")
 f2.write(base64.b64decode(msg.get_payload()[1].get_payload().replace("\n", "")))
 f2.close()
except IOError:
 print "Failed to open file for saving off TIFF attachment."
 sys.exit(1)

Now that we have a TIFF file to fax, connect to the Asterisk Manager Interface
to originate a call.
ami_commands = """Action: Login\r
Username: %s\r
Secret: %s\r

452 | Chapter 19: Fax

\r
Action: Originate\r
Channel: Local/s@sendfax/n\r
Context: receivefax\r
Extension: s\r
Priority: 1\r
SetVar: SUBJECT=%s\r
\r
Action: Logoff\r
\r
""" % (AMI_USER, AMI_PASS, msg['subject'])

print ami_commands

def my_send(s, data):
 """Ensure that we send out the whole data buffer.
 """
 sent = 0
 while sent < len(data):
 res = s.send(data[sent:])
 if res == 0:
 break
 sent = sent + res

def my_recv(s):
 """Read input until there is nothing else to read.
 """
 while True:
 res = s.recv(4096)
 if len(res) == 0:
 break
 print res

s = socket.socket(socket.AF_INET, socket.SOCK_STREAM)
s.connect((AMI_HOST, AMI_PORT))
my_send(s, ami_commands)
my_recv(s)
s.shutdown(socket.SHUT_RDWR)
s.close()

We tested this out at a very rudimentary level, and proved the basic concept. If you
want to put email to fax into production, you need to understand that you will have
more work to do on the application development side in order to deliver something
that will actually be robust enough to turn over to an average group of users.

Outgoing Fax Handling | 453

Fax Pass-Through
In theory, it should be possible to connect a traditional fax machine to an FXS port of
some sort and then pass incoming faxes to that device (see Figure 19-1). This concept
is attractive for a few reasons:

1. It allows you to integrate existing fax machines with your Asterisk system.

2. It requires far less configuration in the dialplan.

Unfortunately, fax pass-through is not the home run we would like it to be. The analog
carrier signal that two fax machines use to communicate is a delicate thing, and any
corruption of that signal will often cause a transmission failure. In an Asterisk system
performing pass-through, internal timing issues, coupled with signal attenuation, can
create an environment that is unstable for fax use, especially for larger (multipage)
faxes.

Figure 19-1. Typical fax pass-through

If you are using fax on a casual basis (mostly noncritical, one-page faxes), this sort of
setup can work well. If faxing is critical to your business, or you are often expecting
multipage faxes, we must reluctantly recommend that you connect your fax machines
directly to the PSTN and leave Asterisk out of it.

Using Fax Buffers in chan_dahdi.conf
Many of the problems with fax pass-through are caused by inconsistent timing. Since
faxes are more tolerant of latency than voice calls (a fax has to be able to travel halfway
around the world, which takes a few dozen milliseconds), the introduction of a buffer
in DAHDI (which is strictly used for faxes) has reportedly corrected many of the prob-
lems that have plagued fax pass-through.

As of this writing, this is a fairly new configuration option. The currently preferred
setting is as follows:

faxbuffers => 12,half

454 | Chapter 19: Fax

This would be placed in your /etc/asterisk/chan_dahdi.conf file and would cause
chan_dahdi to create a 96 ms buffer for fax calls and delay start of transmission until
the buffer was half full.

You would also need to set faxdetect, since the fax buffers are part of the faxdetect
functionality:

faxdetect = both

We have not extensively tested this capability yet, but anecdotal evidence suggests that
this should greatly improve the performance of fax pass-through in Asterisk.

Conclusion
Fax is a technology whose days are behind it. Having said that, it remains popular.
Asterisk has some interesting technology built into it that allows you some level of
creativity in how you handle faxes. With careful planning and system design, and a
patient prototyping and debugging phase, you can use your Asterisk system to handle
faxing in creative ways.

Conclusion | 455

CHAPTER 20

Asterisk Manager Interface (AMI)

John Malkovich: I have seen a world that
NO man should see!

Craig Schwartz: Really? Because for most people it’s a
rather enjoyable experience.

—Being John Malkovich

The Asterisk Manager Interface (AMI) is a system monitoring and management inter-
face provided by Asterisk. It allows live monitoring of events that occur in the system,
as well enabling you to request that Asterisk perform some action. The actions that are
available are wide-ranging and include things such as returning status information and
originating new calls. Many interesting applications have been developed on top of
Asterisk that take advantage of the AMI as their primary interface to Asterisk.

Quick Start
This section is for getting your hands dirty with the AMI as quickly as possible. First,
put the following configuration in /etc/asterisk/manager.conf:

;
; Turn on the AMI and ask it to only accept connections from localhost.
;
[general]
enabled = yes
webenabled = yes
bindaddr = 127.0.0.1

;
; Create an account called "hello", with a password of "world"
;
[hello]
secret=world

457

This sample configuration is set up to only allow local connections to
the AMI. If you intend on making this interface available over a network,
it is strongly recommended that you only do so using TLS. The use of
TLS is discussed in more detail later in this chapter.

Once the AMI configuration is ready, enable the built-in HTTP server by putting the
following contents in /etc/asterisk/http.conf:

;
; Enable the built-in HTTP server, and only listen for connections on localhost.
;
[general]
enabled = yes
bindaddr = 127.0.0.1

AMI over TCP
There are multiple ways to connect to the AMI, but a TCP socket is the most common.
We will use telnet to demonstrate AMI connectivity. This example shows these steps:

1. Connect to the AMI over a TCP socket on port 5038.

2. Log in using the Login action.

3. Execute the Ping action.

4. Log off using the Logoff action.

Here’s how the AMI responds to those actions:

$ telnet localhost 5038
Trying 127.0.0.1...
Connected to localhost.
Escape character is '^]'.
Asterisk Call Manager/1.1
Action: Login
Username: hello
Secret: world

Response: Success
Message: Authentication accepted

Action: Ping

Response: Success
Ping: Pong
Timestamp: 1282739190.454046

Action: Logoff

Response: Goodbye
Message: Thanks for all the fish.

Connection closed by foreign host.

458 | Chapter 20: Asterisk Manager Interface (AMI)

Once you have this working, you have verified that AMI is accepting connections via
a TCP connection.

AMI over HTTP
It is also possible to use the AMI over HTTP. In this section we will perform the same
actions as before, but over HTTP instead of the native TCP interface to the AMI. The
responses will be delivered over HTTP in the same format as the previous example,
since the rawman encoding type is being used. AMI-over-HTTP responses can be enco-
ded in other formats, such as XML. These response-formatting options are covered in
“AMI over HTTP” on page 467.

Accounts used for connecting to the AMI over HTTP are the same ac-
counts configured in /etc/asterisk/manager.conf.

This example demonstrates how to access the AMI over HTTP, log in, execute the
Ping action, and log off:

$ wget "http://localhost:8088/rawman?action=login&username=hello&secret=world" \
> --save-cookies cookies.txt -O -

--2010-08-31 12:34:23--
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:8088... connected.
HTTP request sent, awaiting response... 200 OK
Length: 55 [text/plain]
Saving to: `STDOUT'

Response: Success
Message: Authentication accepted

2010-08-31 12:34:23 (662 KB/s) - written to stdout [55/55]

$ wget "http://localhost:8088/rawman?action=ping" --load-cookies cookies.txt -O -

--2010-08-31 12:34:23--
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:8088... connected.
HTTP request sent, awaiting response... 200 OK
Length: 63 [text/plain]
Saving to: `STDOUT'

Response: Success
Ping: Pong
Timestamp: 1283258063.040293

2010-08-31 12:34:23 (775 KB/s) - written to stdout [63/63]

Quick Start | 459

$ wget "http://localhost:8088/rawman?action=logoff" --load-cookies cookies.txt -O -

--2010-08-31 12:34:23--
Resolving localhost... 127.0.0.1
Connecting to localhost|127.0.0.1|:8088... connected.
HTTP request sent, awaiting response... 200 OK
Length: 56 [text/plain]
Saving to: `STDOUT'

Response: Goodbye
Message: Thanks for all the fish.

2010-08-31 12:34:23 (696 KB/s) - written to stdout [56/56]

The HTTP interface to AMI lets you integrate Asterisk call control into a web service.

Configuration
The section “Quick Start” on page 457 showed a very basic set of configuration files to
get you started. However, there are many more options available for the AMI.

manager.conf
The main configuration file for the AMI is /etc/asterisk/manager.conf. The [general]
section contains options (listed in Table 20-1) that control the overall operation of the
AMI. Any other sections in the manager.conf file will define accounts for logging in and
using the AMI.

Table 20-1. Options in the manager.conf [general] section

Option Value/Example Description

enabled yes Enables the AMI. The default is no.

webenabled yes Allows access to the AMI through the built-in HTTP
server. The default is no.a

port 5038 Sets the port number to listen on for AMI connections.
The default is 5038.

bindaddr 127.0.0.1 Sets the address to listen on for AMI connections. The
default is to listen on all addresses (0.0.0.0). How-
ever, it is highly recommended to set this to
127.0.0.1.

tlsenable yes Enables listening for AMI connections using TLS. The
default is no. It is highly recommended to only expose
connectivity via TLS outside of the local machine.b

tlsbindport 5039 Sets the port to listen on for TLS connections to the
AMI. The default is 5039.

460 | Chapter 20: Asterisk Manager Interface (AMI)

Option Value/Example Description

tlsbindaddr 0.0.0.0 Sets the address to listen on for TLS-based AMI con-
nections. The default is to listen on all addresses
(0.0.0.0).

tlscertfile /var/lib/asterisk/keys/asterisk.pem Sets the path to the server certificate for TLS. This is
required if tlsenable is set to yes.

tlsprivatekey /var/lib/asterisk/keys/private.pem Sets the path to the private key for TLS. If this is not
specified, the tlscertfile will be checked to see
if it also contains the private key.

tlscipher <cipher string> Specifies a list of ciphers for OpenSSL to use. Setting
this is optional. To see a list of available ciphers, run
openssl ciphers -v at the command line.

allowmultiplelogin no Allows the same account to make more than one con-
nection at the same time. The default is yes.

displayconnects yes Reports connections to the AMI as verbose messages
printed to the Asterisk console. This is usually useful,
but it can get in the way on a system that uses scripts
that make a lot of connections to the AMI. The default
is yes.

timestampevents no Adds a Unix epoch-based timestamp to every event
reported to the AMI. The default is no.

brokeneventsaction no Restores previously broken behavior for the Events
AMI action, where a response would not be sent in
some circumstances. This option is there for the sake
of backward-compatibility for applications that
worked around a bug and should not be used unless
absolutely necessary. The default is no.

channelvars VAR1,VAR2,VAR3[,VAR4[...]] Specifies a list of channel variables to include with all
manager events that are channel-oriented. The de-
fault is to include no channel variables.

debug no Enables some additional debugging in the AMI code.
This is primarily there for developers of the Asterisk C
code. The default is no.

httptimeout 60 Sets the HTTP timeout, in seconds. This timeout affects
users of the AMI over HTTP: it sets the Max-Age of the
HTTP cookie, sets how long events are cached to allow
retrieval of the events over HTTP using the WaitE
vents action, and the amount of time that the HTTP
server keeps a session alive after completing an AMI
action. The default is 60 seconds.

a To access the AMI over HTTP, the built-in HTTP server must also be configured in /etc/asterisk/http.conf.
b The OpenSSL development package must be installed for Asterisk to be able to use encryption. On Ubuntu, the package is libssl-dev. On

CentOS, the package is openssl-devel.

Configuration | 461

The manager.conf configuration file also contains the configuration of AMI user ac-
counts. An account is created by adding a section with the username inside square
brackets. Within each [username] section there are options that can be set that will
apply only to that account. Table 20-2 lists the options available in a [username] section.

Table 20-2. Options for [username] sections

Option Value/Example Description

secret password Sets the password used for authentication. This must be set.

deny 0.0.0.0/0.0.0.0 Sets an IP address Access Control List (ACL) for addresses that
should be denied the ability to authenticate as this user. By
default this option is not set.

permit 192.168.1.0/255.255.255.0 Sets an IP address ACL for addresses that should be allowed
to authenticate as this user. As with deny, by default this
option is not set. Without these options set, any IP address
that can reach the AMI will be allowed to authenticate as
this user.

writetimeout 100 Sets the timeout used by Asterisk when writing data to the
AMI connection for this user. This option is specified in mil-
liseconds. The default value is 100.

displayconnects yes Also available in the [general] section (refer to
Table 20-1), but can be controlled on a per-user basis.

read system,call[,...] Defines which manager events this user will receive. By de-
fault, the user will receive no events. Table 20-3 covers the
available permission types for the read and write options.

write system,call[,...] Defines which manager actions this user is allowed to exe-
cute. By default, the user will not be able to execute any
actions. Table 20-3 covers the available permission types for
the read and write options.

eventfilter !Channel: DAHDI* Used to provide a whitelist- or blacklist-style filtering of
manager events before they are delivered to the AMI client
application. Filters are specified using a regular expression.
A specified filter is a whitelist filter unless preceded by an
exclamation point.a

a If no filters are specified, all events that are allowed based on the read option will be delivered. If only whitelist filters have been specified,
only events that match one of the filters will be delivered. If there are only blacklist-style filters, all events that do not match any of the
filters will be delivered. Finally, if there is a mix of whitelist- and blacklist-style filters, the whitelist filters will be processed first, and then
the blacklist filters.

As discussed in Table 20-2, the read and write options set which manager actions and
manager events a particular user has access to. Table 20-3 shows the available permis-
sion values that can be specified for these options.

462 | Chapter 20: Asterisk Manager Interface (AMI)

Table 20-3. Available values for AMI user account read/write options

Permission identifier read write

all Shorthand way of specifying that this user
should have access to all available privilege
options.

Grants user all privilege options.

system Allows user to receive general system infor-
mation, such as notifications of configuration
reloads.

Allows user to perform system management com-
mands such as Restart, Reload, or Shutdown.

call Allows user to receive events about channels
on the system.

Allows user to set information on channels.

log Gives user access to logging information.a read-only

verbose Gives user access to verbose logging
information.b

read-only

agent Gives user access to events regarding the status
of agents from the app_queue and
chan_agent modules.

Enables user to perform actions for managing and
retrieving the status of queues and agents.

user Grants access to user-defined events, as well
as events about Jabber/XMPP users.

Lets user perform the UserEvent manager
action, which provides the ability to request that
Asterisk generate a user-defined event.c

config write-only Allows user to retrieve, update, and reload config-
uration files.

command write-only Allows user to execute Asterisk CLI commands over
the AMI.

dtmf Allows user to receive events generated as
DTMF passes through the Asterisk core.d

read-only

reporting Gives user access to call-quality events, such
as jitterbuffer statistics or RTCP reports.

Enables user to execute a range of actions to retrieve
statistics and status information from across the
system.

cdr Grants user access to CDR records reported by
the cdr_manager module.

read-only

dialplan Allows user to receive events generated when
variables are set or new extensions are created.

read-only

originate write-only Allows user to execute the Originate action,
which allows an AMI client to request that Asterisk
create a new call.

agi Allows user to receive events generated when
AGI commands are processed.

Enables user to perform actions for managing chan-
nels that are running AGI in its asynchronous mode.
AGI is discussed in more detail in Chapter 21.

cc Allows user to receive events related to Call
Completion Supplementary Services (CCSS).

read-only

Configuration | 463

Permission identifier read write

aoc Lets user see Advice of Charge events gener-
ated as AOC events are received.

Allows user to execute the AOCMessage manager
action, for sending out AOC messages.

a This level has been defined, but it is not currently used anywhere in Asterisk.
b This level has been defined, but it is not currently used anywhere in Asterisk.
c The UserEvent action is a useful mechanism for having messages delivered to other AMI clients.
d DTMF events will not be generated in a bridged call between two channels unless generic bridging in the Asterisk core is being used. For

example, if the DTMF is being transmitted with the media stream and the media stream is flowing directly between the two endpoints,
Asterisk will not be able to report the DTMF events.

http.conf
As we’ve seen, the Asterisk Manager Interface can be accessed over HTTP as well as
TCP. To make that work, a very simple HTTP server is embedded in Asterisk. All of
the options relevant to the AMI go in the [general] section of /etc/asterisk/http.conf.

Enabling access to the AMI over HTTP requires both /etc/asterisk/man-
ager.conf and /etc/asterisk/http.conf. The AMI must be enabled in man-
ager.conf, with the enabled option set to yes, and the manager.conf op-
tion webenabled must be set to yes to allow access over HTTP. Finally,
the enabled option in http.conf must be set to yes to turn on the HTTP
server itself.

The available options are listed in Table 20-4:

Table 20-4. Options in the http.conf [general] section

Option Value/Example Description

enabled yes Enables the built-in HTTP server. The default is no.

bindport 8088 Sets the port number to listen on for HTTP connections. The default is 8088.

bindaddr 127.0.0.1 Sets the address to listen on for HTTP connections. The default is to listen on all
addresses (0.0.0.0). However, it is highly recommended to set this to
127.0.0.1.

tlsenable yes Enables listening for HTTPS connections. The default is no. It is highly recom-
mended that you only use HTTPS if you wish to expose HTTP connectivity outside
of the local machine.a

tlsbindport 8089 Sets the port to listen on for HTTPS connections. The default is 8089.

tlsbindaddr 0.0.0.0 Sets the address to listen on for TLS-enabled AMI connections. The default is to
listen on all addresses (0.0.0.0).

tlscertfile /var/lib/asterisk/
keys/asterisk.pem

Sets the path to the HTTPS server certificate. This is required if tlsenable is set
to yes.

tlsprivate
key

/var/lib/asterisk/
keys/private.pem

Sets the path to the HTTPS private key. If this is not specified, the tlscert
file will be checked to see if it also contains the private key.

464 | Chapter 20: Asterisk Manager Interface (AMI)

Option Value/Example Description

tlscipher <cipher
string>

Specifies a list of ciphers for OpenSSL to use. Setting this is optional. To see a list
of available ciphers, run openssl ciphers -v at the command line.

a The OpenSSL development package must be installed for Asterisk to be able to use encryption. On Ubuntu, the package is libssl-dev. On
CentOS, the package is openssl-devel.

Protocol Overview
There are two main types of messages on the Asterisk Manager Interface: manager
events and manager actions.

Manager events are one-way messages sent from Asterisk to AMI clients to report
something that has occurred on the system. See Figure 20-1 for a graphical represen-
tation of the transmission of manager events.

Figure 20-1. Manager events

Manager actions are requests from a client that have associated responses that come
back from Asterisk. That is, a manager action may be a request that Asterisk perform
some action and return the result. For example, there is an AMI action to originate a
new call. See Figure 20-2 for a graphical representation of a client sending manager
actions and receiving responses.

Other manager actions are requests for data that Asterisk knows about. For example,
there is a manager action to get a list of all active channels on the system: the details
about each channel are delivered as a manager event. When the list of results is com-
plete, a final message will be sent to indicate that the end has been reached. See Fig-
ure 20-3 for a graphical representation of a client sending this type of manager action
and receiving a list of responses.

Protocol Overview | 465

Message Encoding
All AMI messages, including manager events, manager actions, and manager action
responses, are encoded in the same way. The messages are text-based, with lines ter-
minated by a carriage return and a line-feed character. A message is terminated by a
blank line:

Header1: This is the first header<CR><LF>
Header2: This is the second header<CR><LF>
Header3: This is the last header of this message<CR><LF>
<CR><LF>

Figure 20-2. Manager actions

Figure 20-3. Manager actions that return a list of data

466 | Chapter 20: Asterisk Manager Interface (AMI)

Events

Manager events always have an Event header and a Privilege header. The Event header
gives the name of the event, while the Privilege header lists the privilege levels asso-
ciated with the event. Any other headers included with the event are specific to the
event type. Here’s an example:

Event: Hangup
Privilege: call,all
Channel: SIP/0004F2060EB4-00000000
Uniqueid: 1283174108.0
CallerIDNum: 2565551212
CallerIDName: Russell Bryant
Cause: 16
Cause-txt: Normal Clearing

Actions

When executing a manager action, it must include the Action header. The Action header
identifies which manager action is being executed. The rest of the headers are argu-
ments to the manager action. Some headers are required.

To get a list of the headers associated with a particular manager action,
type manager show command <Action> at the Asterisk command line.
To get a full list of manager actions supported by the version of Asterisk
you are running, enter manager show commands at the Asterisk CLI.

The final response to a manager action is typically a message that includes the
Response header. The value of the Response header will be Success if the manager action
was successfully executed. If the manager action was not successfully executed, the
value of the Response header will be Error. For example:

Action: Login
Username: russell
Secret: russell

Response: Success
Message: Authentication accepted

AMI over HTTP
In addition to the native TCP interface, it is also possible to access the Asterisk Manager
Interface over HTTP. Programmers with previous experience writing applications that
use web APIs will likely prefer this over the native TCP connectivity.

Authentication and session handling

There are two methods of performing authentication against the AMI over HTTP. The
first is to use the Login action, similar to authentication with the native TCP interface.

Protocol Overview | 467

This is the method that was used in the quick-start example, as seen in “AMI over
HTTP” on page 459. The second authentication option is HTTP digest authentica-
tion.* The next three sections discuss each of the AMI over HTTP encoding options.
To indicate that HTTP digest authentication should be used, prefix the encoding type
with an a.

Once successfully authenticated, Asterisk will provide a cookie that identifies the au-
thenticated session. Here is an example response to the Login action that includes a
session cookie from Asterisk:

$ curl -v "http://localhost:8088/rawman?action=login&username=hello&secret=world"

* About to connect() to localhost port 8088 (#0)
* Trying 127.0.0.1... connected
* Connected to localhost (127.0.0.1) port 8088 (#0)
> GET /rawman?action=login&username=hello&secret=worlda HTTP/1.1
> User-Agent: curl/7.19.7 (x86_64-pc-linux-gnu) libcurl/7.19.7
OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15
> Host: localhost:8088
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: Asterisk/1.8.0-beta4
< Date: Tue, 07 Sep 2010 11:51:28 GMT
< Connection: close
< Cache-Control: no-cache, no-store
< Content-Length: 55
< Content-type: text/plain
< Cache-Control: no-cache;
< Set-Cookie: mansession_id="0e929e60"; Version=1; Max-Age=60
< Pragma: SuppressEvents
<

Response: Success
Message: Authentication accepted
* Closing connection #0

/rawman encoding

The rawman encoding type is what has been used in all the AMI over HTTP examples
in this chapter so far. The responses received from requests using rawman are formatted
in the exact same way that they would be if the requests were sent over a direct TCP
connection to the AMI.

* At the time of writing, there is a problem with HTTP digest authentication that prevents it from working
properly. Issue 18598 in the Asterisk project issue tracker has been opened for this problem. Hopefully it will
be fixed by the time you read this.

468 | Chapter 20: Asterisk Manager Interface (AMI)

https://issues.asterisk.org/view.php?id=18598

/manager encoding

The manager encoding type provides a response in simple HTML form. This interface
is primarily useful for experimenting with the AMI. Here is an example Login using this
encoding type:

$ curl -v "http://localhost:8088/manager?action=login&username=hello&secret=world"

* About to connect() to localhost port 8088 (#0)
* Trying 127.0.0.1... connected
* Connected to localhost (127.0.0.1) port 8088 (#0)
> GET /manager?action=login&username=hello&secret=world HTTP/1.1
> User-Agent: curl/7.19.7 (x86_64-pc-linux-gnu) libcurl/7.19.7
OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15
> Host: localhost:8088
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: Asterisk/1.8.0-beta4
< Date: Tue, 07 Sep 2010 12:19:05 GMT
< Connection: close
< Cache-Control: no-cache, no-store
< Content-Length: 881
< Content-type: text/html
< Cache-Control: no-cache;
< Set-Cookie: mansession_id="139deda7"; Version=1; Max-Age=60
< Pragma: SuppressEvents
<

<title>Asterisk™ Manager Interface</title><body bgcolor="#ffffff">
<table align=center bgcolor="#f1f1f1" width="500">
<tr><td colspan="2" bgcolor="#f1f1ff"><h1>Manager Tester</h1></td></tr>
<tr><td colspan="2" bgcolor="#f1f1ff"><form action="manager" method="post">
 Action: <select name="action">
 <option value="">-----></option>
 <option value="login">login</option>
 <option value="command">Command</option>
 <option value="waitevent">waitevent</option>
 <option value="listcommands">listcommands</option>
 </select>
 or <input name="action">

 CLI Command <input name="command">

 user <input name="username"> pass <input type="password" name="secret">

 <input type="submit">
</form>
</td></tr>
<tr><td>Response</td><td>Success</td></tr>
<tr><td>Message</td><td>Authentication accepted</td></tr>
<tr><td colspan="2"><hr></td></tr>
* Closing connection #0
</table></body

Protocol Overview | 469

/mxml encoding

The mxml encoding type provides responses to manager actions encoded in XML. Here
is an example Login using the mxml encoding type:

$ curl -v "http://localhost:8088/mxml?action=login&username=hello&secret=world"

* About to connect() to localhost port 8088 (#0)
* Trying 127.0.0.1... connected
* Connected to localhost (127.0.0.1) port 8088 (#0)
> GET /mxml?action=login&username=hello&secret=world HTTP/1.1
> User-Agent: curl/7.19.7 (x86_64-pc-linux-gnu) libcurl/7.19.7
OpenSSL/0.9.8k zlib/1.2.3.3 libidn/1.15
> Host: localhost:8088
> Accept: */*
>
< HTTP/1.1 200 OK
< Server: Asterisk/1.8.0-beta4
< Date: Tue, 07 Sep 2010 12:26:58 GMT
< Connection: close
< Cache-Control: no-cache, no-store
< Content-Length: 146
< Content-type: text/xml
< Cache-Control: no-cache;
< Set-Cookie: mansession_id="536d17a4"; Version=1; Max-Age=60
< Pragma: SuppressEvents
<

<ajax-response>
<response type='object' id='unknown'>
<generic response='Success' message='Authentication accepted' />
</response>
* Closing connection #0
</ajax-response>

Manager events

When connected to the native TCP interface for the AMI, manager events are delivered
asynchronously. When using the AMI over HTTP, events must be retrieved by polling
for them. Events are retrieved over HTTP by executing the WaitEvent manager action.
The following example shows how events can be retrieved using the WaitEvent manager
action. The steps are:

1. Start an HTTP AMI session using the Login action.

2. Register a SIP phone to Asterisk to generate a manager event.

3. Retrieve the manager event using the WaitEvent action.

The interaction looks like this:

$ wget --save-cookies cookies.txt \
> "http://localhost:8088/mxml?action=login&username=hello&secret=world" -O -

<ajax-response>
<response type='object' id='unknown'>

470 | Chapter 20: Asterisk Manager Interface (AMI)

 <generic response='Success' message='Authentication accepted' />
</response>
</ajax-response>

$ wget --load-cookies cookies.txt "http://localhost:8088/mxml?action=waitevent" -O -

<ajax-response>
<response type='object' id='unknown'>
 <generic response='Success' message='Waiting for Event completed.' />
</response>
<response type='object' id='unknown'>
 <generic event='PeerStatus' privilege='system,all'
 channeltype='SIP' peer='SIP/0000FFFF0004'
 peerstatus='Registered' address='172.16.0.160:5060' />
</response>
<response type='object' id='unknown'>
 <generic event='WaitEventComplete' />
</response>
</ajax-response>

Development Frameworks
Many application developers write code that directly interfaces with the AMI. However,
there are a number of existing libraries that aim to make writing AMI applications
easier. Table 20-5 lists a few that we know are being used successfully. If you search
around for Asterisk libraries in any other popular programming language of your
choice, you are likely to find one that exists.

Table 20-5. AMI development frameworks

Framework Language URL

Adhearsion Ruby http://adhearsion.com/

StarPy Python http://starpy.sourceforge.net/

Asterisk-Java Java http://asterisk-java.org/

CSTA
Computer-Supported Telecommunications Applications (CSTA) is a standard for
Computer Telephony Integration (CTI). One of the biggest benefits of CSTA is that it
is used by multiple manufacturers. Some of what is provided by CSTA can be mapped
to operations available in the AMI. There have been multiple efforts to provide a CSTA
interface to Asterisk. One of these efforts is the Open CSTA project. While none of the
authors have experience with this CSTA interface to Asterisk, it is certainly worth con-
sidering if you have CSTA experience or an existing CSTA application you would like
to integrate with Asterisk.

Development Frameworks | 471

http://adhearsion.com/
http://starpy.sourceforge.net/
http://asterisk-java.org/
http://opencsta.org

Interesting Applications
Many useful applications have been developed that take advantage of the AMI. Here
are a couple of examples.

AsteriskGUI
The AsteriskGUI is an open source PBX administration interface developed by Digium.
It is intended for use on small installations. The AsteriskGUI is written entirely in
HTML and JavaScript and uses the AMI over HTTP for all interaction with Asterisk.
It has been especially popular for use in resource-constrained embedded Asterisk en-
vironments, since it does not require additional software to run on the Asterisk server.
Figure 20-4 shows a page from the AsteriskGUI.

The AsteriskGUI can be obtained from the Digium subversion server:

$ svn co http://svn.digium.com/svn/asterisk-gui/branches/2.0

It is also bundled as an option with the AsteriskNOW distribution.

Figure 20-4. AsteriskGUI

472 | Chapter 20: Asterisk Manager Interface (AMI)

http://www.asterisk.org/asterisknow/

Flash Operator Panel
Flash Operator Panel is an application that runs in a web browser using Flash. It is
primarily used as an interface to see which extensions are currently ringing or in use.
It also includes the ability to monitor conference room and call queue status. Some call
actions can be performed as well, such as barging into a call and transferring calls.
Figure 20-5 shows a screenshot of the Flash Operator Panel interface.

Downloads and more detailed information on Flash Operator Panel can be found at
http://www.asternic.org.

Figure 20-5. Flash Operator Panel

Conclusion
The Asterisk Manager Interface provides an API for monitoring events from an Asterisk
system, as well as requesting that Asterisk perform a wide range of actions. An HTTP
interface has been provided and a number of frameworks have been developed that
make it easier to develop applications. All of this information, as well as the examples
we looked at at the end of this chapter, should help get you thinking about what new
applications you might be able to build using the Asterisk Manager Interface.

Conclusion | 473

http://www.asternic.org

CHAPTER 21

Asterisk Gateway Interface (AGI)

Caffeine. The gateway drug.

—Eddie Vedder

The Asterisk dialplan has evolved into a simple yet powerful programming interface
for call handling. However, many people, especially those with a prior programming
background, still prefer implementing their custom call handling in a different pro-
gramming language. Using another programming language may also allow you to uti-
lize existing code for integration with other systems. The Asterisk Gateway Interface
(AGI) allows the development of first-party call control in the programming language
of your choice. If you are not interested in implementing call control outside of the
native Asterisk dialplan, you may safely skip this chapter.

Quick Start
This section gives a quick example of using the AGI. First, add the following line
to /etc/asterisk/extensions.conf:

exten => 500,1,AGI(hello-world.sh)

Next, create a hello-world.sh script in /var/lib/asterisk/agi-bin/, as shown in Exam-
ple 21-1.

Example 21-1. A sample AGI script, hello-world.sh

#!/bin/bash

Consume all variables sent by Asterisk
while read VAR && [-n ${VAR}] ; do : ; done

Answer the call.
echo "ANSWER"
read RESPONSE

Say the letters of "Hello World"

475

echo 'SAY ALPHA "Hello World" ""'
read RESPONSE

exit 0

Now, call extension 500 with AGI debugging turned on and listen to Allison spell out
“Hello World”:

*CLI> agi set debug on
AGI Debugging Enabled

 -- Executing [500@phones:1] AGI("SIP/0004F2060EB4-00000009",
 "hello-world.sh") in new stack
 -- Launched AGI Script /var/lib/asterisk/agi-bin/hello-world.sh
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_request: hello-world.sh
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_channel: SIP/0004F2060EB4-00000009
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_language: en
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_type: SIP
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_uniqueid: 1284382003.9
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_version: 1.8.0-beta4
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_callerid: 2563619899
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_calleridname: Russell Bryant
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_callingpres: 0
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_callingani2: 0
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_callington: 0
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_callingtns: 0
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_dnid: 7010
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_rdnis: unknown
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_context: phones
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_extension: 500
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_priority: 1
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_enhanced: 0.0
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_accountcode:
<SIP/0004F2060EB4-00000009>AGI Tx >> agi_threadid: 140071216785168
<SIP/0004F2060EB4-00000009>AGI Tx >>
<SIP/0004F2060EB4-00000009>AGI Rx << ANSWER
<SIP/0004F2060EB4-00000009>AGI Tx >> 200 result=0
<SIP/0004F2060EB4-00000009>AGI Rx << SAY ALPHA "Hello World" ""
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/h.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/e.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/l.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/l.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/o.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/space.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/w.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/o.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/r.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/l.gsm' (language 'en')
 -- <SIP/0004F2060EB4-00000009> Playing 'letters/d.gsm' (language 'en')
<SIP/0004F2060EB4-00000009>AGI Tx >> 200 result=0
 -- <SIP/0004F2060EB4-00000009>AGI Script hello-world.sh completed, returning 0

476 | Chapter 21: Asterisk Gateway Interface (AGI)

AGI Variants
There are a few variants of AGI that differ primarily in the method used to communicate
with Asterisk. It is good to be aware of all of the options so you can make the best choice
based on the needs of your application.

Process-Based AGI
Process-based AGI is the simplest variant of AGI. The “quick-start” example at the
beginning of this chapter was an example of a process-based AGI script. The AGI script
is invoked by using the AGI() application from the Asterisk dialplan. The application
to run is specified as the first argument to AGI(). Unless a full path is specified, the
application is expected to exist in the /var/lib/asterisk/agi-bin/ directory. Arguments to
be passed to your AGI application can be specified as additional arguments to the
AGI() application in the Asterisk dialplan. The syntax is:

AGI(command[,arg1[,arg2[,...]]])

Ensure that your application has the proper permissions set such that
the user the Asterisk process is running as has permissions to execute
it. Otherwise, AGI() will fail.

Once Asterisk executes your AGI application, communication between Asterisk and
your application will take place over stdin and stdout. More details about this commu-
nication will be covered in “AGI Communication Overview” on page 480. For more
details about invoking AGI() from the dialplan, check the documentation built into
Asterisk:

*CLI> core show application AGI

Pros of process-based AGI
It is the simplest form of AGI to implement.

Cons of process-based AGI
It is the least efficient form of AGI with regard to resource consumption. Systems
with high load should consider FastAGI, discussed in “FastAGI—AGI over
TCP” on page 478, instead.

EAGI

EAGI (Enhanced AGI) is a slight variant on AGI(). It is invoked in the Asterisk dialplan
as EAGI(). The difference is that in addition to the communication on stdin and
stdout, Asterisk also provides a unidirectional stream of audio coming from the channel
on file descriptor 3. For more details on how to invoke EAGI() from the Asterisk dia-
lplan, check the documentation built into Asterisk:

*CLI> core show application EAGI

AGI Variants | 477

Pros of Enhanced AGI
It has the simplicity of process-based AGI, with the addition of a simple read-only
stream of the channel’s audio. This is the only variant that offers this feature.

Cons of Enhanced AGI
Since a new process must be spawned to run your application for every call, it has
the same efficiency concerns as regular process-based AGI.

For an alternative way of getting access to the audio outside of
Asterisk, consider using JACK. Asterisk has a module for JACK
integration, called app_jack. It provides the JACK() dialplan appli-
cation and the JACK_HOOK() dialplan function.

DeadAGI Is Dead
In versions of Asterisk prior to 1.8, there was a dialplan application called DeadAGI().
Its purpose was similar to that of AGI(), except you used it on a channel that had already
been hung up. This would usually be done in the special h extension, when you wanted
to use an AGI application to aid in some type of post-call processing. Invoking Dead
AGI() from the dialplan will still work, but you will get a WARNING message in the Asterisk
log. It has been deprecated in favor of using AGI() in all cases. The code for AGI() has
been updated so it knows how to correctly adjust its operation after a channel has been
hung up.

Pros of DeadAGI
None. It’s dead.

Cons of DeadAGI
It’s dead. Really, don’t use it. If you do, your configuration may break if Dead
AGI() is completely removed from Asterisk in a future version.

FastAGI—AGI over TCP
FastAGI is the term used for AGI call control over a TCP connection. With process-
based AGI, an instance of an AGI application is executed on the system for every call
and communication with that application is done over stdin and stdout. With FastAGI,
a TCP connection is made to a FastAGI server. Call control is done using the same AGI
protocol, but the communication is over the TCP connection and does not require a
new process to be started for every call. The AGI protocol is discussed in more detail
in “AGI Communication Overview” on page 480. Using FastAGI is much more scal-
able than process-based AGI, though it is also more complex to implement.

FastAGI is used by invoking the AGI() application in the Asterisk dialplan, but instead
of providing the name of the application to execute, you provide an agi:// URL. For
example:

exten => 1234,1,AGI(agi://127.0.0.1)

478 | Chapter 21: Asterisk Gateway Interface (AGI)

http://jackaudio.org/

The default port number for a FastAGI connection is 4573. A different port number can
be appended to the URL after a colon. For example:

exten => 1234,1,AGI(agi://127.0.0.1:4574)

Just as with process-based AGI, arguments can be passed to a FastAGI application. To
do so, add them as additional arguments to the AGI() application, delimited by commas:

exten => 1234,1,AGI(agi://192.168.1.199,arg1,arg2,arg3)

FastAGI also supports the usage of SRV records if you provide a URL in the form of
hagi://. By using SRV records, you can list multiple hosts that Asterisk can attempt to
connect to for purposes of high availability and load balancing. In the following ex-
ample, to find a FastAGI server to connect to, Asterisk will do a DNS lookup for
_agi._tcp.shifteight.org:

exten => 1234,1,AGI(hagi://shifteight.org)

Pros of FastAGI
It’s more efficient than process-based AGI. Instead of spawning a process per call,
a FastAGI server can handle many calls.

DNS can be used to achieve high availability and load balancing among FastAGI
servers to further enhance scalability.

Cons of FastAGI
It is more complex to implement a FastAGI server than to implement a process-
based AGI application. However, implementing a TCP server is something that
has been done countless times before, so there are many examples available for
virtually any programming language.

Async AGI—AMI-Controlled AGI
Async AGI is a newer method of using AGI that was first introduced in Asterisk 1.6.0.
The purpose of async AGI is to allow an application that uses the Asterisk Manager
Interface (AMI) to asynchronously queue up AGI commands to be executed on a chan-
nel. This can be especially useful if you are already making extensive use of the AMI
and would like to take advantage of the same application to handle call control, as
opposed to writing a detailed Asterisk dialplan or developing a separate FastAGI server.

More information on the Asterisk Manager Interface can be found in
Chapter 20.

Async AGI is invoked by the AGI() application in the Asterisk dialplan. The argument
to AGI() should be async:agi, as shown in the following example:

exten => 1234,1,AGI(async:agi)

AGI Variants | 479

Additional information on how to use async AGI over the AMI can be found in the next
section.

Pros of async AGI
An existing AMI application can be used to control calls using AGI commands.

Cons of async AGI
It is the most complex method of using AGI to implement.

Setting Up /etc/asterisk/manager.conf for Async AGI
“Configuration” on page 460 discusses the configuration options in manager.conf in
detail. To make use of async AGI, an AMI account must have the agi permission for
both read and write. For example, the following user defined in manager.conf would
be able to both execute AGI manager actions and receive AGI manager events:

;
; Define a user called 'hello', with a password of 'world'.
; Give this user read/write permissions for AGI.
;
[hello]
secret = world
read = agi
write = agi

AGI Communication Overview
The preceding section discussed the variations of AGI that can be used. This section
goes into more detail about how your custom AGI application communicates with
Asterisk once AGI() has been invoked.

Setting Up an AGI Session
Once AGI() or EAGI() has been invoked from the Asterisk dialplan, some information
is passed to the AGI application to set up the AGI session. This section discusses what
steps are taken at the beginning of an AGI session for the different variants of AGI.

Process-based AGI/FastAGI

For a process-based AGI application or a connection to a FastAGI server, the variables
listed in Table 21-1 will be the first pieces of information sent from Asterisk to your
application. Each variable will be on its own line, in the form:

agi_variable: value

480 | Chapter 21: Asterisk Gateway Interface (AGI)

Table 21-1. AGI environment variables

Variable Value / Example Description

agi_request hello-world.sh The first argument that was passed to the AGI() or
EAGI() application. For process-based AGI, this is the name
of the AGI application that has been executed. For FastAGI, this
would be the URL that was used to reach the FastAGI server.

agi_channel SIP/
0004F2060EB4-00000009

The name of the channel that has executed the AGI() or
EAGI() application.

agi_language en The language set on agi_channel.

agi_type SIP The channel type for agi_channel.

agi_uniqueid 1284382003.9 The uniqueid of agi_channel.

agi_version 1.8.0-beta4 The Asterisk version in use.

agi_callerid 12565551212 The full caller ID string that is set on agi_channel.

agi_callerid
name

Russell Bryant The caller ID name that is set on agi_channel.

agi_callingpres 0 The caller presentation associated with the caller ID set on
agi_channel. For more information, see the output of core
show function CALLERPRES at the Asterisk CLI.

agi_callingani2 0 The caller ANI2 associated with agi_channel.

agi_callington 0 The caller ID TON (Type of Number) associated with
agi_channel.

agi_callingtns 0 The dialed number TNS (Transit Network Select) associated
with agi_channel.

agi_dnid 7010 The dialed number associated with agi_channel.

agi_rdnis unknown The redirecting number associated with agi_channel.

agi_context phones The context of the dialplan that agi_channel was in when
it executed the AGI() or EAGI() application.

agi_extension 500 The extension in the dialplan that agi_channel was exe-
cuting when it ran the AGI() or EAGI() application.

agi_priority 1 The priority of agi_extension in agi_context that exe-
cuted AGI() or EAGI().

agi_enhanced 0.0 An indication of whether AGI() or EAGI() was used from
the dialplan. 0.0 indicates that AGI() was used. 1.0 indi-
cates that EAGI() was used.

agi_accountcode myaccount The accountcode associated with agi_channel.

agi_threadid 140071216785168 The threadid of the thread in Asterisk that is running the
AGI() or EAGI() application. This may be useful for associ-
ating logs generated by the AGI application with logs generated
by Asterisk, since the Asterisk logs contain thread IDs.

agi_arg_<argu
ment number>

my argument These variables provide the contents of the additional argu-
ments provided to the AGI() or EAGI() application.

AGI Communication Overview | 481

For an example of the variables that might be sent to an AGI application, see the AGI
communication debug output in “Quick Start” on page 475. The end of the list of
variables will be indicated by a blank line. Example 21-1 handles these variables by
reading lines of input in a loop until a blank line is received. At that point, the appli-
cation continues and begins executing AGI commands.

Async AGI

When you use async AGI, Asterisk will send out a manager event to initiate the async
AGI session. Here is an example manager event sent out by Asterisk:

Event: AsyncAGI
Privilege: agi,all
SubEvent: Start
Channel: SIP/0000FFFF0001-00000000
Env: agi_request%3A%20async%0Aagi_channel%3A%20SIP%2F0000FFFF0001-00000000%0A \
 agi_language%3A%20en%0Aagi_type%3A%20SIP%0Aagi_uniqueid%3A%201285219743.0%0A \
 agi_version%3A%201.8.0-beta5%0Aagi_callerid%3A%2012565551111%0A \
 agi_calleridname%3A%20Julie%20Bryant%0Aagi_callingpres%3A%200%0A \
 agi_callingani2%3A%200%0Aagi_callington%3A%200%0Aagi_callingtns%3A%200%0A \
 agi_dnid%3A%20111%0Aagi_rdnis%3A%20unknown%0Aagi_context%3A%20LocalSets%0A \
 agi_extension%3A%20111%0Aagi_priority%3A%201%0Aagi_enhanced%3A%200.0%0A \
 agi_accountcode%3A%20%0Aagi_threadid%3A%20-1339524208%0A%0A

The value of the Env header in this AsyncAGI manager event is all on one
line. The long value of the Env header has been URI encoded.

Commands and Responses
Once an AGI session has been set up, Asterisk begins performing call processing in
response to commands sent from the AGI application. As soon as an AGI command
has been issued to Asterisk, no further commands will be processed on that channel
until the current command has been completed. When it finishes processing a com-
mand, Asterisk will respond with the result.

The AGI processes commands in a serial manner. Once a command has
been executed, no further commands can be executed until Asterisk has
returned a response. Some commands can take a very long time to ex-
ecute. For example, the EXEC AGI command executes an Asterisk ap-
plication. If the command is EXEC Dial, AGI communication is blocked
until the call is done. If your AGI application needs to interact further
with Asterisk at this point, it can do so using the AMI, which is covered
in Chapter 20.

482 | Chapter 21: Asterisk Gateway Interface (AGI)

A full list of available AGI commands can be retrieved from the Asterisk console by
running the command agi show commands. These commands are described in Ta-
ble 21-2. To get more detailed information on a specific AGI command, including
syntax information for any arguments that a command expects, use agi show commands
topic <COMMAND>. For example, to see the built-in documentation for the ANSWER
AGI command, you would use agi show commands topic ANSWER.

Table 21-2. AGI commands

AGI command Description

ANSWER Answer the incoming call.

ASYNCAGI BREAK End an async AGI session and have the channel return to the Asterisk dialplan.

CHANNEL STATUS Retrieve the status of the channel. This is used to retrieve the current state of the channel, such as
up (answered), down (hung up), or ringing.

DATABASE DEL Delete a key/value pair from the built-in AstDB.

DATABASE DELTREE Delete a tree of key/value pairs from the built-in AstDB.

DATABASE GET Retrieve the value for a key in the AstDB.

DATABASE PUT Set the value for a key in the AstDB.

EXEC Execute an Asterisk dialplan application on the channel. This command is very powerful in that
between EXEC and GET FULL VARIABLE, you can do anything with the call that you can do
from the Asterisk dialplan.

GET DATA Read digits from the caller.

GET FULL VARIABLE Evaluate an Asterisk dialplan expression. You can send a string that contains variables and/or dialplan
functions, and Asterisk will return the result after making the appropriate substitutions. This com-
mand is very powerful in that between EXEC and GET FULL VARIABLE, you can do anything
with the call that you can do from the Asterisk dialplan.

GET OPTION Stream a sound file while waiting for a digit from the caller. This is similar to the Back
ground() dialplan application.

GET VARIABLE Retrieve the value of a channel variable.

HANGUP Hang up the channel.a

NOOP Do nothing. You will get a result response from this command, just like any other. It can be used as
a simple test of the communication path with Asterisk.

RECEIVE CHAR Receive a single character. This only works for channel types that support it, such as IAX2 using
TEXT frames or SIP using the MESSAGE method.

RECEIVE TEXT Receive a text message. This only works in the same cases as RECEIVE CHAR.

RECORD FILE Record the audio from the caller to a file. This is a blocking operation similar to the Record()
dialplan application. To record a call in the background while you perform other operations, use
EXEC Monitor or EXEC MixMonitor.

SAY ALPHA Say a string of characters. You can find an example of this in “Quick Start” on page 475. To get
localized handling of this and the other SAY commands, set the channel language either in the
device configuration file (e.g., sip.conf) or in the dialplan, by setting the CHANNEL(language)
dialplan function.

AGI Communication Overview | 483

AGI command Description

SAY DIGITS Say a string of digits. For example, 100 would be said as “one zero zero” if the channel’s language
is set to English.

SAY NUMBER Say a number. For example, 100 would be said as “one hundred” if the channel’s language is set to
English.

SAY PHONETIC Say a string of characters, but use a common word for each letter (Alpha, Bravo, Charlie…).

SAY DATE Say a given date.

SAY TIME Say a given time.

SAY DATETIME Say a given date and time using a specified format.

SEND IMAGE Send an image to a channel. IAX2 supports this, but there are no actively developed IAX2 clients
that support it that we know of.

SEND TEXT Send text to a channel that supports it. This can be used with SIP and IAX2 channels, at least.

SET AUTOHANGUP Schedule the channel to be hung up at a specified point in time in the future.

SET CALLERID Set the caller ID name and number on the channel.

SET CONTEXT Set the current dialplan context on the channel.

SET EXTENSION Set the current dialplan extension on the channel.

SET MUSIC Start or stop music on hold on the channel.

SET PRIORITY Set the current dialplan priority on the channel.

SET VARIABLE Set a channel variable to a given value.

STREAM FILE Stream the contents of a file to a channel.

CONTROL STREAM
FILE

Stream the contents of a file to a channel, but also allow the channel to control the stream. For
example, the channel can pause, rewind, or fast forward the stream.

TDD MODE Toggle the TDD (Telecommunications Device for the Deaf) mode on the channel.

VERBOSE Send a message to the verbose logger channel. Verbose messages show up on the Asterisk console
if the verbose setting is set high enough. Verbose messages will also go to any log file that has been
configured for the verbose logger channel in /etc/asterisk/logger.conf.

WAIT FOR DIGIT Wait for the caller to press a digit.

SPEECH CREATE Initialize speech recognition. This must be done before using other speech AGI commands.b

SPEECH SET Set a speech engine setting. The settings that are available are specific to the speech recognition
engine in use.

SPEECH DESTROY Destroy resources that were allocated for doing speech recognition. This command should be the
last speech command executed.

SPEECH LOAD
GRAMMAR

Load a grammar.

SPEECH UNLOAD
GRAMMAR

Unload a grammar.

SPEECH ACTIVATE
GRAMMAR

Activate a grammar that has been loaded.

484 | Chapter 21: Asterisk Gateway Interface (AGI)

AGI command Description

SPEECH DEACTIVATE
GRAMMAR

Deactivate a grammar.

SPEECH RECOGNIZE Play a prompt and perform speech recognition, as well as wait for digits to be pressed.

GOSUB Execute a dialplan subroutine. This will perform in the same way as the GoSub() dialplan appli-
cation.

a When the HANGUP AGI command is used, the channel is not immediately hung up. Instead, the channel is marked as needing to be hung
up. Your AGI application must exit first before Asterisk will continue and perform the actual hangup process.

b While Asterisk includes a core API for handling speech recognition, it does not come with a module that provides a speech recognition
engine. Digium currently provides two commercial options for speech recognition: Lumenvox and Vestec.

Process-based AGI/FastAGI

AGI commands are sent to Asterisk on a single line. The line must end with a single
newline character. Once a command has been sent to Asterisk, no further commands
will be processed until the last command has finished and a response has been sent
back to the AGI application. Here is an example response to an AGI command:

200 result=0

The Asterisk console allows debugging the communications with an
AGI application. To enable AGI communication debugging, run the agi
set debug on command. To turn debugging off, use agi set debug off.
While this debugging mode is on, all communication to and from an
AGI application will be printed out to the Asterisk console. An example
of this output can be found in “Quick Start” on page 475.

Async AGI

When you’re using async AGI, commands are issued by using the AGI manager action.
To see the built-in documentation for the AGI manager action, run manager show
command AGI at the Asterisk CLI. A demonstration will help clarify how AGI com-
mands are executed using the async AGI method. First, an extension is created in the
dialplan that runs an async AGI session on a channel:

exten => 7011,1,AGI(agi:async)

The following shows an example manager action execution and the manager events
that are emitted during async AGI processing. After the initial execution of the AGI
manager action, there is an immediate response to indicate that the command has been
queued up for execution. Later, there is a manager event that indicates that the queued
command has been executed. The CommandID header can be used to associate the initial
request with the event that indicates that the command has been executed:

Action: AGI
Channel: SIP/0004F2060EB4-00000013
ActionID: my-action-id
CommandID: my-command-id

AGI Communication Overview | 485

http://www.digium.com/en/products/software/lumenvox.php
http://www.digium.com/en/products/software/vestec.php

Command: VERBOSE "Puppies like cotton candy." 1

Response: Success
ActionID: my-action-id
Message: Added AGI command to queue

Event: AsyncAGI
Privilege: agi,all
SubEvent: Exec
Channel: SIP/0004F2060EB4-00000013
CommandID: my-command-id
Result: 200%20result%3D1%0A

The following output is what was seen on the Asterisk console during this async AGI
session:

 -- Executing [7011@phones:1] AGI("SIP/0004F2060EB4-00000013",
 "agi:async") in new stack
 agi:async: Puppies like cotton candy.
 == Spawn extension (phones, 7011, 1) exited non-zero on 'SIP/0004F2060EB4-00000013'

Ending an AGI Session
An AGI session ends when your AGI application is ready for it to end. The details about
how this happens depend on whether your application is using process-based AGI,
FastAGI, or async AGI.

Process-based AGI/FastAGI

Your AGI application may exit or close its connection at any time. As long as the channel
has not hung up before your application ends, dialplan execution will continue. If
channel hangup occurs while your AGI session is still active, Asterisk will provide no-
tification that this has occurred so that your application can adjust its operation as
appropriate.

This is an area where behavior has changed since Asterisk 1.4. In
Asterisk 1.4 and earlier versions, AGI would automatically exit and stop
operation as soon as the channel hung up. It now gives your application
the opportunity to continue running if needed.

If a channel hangs up while your AGI application is still executing, a couple of things
will happen. If an AGI command is in the middle of executing, you may receive a result
code of -1. You should not depend on this, though, since not all AGI commands require
channel interaction. If the command being executed does not require channel interac-
tion, the result will not reflect the hangup.

The next thing that happens after a channel hangs up is that an explicit notification of
the hangup is sent to your application. For process-based AGI, the signal SIGHUP will
be sent to the process to notify it of the hangup. For a FastAGI connection, Asterisk

486 | Chapter 21: Asterisk Gateway Interface (AGI)

will send a line containing the word HANGUP. If you would like to disable having Asterisk
send the SIGHUP signal to your process-based AGI application or the HANGUP string to
your FastAGI server, you can do so by setting the AGISIGHUP channel variable, as dem-
onstrated in the following short example:

;
; Don't send SIGHUP to an AGI process
; or the "HANGUP" string to a FastAGI server.
;
exten => 500,1,Set(AGISIGHUP=no)
 same => n,AGI(my-agi-application)

At this point, Asterisk automatically adjusts its operation to be in DeadAGI mode. This
just means that an AGI application can run on a channel that has been hung up. The
only AGI commands that may be used at this point are those that do not require channel
interaction. The documentation for the AGI commands built into Asterisk includes an
indication of whether or not each command can be used once the channel has been
hung up.

Async AGI

When you’re using async AGI, the manager interface provides mechanisms to notify
you about channel hangups. When you would like to end an async AGI session for a
channel, you must execute the ASYNCAGI BREAK command. When the async AGI session
ends, Asterisk will send an AsyncAGI manager event with a SubEvent of End. The fol-
lowing is an example of ending an async AGI session:

Action: AGI
Channel: SIP/0004F2060EB4-0000001b
ActionID: my-action-id
CommandID: my-command-id
Command: ASYNCAGI BREAK

Response: Success
ActionID: my-action-id
Message: Added AGI command to queue

Event: AsyncAGI
Privilege: agi,all
SubEvent: End
Channel: SIP/0004F2060EB4-0000001b

At this point, the channel returns to the Asterisk dialplan if it has not yet been hung up.

Development Frameworks
There have been a number of efforts to create frameworks or libraries that make AGI
programming easier. Table 21-3 lists some of them. If you do not see a library listed
here for your preferred programming language, do a quick search for it and you’re likely
to find one, as others do exist.

Development Frameworks | 487

Table 21-3. AGI development frameworks

Framework Language URL

Adhearsion Ruby http://adhearsion.com/

StarPy Python http://starpy.sourceforge.net/

Asterisk-Java Java http://asterisk-java.org/

Asterisk-perl Perl http://asterisk.gnuinter.net/

PHPAGI PHP http://phpagi.sourceforge.net/

Conclusion
AGI provides a powerful interface to Asterisk that allows you to implement first-party
call control in the programming language of your choice. There are multiple approaches
that you can take to implementing an AGI application. Some approaches can provide
better performance, but at the cost of more complexity. AGI provides a programming
environment that may make it easier to integrate Asterisk with other systems, or just
provide a more comfortable call control programming environment for the experienced
programmer.

488 | Chapter 21: Asterisk Gateway Interface (AGI)

http://adhearsion.com/
http://starpy.sourceforge.net/
http://asterisk-java.org/
http://asterisk.gnuinter.net/
http://phpagi.sourceforge.net/

CHAPTER 22

Clustering

You cannot eat a cluster of grapes at once, but it is very
easy if you eat them one by one.

—Jacques Roumain

The word “clustering” can mean different things to different people. Some people
would say clustering is simply having a replicated system on standby available to be
turned on when the primary system fails. To others, clustering is having several systems
working in concert with one another, with replicated data, fully redundant, and infin-
itely expandable. For most people, it’s probably somewhere between those two
extremes.

In this chapter, we’re going to explore the possibilities for clustering that exist with
Asterisk at a high level, giving you the knowledge and direction to start planning your
system into the future. As examples, we’ll discuss some of the tools that we’ve used in
our own large deployments; while there is no single way to go about building an Asterisk
cluster, the topologies we’ll cover have proven reliable over the years.

Our examples will delve into building a distributed call center, one of the more popular
reasons for building a distributed system. In some cases this is necessary simply because
a company has satellite offices it wants to tie into the primary system. For others, the
goal is to integrate remote employees, or to be able to handle a large number of seats.
We’ll start by looking at a simple, traditional PBX system, and see how that system can
eventually grow into something much larger.

Traditional Call Centers
Most systems deployed before the year 2000 will look quite similar. They will involve
a set of phone lines delivered either via a PRI or through an array of analog lines, which
connect to a PBX system that delivers calls to handsets that are likely proprietary to the
systems deployed. These systems will likely provide a basic set of functions, with extra

489

functions such as voicemail and conferencing being provided through external modules
that may cost thousands of dollars. This topology is illustrated in Figure 22-1.

Figure 22-1. Traditional call center

Such systems will utilize a set of rules for delivering calls to agents through the standard
automatic call distribution (ACD) rules, and will have little flexibility. It will likely be
either impossible or expensive to add remote agents, as the calls would need to be
delivered over the PSTN, which utilizes two phone lines: one for the incoming caller
to the queue, and another to be delivered to the remote agent (in most cases, the agents
just need to reside at the same physical location as the PBX itself).

These traditional phone systems are slowly being phased out, though, as more people
start clamoring for the features VoIP brings to the table. And even for systems that
aren’t going to be using VoIP, solutions like Asterisk bring to the table features that
once cost thousands of dollars as an included part of the software.

Of course, with the money invested in expensive hardware in traditional systems, it is
natural that organizations with these systems will want to get as much use from them
as possible. Plus, simply swapping out an existing system is not only expensive (wiring
costs for SIP phones, replacement costs for proprietary handsets, etc.), but may be
invasive to the call center, especially if it operates continuously.

Perhaps, though, the time to expand has come, and the existing system is no longer
able to keep up with the number of lines required and the number of seats necessary
to keep up with demand. In this case, it may be advantageous to look toward a hybrid
system, where the existing hardware continues to be used, but new seats and features
are added to the system using Asterisk.

Hybrid Systems
A hybrid phone system (Figure 22-2) contains the same functionality and hardware as
a traditional phone system, with the exception of another system such as Asterisk being
attached to it, thereby providing additional capacity and functionality. Adding Asterisk
to a traditional system is typically done via a PRI connection. From the viewpoint of
the traditional system, Asterisk will look like another phone company (central office,
or CO). Depending on the way the traditional system operates and the services available

490 | Chapter 22: Clustering

to or from the CO, either Asterisk will deliver calls from the PRI through itself and to
the existing PBX, or the existing PBX will send calls over the PRI connection to Asterisk,
which will then direct the calls to the new endpoints (phones).

With Asterisk in the picture, functionality can be moved piecemeal from the existing
PBX system over to Asterisk, which can take on a greater role and command more of
the system over time. Eventually the existing PBX system may simply be used as a
method for sending calls to the existing handsets on the agents’ desks, with those being
phased out over time and replaced with SIP-based phones, as the wiring is installed and
phones are purchased.

By adding Asterisk to the existing system, we gain a new set of functionality and ad-
vantages, such as:

• Support for remote employees: calls are delivered over the existing Internet
connection

• Features such as conferencing and voicemail (with the possibility of users being
notified via email of new messages)

• Expanded phone lines using VoIP, and a reduction in long-distance costs

Such a system still suffers from a few disadvantages, as all the hardware needs to reside
at the call center facility, and we’re still restricted to using (relatively) expensive hard-
ware in the Asterisk system for connecting to the traditional PBX. We’re moving in the
right direction, though, and with the Asterisk system in place we can start the migration

Figure 22-2. Remote hybrid system

Hybrid Systems | 491

over time, limiting interruptions to the business and taking a more gradual approach
to training users.

Pure Asterisk, Nondistributed
The next step in our journey is the pure Asterisk system. In this system we’ve success-
fully migrated away from the existing PBX system and are now handling all functionality
through Asterisk. Our existing PRI has been attached to Asterisk, and we’ve expanded
our capacity by integrating an Internet Telephony Service Provider (ITSP) into our
system. All agents are now using SIP phones, and we’ve even added several remote
employees. This topology is illustrated in Figure 22-3.

Figure 22-3. Nondistributed Asterisk

Remote employees can be a great advantage for a company. Not only can letting your
work from remote locations increase employee morale by alleviating the burden of a
potentially long commute, but it allows employees to work in an environment they are
comfortable in, which can make them more productive. Furthermore, the call center
manager does not have any less control over statistics from employees; their calls can
still be monitored for training purposes, and the statistical data gathered look no dif-
ferent to the manager than they do for employees residing at the facility.

A measurable advantage for the company is the reduction in the amount of hardware
required to be purchased for each employee. If agents can utilize their existing computer

492 | Chapter 22: Clustering

systems, electrical grids, and Internet connections, the company can save a significant
amount of money by supporting remote employees. Additionally, those employees can
be located across the globe to expand the number of hours your agents are available,
thereby allowing you to serve more time zones.

Using this system is simple and efficient, but as the company grows, the system may
reach a capacity issue. We’ll look at how the system can be expanded later in this
chapter.

Asterisk and Database Integration
Integrating Asterisk with a database can add a great deal of functionality to your system.
Additionally, it provides a way to build web-based configuration utilities to make the
maintenance of an Asterisk system easier. What’s more, it allows instant access to
information from the dialplan and other parts of the Asterisk system.

Single Database
Adding database integration to Asterisk (Figure 22-4) is a powerful way of gaining
access to information that can be manipulated by other means. For example, we can
read information about the extensions and devices in the system from a database using
the Asterisk Realtime Architecture (discussed in Chapter 16), and we can modify the
information stored in the database via an external system, such as a web page.

The integration with the database adds a layer between Asterisk and the web interface
that the web designer is familiar with, and allows the manipulation of data in a way
that doesn’t require any additional skill sets. Knowledge of Asterisk itself is left to the
Asterisk administrator, and the web developer can happily work with tools she is
familiar with.

Of course, this makes the Asterisk system slightly more complex to build, but integra-
tion with a database via ODBC adds all sorts of possibilities (such as hot-desking,
discussed in “Getting Funky with func_odbc: Hot-Desking” on page 354). func_odbc
is a powerful tool for the Asterisk administrator, providing the ability to build a static
dialplan using data that is dynamic in nature. See Chapter 16 for more information
about how to integrate Asterisk with a database, and the functionality it provides.

We’re also quite fond of the func_curl module, which provides integration with web
services over HTTP directly from the dialplan.

With the data abstracted from Asterisk directly, we will now have an easier time moving
toward a system that is getting ready to be clustered. We can use something like Linux-
HA (http://www.linux-ha.org/wiki/Main_Page) to provide automatic failover between
systems. While in the event of a failure the calls on the system that failed will be lost,
the failover will take only moments (less than a second) to be detected, and the system
will appear to its users to be immediately available again. In this configuration, since

Asterisk and Database Integration | 493

http://www.linux-ha.org/wiki/Main_Page

our data is abstracted outside of Asterisk, we can use applications such as unison
(http://www.cis.upenn.edu/~bcpierce/unison/) or rsync to keep the configuration files
synchronized between the primary and the backup system. We could also use subver-
sion or git to track changes to the configuration files, making it easy to roll back changes
that don’t work out.

Of course, if our database goes away due to a failure of the hardware or the software,
our system will be unavailable unless it is programmed in such a way as to be able to
work without the database connection. This could be accomplished either through the
use of a local database that simply updates itself periodically from the primary database,
or through information programmed directly into the dialplan. In most cases the func-
tionality of the system in this mode will be simpler than when the database was avail-
able, but at least the system will not be entirely unusable.

A better solution would be to use a replicated database, which allows data written to
one database server to be written to another server at the same time. Asterisk can then
fail over to the other database automatically if the primary server becomes unavailable.

Figure 22-4. Asterisk database integration, single server

494 | Chapter 22: Clustering

http://www.cis.upenn.edu/~bcpierce/unison/

Replicated Databases
Using a replicated database provides some redundancy in the backend to help limit the
amount of downtime callers and agents experience if a database failure occurs. A
master-master database configuration is required so that data can be written to either
database and be automatically replicated to the other system, ensuring that we have an
exact copy of the data on two physical machines. Another advantage to this approach
is that a single system no longer needs to handle all the transactions to the database;
the load can be divided among the servers. Figure 22-5 illustrates this distributed design.

Figure 22-5. Asterisk database integration, distributed database

We’ve used MySQL master-master replication before, and it works
quite well. It also isn’t all that difficult to set up, and several tutorials
exist on the Internet. Other database systems will likely contain this
functionality as well, especially if you’re using a commercial system such
as Oracle or MS SQL.

Failover can be done natively in Asterisk, as res_odbc and func_odbc do contain con-
figuration options that allow you to specify multiple databases. In res_odbc, you can

Asterisk and Database Integration | 495

specify the preferred order for database connections in case one fails. In func_odbc, you
can even specify different servers for reading data and writing data through the dialplan
functions you create. All of this flexibility allows you to provide a system that works
well for your business.

External programs can also be used for controlling failover between systems. The pen
application (http://siag.nu/pen/) is a load balancer for simple TCP applications such as
HTTP or SMTP, which allows several servers to appear as one. This means Asterisk
only needs to be configured to connect to a single IP address (or hostname); the pen
application will take care of controlling which server gets used for each request.

Asterisk and Distributed Device States
Device states in Asterisk are important both from a software standpoint (Asterisk might
need to know the state of a device or the line on a device in order to know whether a
call can be placed to it) and from a user’s perspective (for example, a light may be turned
on or off to signify whether a particular line is in use, or whether an agent is available
for any more calls). From the viewpoint of a queue, it is extremely important to know
the status of the device an agent is using in order to determine whether the next caller
in the queue can be distributed to that agent. Without knowledge of the device’s state,
the queue would simply place multiple calls to the same endpoint.

Once you start expanding your single system to multiple boxes (potentially in multiple
physical locations, such as remote or satellite offices), you will need to distribute the
device state of endpoints between the systems. The kind of implementation that is
required will depend on whether you’re distributing them between systems on the same
LAN (low-latency links) or over a WAN (higher-latency links). We’ll discuss two device
state distribution methods in this section: OpenAIS for low-latency links, and XMPP
for higher-latency links.

Distributing Device States over a LAN
The OpenAIS implementation (http://www.openais.org/doku.php) was first added to
Asterisk in the 1.6.1 branch, to enable distribution of device state information across
servers. The addition of OpenAIS provided great possibilities for distributed systems,
as device state awareness is an important aspect of such systems. Previous methods
required the use of GROUP() and GROUP_COUNT() for each channel, with that information
queried for over DUNDi. While this approach is useful in some scenarios (we could
use this functionality to look up the number of calls our systems are handling and direct
calls intelligently to systems handling fewer calls), as a mechanism for determining
device state information it is severely lacking.

OpenAIS did give us the first implementation of a system that allows the state of devices
and message waiting indications to be distributed among multiple Asterisk systems (see
Figure 22-6). The downside of the OpenAIS implementation is that it requires all the

496 | Chapter 22: Clustering

http://siag.nu/pen/
http://www.openais.org/doku.php

systems to live on low-latency links, which typically means they all need to reside in
the same physical location, attached to the same switch. That said, while the OpenAIS
library does not work across physically separate networks, it does allow a Queue() to
reside on one system and queue members to reside on another system (or multiple
systems). It does this without requiring us to use Local channels and test their availa-
bility through other methods, thereby limiting (or eliminating) the number of connec-
tion attempts made across the network, and multiple device ringing.

Using OpenAIS has an advantage, in that it is relatively easy to configure and get work-
ing. The disadvantage is that it is not distributable over physical locations. As of Asterisk
1.8, though, we can use XMPP for device state distribution over a wide area network,
as you’ll see in the next section.

More information about configuring distributed device states with OpenAIS is available
in “Using OpenAIS” on page 310.

Distributing Device States over a WAN
As of Asterisk 1.8, an implementation that uses XMPP for device state distribution has
been added. Because the XMPP protocol is designed for (or at least allows) usage across

Figure 22-6. Device state distribution with OpenAIS

Asterisk and Distributed Device States | 497

wide area networks, we can now have Asterisk systems at different physical locations
distribute device state information to each other (see Figure 22-7). With the OpenAIS
implementation, the library would be used on each system, enabling them to distribute
device state information. In the XMPP scenario, a central server (or cluster of servers)
is used to distribute the state among all of the Asterisk boxes in the cluster. Currently
the best application for doing this is the Tigase XMPP server (http://www.tigase.org),
because of its support for PubSub events. While other XMPP servers may be supported
in the future, only Tigase is known to work at this time.

Figure 22-7. Device state distribution with XMPP

With XMPP, the queues can be located in different physical locations, and satellite
offices can take calls from the primary office, or vice versa. This provides another layer
of redundancy, because if the primary site goes offline and the ITSP is set up in such a
way as to fail over to another office, the calls can be distributed among those satellite
offices until the primary site goes back online. This is quite exciting for many people,
as it adds a layer of functionality that was not previously available, and most of it can
be done with relatively minimal configuration.

498 | Chapter 22: Clustering

http://www.tigase.org

The advantage to XMPP device state distribution is that it is possible to distribute state
to multiple physical locations, which is not possible with OpenAIS. The disadvantage
is that it is more complex to set up (since you need an external service running the
Tigase XMPP server) than the OpenAIS implementation.

More information about configuring distributed device states with XMPP can be found
in “Using XMPP” on page 314.

Multiple Queues, Multiple Sites
Now, let’s get creative and use the various tools we’ve discussed in the previous sections
to build a distributed queue infrastructure. Figure 22-8 illustrates a sample setup where
we have five Asterisk servers being fronted by another cluster used to distribute/route
the calls to the various queues we have set up. Our ITSP sends calls to the routing cluster
(which could be something like Kamailio, or even multiple Asterisk servers imple-
menting DUNDi or some other method to route and distribute calls), which then sends
the calls as appropriate to one of the three Asterisk systems we have our queues con-
figured on. Each server handles a different queue, such as sales, technical support, and
returns. These servers in turn use the agents located at two separate physical locations.
The agents’ devices are registered to their own local registration servers (which may
also perform other functionality).

We are not showing all aspects of the system, in order to keep the dia-
gram simple, but in this case we would be using the XMPP distributed
device state system as we’re implying that the agents are distributed
across multiple physical sites.

All of the agents at the different locations can be loaded into one or more queues, and
because we’re distributing device state information, each queue will know the current
state of the agents in the queue and will only distribute callers to the agents as appro-
priate. Beyond that, we can configure penalties for the queues and/or for the agents in
order to get the callers to the best agents if they are available, and only use the other
agents when all the best agents are in use (for more information on penalties and pri-
orities, refer to “Advanced Queues” on page 283).

We can add more agents to the system by adding more servers to the cluster at either
the same location or additional physical locations. We can also expand the number of
queues we support by adding more servers, each handling a different queue or queues.

A disadvantage to using this system is the way the Queue() application has been devel-
oped. Queue() is one of the older applications in Asterisk, and it has unfortunately not
kept up with the pace of development in the realm of device state distribution, so there
is no way to distribute the same Queue() across multiple boxes. For example, suppose
you have sales queues on two systems. If a caller enters the sales queue on the first

Multiple Queues, Multiple Sites | 499

Asterisk system, and then another caller enters the sales queue on box two, no infor-
mation will be distributed between those queues to indicate who is first and who is
second in line. The two queues are effectively separate. Perhaps future versions of
Asterisk will have the ability to do that, but at this time it is not supported. We mention
this so you can plan your system accordingly.

Since queues in some implementations (such as call centers) may be required to handle
many calls at once, the processing and load requirements for a single system can be
quite steep. Having the ability to tap into the same agent resources across multiple
systems means that we can distribute our callers among multiple boxes, significantly
lowering the processing requirements placed on any single system. No longer does one
system need to do it all—we can break out various components of the system into
different servers.

Figure 22-8. Distributed queue infrastructure

500 | Chapter 22: Clustering

Conclusion
In this chapter we explored how you can transition a traditional (non-Asterisk) teleph-
ony system into a distributed call center. Along the way, we’ve seen how a call center
with just a few seats can grow into a system with hundreds of seats in different physical
locations.

While the ability to grow your business and plan for the future is crucial, it is also
important to not build a system that is more complex than it needs to be. The larger
you go, and the more distributed a system you build, the longer it will take to get off
the ground and the harder it will be to do all the things that are important when changes
occur, such as testing, implementing the changes, and keeping things synchronized. If
your system is never going to grow beyond a 40-seat call center, don’t build it for 500
seats. All you’re doing is adding additional costs and complexity to accommodate a
system on a scale that may never be fully realized.

Building a simple system now and planning for the future and how you’re going to get
there (especially if you can do it in iterations, without having to rip your entire infra-
structure apart or start from scratch) will get you up and running that much quicker.
As you grow, you can add more pieces, determine if the approach you’re taking is
correct, and, if not, go back and rework that particular piece. This kind of approach
can save you a lot of headaches down the road, when you realize you don’t have to redo
your entire complex system because of some new requirement that you didn’t foresee
at the beginning.

We also mentioned some advantages of having a distributed system with remote em-
ployees, such as improved employee morale and cost savings. You can use your em-
ployees’ existing Internet connections, hardware, and electricity, which can save the
company money, and your employees will benefit by avoiding the aggravation and costs
of commuting to an office every day. While not all situations allow this type of scenario,
it is worth exploring whether adding support for remote employees will be useful to
your business.

Finally, distributed device state can open up a world of possibilities for your company,
allowing it to grow beyond the single Asterisk system that does everything. Breaking
out functionality to multiple boxes is now a reality, and can be approached with a
measure of confidence not previously seen.

Conclusion | 501

CHAPTER 23

Distributed Universal Number
Discovery (DUNDi)

A community is like a ship; everyone ought to be
prepared to take the helm.

—Henrik Ibsen

Distributed Universal Number Discovery, or DUNDi, is a service discovery protocol
that can be used for locating resources at remote locations. The original intention of
DUNDi was to permit decentralized routing among many peers using a General Peering
Agreement (GPA). The GPA (available at http://dundi.com/PEERING.pdf) is intended
to take on the role of a centralized control authority with a document to create a trust
relationship among the peers in the cloud. While the idea is interesting and sound, the
GPA has not taken off. That doesn’t mean the DUNDi protocol itself hasn’t found a
home though: the original intention of DUNDi has been expanded so that now it
doesn’t just act as a location service, but can be used to request and pass information
among peers.

How Does DUNDi Work?
Think of DUNDi as a large phone book that allows you to ask peers if they know of an
alternative VoIP route to an extension number or PSTN telephone number.

For example, assume that you are connected to another set of Asterisk boxes listening
for and responding to DUNDi requests, and those boxes are in turn connected to other
Asterisk boxes listening for and responding to DUNDi requests. Assume also that your
system does not have direct access to request anything from the remote servers.

Figure 23-1 illustrates how DUNDi works. You ask your friend Bob if he knows how
to reach 4001, an extension to which you have no direct access. Bob replies, “I don’t
know how to reach that extension, but let me ask my peer, Sally.”

503

http://dundi.com/PEERING.pdf

Bob asks Sally if she knows how to reach the requested extension, and she responds
with, “You can reach that extension at IAX2/dundi:very_long_password@hostname/
extension.” Bob then stores the address in his database and passes on to you the in-
formation about how to reach 4001. With the newfound information, you can then
make a separate request to actually place the call to Sally’s box in order to reach ex-
tension 4001. (DUNDi only helps you find the information you need in order to connect;
it does not actually place the call.)

Because Bob has stored the information he found, he’ll be able to provide it to any peers
who later request the same number from him, so the lookup won’t have to go any
further. This helps reduce the load on the network and decreases response times for
numbers that are looked up often. (However, it should be noted that DUNDi creates
a rotating key, and thus stored information is valid for a limited period of time.)

DUNDi performs lookups dynamically, either with a switch => statement in your
extensions.conf file or with the use of the DUNDILOOKUP() dialplan function.

While DUNDi was originally designed and intended to be used as a peering fabric for
the PSTN, it is used most frequently in private networks. If you’re the Asterisk admin-
istrator of a large enterprise installation (or even an installation with only a pair of
Asterisk boxes at different physical locations), you may wish to simplify the adminis-
tration of extension numbers. DUNDi is a fantastic tool for this, because it allows you
to simply share the extensions that have been configured at each location dynamically,

Figure 23-1. DUNDi peer-to-peer request system

504 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

by requesting the extension numbers from the remote location when your local box
doesn’t know how to reach them.

Additionally, if one of the locations had a cheaper route to a PSTN number you wanted
to dial, you could request that route in your DUNDi cloud. For example, if one box
was located in Vancouver and the other in Toronto, the Vancouver office could send
calls destined for the Toronto area across the network using VoIP and out the PRI in
Toronto, so they can be placed locally on the PSTN. Likewise, the Toronto office could
place calls destined for Vancouver out of the PRI at the Vancouver office.

The dundi.conf File
It is often useful to be aware of the options available to us prior to delving into the
configuration file, but feel free to skip this section for now and come back to reference
particular options after you’ve got your initial configuration up and working.

There are three sections in the dundi.conf file: the [general] section, the [mappings]
section, and the peer definitions, such as [FF:FF:FF:FF:FF:FF]. We’ll show the options
available for each section in separate tables.

Table 23-1 lists the options available in the [general] section of dundi.conf.

Table 23-1. Options available in the [general] section

Option Description

department Used when querying a remote system’s contact information. An example might be: Communications.

organization Used when querying a remote system’s contact information. An example might be: ShiftEight.org.

locality Used when querying a remote system’s contact information. An example might be: Toronto.

stateprov Used when querying a remote system’s contact information. An example might be: Ontario.

country Used when querying a remote system’s contact information. An example might be: Canada.

email Used when querying a remote system’s contact information. An example might be:
support@shifteight.org

phone Used when querying a remote system’s contact information. An example might be: +1-416-555-1212

bindaddr Used to control which IP address the system will bind to. This can only be an IPv4 address. The default is
0.0.0.0, meaning the system will listen (and respond) on all available interfaces.

port The port to listen for requests on. The default is 4520.

tos The Terms of Service or Quality of Service (ToS/QoS) value to be used for requests. See https://wiki.asterisk
.org/wiki/display/AST/IP+Quality+of+Service for more information about the values available and how
to use them.

entityid The entity ID of the system. Should be an externally (network) facing MAC address. The format is
00:00:00:00:00:00.

cachetime How long peers should cache our responses for, in seconds. The default is 3600.

ttl The time-to-live, or, maximum depth to search the network for a response. The maximum wait time for a
response is calculated using (2000 + 200 * ttl) ms.

The dundi.conf File | 505

https://wiki.asterisk.org/wiki/display/AST/IP+Quality+of+Service
https://wiki.asterisk.org/wiki/display/AST/IP+Quality+of+Service

Option Description

autokill Used to control how long we wait for an ACK to our DPDISCOVER. Setting this timeout prevents the
lookups from stalling due to a latent peer. This can be yes, no, or a numeric value representing the number
of milliseconds to wait. You can use the qualify option to enable this per-peer.

secretpath A rotating key is created and stored within the AstDB. The value is stored in the key ’secret’ under the family
defined by secretpath. The default secretpath is dundi, resulting in the key being stored in dundi/
secret by default.

storehistory Used to indicate whether or not the history of the last several requests should be stored in memory, along
with how long the requests took. Valid values are yes and no (also available using the CLI commands
dundi store history and dundi no store history). This is a debugging tool that is disabled by default due to
possible performance impacts.

Table 23-2 lists the options you can configure in the [mappings] section of dundi.conf.

Table 23-2. Options available in the [mappings] section

Option Description

nounsolicited Used for advertising no unsolicited calls to the returned result. Used in public networks.

nocomunsolicit Used for advertising no commercial unsolicited calls to the returned result. Used in public networks.

residential Used to define the route returned as being a residential location. Used in public networks.

commercial Used to define the route returned as being a commercial location. Used in public networks.

mobile Used to define the route returned as being a mobile phone. Used in public networks.

nopartial Used to prevent partial number lookups from being performed against this mapping.

${NUMBER} Variable that contains the value of the request being looked up.

${IPADDR} Variable that contains the IP address of the local system. Can be used to dynamically construct mapping
responses. Not recommended.

${SECRET} Variable that contains the value of the rotating secret key as defined in the secretpath location
within the AstDB.

Finally, Table 23-3 lists the options available in the peer sections of dundi.conf.

Table 23-3. Options available for peer definitions in dundi.conf

Option Description

inkey The inbound authentication key.

outkey The key used for authentication to the remote peer.

host The hostname or IP address of the remote peer.

port The port on which to communicate with the remote peer.

order The search order associated with this peer. Values include primary, secondary, tertiary, and
quartiary. Will only search primary peers unless none are available, in which case secondary peers will be
searched, and so on.

506 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

Option Description

include Used to control whether this peer is included in searches for the mapping defined. Can be set to the value of
all if used for all mappings.

noinclude Used to control whether this peer is excluded from searches for the mapping defined. Can be set to all if this
peer should be excluded from all lookups.

permit Used to control whether this peer can perform lookups against a particular mapping. If the value is set to
all, this peer can search against all defined mappings.

deny Used to control which mappings this peer is restricted from searching. The value can be set to all to restrict
this peer from being able to perform any lookups against defined mappings.

model Used to control whether this peer can receive requests (inbound), transmit requests (outbound) or do both
(symmetric).

precache Typically used when we have a node with only a few routes that wants to push those values up to another node
that is providing more responses (this is known as precaching, providing an answer when no request has been
received). The values include outgoing, incoming, and symmetric. If this is set to outgoing, we push
routes to this peer. If set to incoming, we receive routes from this peer. If set to symmetric, we do both.

Configuring Asterisk for Use with DUNDi
There are three files that need to be configured for DUNDi: dundi.conf, exten-
sions.conf, and sip.conf.* The dundi.conf file controls the authentication of peers whom
we allow to perform lookups through our system. This file also manages the list of peers
to whom we might submit our own lookup requests. Since it is possible to run several
different networks on the same box, it is necessary to define a different section for each
peer, and then configure the networks in which those peers are allowed to perform
lookups. Additionally, we need to define which peers we wish to use to perform
lookups.

General Configuration
The [general] section of dundi.conf contains parameters relating to the overall opera-
tion of the DUNDi client and server:

; DUNDi configuration file for Toronto
;
[general]
;
department=IT
organization=toronto.example.com
locality=Toronto
stateprov=ON

* The dundi.conf and extensions.conf files must be configured. We have chosen to configure sip.conf for the
purposes of address advertisement on our network, but DUNDi is protocol-agnostic, so iax.conf,
h323.conf, or mgcp.conf could be used instead. DUNDi simply performs the lookups; the standard methods
of placing calls are still required.

Configuring Asterisk for Use with DUNDi | 507

country=CA
email=support@toronto.example.com
phone=+14165551212
;
; Specify bind address and port number. Default is port 4520.
;bindaddr=0.0.0.0
port=4520
entityid=FF:FF:FF:FF:FF:FF
ttl=32
autokill=yes
;secretpath=dundi

The entity identifier defined by entityid should generally be the Media Access Control
(MAC) address of an interface in the machine. The entity ID defaults to the first Ethernet
address of the server, but you can override this with entityid, as long as it is set to the
MAC address of something you own. The MAC address of the primary external interface
is recommended. This is the address that other peers will use to identify you.

The time-to-live (ttl) field defines how many hops away the peers we receive replies
from can be and is used to break loops. Each time a request is passed on down the line
because the requested number is not known, the value in the TTL field is decreased by
one, much like the TTL field of an ICMP packet. The TTL field also defines the max-
imum number of seconds we are willing to wait for a reply.

When you request a number lookup, an initial query (called a DPDISCOVER) is sent to
your peers requesting that number. If you do not receive an acknowledgment (ACK) of
your query (DPDISCOVER) within 2000 ms (enough time for a single transmission only)
and autokill is set to yes, Asterisk will send a CANCEL to the peers. (Note that an ac-
knowledgment is not necessarily a reply to the query; it is just an acknowledgment that
the peer has received the request.) The purpose of autokill is to keep the lookup from
stalling due to hosts with high latency. In addition to the yes and no options, you may
also specify the number of milliseconds to wait.

The pbx_dundi module creates a rotating key and stores it in the local Asterisk database
(AstDB). The key name secret is stored in the dundi family. The value of the key can
be viewed with the database show command at the Asterisk console. The database
family can be overridden with the secretpath option.

We need another peer to interact with, so here’s the configuration for the other node:

; DUNDi configuration file for Vancouver
;
[general]
;
department=IT
organization=vancouver.example.com
locality=Vancouver
stateprov=BC
country=CA
email=support@vancouver.example.com
phone=+16135551212
;

508 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

; Specify bind address and port number. Default port is 4520.
;bindaddr=0.0.0.0
port=4520
entityid=00:00:00:00:00:00
ttl=32
autokill=yes
;secretpath=dundi

In the next section we’ll create our initial DUNDi peers.

Initial DUNDi Peer Definition
A DUNDi peer is identified by the unique layer-two MAC address of an interface on
the remote system. The dundi.conf file is where we define what context to search for
peers requesting a lookup and which peers we want to use when doing a lookup for a
particular network. The following configuration is defined in the dundi.conf file on our
Toronto system:

[00:00:00:00:00:00] ; Vancouver Remote Office
model = symmetric
host = vancouver.example.com
inkey = vancouver
outkey = toronto
qualify = yes
dynamic=yes

The remote peer’s identifier (MAC address) is enclosed in square brackets ([]). The
inkey and outkey are the public/private key pairs that we use for authentication. Key
pairs are generated with the astgenkey script, located in the ~/src/asterisk-complete/
asterisk/1.8/contrib/scripts/ source directory. We use the -n flag so that we don’t have
to initialize passwords every time we start Asterisk:

$ cd /var/lib/asterisk/keys
$ sh ~/src/asterisk-complete/asterisk/1.8/contrib/scripts/astgenkey -n toronto

We’ll place the resulting keys, toronto.pub and toronto.key, in our /var/lib/asterisk/
keys/ directory. The toronto.pub file is the public key, which we’ll post to a web server
so that it is easily accessible for anyone with whom we wish to peer. When we peer, we
can give our peers the HTTP-accessible public key, which they can then place in
their /var/lib/asterisk/keys/ directories (using something like wget).

On the Vancouver box, we’ll use the following peer configuration in dundi.conf:

[FF:FF:FF:FF:FF:FF] ; Toronto Remote Office
model = symmetric
host = toronto.example.com
inkey = toronto
outkey = vancouver
qualify = yes
dynamic=yes

Then we’ll execute the same astgenkey script on the Vancouver box to generate the
public and private vancouver keys. Finally, we’ll place the toronto.pub key on the

Configuring Asterisk for Use with DUNDi | 509

Vancouver server in /var/lib/asterisk/keys/ and place the vancouver.pub file on the Tor-
onto server in the same location.

After downloading the keys, we must reload the res_crypto.so and pbx_dundi.so mod-
ules in Asterisk:

toronto*CLI> module reload res_crypto.so
 -- Reloading module 'res_crypto.so' (Cryptographic Digital Signatures)
 -- Loaded PUBLIC key 'vancouver'
 -- Loaded PUBLIC key 'toronto'
 -- Loaded PRIVATE key 'toronto'

vancouver*CLI> module reload res_crypto.so
 -- Reloading module 'res_crypto.so' (Cryptographic Digital Signatures)
 -- Loaded PUBLIC key 'toronto'
 -- Loaded PUBLIC key 'vancouver'
 -- Loaded PRIVATE key 'vancouver'

We can verify the keys so we know they’re ready to be loaded at any time with the keys
show CLI command:

*CLI> keys show
Key Name Type Status Sum
------------------ -------- ---------------- --------------------------------
vancouver PRIVATE [Loaded] c02efb448c37f5386a546f03479f7d5e
vancouver PUBLIC [Loaded] 0a5e53420ede5c88de95e5d908274fb1
toronto PUBLIC [Loaded] 5f806860e0c8219f597f876caa6f2aff

3 known RSA keys.

With the keys loaded into memory, we can reload the pbx_dundi.so module on both
systems in order to peer them together:

*CLI> module reload pbx_dundi.so
 -- Reloading module 'pbx_dundi.so' (Distributed Universal Number
 Discovery (DUNDi))
 == Parsing '/etc/asterisk/dundi.conf': Found

Finally, we can verify that the systems have peered successfully with dundi show peers:

toronto*CLI> dundi show peers
EID Host Port Model AvgTime Status
00:00:00:00:00:00 172.16.0.104 (S) 4520 Symmetric Unavail OK (3 ms)
1 dundi peers [1 online, 0 offline, 0 unmonitored]

Now, with our peers configured and reachable, we need to create the mapping contexts
that will control what information will be returned in a lookup.

Creating Mapping Contexts
The dundi.conf file defines DUNDi contexts that are mapped to dialplan contexts in
your extensions.conf file. DUNDi contexts are a way of defining distinct and separate
directory service groups. The contexts in the [mapping] section point to contexts in the
extensions.conf file, which control the numbers that you advertise.

510 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

When you create a peer, you need to define which mapping contexts you will allow
this peer to search. You do this with the permit statement (each peer may contain
multiple permit statements). Mapping contexts are related to dialplan contexts in the
sense that they are a security boundary for your peers. We’ll enable our mapping in the
next section.

All DUNDi mapping contexts take the form of:

dundi_context => local_context,weight,technology,destination[,options]]

The following configuration creates a DUNDi mapping context that we’ll use to ad-
vertise our local extension numbers to the group. We’ll add this configuration to the
dundi.conf file on the Toronto system under the [mappings] header. Note that this
should all appear on one line:

[mappings]

; All on a single line
;
extensions => RegisteredDevices,0,SIP,dundi:very_secret_secret@toronto.example.com/
${NUMBER},nopartial

The configuration on the Vancouver system will look like this:

[mappings]

; All on a single line
;
extensions => RegisteredDevices,0,SIP,dundi:very_secret_secret@vancouver.example.com/
${NUMBER},nopartial

In this example, the mapping context is extensions, which points to the RegisteredDe
vices context within extensions.conf (providing a listing of extension numbers to reply
with: our phone book). Numbers that resolve to the PBX should be advertised with a
weight of zero (directly connected). Numbers higher than zero indicate an increased
number of hops or paths to reach the final destination. This is useful when multiple
replies for the same lookup are received at the end that initially requested the number;
a path with a lower weight will be preferred. We’ll look at how to control responses in
“Controlling Responses” on page 516.

If we can reply to a lookup, our response will contain the method by which the other
end can connect to the system. This includes the technology to use (such as IAX2, SIP,
H323, and so on), the username and password with which to authenticate, which host
to send the authentication to, and finally the extension number.

Asterisk provides some shortcuts to allow us to create a “template” with which we can
build our responses. The following channel variables can be used to construct the
template:

${SECRET}
Replaced with the password stored in the local AstDB. Only used with iax.conf.

Configuring Asterisk for Use with DUNDi | 511

${NUMBER}
The number being requested.

${IPADDR}
The IP address to connect to.

It is generally safest to statically configure the hostname, rather than
make use of the ${IPADDR} variable. The ${IPADDR} variable will some-
times reply with an address in the private IP space, which is unreachable
from the Internet.

With our mapping configured, let’s create a simple dialplan context against which we
can perform lookups for testing. We’ll make this more dynamic in “Controlling Re-
sponses” on page 516.

In extensions.conf, we can add the following on both systems:

[RegisteredDevices]
exten => 1000,1,NoOp()

With our dialplan and mappings configured, we need to load them into memory from
the CLI:

*CLI> dialplan reload

*CLI> module reload pbx_dundi.so
 -- Reloading module 'pbx_dundi.so' (Distributed Universal Number
 Discovery (DUNDi))
 == Parsing '/etc/asterisk/dundi.conf': == Found

We can verify the mapping was loaded into memory with the dundi show mappings
command:

toronto*CLI> dundi show mappings
DUNDi Cntxt Weight Local Cntxt Options Tech Destination
extensions 0 RegisteredDe NONE SIP dundi:${SECRET}@172.16.0.

With our simple dialplan and mappings configured, we need to define the mappings
each of our peers is allowed to use. We’ll do this in the next section.

Using Mapping Contexts with Peers
With our mappings defined in the dundi.conf file, we need to give our peers permission
to use them. Control of the various mappings is done via the permit, deny, include, and
noinclude options within a peer definition. We use permit and deny to control whether
the remote peer is allowed to search a particular mapping on our local system. We use
include and noinclude to control which peers we will use to perform lookups with in
a particular mapping.

512 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

Since we only have a single mapping defined (extensions), we’re going to permit and
include extensions within our peer definitions on both the Toronto and Vancouver
systems.

On Toronto, we’ll permit Vancouver to search the extensions mapping, and use Van-
couver whenever we’re performing a lookup within the extensions mapping:

[00:00:00:00:00:00] ; Vancouver Remote Office
model = symmetric
host = vancouver.example.com
inkey = vancouver
outkey = toronto
qualify = yes
dynamic=yes
permit=extensions
include=extensions

Similarly, we’ll permit and include the extensions mapping for the Toronto office on
the Vancouver system:

[FF:FF:FF:FF:FF:FF] ; Toronto Remote Office
model = symmetric
host = toronto.example.com
inkey = toronto
outkey = vancouver
qualify = yes
dynamic=yes
permit=extensions
include=extensions

After modifying the peers, we reload the pbx_dundi.so module to have the changes take
effect:

*CLI> module reload pbx_dundi.so

The include and permit configuration can be verified via the dundi show peer command
on the Asterisk CLI:

*CLI> dundi show peer 00:00:00:00:00:00
Peer: 00:00:00:00:00:00
Model: Symmetric
Host: 172.16.0.104
Port: 4520
Dynamic: no
Reg: No
In Key: vancouver
Out Key: toronto
Include logic:
-- include extensions
Query logic:
-- permit extensions

Now we can test our lookups. We can do this easily from the Asterisk CLI using the
dundi lookup command. If we perform a lookup from the Vancouver system, we’ll
receive a response from the Toronto system with an address we can use to place a call.

Configuring Asterisk for Use with DUNDi | 513

We’ve added the keyword bypass to the end of the lookup in order to bypass the cache
(in case we wish to perform several tests):

vancouver*CLI> dundi lookup 1000@extensions bypass
 1. 0 SIP/dundi:very_secret_secret@172.16.0.161/1000 (EXISTS)
 from ff:ff:ff:ff:ff:ff, expires in 3600 s
DUNDi lookup completed in 12 ms

The response of SIP/dundi:very_secret_secret@172.16.0.161/1000 gives us an address
that we can use to call extension 1000. (Of course, we can’t use this address at the
moment because we haven’t configured any peers on the Toronto (or Vancouver) sys-
tem to actually receive the call, but at least we have the DUNDi lookup portion working
now!) In the next section we’ll explore how to receive calls into our system after we’ve
replied to a DUNDi response.

Allowing Remote Connections
Within our sip.conf file, we need to enable a peer that we can accept calls from and
handle that peer’s calls in the dialplan appropriately. The authentication is done using
a password as defined in the mapping within dundi.conf.

If you’re using iax.conf, you can use the ${SECRET} variable in the map-
ping in place of the password, which is dynamically replaced with a
rotated key and is refreshed every 3600 seconds (1 hour). The value of
the secret key is stored in the Asterisk database and is accessed using
the dbsecret option within the peer definition of iax.conf.

Here is the user definition for the dundi user as defined in sip.conf:

[dundi]
type=user
secret=very_secret_secret
context=DUNDi_Incoming
disallow=all
allow=ulaw
allow=alaw

The context entry, DUNDi_Incoming, is where authorized callers are sent in exten-
sions.conf. From there, we can control the call just as we would in the dialplan of any
other incoming connection.

We could also use the permit and deny options for the peer in sip.conf
to control which IP addresses we’ll accept calls from. Controlling the IP
addresses will give us an extra layer of security if we’re only expecting
calls from known endpoints, such as those within our organization.

Be sure to reload chan_sip.so to enable the newly created user in sip.conf:

514 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

toronto*CLI> sip reload

To accept the incoming calls, define the [DUNDi_Incoming] context in extensions.conf
and add the following to the Toronto system’s dialplan.

[DUNDi_Incoming]
exten => 1000,1,Verbose(2,Incoming call from the DUNDi peer)
 same => n,Answer()
 same => n,Playback(silence/1)
 same => n,Playback(tt-weasels)
 same => n,Hangup()

Reload the dialplan with dialplan reload after saving your changes to extensions.conf.

For our first test, we’ll create an extension in the LocalSets context and try placing a
call to extension 1000 using the information provided via DUNDi:

[LocalSets]
exten => 1000,1,Verbose(2,Test extension to place call to remote server)
same => n,Dial(SIP/dundi:very_secret_secret@172.16.0.161/1000,30)
same => n,Hangup()

If we reload the dialplan and try testing the extension by dialing 1000, we should be
connected to the tt-weasels prompt on the remote machine. With our user configured
correctly to accept incoming calls, let’s make our dialplan and responses more dynamic
with some additional tools.

Using dbsecret with iax.conf
If you use the iax.conf channel driver, you can authenticate incoming calls using the
dbsecret directive in iax.conf along with the ${SECRET} variable in your mapping. The
use of the ${SECRET} variable in the mapping causes a rotated password to be sent back
in the response, which can then be used for authentication via IAX2. Here is an example
of an authentication definition in the iax.conf file:

[dundi]
type=friend
context=DUNDi_Incoming
dbsecret=dundi/secret
disallow=all
allow=ulaw
allow=alaw

The password is stored in the AstDB and is rotated every 3600 seconds (1 hour). To
use the password in your mappings, change the mappings in dundi.conf to use $
{SECRET} instead of very_secret_secret. This is the mapping we configured on the
Vancouver system:

[mappings]

; All on a single line
;
extensions => RegisteredDevices,0,SIP,dundi:${SECRET}@vancouver.example.com/
${NUMBER},nopartial

Configuring Asterisk for Use with DUNDi | 515

Controlling Responses
Responses are controlled with the dialplan. Whenever an incoming request matches
the dialplan configured for the mapping (whether the request is for a specific extension
or a pattern match), a response will be sent. If the request does not match within the
dialplan, no response is sent. In the example we’ve been building, the extension 1000
is the only extension that can be matched and thus generate a response.

In the next few sections we’ll look at some of the methods we can use to control what
requests are responded to.

Manually adding responses

The extensions.conf file handles what numbers you advertise and what you do with the
calls that connect to them.

The simple method to control responses is to simply add them manually to the [Regis
teredDevices] context. If we had several extensions at one of our locations, we could
add them all to that context:

[RegisteredDevices]
exten => 1000,1,NoOp()

exten => 1001,1,NoOp()

exten => 1002,1,NoOp()

The NoOp() dialplan application is used here because the matching and responding is
done only against the extension number, and no dialplan is executed. While we could
overload this context and cause it to also be the destination for our calls, it’s not rec-
ommended. Other reasons for using the NoOp() application should become clear as we
progress.

Using pattern matches

Of course, adding everything we want to respond with manually would be silly, espe-
cially if we wanted to advertise a larger set of numbers, such as all numbers for an area
code. As mentioned earlier, in our example we might wish to allow our Toronto and
Vancouver offices to call out from one another when placing calls that are free or cheap
to make from the other location.

We can respond with all of an area code using pattern matches, just as we do in other
parts of the dialplan:

[RegisteredDevices]
exten => _416NXXXXXX,1,NoOp()
exten => _647NXXXXXX,1,NoOp()
exten => _905NXXXXXX,1,NoOp()

516 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

We could also advertise a full or partial range of extensions using pattern matches:

[RegisteredDevices]
exten => _1[1-3]XX,1,NoOp() ; extensions 1100->1399

exten => _1[7-9]XX,1,NoOp() ; extensions 1700->1999

Pattern matches are a good way of adding ranges of numbers, but these are still static.
In the next section we’ll explore how we can add some fluidity to the
RegisteredDevices context.

Dynamically adding extension numbers

In some cases, you might want to only advertise extensions at your location that are
currently registered to the system. Perhaps we have a salesperson who flies between the
Toronto and Vancouver offices, and plugs her laptop into the network and registers at
whichever location she is currently at. In that case, we would want to make sure that
calls to that person are routed to the appropriate office in order to avoid sending calls
across the country unnecessarily.

The regcontext and regexten options in iax.conf and sip.conf are useful for this. When
a peer registers the value associated with regexten for that peer, an extension of that
value will be created in the context defined by regcontext. So, for example, if we define
regcontext in the [general] section of sip.conf to contain RegisteredDevices, and we
define the regexten for each peer to contain the extension number of that peer, when
the peers register the RegisteredDevices context will be populated automatically for
us. We’ll modify our sip.conf to look like this:

[general]
regcontext=RegisteredDevices

[0000FFFF0001](office-phone)
regexten=1001

and then reload chan_sip.so.

Now, we’ll register our device to the system and look at the RegisteredDevices context:

*CLI> dialplan show RegisteredDevices
[Context 'RegisteredDevices' created by 'SIP']
 '1001' => 1. Noop(0000FFFF0001) [SIP]
 '1002' => 1. Noop(0000FFFF0002) [SIP]

With our devices registered and the context used for determining when to respond
populated, the only task left is to include the LocalSets context within the
DUNDi_Incoming context in order to permit routing of calls to the endpoints.

Using dialplan functions in mappings

Sometimes it’s useful to utilize a dialplan function within the mappings to control what
a peer responds with. Throughout this book we’ve been touting the advantages of
decoupling the user’s extension number from the device in order to permit hot-desking.

Configuring Asterisk for Use with DUNDi | 517

Because the other end is just going to request an extension number and won’t neces-
sarily know the location of the device on our system, we can use the DB() and
DB_EXISTS() functions within the mapping to perform a lookup from our AstDB for the
device to call.†

Prior to Asterisk version 1.8.3, the maximum length of the destina
tion field (see “Creating Mapping Contexts” on page 510) was 80 char-
acters, which made the use of nested dialplan functions nearly impos-
sible. As of Asterisk 1.8.3, the maximum length is 512 characters.

First we need to make sure our database is populated with the information we might
respond with. While this would normally be done by the dialplan written for the hot-
desking implementation, we’ll just add the content directly from the Asterisk console
for demonstration purposes:

*CLI> database put phones 1001/device 0000FFFF0001
Updated database successfully

With our database populated, we need to modify our mapping to utilize some dialplan
functions that will take the value requested, perform a lookup to our database for that
value, and return a value. If no value exists in the database, we’ll return the value of None.

Our existing mapping looks like this:

[mappings]
; The mapping exists on a single line
extensions => RegisteredDevices,0,SIP,
 dundi:very_secret_secret@toronto.example.com/${NUMBER},nopartial

Our current example simply reflects back the same extension number that was reques-
ted, along with some authentication information. The number requested is the exten-
sion the peer is looking for. However, because we’re using hot-desking, the extension
number may be located at various phone locations, so we may want to return the device
identifier directly.‡ We can do this by being clever with the use of dialplan functions
in our response. While we may not have the full power of the dialplan (multiple lines,
complex logic, etc.) at our disposal, we can at least use some of the simpler dialplan
functions, such as DB(), DB_EXISTS(), and IF().

We’re going to replace ${NUMBER} with the following bit of dialplan logic:

${IF($[${DB_EXISTS(phones/${NUMBER}/device)}]?${DB(phones/${NUMBER}/device)}:None)}

If we break this down, we end up with an IF() statement that will return either true or
false. If false, we return the value of None. If true, we return the value located in the
database at phones/${NUMBER}/device (where ${NUMBER} contains the value of 1001 for

† …or func_odbc, or func_curl, or res_ldap (using the REALTIME_FIELD() function).

‡ We’ve also looked at using the GROUP() and GROUP_COUNT() functions for looking up the current channel usage
on a remote system to determine which location to route calls to (the one with the lowest channel usage) as
a simple load balancer.

518 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

our example) using the DB() function. To determine which value the IF() function will
return, we use the DB_EXISTS() function. This function checks whether a value exists
at phones/${NUMBER}/device within the AstDB, and returns either 1 or 0 (true or false).

The DB_EXISTS() function not only returns 1 or 0, but also sets the $
{DB_RESULT} channel variable that contains the value inside the database
if the return value is 1. However, we can’t use that value because the
IF() function is evaluated prior to the condition field being evaluated,
which means ${DB_RESULT} will be blank. Thus, we need to use the
DB() function to look up the value prior to the condition field being
evaluated.

After reloading pbx_dundi.so from the console (module reload pbx_dundi.so), we can
perform a lookup from another server and check out the result:

vancouver*CLI> dundi lookup 1001@extensions bypass
 1. 0 SIP/dundi:very_awesome_password/0000FFFF0001 (EXISTS)
 from ff:ff:ff:ff:ff:ff, expires in 3600 s
DUNDi lookup completed in 77 ms

With dialplan functions, you can make the responses in your dialplans a lot more dy-
namic. In the next section we’ll look at how you can perform these lookups from the
dialplan using the DUNDILOOKUP(), DUNDIQUERY(), and DUNDIRESULT() functions.

When you perform lookups using the example in this chapter, because
all the peers in your network will return a result (None, or the value you
want), you’ll need to use the DUNDIQUERY() and DUNDIRESULT() functions
to parse through the list of results returned. The alternative would be
to try calling SIP/dundi:very_long_pass@remote_server/None, but this
wouldn’t be very effective. You might even want to handle the extension
None elegantly, in case it gets called.

Performing Lookups from the Dialplan
Performing lookups from the dialplan is really the bread and butter of all of this, because
it allows more dynamic routing from within the dialplan. With DUNDi, you can per-
form lookups and route calls within your cluster using either the DUNDILOOKUP() or
DUNDIQUERY() and DUNDIRESULT() functions.

The DUNDILOOKUP() function replaces the old DUNDiLookup() dialplan application, per-
forming nearly the same functionality. With DUNDILOOKUP(), you perform your lookup
like you would at the Asterisk console, and the result can then be saved into a channel
variable, or used wherever you might use a dialplan function. Here is an example:

[TestContext]
exten => 1001,1,Verbose(2,Look up extension 1001)
same => n,Set(DUNDi_Result=${DUNDILOOKUP(1001,extensions,b)})

Configuring Asterisk for Use with DUNDi | 519

same => n,Verbose(2,The result of the lookup was ${DUNDi_Result})
same => n,Hangup()

The arguments passed to DUNDILOOKUP() are: extension,context,options. Only one op-
tion, b, is available for the DUNDILOOKUP() function, and that is used to bypass the local
cache. The advantage to using the DUNDILOOKUP() function is that it is straightforward
and easy to use. The disadvantage is that it will only set the first value returned; if
multiple values are returned, they will be discarded.

You won’t always want to use the bypass option when performing look-
ups, because the use of the cache is what will lower the number of re-
quests over your network and limit the amount of resources required.
We’re using it in our examples simply because it is useful for testing
purposes, so that we know we’ve returned a result each time rather than
just a cached value from the previous lookup.

To parse through multiple returned values, we need to use the DUNDIQUERY() and DUN
DIRESULT() functions. Each plays an important part in sifting through multiple returned
values from a lookup. The DUNDIQUERY() function performs the initial lookup and saves
the resulting hash into memory. An ID value is then returned, which can be stored in
a channel variable. The ID value returned from the DUNDIQUERY() function can then be
passed to the DUNDIRESULT() function to parse through the returned values from the
query.

Lets take a look at some dialplan that uses these functions:

[TestContext]
exten => _1XXX,1,Verbose(2,Looking up results for extension ${EXTEN})

; Perform our lookup and save the resulting ID to DUNDI_ID
 same => n,Set(DUNDI_ID=${DUNDIQUERY(${EXTEN},extensions,b)})
 same => n,Verbose(2,Showing all results returned from the DUNDi Query)

; The DUNDIRESULT() function can return the number of results using 'getnum'
 same => n,Set(NumberOfResults=${DUNDIRESULT(${DUNDI_ID},getnum)})
 same => n,Set(ResultCounter=1)

; If there is less than 1 result, no results were returned
 same => n,GotoIf($[${NumberOfResults} < 1]?NoResults,1)

; The start of our loop showing the returned values
 same => n,While($[${ResultCounter} <= ${NumberOfResults}])

; Save the returned result at position ${ResultCounter} to thisResult
 same => n,Set(thisResult=${DUNDIRESULT(${DUNDI_ID},${ResultCounter})})

; Show the current result on the console
 same => n,Verbose(2,One of the results returned was: ${thisResult})

; Increase the counter by one
 same => n,Set(ResultCounter=${INC(ResultCounter)})

520 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

; End of our loop
 same => n,EndWhile()
 same => n,Playback(silence/1)
 same => n,Playback(vm-goodbye)
 same => n,Hangup()

; If no results were found, execute this dialplan
exten => NoResults,1,Verbose(2,No results were found)
 same => n,Playback(silence/1)
 same => n,Playback(invalid)
 same => n,Hangup()

Our example dialplan performs a lookup using the DUNDIQUERY() function and stores
the resulting ID value in the DUNDI_ID channel variable. Using the DUNDIRESULT() func-
tion and the getnum option, we store the total number of returned results in the Number
OfResults channel variable. We then set the ResultCounter channel variable to 1 as our
starting position in the loop.

Using GotoIf(), we check if the ${NumberOfResults} returned is less than one and, if so,
jump to the NoResults extension, where we Playback() “Invalid extension”. If at least
one extension is found, we continue on in the dialplan.

Using the While() application, we check if the ${ResultCounter} is less than or equal
to the value of ${NumberOfResults}. If that is true, we continue on in the dialplan, and
otherwise, we jump to the EndWhile() application.

For each iteration of our loop, the DUNDIRESULT() function is used to save the value at
position ${ResultCounter} to the thisResult channel variable. After storing the value,
we output it to the Asterisk console using the Verbose() application. Following that,
we increase the value of ResultCounter by one using the INC() function. Our loop test
is then done again within the While() loop, and the loop will continue while the value
of ${ResultCounter} is less than or equal to the value of ${Number OfResults}.

Using the same type of logic, we could check for values other than None and, if such a
value is found, ExitWhile() and continue in the dialplan to perform a call to the end-
point. The dialplan logic might look something like this:

[subLookupExtension]
exten => _1XXX,1,Verbose(2,Looking up results for extension ${EXTEN})

; Perform our lookup and save the resulting ID to DUNDI_ID
 same => n,Set(DUNDI_ID=${DUNDIQUERY(${EXTEN},extensions,b)})
 same => n,Set(NumberOfResults=${DUNDIRESULT(${DUNDI_ID},getnum)})
 same => n,Set(ResultCounter=1)

; If no results are found, return 'None'
 same => n,GotoIf($[${NumberOfResults} < 1]?NoResults,1)

; Perform our loop
 same => n,While($[${ResultCounter} <= ${NumberOfResults}])

; Get the current value

Configuring Asterisk for Use with DUNDi | 521

 same => n,Set(thisResult=${DUNDIRESULT(${DUNDI_ID},${ResultCounter})})

; If the current value returned is not None, we have a resulting
; location to call and we can exit the loop
 same => n,ExecIf($["${thisResult}" != "None"]?ExitWhile())

; If we made it this far, no value has been returned yet that we want to
; use, so increase the counter and try the next value.
 same => n,Set(ResultCounter=${INC(ResultCounter)})

; End of our loop
 same => n,EndWhile()

; We've made it here because we made it to the end of the loop or we found
; a value we want to return. Check to see which it is. If we just ran out of
; values, return 'None'.
;
 same => n,GotoIf($["${thisResult}" = "None"]?NoResults,1)

; If we make it here, we have a value we want to return.
 same => n,Return(${thisResult})

; If there were no acceptable results, return the value 'None'
 exten => NoResults,1,Verbose(2,No results were found)
same => n,Return(None)

With the DUNDIQUERY() and DUNDIRESULT() functions, you have a lot of power to control
how to handle the results returned and perform routing logic with those values.

Conclusion
In this chapter we looked at how the DUNDi protocol helps you to perform lookups
against the other Asterisk systems in your cluster, to perform dynamic routing. With
the use of DUNDi, you can take multiple systems and control when and where calls
are placed within them, providing toll-bypass capabilities and even giving your em-
ployees the ability to move between physical locations, while also limiting the number
of out-of-system hops a call must take to find them.

While the original intention of DUNDi was to help us migrate away from centralized
directory services—an intention that has yet to come to fruition—DUNDi is an ex-
tremely effective and useful tool that can be put to work in organizations to advertise
and route calls dynamically between systems in a cloud environment. DUNDi is a tool
that gives great power to Asterisk administrators looking to create a distributed
network.

522 | Chapter 23: Distributed Universal Number Discovery (DUNDi)

CHAPTER 24

System Monitoring and Logging

Chaos is inherent in all compounded things.
Strive on with diligence.

—The Buddha

Asterisk comes with several subsystems that allow you to obtain detailed information
about the workings of your system. Whether for troubleshooting or for tracking usage
for billing or staffing purposes, Asterisk’s various monitoring modules can help you
keep tabs on the inner workings of your system.

logger.conf
When troubleshooting issues in your Asterisk system, you will find it very helpful to
refer to some sort of historical record of what was going on in the system at the time
the reported issue occurred. The parameters for the storing of this information are
defined in /etc/asterisk/logger.conf.

Ideally, one might want the system to store a record of each and every thing it does.
However, there is a cost to doing this. On a busy system, with full debug logging ena-
bled, it is possible to completely fill the hard drive with logged data within a day or so.
It is therefore necessary to achieve a balance between detail and storage requirements.

The /etc/asterisk/logger.conf file allows you to define all sorts of different levels of log-
ging, to multiple files if desired. This flexibility is excellent, but it can also be confusing.

The format of an entry in the logger.conf file is as follows:

filename => type[,type[,type[,...]]]

523

There is a sample logger.conf file that comes with the Asterisk source, but rather than
just copying over the sample file, we recommend that you use the following for your
initial logger.conf file:

[general]

[logfiles]
console => notice,warning,error,dtmf
messages => notice,warning,error
;verbose => notice,warning,error,verbose

When you have saved the file, you will need to reload the logger by issuing the following
command from the shell:

$ asterisk -rx 'logger reload'

or from the Asterisk CLI:

*CLI> logger reload

Verbose Logging: Useful but Dangerous
We struggled with whether to recommend adding the following line to your
logger.conf file:

verbose => notice,warning,error,verbose

This is quite possibly one of the most useful debugging tools you have when building
and troubleshooting a dialplan, and therefore it is highly recommended. The danger
comes from the fact that if you forget to disable this when you are done with your
debugging, what you will have done is leave a ticking time bomb in your Asterisk sys-
tem, which will slowly fill up the hard drive and kill your system one day, several months
or years from now, when you are least expecting it.

Use it. It’s fantastic. Just remember to turn it off when you’re done!

You can specify any filename you want, but the special filename console will in fact
print the output to the Asterisk CLI, and not to any file on the hard drive. All other
filenames will be stored in the filesystem in the directory /var/log/asterisk. The
logger.conf types are outlined in Table 24-1.

Table 24-1. logger.conf types

Type Description

notice You will see a lot of these during a reload, but they will also happen during normal call flow. A notice is simply
any event that Asterisk wishes to inform you of.

warning A warning represents a problem that could be severe enough to affect a call (including disconnecting a call because
call flow cannot continue). Warnings need to be addressed.

error Errors represent significant problems in the system that must be addressed immediately.

524 | Chapter 24: System Monitoring and Logging

Type Description

debug Debugging is only useful if you are troubleshooting a problem with the Asterisk code itself. You would not use
debug to troubleshoot your dialplan, but you would use it if the Asterisk developers asked you to provide logs for
a problem you were reporting. Do not use debug in production, as the amount of detail stored can fill up a hard
drive in a matter of days.a

verbose This is one of the most useful of the logging types, but it is also one of the more risky to leave unattended, due to
the possibility of the output filling your hard drive.b

dtmf Logging DTMF can be helpful if you are getting complaints that calls are not routing from the auto attendant
correctly.

fax This type of logging causes fax-related messages from the fax technology backend (res_fax_spandsp or
res_fax_digium) to be logged to the fax logger.

* This will log EVERYTHING (and we mean everything). Do not use this unless you understand the implications of
storing this amount of data. It will not end well.

a This is not theory. It has happened to us. It was not fun.
b It’s not as risky as debug, since it’ll take months to fill the hard drive, but the danger is that it will happen, say, a year later when you’re

on summer vacation, and it will not immediately be obvious what the problem is. Not fun.

There is a peculiarity in Asterisk’s logging system that will cause you
some consternation if you are unaware of it. The level of logging for the
verbose and debug logging types is tied to the verbosity as set in
the console. What this means is that if you are logging to a file with the
verbose or debug type, and somebody logs into the CLI and issues the
command core set verbose 0, or core set debug 0, the logging of those
details to your log file will stop.

Reviewing Asterisk Logs
Searching through log files can be a challenge. The trick is to be able to filter what you
are seeing so that you are only presented with information that is relevant to what you
are searching for.

To start with, you are going to need to have an approximate idea of the time when the
trouble you are looking for occurred. Once you are oriented to the approximate time,
you will need to find clues that will help you to identify the call in question. Obviously,
the more information you have about the call, the faster you will be able to pin it down.

If, for example, you are doing verbose logging, you should note that each distinct call
has a thread identifier, which, when used with grep, can often help you to filter out
everything that does not relate to the call you are trying to debug. For example, in the
following verbose log, we have more than one call in the log, and since the calls are
happening at the same time, it can be very confusing to trace one call:

$ tail -1000 verbose

[Mar 11 09:38:35] VERBOSE[31362] logger.c: -- IAX2/shifteight-4 answered Zap/1-1
[Mar 11 09:39:35] VERBOSE[2973] logger.c: -- Starting simple switch on 'Zap/1-1'
[Mar 11 09:39:35] VERBOSE[31362] logger.c: == Spawn extension (shifteight, s, 1)

logger.conf | 525

exited non-zero on 'Zap/1-1'
[Mar 11 09:39:35] VERBOSE[2973] logger.c: -- Hungup 'Zap/1-1'
[Mar 11 09:39:35] VERBOSE[3680] logger.c: -- Starting simple switch on 'Zap/1-1'
[Mar 11 09:39:35] VERBOSE[31362] logger.c: -- Hungup 'Zap/1-1'

To filter on one call specifically, we could grep on the thread ID. For example:

$ grep 31362 verbose

which would give us:

[Mar 11 09:38:35] VERBOSE[31362] logger.c: -- IAX2/shifteight-4 answered Zap/1-1
[Mar 11 09:39:35] VERBOSE[31362] logger.c: == Spawn extension (shifteight, s, 1)
exited non-zero on 'Zap/1-1'
[Mar 11 09:39:35] VERBOSE[31362] logger.c: -- Hungup 'Zap/1-1'

This method does not guarantee that you will see everything relating to one call, since
a call could in theory spawn additional threads, but for basic dialplan debugging we
find this approach to be very useful.

Logging to the Linux syslog Daemon
Linux contains a very powerful logging engine, which Asterisk is capable of taking
advantage of. While a discussion of all the various flavors of syslog and all the possible
ways to handle Asterisk logging would be beyond the scope of this book, suffice it to
say that if you want to have Asterisk send logs to the syslog daemon, you simply need
to specify the following in your /etc/asterisk/logger.conf file:

syslog.local0 => notice,warning,error ; or whatever type(s) you want to log

You will need to have a designation in your syslog configuration file* named local0,
which should look something like:

local0.* /var/log/asterisk/syslog

You can use local0 through local7 for this, but check your syslog.conf
file to ensure that nothing else is using one of those syslog channels.

syslog† will allow much more powerful logging, but it will also require more knowledge
than simply allowing Asterisk to log to files.

* Which will normally be found at /etc/syslog.conf.

† And rsyslog, syslog-ng, and what-all-else.

526 | Chapter 24: System Monitoring and Logging

Verifying Logging
You can view the status of all your logger.conf settings through the Asterisk CLI by
issuing the command:

*CLI> logger show channels

You should see output similar to:

Channel Type Status Configuration
------- ---- ------ -------------
syslog.local0 Syslog Enabled - NOTICE WARNING ERROR VERBOSE
/var/log/asterisk/verbose File Enabled - NOTICE WARNING ERROR VERBOSE
/var/log/asterisk/messages File Enabled - NOTICE WARNING ERROR
 Console Enabled - NOTICE WARNING ERROR DTMF

Call Detail Records
The CDR system in Asterisk is used to log the history of calls in the system. In some
deployments, these records are used for billing purposes. In others, call records are
used for analyzing call volumes over time. They can also be used as a debugging tool
by Asterisk administrators.

CDR Contents
A CDR has a number of fields that are included by default. Table 24-2 lists them.

Table 24-2. Default CDR fields

Option Value/Example Notes

accountcode 12345 An account ID. This field is user-defined and is empty by default.

src 12565551212 The calling party’s caller ID number. It is set automatically and is
read-only.

dst 102 The destination extension for the call. This field is set automatically
and is read-only.

dcontext PublicExtensions The destination context for the call. This field is set automatically
and is read-only.

clid "Big Bird" <12565551212> The full caller ID, including the name, of the calling party. This field
is set automatically and is read-only.

channel SIP/0004F2040808-a1bc23ef The calling party’s channel. This field is set automatically and is
read-only.

dstchannel SIP/0004F2046969-9786b0b0 The called party’s channel. This field is set automatically and is
read-only.

lastapp Dial The last dialplan application that was executed. This field is set
automatically and is read-only.

Call Detail Records | 527

Option Value/Example Notes

lastdata SIP/0004F2046969,30,tT The arguments passed to the lastapp. This field is set automat-
ically and is read-only.

start 2010-10-26 12:00:00 The start time of the call. This field is set automatically and is read-
only.

answer 2010-10-26 12:00:15 The answered time of the call. This field is set automatically and
is read-only.

end 2010-10-26 12:03:15 The end time of the call. This field is set automatically and is read-
only.

duration 195 The number of seconds between the start and end times for
the call. This field is set automatically and is read-only.

billsec 180 The number of seconds between the answer and end times for
the call. This field is set automatically and is read-only.

disposition ANSWERED An indication of what happened to the call. This may be NO
ANSWER, FAILED, BUSY, ANSWERED, or UNKNOWN.

amaflags DOCUMENTATION The Automatic Message Accounting (AMA) flag associated with
this call. This may be one of the following: OMIT, BILLING,
DOCUMENTATION, or Unknown.

userfield PerMinuteCharge:0.02 A general-purpose user field. This field is empty by default and can
be set to a user-defined string.a

uniqueid 1288112400.1 The unique ID for the src channel. This field is set automatically
and is read-only.

a The userfield is not as relevant now as it used to be. Custom CDR variables are a more flexible way to get custom data into CDRs.

All fields of the CDR record can be accessed in the Asterisk dialplan by using the
CDR() function. The CDR() function is also used to set the fields of the CDR that are
user-defined.

exten => 115,1,Verbose(Call start time: ${CDR(start)})
 same => n,Set(CDR(userfield)=zombie pancakes)

In addition to the fields that are always included in a CDR, it is possible to add custom
fields. This is done in the dialplan by using the Set() application with the CDR()
function:

exten => 115,1,NoOp()
 same => n,Set(CDR(mycustomfield)=coffee)
 same => n,Verbose(I need some more ${CDR(mycustomfield)})

If you choose to use custom CDR variables, make sure that the CDR
backend that you choose is capable of logging them.

528 | Chapter 24: System Monitoring and Logging

To view the built-in documentation for the CDR() function, run the following command
at the Asterisk console:

*CLI> core show function CDR

In addition to the CDR() function, there are some dialplan applications that may be used
to influence CDR records. We’ll look at these next.

Dialplan Applications
There are a few dialplan applications that can be used to influence CDRs for the current
call. To get a list of the CDR applications that are loaded into the current version of
Asterisk, we can use the following CLI command:

*CLI> core show applications like CDR
 -= Matching Asterisk Applications =-
 ForkCDR: Forks the Call Data Record.
 NoCDR: Tell Asterisk to not maintain a CDR for the current call
 ResetCDR: Resets the Call Data Record.
 -= 3 Applications Matching =-

Each application has documentation built into the Asterisk application, which can be
viewed using the following command:

*CLI> core show application <application name>

cdr.conf
The cdr.conf file has a [general] section that contains options that apply to the entire
CDR system. Additional optional sections may exist in this file that apply to specific
CDR logging backend modules. Table 24-3 lists the options available in the
[general] section.

Table 24-3. cdr.conf [general] section

Option Value/
Example

Notes

enable yes Enable CDR logging. The default is yes.

unanswered no Log unanswered calls. Normally, only answered calls result in a CDR. Logging all call
attempts can result in a large number of extra call records that most people do not
care about. The default value is no.

endbeforehexten no Close out CDRs before running the h extension in the Asterisk dialplan. Normally CDRs
are not closed until the dialplan is completely finished running. The default value is
no.

initiatedseconds no When calculating the billsec field, always round up. For example, if the difference
between when the call was answered and when the call ended is 1 second and
1 microsecond, billsec will be set to 2 seconds. This helps ensure that Asterisk’s
CDRs match the behavior used by telcos. The default value is no.

Call Detail Records | 529

Option Value/
Example

Notes

batch no Queue up CDRs to be logged in batches instead of logging synchronously at the end
of every call. This prevents CDR logging from blocking the completion of the call
teardown process within Asterisk. The default value is no, but we recommend turning
it on.a

size 100 Set the number of CDRs to queue up before they are logged during batch mode. The
default value is 100.

time 300 Set the maximum number of seconds that CDRs will wait in the batch queue before
being logged. The CDR batch logging process will run at the end of this time period,
even if size has not been reached. The default value is 300 seconds.

scheduleronly no Set whether CDR batch processing should be done by spawning a new thread, or
within the context of the CDR batch scheduler. The default value is no, and we
recommend not changing it.

safeshutdown yes Block Asterisk shutdown to ensure that all queued CDR records are logged. The default
is yes, and we recommend leaving it that way, as this option prevents important
data loss.

a The disadvantage of enabling this option is that if Asterisk were to crash or die for some reason, the CDR records would be lost, as they are
only stored in memory while the Asterisk process exists. See safeshutdown for more information.

Backends
Asterisk CDR backend modules provide a way to log CDRs. Most CDR backends re-
quire specific configuration to get them going.

cdr_adaptive_odbc

As the name suggests, the cdr_adaptive_odbc module allows CDRs to be stored in a
database through ODBC. The “adaptive” part of the name refers to the fact that it works
to adapt to the table structure: there is no static table structure that must be used with
this module. When the module is loaded (or reloaded), it reads the table structure.
When logging CDRs, it looks for a CDR variable that matches each column name. This
applies to both the built-in CDR variables and custom variables. If you want to log the
built-in channel CDR variable, just create a column called channel.

Adding custom CDR content is as simple as setting it in the dialplan. For example, if
we wanted to log the User-Agent that is provided by a SIP device, we could add that as
a custom CDR variable:

exten => 105,n,Set(CDR(useragent)=${CHANNEL(useragent)})

To have this custom CDR variable inserted into the database by cdr_adaptive_odbc, all
we have to do is create a column called useragent.

Multiple tables may be configured in the cdr_adaptive_odbc configuration file. Each
goes into its own configuration section. The name of the section can be anything; the
module does not use it. Here is an example of a simple table configuration:

530 | Chapter 24: System Monitoring and Logging

[mytable]

connection = asterisk
table = asterisk_cdr

A more detailed example of setting up a database for logging CDRs can be found in
“Storing Call Detail Records (CDRs)” on page 375.

Table 24-4 lists the options that can be specified in a table configuration section in the
cdr_adaptive_odbc.conf file.

Table 24-4. cdr_adaptive_odbc.conf table configuration options

Option Value/Example Notes

connection pgsql1 The database connection to be used. This is a reference to the configured connection in
res_odbc.conf. This field is required.

table asterisk_cdr The table name. This field is required.

usegmtime no Indicates whether to log timestamps using GMT instead of local time. The default value
for this option is no.

In addition to the key/value pair fields that are shown in the previous table, cdr_adap-
tive_odbc.conf allows for a few other configuration items. The first is a column alias.
Normally, CDR variables are logged to columns of the same name. An alias allows the
variable name to be mapped to a column with a different name. The syntax is:

alias <CDR variable> => <column name>

Here is an example column mapping using the alias option:

alias src => source

It is also possible to specify a content filter. This allows you to specify criteria that must
match for records to be inserted into the table. The syntax is:

filter <CDR variable> => <content>

Here is an example content filter:

filter accountcode => 123

Finally, cdr_adaptive_odbc.conf allows static content for a column to be defined. This
can be useful when used along with a set of filters. This static content can help dif-
ferentiate records that were inserted into the same table by different configuration sec-
tions. The syntax for static content is:

static <"Static Content Goes Here"> => <column name>

Here is an example of specifying static content to be inserted with CDRs:

static "My Content" => my_identifier

Call Detail Records | 531

cdr_csv

The cdr_csv module is a very simple CDR backend that logs CDRs into a CSV (comma
separated values) file. The file is /var/log/asterisk/cdr-csv/Master.csv. As long as CDR
logging is enabled in cdr.conf and this module has been loaded, CDRs will be logged
to the Master.csv file.

While no options are required to get this module working, there are some options that
customize its behavior. These options, listed in Table 24-5, are placed in the [csv]
section of cdr.conf.

Table 24-5. cdr.conf [csv] section options

Option Value/Example Notes

usegmtime no Log timestamps using GMT instead of local time. The default is no.

loguniqueid no Log the uniqueid CDR variable. The default is no.

loguserfield no Log the userfield CDR variable. The default is no.

accountlogs yes Create a separate CSV file for each different value of the accountcode CDR variable.
The default is yes.

The order of CDR variables in CSV files created by the cdr_csv module is:

<accountcode>,<src>,<dst>,<dcontext>,<clid>,<channel>,<dstchannel>,<lastapp>, \
 <lastadata>,<start>,<answer>,<end>,<duration>,<billsec>,<disposition>, \
 <amaflags>[,<uniqueid>][,<userfield>]

cdr_custom

This CDR backend allows for custom formatting of CDR records in a log file. This
module is most commonly used for customized CSV output. The configuration file
used for this module is /etc/asterisk/cdr_custom.conf. A single section called
[mappings] should exist in this file. The [mappings] section contains mappings between
a filename and the custom template for a CDR. The template is specified using Asterisk
dialplan functions.

The following example shows a sample configuration for cdr_custom that enables a
single CDR log file, Master.csv. This file will be created as /var/log/asterisk/cdr-custom/
Master.csv. The template that has been defined uses both the CDR() and CSV_QUOTE()
dialplan functions. The CDR() function retrieves values from the CDR being logged. The
CSV_QUOTE() function ensures that the values are properly escaped for the CSV file
format:

[mappings]

Master.csv => ${CSV_QUOTE(${CDR(clid)})},${CSV_QUOTE(${CDR(src)})},
 ${CSV_QUOTE(${CDR(dst)})},${CSV_QUOTE(${CDR(dcontext)})},
 ${CSV_QUOTE(${CDR(channel)})},${CSV_QUOTE(${CDR(dstchannel)})},
 ${CSV_QUOTE(${CDR(lastapp)})},${CSV_QUOTE(${CDR(lastdata)})},
 ${CSV_QUOTE(${CDR(start)})},${CSV_QUOTE(${CDR(answer)})},

532 | Chapter 24: System Monitoring and Logging

 ${CSV_QUOTE(${CDR(end)})},${CSV_QUOTE(${CDR(duration)})},
 ${CSV_QUOTE(${CDR(billsec)})},${CSV_QUOTE(${CDR(disposition)})},
 ${CSV_QUOTE(${CDR(amaflags)})},${CSV_QUOTE(${CDR(accountcode)})},
 ${CSV_QUOTE(${CDR(uniqueid)})},${CSV_QUOTE(${CDR(userfield)})}

In the actual configuration file, the value in the Master.csv mapping
should be on a single line.

cdr_manager

The cdr_manager backend emits CDRs as events on the Asterisk Manager Interface
(AMI), which we discussed in detail in Chapter 20. This module is configured in
the /etc/asterisk/cdr_manager.conf file. The first section in this file is the [general] sec-
tion, which contains a single option to enable this module (the default value is no):

[general]

enabled = yes

The other section in cdr_manager.conf is the [mappings] section. This allows for adding
custom CDR variables to the manager event. The syntax is:

<CDR variable> => <Header name>

Here is an example of adding two custom CDR variables:

[mappings]

rate => Rate
carrier => Carrier

With this configuration in place, CDR records will appear as events on the manager
interface. To generate an example manager event, we will use the following dialplan
example:

exten => 110,1,Answer()
 same => n,Set(CDR(rate)=0.02)
 same => n,Set(CDR(carrier)=BS&S)
 same => n,Hangup()

This is the command used to execute this extension and generate a sample manager
event:

*CLI> console dial 110@testing

Finally, this is an example manager event produced as a result of this test call:

Event: Cdr
Privilege: cdr,all
AccountCode:
Source:
Destination: 110
DestinationContext: testing

Call Detail Records | 533

CallerID:
Channel: Console/dsp
DestinationChannel:
LastApplication: Hangup
LastData:
StartTime: 2010-08-23 08:27:21
AnswerTime: 2010-08-23 08:27:21
EndTime: 2010-08-23 08:27:21
Duration: 0
BillableSeconds: 0
Disposition: ANSWERED
AMAFlags: DOCUMENTATION
UniqueID: 1282570041.3
UserField:
Rate: 0.02
Carrier: BS&S

cdr_mysql

This module allows posting of CDRs to a MySQL database. We recommend that new
installations use cdr_adaptive_odbc instead.

cdr_odbc

This module enables the legacy ODBC interface for CDR logging. New installations
should use cdr_adaptive_odbc instead.

cdr_pgsql

This module allows posting of CDRs to a PostgreSQL database. We recommend that
new installations use cdr_adaptive_odbc instead.

cdr_radius

The cdr_radius backend allows posting of CDRs to a RADIUS server. When using this
module, each CDR is reported to the RADIUS server as a single stop event. This module
is configured in the /etc/asterisk/cdr.conf file. Options for this module are placed in a
section called [radius]. The available options are listed in Table 24-6.

Table 24-6. cdr.conf [radius] section options

Option Value/Example Notes

usegmtime no Enables logging of timestamps using GMT instead of local time. The
default is yes.

loguniqueid no Enables logging of the uniqueid CDR variable. The default is yes.

loguserfield no Enables logging of the userfield CDR variable. The default is yes.

radiuscfg /etc/radiusclient-ng/
radiusclient.conf

Sets the location of the radiusclient-ng configuration file. The default
is /etc/radiusclient-ng/radiusclient.conf.

534 | Chapter 24: System Monitoring and Logging

cdr_sqlite

This module allows posting of CDRs to a SQLite database using SQLite version 2.
Unless you have a specific need for SQLite version 2 as opposed to version 3, we rec-
ommend that all new installations use cdr_sqlite3_custom.

This module requires no configuration to work. If the module has been compiled and
loaded into Asterisk, it will insert CDRs into a table called cdr in a database located
at /var/log/asterisk/cdr.db.

cdr_sqlite3_custom

This CDR backend inserts CDRs into a SQLite database using SQLite version 3. The
database created by this module lives at /var/log/asterisk/master.db. This module re-
quires a configuration file, /etc/asterisk/cdr_sqlite3_custom.conf. The configuration file
identifies the table name, as well as customizes which CDR variables will be inserted
into the database:

[master]

table = cdr

;
; List the column names to use when inserting CDRs.
;
columns => calldate, clid, dcontext, channel, dstchannel, lastapp, lastdata,
 duration, billsec, disposition, amaflags, accountcode, uniqueid, userfield,
 test

;
; Map CDR contents to the previously specified columns.
;
values => '${CDR(start)}','${CDR(clid)}','${CDR(dcontext)}','${CDR(channel)}',
 '${CDR(dstchannel)}','${CDR(lastapp)}','${CDR(lastdata)}','${CDR(duration)}',
 '${CDR(billsec)}','${CDR(disposition)}','${CDR(amaflags)}',
 '${CDR(accountcode)}','${CDR(uniqueid)}','${CDR(userfield)}','${CDR(test)}'

In the cdr_sqlite3_custom.conf file, the contents of the columns and val
ues options must each be on a single line.

cdr_syslog

This module allows logging of CDRs using syslog. To enable this, first add an entry to
the system’s syslog configuration file, /etc/syslog.conf. For example:

local4.* /var/log/asterisk/asterisk-cdr.log

Call Detail Records | 535

The Asterisk module has a configuration file, as well. Add the following section to /etc/
asterisk/cdr_syslog.conf:

[cdr]

facility = local4
priority = info
template = "We received a call from ${CDR(src)}"

Here is an example syslog entry using this configuration:

$ cat /var/log/asterisk/asterisk-cdr.log

Aug 12 19:17:36 pbx cdr: "We received a call from 2565551212"

cdr_tds

The cdr_tds module uses the FreeTDS library to post CDRs to a Microsoft SQL Server
or Sybase database. It is possible to use FreeTDS with unixODBC, so we recommend
using cdr_adaptive_odbc instead of this module.

Example Call Detail Records
We will use the cdr_custom module to illustrate some example CDR records for different
call scenarios. The configuration used for /etc/asterisk/cdr_custom.conf is shown in
“cdr_custom” on page 532.

Single-party call

In this example, we’ll show what a CDR looks like for a simple one-party call. Specif-
ically, we will use the example of a user calling in to check her voicemail. Here is the
extension from /etc/asterisk/extensions.conf:

exten => *98,1,VoiceMailMain(@${GLOBAL(VOICEMAIL_CONTEXT)})

This is the CDR from /var/log/asterisk/cdr-custom/Master.csv that was created as a result
of calling this extension:

"""Console"" <2565551212>","2565551212","*98","UserServices","Console/dsp","",
 "VoiceMailMain","@shifteight.org","2010-08-16 01:08:44","2010-08-16 01:08:44",
 "2010-08-16 01:08:53","9","9","ANSWERED","DOCUMENTATION","","1281935324.0","",0

Two-party call

For this next example, we show what a CDR looks like for a simple two-party call.
We’ll have one SIP phone place a call to another SIP phone. The call is answered and
then hung up after a short period of time. Here is the extension that was dialed:

exten => 101,1,Dial(SIP/0000FFFF0002)

536 | Chapter 24: System Monitoring and Logging

Here is the CDR that was logged to Master.csv as a result of this call:

"""Console"" <2565551212>","2565551212","101","LocalSets","Console/dsp",
 "SIP/0000FFFF0002-00000000","Dial","SIP/0000FFFF0002","2010-08-16 01:16:10",
 "2010-08-16 01:16:16","2010-08-16 01:16:29","19","13","ANSWERED",
 "DOCUMENTATION","","1281935770.2","",2

Caveats
The CDR system in Asterisk works very well for fairly simple call scenarios. However,
as call scenarios get more complicated, involving calls to multiple parties, transfers,
parking, and other such features, the CDR system starts to fall short. Many users report
that the records do not show all of the information that they expect. Many bug fixes
have been made to address some of the issues, but the cost of regressions or changes
in behavior when making changes in this area is very high since these records are used
for billing.

As a result, the Asterisk development team has become increasingly resistant to making
additional changes to the CDR system. Instead, a new system, channel event logging
(CEL), has been developed that is intended to help address logging of more complex
call scenarios. Bear in mind that call detail records are simpler and easier to consume,
though, so we still recommend using CDRs if they suit your needs.

CEL (Channel Event Logging)
Channel event logging (CEL) is a new system that was created to provide a more flexible
means of logging the details of complex call scenarios. Instead of collapsing a call down
to a single log entry, a series of events are logged for the call. This provides a more
accurate picture of what has happened to the call, at the expense of a more complex log.

Channel Event Types
Each CEL record represents an event that occurred for a channel in the Asterisk system.
Table 24-7 lists the events that are generated by Asterisk as calls are processed.

Table 24-7. CEL event types

CEL event type Description

CHAN_START A channel has been created.

CHAN_END A channel has been destroyed.

LINKEDID_END The last channel with a given linkedid has been destroyed.

ANSWER A channel has been answered. On a channel created for an outbound call, this event will be generated
when the remote end answers.

HANGUP A channel has hung up. Generally, this event will be followed very shortly by a CHAN_END event.
The difference is that this event occurs as soon as a hangup request is received, whereas

CEL (Channel Event Logging) | 537

CEL event type Description
CHAN_END occurs after Asterisk has completed post-call cleanup and all resources associated with
that channel have been released.

APP_START A tracked application has started executing on a channel. Tracked applications are set in the main
CEL configuration file, which is covered in “cel.conf” on page 540.

APP_END A tracked application has stopped executing on a channel.

PARK_START A channel has been parked.

PARK_END A channel has left the parking lot.

BRIDGE_START A channel bridge has started. This event occurs when two channels are bridged together by an
application such as Dial() or Queue().

BRIDGE_END A channel bridge has ended.

BRIDGE_UPDATE An update to a bridge has occurred. This event will reflect if a channel’s name or other information
has changed during a bridge.

BLINDTRANSFER A channel has executed a blind transfer.

ATTENDEDTRANSFER A channel has executed an attended transfer.

USER_DEFINED A user-defined channel event has occurred. These events are generated by using the CELGenUser
Event() application.

There are some more events that have been defined, but are not yet used anywhere in
the Asterisk code. Presumably, some future version will generate these events in the
right place. They are listed in Table 24-8.‡

Table 24-8. Defined but unused CEL event types

CEL event type Description

CONF_ENTER A channel has connected to a conference room.

CONF_EXIT A channel has left a conference room.

CONF_START A conference has started. This event occurs at the time the first channel enters a conference room.

CONF_END A conference has ended. This event occurs at the time the last channel leaves a conference room.

3WAY_START A three-way call has started.

3WAY_END A three-way call has ended.

TRANSFER A generic transfer has been executed.

HOOKFLASH A channel has reported a hookflash event.

‡ If you submit a patch to add any of these events to the code and reference this footnote, Russell will send you
a free Asterisk t-shirt. Footnote bribery!

538 | Chapter 24: System Monitoring and Logging

Channel Event Contents
Each CEL event contains the fields listed in Table 24-9:

Table 24-9. CEL event fields

Field name Value/Example Notes

eventtype CHAN_START The name of the event. The list of events that may occur can be
found in Table 24-7.

eventtime 2010-08-19 07:27:19 The time that the event occurred.

cidname Julie Bryant The caller ID name set on the channel associated with this event.

cidnum 18435551212 The caller ID number set on the channel associated with this event.

cidani 18435551212 The Automatic Number Identification (ANI) number set on the
channel associated with this event.

cidrdnis 18435551234 The redirecting number set on the channel associated with this
event.

ciddnid 18435550987 The dialed number set on the channel associated with this event.

exten 101 The extension in the dialplan that is currently being executed.

context LocalSets The context for the extension in the dialplan that is currently being
executed.

channame SIP/0004F2060EB4-00000010 The name of the channel associated with this event.

appname Dial The name of the dialplan application currently being executed.

appdata SIP/0004F2060E55 The arguments that were passed to the dialplan application that
is currently being executed.

amaflags DOCUMENTATION The Automatic Message Accounting (AMA) flag associated with
this call. This may be one of the following: OMIT, BILLING,
DOCUMENTATION, or Unknown.

accountcode 1234 An account ID. This field is user-defined and is empty by default.

uniqueid 1282218999.18 The unique ID for the channel that is associated with this event.

userfield I like waffles! User-defined event content.

linkedid 1282218999.18 The per-call ID. This ID helps tie together multiple events from
multiple channels that are all a part of the same logical call. The
ID comes from the uniqueid of the first channel in the call.

peer SIP/0004F2060E55-00000020 The name of the channel bridged to the channel identified by
channame.

Some of the contents of a CEL event are user-defined. For example, the userfield is
user-defined and will be empty by default. To set it to something, use the CHANNEL()
dialplan function. Here is an example of setting the userfield for a channel:

exten => 101,1,Set(CHANNEL(userfield)=I like waffles!)

CEL (Channel Event Logging) | 539

Dialplan Applications
The CEL system includes a single dialplan application that lives in the app_celgenu-
serevent.so module. This application is used to generate custom user-defined events of
the type EV_USER_EVENT. A practical example of using this would be for logging a caller’s
choices in a menu:

exten => 7,1,CELGenUserEvent(MENU_CHOICE,Caller chose option 7)

For full current details on the syntax of the CELGenUserEvent() application, use the built-
in documentation from the Asterisk CLI:

*CLI> core show application CELGenUserEvent

cel.conf
The CEL system has a single configuration file, /etc/asterisk/cel.conf. All options set here
affect CEL processing, regardless of which logging backend modules are in use.
Table 24-10 shows the options that exist in this file. All options should be set in the
[general] section of the configuration file.

Table 24-10. cel.conf [general] section options

Option Value/Example Notes

enable yes Enables/disables CEL. The default is no.

apps dial,queue Sets which dialplan applications to track. The default is to track no applications.
EV_APP_START and EV_APP_END events will be generated when channels
start and stop executing any tracked application.

events CHAN_START,CHAN_END,
ANSWER,HANGUP

Lists which events to generate. This is useful if you are only interested in a
subset of the events generated by CEL. If you would like to see all events, set
this option to ALL. The default value is to generate no events.

datefor
mat

%F %T Specifies the format for the date when a CEL event includes a timestamp. For
syntax information, see the manpage for strftime by running man
strftime at the command line. The default format for the CEL timestamp is
seconds.microseconds since the epoch.

At a minimum, to start using CEL, you must set the enable and events
options in /etc/asterisk/cel.conf.

Backends
As with the CDR system, there are a number of backend modules available for logging
CEL events. In fact, all of the CEL backend modules were derived from CDR modules,
so their configuration is very similar. In addition to the configuration options for

540 | Chapter 24: System Monitoring and Logging

cel.conf, which were described in the previous section, these modules require configu-
ration to make them operate.

cel_odbc

The cel_odbc.so module provides the ability to log CEL events to a database using
ODBC. This module is not quite as adaptive as the CDR adaptive ODBC backend. For
CEL events, there are no custom variables. However, this module will still adapt to the
structure of the database, in that it will log the fields of CEL events for which there are
corresponding columns and will not produce an error if there is not a column for every
field. The configuration for this module goes in /etc/asterisk/cel_odbc.conf.

Multiple tables may be configured in the cel_odbc configuration file. Each goes into its
own configuration section. The name of the section can be anything; the module does
not use it. Here is an example of a simple table configuration:

[mytable]

connection = asterisk
table = asterisk_cel

The cel_odbc module will use the following columns, if they exist (see the table fol-
lowing this list for a set of mappings between event types and their integer value that
will be inserted into the database):

• eventtype

• eventtime

• userdeftype

• cid_name

• cid_num

• cid_ani

• cid_rdnis

• cid_dnid

• exten

• context

• channame

• appname

• appdata

• accountcode

• peeraccount

• uniqueid

• linkedid

• amaflags

CEL (Channel Event Logging) | 541

• userfield

• peer

Table 24-11 shows the mapping between event types and their integer values that will
be inserted into the eventtype column of the database.

Table 24-11. Event type to integer value mappings for the eventtype column

Event type Integer value

CHANNEL_START 1

CHANNEL_END 2

HANGUP 3

ANSWER 4

APP_START 5

APP_END 6

BRIDGE_START 7

BRIDGE_END 8

CONF_START 9

CONF_END 10

PARK_START 11

PARK_END 12

BLINDTRANSFER 13

ATTENDEDTRANSFER 14

TRANSFER 15

HOOKFLASH 16

3WAY_START 17

3WAY_END 18

CONF_ENTER 19

CONF_EXIT 20

USER_DEFINED 21

LINKEDID_END 22

BRIDGE_UPDATE 23

PICKUP 24

FORWARD 25

542 | Chapter 24: System Monitoring and Logging

Table 24-12 shows the options that can be specified in a table configuration section in
the cel_odbc.conf file.

Table 24-12. cel_odbc.conf table configuration

Option Value/Example Notes

connection pgsql1 Specifies the database connection to be used. This is a reference to the configured
connection in res_odbc.conf. This field is required.

table asterisk_cdr Specifies the table name. This field is required.

usegmtime no Enables/disables logging of timestamps using GMT instead of local time. The default
value for this option is no.

In addition to the key/value pair fields that are shown in the previous table,
cel_odbc.conf allows for a few other configuration items. The first is a column alias.
Normally, CEL fields are logged to columns of the same name. An alias allows the
variable name to be mapped to a column with a different name. The syntax is:

alias <CEL field> => <column name>

Here is an example column mapping using the alias option:

alias exten => extension

It is also possible to specify a content filter. This allows you to specify criteria that must
match for records to be inserted into the table. The syntax is:

filter <CEL field> => <content>

Here is an example content filter:

filter appname => Dial

Finally, cel_odbc.conf allows static content to be specified for a column. This can be
useful when used along with a set of filters. This static content can help differentiate
records that were inserted into the same table by different configuration sections. The
syntax for static content is:

static <"Static Content Goes Here"> => <column name>

Here is an example of specifying static content to be inserted with a CEL event:

static "My Content" => my_identifier

cel_custom

This CEL backend allows for custom formatting of CEL events in a log file. It is most
commonly used for customized CSV output. The configuration file used for this module
is /etc/asterisk/cel_custom.conf. A single section called [mappings] should exist in this
file. This section contains mappings between filenames and the custom templates for
CEL events. The templates are specified using Asterisk dialplan functions and a few
special CEL variables.

CEL (Channel Event Logging) | 543

The following example shows a sample configuration for cel_custom that enables a
single CEL log file, Master.csv. This file will be created as /var/log/asterisk/cel-custom/
Master.csv. The template that has been defined uses the CHANNEL(), CALLERID(), and
CSV_QUOTE() dialplan functions. The CSV_QUOTE() function ensures that the values are
properly escaped for the CSV file format. This example also references some special
CEL variables, which are listed in Table 24-13.

Table 24-13. CEL variables available for use in [mappings]

CEL variable Value/Example Description

${eventtype} CHAN_START The name of the CEL event.

${eventtime} 1281980238.660403 The timestamp of the CEL event. The timestamp is given in the default
format in this example.

${eventextra} Whiskey Tango Foxtrot Custom data included with a CEL event. Extra data is usually included
when CELGenUserEvent() is used.

Here is the example /etc/asterisk/cel_custom.conf file:

[mappings]

Master.csv => ${CSV_QUOTE(${eventtype})},${CSV_QUOTE(${eventtime})},
 ${CSV_QUOTE(${CALLERID(name)})},${CSV_QUOTE(${CALLERID(num)})},
 ${CSV_QUOTE(${CALLERID(ANI)})},${CSV_QUOTE(${CALLERID(RDNIS)})},
 ${CSV_QUOTE(${CALLERID(DNID)})},${CSV_QUOTE(${CHANNEL(exten)})},
 ${CSV_QUOTE(${CHANNEL(context)})},${CSV_QUOTE(${CHANNEL(channame)})},
 ${CSV_QUOTE(${CHANNEL(appname)})},${CSV_QUOTE(${CHANNEL(appdata)})},
 ${CSV_QUOTE(${CHANNEL(amaflags)})},${CSV_QUOTE(${CHANNEL(accountcode)})},
 ${CSV_QUOTE(${CHANNEL(uniqueid)})},${CSV_QUOTE(${CHANNEL(linkedid)})},
 ${CSV_QUOTE(${CHANNEL(peer)})},${CSV_QUOTE(${CHANNEL(userfield)})},
 ${CSV_QUOTE(${eventextra})}

In the actual configuration file, the value in the Master.csv mapping
should be on a single line.

cel_manager

The cel_manager backend emits CEL events on the Asterisk Manager Interface (we
discussed the AMI in detail in Chapter 20). This module is configured in the /etc/as-
terisk/cel.conf file. This file should contain a single section called [manager], which
contains a single option to enable this module. The default value is no, but you can
enable it as follows:

[manager]

enabled = yes

544 | Chapter 24: System Monitoring and Logging

With this configuration in place, CEL events will appear as events on the manager
interface. To generate example manager events, we will use the following dialplan
example:

exten => 111,1,Answer()
 same => n,CELGenUserEvent(Custom Event,Whiskey Tango Foxtrot)
 same => n,Hangup()

This is the command used to execute this extension and generate sample CEL events:

*CLI> console dial 111@testing

Finally, this is one of the example manager events produced as a result of this test call:

Event: CEL
Privilege: call,all
EventName: CHAN_START
AccountCode:
CallerIDnum:
CallerIDname:
CallerIDani:
CallerIDrdnis:
CallerIDdnid:
Exten: 111
Context: testing
Channel: Console/dsp
Application:
AppData:
EventTime: 2010-08-23 08:14:51
AMAFlags: NONE
UniqueID: 1282569291.1
LinkedID: 1282569291.1
Userfield:
Peer:

cel_pgsql

This module allows posting of CEL events to a PostgreSQL database. We recommend
that new installations use cel_odbc instead.

cel_radius

The cel_radius backend allows posting of CEL events to a RADIUS server. When using
this module, each CEL event is reported to the RADIUS server as a single stop event.
This module is configured in the /etc/asterisk/cel.conf file. The options for this module,
listed in Table 24-14, are placed in a section called [radius].

Table 24-14. Available options in the cel.conf [radius] section

Option Value/Example Notes

usegmtime no Logs timestamps using GMT instead of local time. The default is yes.

radiuscfg /etc/radiusclient-ng/
radiusclient.conf

Sets the location of the radiusclient-ng configuration file. The
default is /etc/radiusclient-ng/radiusclient.conf.

CEL (Channel Event Logging) | 545

cel_sqlite3_custom

This CEL backend inserts CEL events into a SQLite database using SQLite version 3.
The database created by this module lives at /var/log/asterisk/master.db. The configu-
ration file for this module, /etc/asterisk/cel_sqlite3_custom.conf, identifies the table
name, as well as customizes which CEL variables will be inserted into the database. It
looks like this:

[master]

table = cel

;
; List the column names to use when inserting CEL events.
;
columns => eventtype, eventtime, cidname, cidnum, cidani, cidrdnis, ciddnid,
 context, exten, channame, appname, appdata, amaflags, accountcode, uniqueid,
 userfield, peer

;
; Map CEL event contents to the previously specified columns.
;
values => '${eventtype}','${eventtime}','${CALLERID(name)}','${CALLERID(num)}',
 '${CALLERID(ANI)}','${CALLERID(RDNIS)}','${CALLERID(DNID)}',
 '${CHANNEL(context)}','${CHANNEL(exten)}','${CHANNEL(channame)}',
 '${CHANNEL(appname)}','${CHANNEL(appdata)}','${CHANNEL(amaflags)}',
 '${CHANNEL(accountcode)}','${CHANNEL(uniqueid)}','${CHANNEL(userfield)}',
 '${CHANNEL(peer)}'

In the cel_sqlite3_custom.conf file, the contents of the columns and val
ues options must appear on a single line.

cel_tds

The cel_tds module uses the FreeTDS library to post CEL events to a Microsoft SQL
Server or Sybase database. It is possible to use FreeTDS with unixODBC, so we rec-
ommend using cel_odbc instead of this module.

Example Channel Events
Now we will show you some example sets of call events from the CEL system. The
cel_custom module will be used for its simplicity. The configuration used for /etc/as-
terisk/cel_custom.conf is the same as shown in “cel_custom” on page 543. Additionally,
the following configuration was used for /etc/asterisk/cel.conf:

[general]

enable = yes

546 | Chapter 24: System Monitoring and Logging

apps = Dial,Playback
events = ALL

Single-party call

In this example, a single phone calls into an extension that plays back a prompt that
says “Hello World.” This is the dialplan:

exten => 200,1,Answer()
 same => n,Playback(hello-world)
 same => n,Hangup()

Here are the CEL events that are logged as a result of making this call:

"CHAN_START","1282062437.436130","Julie Bryant","12565553333","","","","200",
 "LocalSets","SIP/0000FFFF0003-00000010","","","3","","1282062437.17",
 "1282062437.17","",""

"ANSWER","1282062437.436513","Julie Bryant","12565553333","12565553333","",
 "200","200","LocalSets","SIP/0000FFFF0003-00000010","Answer","","3","",
 "1282062437.17","1282062437.17","",""

"APP_START","1282062437.501868","Julie Bryant","12565553333","12565553333",
 "","200","200","LocalSets","SIP/0000FFFF0003-00000010","Playback",
 "hello-world","3","","1282062437.17","1282062437.17","",""

"APP_END","1282062439.008997","Julie Bryant","12565553333","12565553333","",
 "200","200","LocalSets","SIP/0000FFFF0003-00000010","Playback",
 "hello-world","3","","1282062437.17","1282062437.17","",""

"HANGUP","1282062439.009127","Julie Bryant","12565553333","12565553333","",
 "200","200","LocalSets","SIP/0000FFFF0003-00000010","","","3","",
 "1282062437.17","1282062437.17","",""

"CHAN_END","1282062439.009666","Julie Bryant","12565553333","12565553333",
 "","200","200","LocalSets","SIP/0000FFFF0003-00000010","","","3","",
 "1282062437.17","1282062437.17","",""

"LINKEDID_END","1282062439.009707","Julie Bryant","12565553333",
 "12565553333","","200","200","LocalSets","SIP/0000FFFF0003-00000010","",
 "","3","","1282062437.17","1282062437.17","",""

Two-party call

For the second example, one phone will call another via extension 101. This results in
a call that has two channels that are bridged together. Here is the extension that was
called in the dialplan:

exten => 101,1,Dial(SIP/0000FFFF0001)

Here are the CEL events that are generated as a result of making this call:

"CHAN_START","1282062455.574611","Julie Bryant","12565553333","","","","101",
 "LocalSets","SIP/0000FFFF0003-00000011","","","3","","1282062455.18",
 "1282062455.18","",""

CEL (Channel Event Logging) | 547

"APP_START","1282062455.574872","Julie Bryant","12565553333","12565553333","",
 "101","101","LocalSets","SIP/0000FFFF0003-00000011","Dial",
 "SIP/0000FFFF0001","3","","1282062455.18","1282062455.18","",""

"CHAN_START","1282062455.575044","Candice Yant","12565551111","","","","s",
 "LocalSets","SIP/0000FFFF0001-00000012","","","3","","1282062455.19",
 "1282062455.18","",""

"ANSWER","1282062458.068134","","101","12565551111","","","101","LocalSets",
 "SIP/0000FFFF0001-00000012","AppDial","(Outgoing Line)","3","",
 "1282062455.19","1282062455.18","",""

"ANSWER","1282062458.068361","Julie Bryant","12565553333","12565553333","",
 "101","101","LocalSets","SIP/0000FFFF0003-00000011","Dial",
 "SIP/0000FFFF0001","3","","1282062455.18","1282062455.18","",""

"BRIDGE_START","1282062458.068388","Julie Bryant","12565553333",
 "12565553333","","101","101","LocalSets","SIP/0000FFFF0003-00000011",
 "Dial","SIP/0000FFFF0001","3","","1282062455.18","1282062455.18","",""

"BRIDGE_END","1282062462.965704","Julie Bryant","12565553333","12565553333",
 "","101","101","LocalSets","SIP/0000FFFF0003-00000011","Dial",
 "SIP/0000FFFF0001","3","","1282062455.18","1282062455.18","",""

"HANGUP","1282062462.966097","","101","12565551111","","","","LocalSets",
 "SIP/0000FFFF0001-00000012","AppDial","(Outgoing Line)","3","",
 "1282062455.19","1282062455.18","",""

"CHAN_END","1282062462.966119","","101","12565551111","","","","LocalSets",
 "SIP/0000FFFF0001-00000012","AppDial","(Outgoing Line)","3","",
 "1282062455.19","1282062455.18","",""

"APP_END","1282062462.966156","Julie Bryant","12565553333","12565553333","",
 "101","101","LocalSets","SIP/0000FFFF0003-00000011","Dial",
 "SIP/0000FFFF0001","3","","1282062455.18","1282062455.18","",""

"HANGUP","1282062462.966215","Julie Bryant","12565553333","12565553333",
 "","101","101","LocalSets","SIP/0000FFFF0003-00000011","","","3","",
 "1282062455.18","1282062455.18","",""

"CHAN_END","1282062462.966418","Julie Bryant","12565553333","12565553333",
 "","101","101","LocalSets","SIP/0000FFFF0003-00000011","","","3","",
 "1282062455.18","1282062455.18","",""

"LINKEDID_END","1282062462.966441","Julie Bryant","12565553333",
 "12565553333","","101","101","LocalSets","SIP/0000FFFF0003-00000011",
 "","","3","","1282062455.18","1282062455.18","",""

Blind transfer

In this final example, a transfer will be executed. The call is started by calling a phone
via extension 102. That call is then transferred to another phone at extension 101. Here
is the relevant dialplan:

548 | Chapter 24: System Monitoring and Logging

exten => 101,1,Dial(SIP/0000FFFF0001)
exten => 102,1,Dial(SIP/0000FFFF0002)

Here are the CEL events logged as a result of this call scenario:

"CHAN_START","1282062488.028200","Julie Bryant","12565553333","","","",
 "102","LocalSets","SIP/0000FFFF0003-00000013","","","3","",
 "1282062488.20","1282062488.20","",""

"APP_START","1282062488.028464","Julie Bryant","12565553333","12565553333",
 "","102","102","LocalSets","SIP/0000FFFF0003-00000013","Dial",
 "SIP/0000FFFF0002","3","","1282062488.20","1282062488.20","",""

"CHAN_START","1282062488.028762","Brooke Brown","12565552222","","","",
 "s","LocalSets","SIP/0000FFFF0002-00000014","","","3","","1282062488.21",
 "1282062488.20","",""

"ANSWER","1282062492.565759","","102","12565552222","","","102","LocalSets",
 "SIP/0000FFFF0002-00000014","AppDial","(Outgoing Line)","3","",
 "1282062488.21","1282062488.20","",""

"ANSWER","1282062492.565973","Julie Bryant","12565553333","12565553333","",
 "102","102","LocalSets","SIP/0000FFFF0003-00000013","Dial",
 "SIP/0000FFFF0002","3","","1282062488.20","1282062488.20","",""

"BRIDGE_START","1282062492.566001","Julie Bryant","12565553333",
 "12565553333","","102","102","LocalSets","SIP/0000FFFF0003-00000013",
 "Dial","SIP/0000FFFF0002","3","","1282062488.20","1282062488.20","",""

"CHAN_START","1282062497.940687","","","","","","s","LocalSets",
 "AsyncGoto/SIP/0000FFFF0002-00000014","","","3","","1282062497.22",
 "1282062488.20","",""

"BLINDTRANSFER","1282062497.940925","Julie Bryant","12565553333","12565553333","",
 "102","102","LocalSets","SIP/0000FFFF0003-00000013","Dial","SIP/0000FFFF0002",
 "3","","1282062488.20","1282062488.20",
 "AsyncGoto/SIP/0000FFFF0002-00000014<ZOMBIE>",""

"BRIDGE_END","1282062497.940961","Julie Bryant","12565553333","12565553333","",
 "102","102","LocalSets","SIP/0000FFFF0003-00000013","Dial",
 "SIP/0000FFFF0002","3","","1282062488.20","1282062488.20","",""

"APP_START","1282062497.941021","","102","12565552222","","","101","LocalSets",
 "SIP/0000FFFF0002-00000014","Dial","SIP/0000FFFF0001","3","",
 "1282062497.22","1282062488.20","",""

"CHAN_START","1282062497.941207","Candice Yant","12565551111","","","","s",
 "LocalSets","SIP/0000FFFF0001-00000015","","","3","","1282062497.23",
 "1282062488.20","",""

"HANGUP","1282062497.941361","","","","","","","LocalSets",
 "AsyncGoto/SIP/0000FFFF0002-00000014<ZOMBIE>","AppDial",
 "(Outgoing Line)","3","","1282062488.21","1282062488.20","",""

"CHAN_END","1282062497.941380","","","","","","","LocalSets",
 "AsyncGoto/SIP/0000FFFF0002-00000014<ZOMBIE>","AppDial","(Outgoing Line)",

CEL (Channel Event Logging) | 549

 "3","","1282062488.21","1282062488.20","",""

"APP_END","1282062497.941415","Julie Bryant","12565553333","12565553333","",
 "102","102","LocalSets","SIP/0000FFFF0003-00000013","Dial",
 "SIP/0000FFFF0002","3","","1282062488.20","1282062488.20","",""

"HANGUP","1282062497.941453","Julie Bryant","12565553333","12565553333",
 "","102","102","LocalSets","SIP/0000FFFF0003-00000013","","","3","",
 "1282062488.20","1282062488.20","",""

"CHAN_END","1282062497.941474","Julie Bryant","12565553333","12565553333",
 "","102","102","LocalSets","SIP/0000FFFF0003-00000013","","","3","",
 "1282062488.20","1282062488.20","",""

"ANSWER","1282062500.559578","","101","12565551111","","","101","LocalSets",
 "SIP/0000FFFF0001-00000015","AppDial","(Outgoing Line)","3","",
 "1282062497.23","1282062488.20","",""

"BRIDGE_START","1282062500.559720","","102","12565552222","","","101","LocalSets",
 "SIP/0000FFFF0002-00000014","Dial","SIP/0000FFFF0001","3","","1282062497.22",
 "1282062488.20","",""

"BRIDGE_END","1282062512.742600","","102","12565552222","","","101","LocalSets",
 "SIP/0000FFFF0002-00000014","Dial","SIP/0000FFFF0001","3","","1282062497.22",
 "1282062488.20","",""

"HANGUP","1282062512.743006","","101","12565551111","","","","LocalSets",
 "SIP/0000FFFF0001-00000015","AppDial","(Outgoing Line)","3","","1282062497.23",
 "1282062488.20","",""

"CHAN_END","1282062512.743211","","101","12565551111","","","","LocalSets",
 "SIP/0000FFFF0001-00000015","AppDial","(Outgoing Line)","3","","1282062497.23",
 "1282062488.20","",""

"APP_END","1282062512.743286","","102","12565552222","","","101","LocalSets",
 "SIP/0000FFFF0002-00000014","Dial","SIP/0000FFFF0001","3","","1282062497.22",
 "1282062488.20","",""

"HANGUP","1282062512.743346","","102","12565552222","","","101","LocalSets",
 "SIP/0000FFFF0002-00000014","","","3","","1282062497.22","1282062488.20",
 "",""

"CHAN_END","1282062512.743371","","102","12565552222","","","101","LocalSets",
 "SIP/0000FFFF0002-00000014","","","3","","1282062497.22","1282062488.20",
 "",""

"LINKEDID_END","1282062512.743391","","102","12565552222","","","101",
 "LocalSets","SIP/0000FFFF0002-00000014","","","3","","1282062497.22",
 "1282062488.20","",""

550 | Chapter 24: System Monitoring and Logging

SNMP
The Simple Network Management Protocol (SNMP) is a standardized protocol for
network management. It is very commonly used and implemented across many appli-
cations and network devices. Platforms such as OpenNMS,§ an open source network
management platform, use SNMP (among other things). Asterisk supports SNMP
through the res_snmp module. This section discusses the installation and configuration
of res_snmp, as well as how it can be utilized by a platform like OpenNMS.

Installing the SNMP Module for Asterisk
By default, Asterisk will not compile the SNMP development module, since a depend-
ency needs to be satisfied first.

CentOS dependency

In CentOS, you simply need to install the net-snmp-devel package:

$ sudo yum install net-snmp-devel

See the upcoming section “Recompiling Asterisk with the res_snmp mod-
ule” on page 551 for a description of how to recompile Asterisk with SNMP support.

Ubuntu dependency

Under Ubuntu, the following package needs to be installed:

$ sudo apt-get install snmp libsnmp-dev snmpd

Both the snmp and snmpd packages need to be installed explicitly on
Ubuntu, as they are not dependencies of the SNMP development libra-
ries, like they are on CentOS. The snmp package installs SNMP tools
like snmpwalk that we’ll need, and the snmpd package installs the SNMP
daemon.

See the next section for a description of how to recompile Asterisk with SNMP support.

Recompiling Asterisk with the res_snmp module

Once you’ve satisfied the dependencies for SNMP, you can recompile Asterisk with
SNMP support:

§ OpenNMS is certainly not the only platform that could be used with the res_snmp module. However, we
chose to discuss it here for a number of reasons. First, OpenNMS is a very good network management
platform that has Asterisk-specific integration. Second, it’s open source and 100% free. Lastly, Jeff Gehlbach
of OpenNMS has contributed to the development of Asterisk, most notably making significant improvements
to the SNMP support. He was also nice enough to help us get all of this stuff working so that we could
document it.

SNMP | 551

http://www.opennms.org/

$ cd /usr/src/asterisk-complete/asterisk/1.8/
$./configure
$ make menuselect # verify that res_snmp is selected under Resource Modules
$ sudo make install

You then need to copy the sample config file over to the /etc/asterisk folder:

$ sudo cp /usr/src/asterisk-complete/asterisk/1.8/configs/res_snmp.conf.sample \
/etc/asterisk/res_snmp.conf

We’ll talk about configuring this file for use with OpenNMS in the next section.

Configuring SNMP for Asterisk Using OpenNMS
The OpenNMS project provides an open-source network management platform that
has Asterisk support built right in. There are a few steps that must be taken to enable
this support, though. In this section we’ll take you through what you need to do to get
your Asterisk server talking to OpenNMS.

Installing OpenNMS

The OpenNMS wiki has detailed instructions for installing OpenNMS, which you can
find at http://opennms.org/wiki/Installation:Yum.

OpenNMS should normally not be installed on your Asterisk server.
You will want to designate a separate machine as your OpenNMS server.

Since the OpenNMS wiki provides all the required instructions, we’ll leave it to the
experts to lead you through the first part of the installation. Once you’ve installed
OpenNMS, come back here and we’ll take you through how to configure it to work
with Asterisk.

The instructions for installing OpenNMS on the wiki use SNMPv2c, which is not a
secure method of abstracting data from the SNMP protocol. Since we want to build a
secure system, our instructions will show you how to enable SNMPv3 support.‖

However, because SNMPv3 can be a bit of an unwieldy beast, and because you may
not wish to enable SNMPv3 for some reason (e.g., if your version of SNMP was not
compiled with OpenSSL support), we will provide instructions for configuring the
SNMP daemon for both SNMPv2c and SNMPv3.

It tends to be easier to configure the system for SNMPv2c first and then update it to
SNMPv3, as the steps to get SNMPv3 set up properly are more complex.

‖ Additionally, you can find a blog post on enabling SNMPv3 for OpenNMS at http://www.opennms.org/wiki/
SNMPv3_protocol_configuration.

552 | Chapter 24: System Monitoring and Logging

http://www.opennms.org
http://www.opennms.org
http://opennms.org/wiki/Installation:Yum
http://www.opennms.org/wiki/SNMPv3_protocol_configuration
http://www.opennms.org/wiki/SNMPv3_protocol_configuration

Editing /etc/asterisk/res_snmp.conf to work with your OpenNMS server

In the /etc/asterisk/res_snmp.conf file that you’ve copied over from your source direc-
tory, there are two lines you must uncomment:

[general]
;subagent=yes
;enabled=yes

Modify the res_snmp.conf file so both the SNMP client and the subagent are enabled:

[general]
subagent=yes
enabled=yes

After modifying this file, you will need to reload the res_snmp.so module in order for
the changes to take effect:

*CLI> module unload res_snmp.so

Unloaded res_snmp.so
 Unloading [Sub]Agent Module
 == Terminating SubAgent

*CLI> module load res_snmp.so

Loaded res_snmp.so
 == Parsing '/etc/asterisk/res_snmp.conf': == Found
 Loading [Sub]Agent Module
 Loaded res_snmp.so => (SNMP [Sub]Agent for Asterisk)
 == Starting SubAgent

Editing /etc/snmp/snmpd.conf to work with your OpenNMS server

Now you can modify the /etc/snmp/snmpd.conf file for SNMP on the host machine.
Rename the current example configuration file and create a new snmpd.conf file:

$ cd /etc/snmp
$ sudo mv snmpd.conf snmpd.sample

The first thing to do is to add the permissions control to the file. We suggest you read
the /etc/snmpd/snmp.sample file that you just renamed to get a better idea of how the
permissions are being set up. Then, add the following to your snmpd.conf file:

$ sudo cat > snmpd.conf

com2sec notConfigUser default public

group notConfigGroup v1 notConfigUser
group notConfigGroup v2c notConfigUser

view all included .1
view system included .iso.org.dod.internet.mgmt.mib-2.system

access notConfigGroup "" any noauth exact all none none

syslocation Caledon, ON

SNMP | 553

syscontact Leif Madsen lmadsen@shifteight.org

Ctrl + D

The syslocation and syscontact lines are not necessary, but they can
make it easier to identify a particular server if you’re monitoring several
nodes.

Now we need to enable the AgentX subagent support so information about our Asterisk
system can be found:

$ sudo cat >> snmpd.conf

master agentx
agentXSocket /var/agentx/master
agentXPerms 0660 0775 nobody root

sysObjectID .1.3.6.1.4.1.22736.1

Ctrl + D

By adding the master agentx line and the agentX options, we’ve enabled Asterisk to
communicate with the SNMP daemon. The agentXPerms option is stating that Asterisk
is running as root. If your Asterisk system is running in a different group, change root
to the group that Asterisk is running as.

Just below the AgentX configuration, we added the sysObjectID option. The purpose
of adding the sysObjectID string is so OpenNMS will know that this host system is
running Asterisk, allowing it to dynamically grab additional graphing information.

Once you’ve performed these configuration steps, you need to restart the SNMP dae-
mon:

$ sudo /etc/init.d/snmpd restart

To verify that the information can be polled correctly, utilize the snmpwalk application:

$ snmpwalk -On -v2c -c public 127.0.0.1 .1.3.6.1.4.1.22736

You should get several lines of information flowing across your screen if your config-
uration is correct, much like the following:

.1.3.6.1.4.1.22736.1.5.4.1.4.3 = INTEGER: 2

.1.3.6.1.4.1.22736.1.5.4.1.4.4 = INTEGER: 2

.1.3.6.1.4.1.22736.1.5.4.1.4.5 = INTEGER: 1

.1.3.6.1.4.1.22736.1.5.4.1.4.6 = INTEGER: 1

.1.3.6.1.4.1.22736.1.5.4.1.5.1 = INTEGER: 1

...etc

At this point your host system should be ready for OpenNMS to connect and gather
the information it needs. Proceed by adding a node to the system and filling in the
appropriate information. After a period of time, OpenNMS will poll the host system

554 | Chapter 24: System Monitoring and Logging

and have access to the Asterisk statistics. You should be able to click on Resource
Graphs after selecting the node you created and see a selection of graphs available, such
as SIP, DAHDI, Local, etc.

Enabling SNMPv3

Enabling SNMPv3 allows you to securely connect and transmit data from the SNMP
daemon to the SNMP client. This may not be necessary in a local environment, espe-
cially if the client and the daemon are running on the same machine. However, when
traversing public networks it is important to secure this data.

First, you need to stop the SNMP daemon, using the init script or the service command:

$ sudo /etc/init.d/snmpd stop

After stopping the daemon, you need to add the initial user to the /var/net-snmp/
snmpd.conf file. This file is dynamic in nature and should only be modified when the
SNMP daemon has been stopped.

You need to create a bootstrap user that you will be able to use to create the adminis-
tration user in the next step. Add the following line to the /var/net-snmp/snmpd.conf file:

createUser initial MD5 setup_passphrase DES

We’re modifying the snmpd.conf file we created in “Editing /etc/snmp/
snmpd.conf to work with your OpenNMS server” on page 553.

After adding it, save the file and exit. Next, you need to add permissions to the /etc/
snmp/snmpd.conf file. Add the following line to give the initial user read/write
permissions:

rwuser initial

After making these modifications, you can restart the SNMP daemon:

$ sudo /etc/init.d/snmpd start

Starting snmpd: [OK]

If you don’t see the [OK] part after Starting snmpd:, you have likely
made a mistake somewhere. Stop the daemon and try again.

Using your initial user, you now need to create a user for OpenNMS to connect to.
You’ll do this with the snmpusm# application. Execute the following command, which

#USM means User-based Security Model.

SNMP | 555

will clone the opennmsUser user from the initial user. We configured the password
setup_passphrase for the authentication and privacy settings when we added the ini-
tial user to the /var/net-snmp/snmpd.conf file:

$ sudo snmpusm -v3 -u initial -n "" -l authPriv \
-a MD5 -A setup_passphrase \
-x DES -X setup_passphrase \
localhost create opennmsUser initial

User successfully created.

Now change the passphrase for the opennmsUser with the following command:

$ sudo snmpusm -v 3 -u initial -n "" -l authPriv \
-a MD5 -A setup_passphrase \
-x DES -X setup_passphrase \
-Ca -Cx localhost passwd setup_passphrase \
0p3nNMSv3 opennmsUser

SNMPv3 Key(s) successfully changed.

The password we’ve assigned to the opennmsUser, 0p3nNMSv3, is intended
solely as an example, and should definitely not be used. Change it to
something else that is secure.

You can now test to make sure you’re getting results from your user by utilizing the
snmpwalk application:

$ sudo snmpwalk -v 3 -u opennmsUser -n "" -l authPriv \
-a MD5 -A 0p3nNMSv3 \
-x DES -X 0p3nNMSv3 \
localhost ifTable

IF-MIB::ifIndex.1 = INTEGER: 1
IF-MIB::ifIndex.2 = INTEGER: 2
IF-MIB::ifIndex.3 = INTEGER: 3
IF-MIB::ifDescr.1 = STRING: lo
IF-MIB::ifDescr.2 = STRING: eth0
IF-MIB::ifDescr.3 = STRING: sit0

Now that you have data being returned, lock down the /etc/snmp/snmpd.conf file to
make sure only the opennmsUser can read data from the SNMP daemon.

The file will look quite similar to the one in the previous section, for configuring
SNMPv2c. We’ve commented out the lines you no longer need with the hash symbol
(#) and added new group and access lines to control access to the SNMP daemon:

556 | Chapter 24: System Monitoring and Logging

com2sec notConfigUser default public

#group notConfigGroup v1 notConfigUser
#group notConfigGroup v2c notConfigUser
group notConfigGroup usm opennmsUser

#view systemview included .1.3.6.1.2.1.1
#view systemview included .1.3.6.1.2.1.25.1.1
view all included .1

#access notConfigGroup "" any noauth exact all none none
access notConfigGroup "" usm priv exact all none none

syslocation Caledon, ON
syscontact Leif Madsen lmadsen@shifteight.org

#rwuser initial

master agentx
agentXSocket /var/agentx/master
agentXPerms 0660 0775 nobody root

sysObjectID .1.3.6.1.4.1.22736.1

You’ll also notice we’ve commented out the rwuser initial line as we
no longer need to permit full read/write access to the SNMP daemon.
Permitting read/write access to the initial user is only necessary when
making changes using the snmpusm application.

On the group line, we’ve configured the system to use usm (the User-based Security
Model) and permitted the opennmsUser to connect. We control how it can connect with
the access line, where we’ve enabled access via the notConfigGroup using usm and the
priv model, which makes sure we connect using both authentication and privacy set-
tings. These in turn make sure that we authenticate securely and transmit data
encrypted.

After modifying the /etc/snmp/snmpd.conf file, restart the SNMP daemon one last time:

$ sudo /etc/init.d/snmpd restart

Then verify that you can still access data via snmpwalk:

$ sudo snmpwalk -v 3 -u opennmsUser -n "" -l authPriv \
-a MD5 -A 0p3nNMSv3 \
-x DES -X 0p3nNMSv3 \
localhost ifTable

and that Asterisk is still able to connect via AgentX with snmpwalk:

$ sudo snmpwalk -v 3 -u opennmsUser -n "" -l authPriv \
-a MD5 -A 0p3nNMSv3 \

SNMP | 557

-x DES -X 0p3nNMSv3 \
localhost .1.3.6.1.4.1.22736

If all goes well, you should get lots of lines back, including:

SNMPv2-SMI::enterprises.22736.1.5.4.1.2.1 = STRING: "SIP"
SNMPv2-SMI::enterprises.22736.1.5.4.1.2.2 = STRING: "IAX2"
SNMPv2-SMI::enterprises.22736.1.5.4.1.2.3 = STRING: "Bridge"
SNMPv2-SMI::enterprises.22736.1.5.4.1.2.4 = STRING: "MulticastRTP"
SNMPv2-SMI::enterprises.22736.1.5.4.1.2.5 = STRING: "DAHDI"
SNMPv2-SMI::enterprises.22736.1.5.4.1.2.6 = STRING: "Local"
SNMPv2-SMI::enterprises.22736.1.5.4.1.3.1 = STRING: "Session Initiation Protocol(SIP)"
SNMPv2-SMI::enterprises.22736.1.5.4.1.3.2 = STRING: "Inter Asterisk eXchange Driver"
SNMPv2-SMI::enterprises.22736.1.5.4.1.3.3 = STRING: "Bridge Interaction Channel"
SNMPv2-SMI::enterprises.22736.1.5.4.1.3.4 = STRING: "Multicast RTP Paging Channel"
SNMPv2-SMI::enterprises.22736.1.5.4.1.3.5 = STRING: "DAHDI Telephony Driver"
SNMPv2-SMI::enterprises.22736.1.5.4.1.3.6 = STRING: "Local Proxy Channel Driver"

If you don’t get data returned right away, it could be because the Asterisk
res_snmp.so module has not reconnected to the SNMP daemon. You can force this
either by restarting Asterisk, or by unloading and reloading the res_snmp.so module
from the Asterisk CLI.

Monitoring Asterisk with OpenNMS
Once you’ve installed OpenNMS and configured Asterisk with the res_snmp module,
you can use OpenNMS to monitor your Asterisk server. You can configure what sta-
tistics are monitored, as well as what notifications you would like to receive based on
those statistics. Exploring the capabilities of OpenNMS is left as an exercise for the
reader. However, we have included a few graphs to demonstrate some of the basic
information you can collect from an Asterisk server. These graphs come from an
Asterisk server that is not very heavily loaded, but they still give a good indication of
what you might see.

Figure 24-1 contains a graph of how many channels were active in Asterisk at different
times.

Figure 24-1. Graph of active Asterisk channels

558 | Chapter 24: System Monitoring and Logging

Figure 24-2 shows a graph of active channels of a specific type. In this case, we’re
looking at how many DAHDI channels are active on the system. Monitoring DAHDI
channels is particularly interesting, since DAHDI channels are generally mapped to
physical resources, and a predefined number of channels are available. It would be very
useful to monitor DAHDI channel utilization and get notified when usage passes a
particular threshold, as this might be a signal that additional capacity needs to be added.

Figure 24-2. Graph of active DAHDI channels

Finally, Figure 24-3 shows network interface utilization. As you can see, there were
spikes in the traffic flowing into and out of the system when SIP calls were in progress.

Figure 24-3. Graph of traffic on a network interface

Conclusion
Asterisk is very good at allowing you to keep track of many different facets of its op-
eration, from simple call detail records to full debugging of the running code. These
various mechanisms will help you in your efforts to manage your Asterisk PBX, and
they represent one of the ways in which Asterisk is vastly superior to most (if not all)
traditional PBXs.

Conclusion | 559

CHAPTER 25

Web Interfaces

A point of view can be a dangerous luxury when
substituted for insight and understanding.

—Marshall McLuhan

Before you get too excited, this chapter is not going to talk about dialplan configuration
GUIs such as FreePBX or Digium’s Asterisk-GUI. We recognize that much of the suc-
cess of Asterisk is due to the success of FreePBX-based projects such as AsteriskNOW,
Trixbox, and PBX in a Flash, but in this book our focus is on Asterisk. As such, we will
not be discussing any GUIs that essentially remove your relationship with the dialplan.
It’s not that we’re against these things, but simply that we have only so much space in
this book, and our goal is to look at Asterisk from the bottom up. Most Asterisk GUI
projects hide the inner workings of Asterisk behind an interface, and for this reason
they are not compatible with the goals of this book.

Our discussion of Asterisk web interfaces, therefore, will focus on interfaces to com-
ponents other than the dialplan.

The FreePBX Dialplan GUI
Now that we’ve promised not to talk about dialplan interfaces, we feel it would be
wrong to say nothing at all about FreePBX, the juggernaut of the Asterisk community.
This interface (which is at the heart of many of the most popular Asterisk distributions,
such as AsteriskNOW, PBX in a Flash, and Trixbox), is unarguably a very large part of
why Asterisk has been as successful as it has. With the FreePBX interface, you can
configure and manage many aspects of an Asterisk system without touching a single
configuration file. While we purists may like everyone to work only with the config
files, we recognize that for many, learning Linux and editing these files by hand is simply
not going to happen. For those folks, there is FreePBX, and it has our respect for the
important contributions it has made to the success of Asterisk.

561

What we will do in this chapter is introduce a few projects that provide web interfaces
into other parts of the system, and a selection of web-driven applications that are sig-
nificant, useful, or recommended. In general, we have tended to focus on free and open
source applications, but we will mention some commercial products where we feel it’s
warranted.

There are many third-party applications that have been developed for Asterisk. The
ones described here are among the best, at the time of this writing.

Flash Operator Panel
The Flash Operator Panel (or FOP, as it’s more commonly known) is an interface pri-
marily for the use of switchboard operators. FOP uses Adobe Flash to present an in-
terface through a web browser, and connects to Asterisk through the Asterisk Manager
Interface (see Chapter 20 for a discussion of the AMI).

There are two versions of the Flash Operator Panel: the original release (which so far
is at version 0.30, and is now a maintenance release only), and FOP2 (shown in Fig-
ure 25-1), which is a vast improvement over the original FOP, but requires the purchase
of a license for any system with more than 15 extensions.

Figure 25-1. FOP2

You can find FOP at http://www.asternic.org, and FOP2 at http://www.fop2.com.

Queue Status and Reporting
In most call centers, it is not enough simply to be able to route calls correctly. Of equal
importance to most queues is the ability for supervisory and management staff to de-
termine how the queue and the agents are performing. For this, two things will be of
benefit: live queue status information, and some manner of reporting package.

562 | Chapter 25: Web Interfaces

http://www.asternic.org
http://www.fop2.com

Queue Status Display
Queue status will often be displayed on a large, wall-mounted panel or a reader board.
Here are some of the kinds of information that might be included:

• Number of agents logged in

• Number of callers holding

• Number of calls in progress

• Current longest hold time

• Average hold time

• Abandon rate

• Service level

Other information might be desired as well; the goal of a queue status display is to
present to both supervisory staff and queue agents a quick visual indication of the state
of the queue at this particular moment in time.

Additionally, individual group or agent performance metrics may be displayed, as an
informational tool.

The Asternic Call Center Stats software is available in an open source “lite” version
that provides a basic status display. There are also several commercial products that
offer this functionality.

Queue Reporting
Queue reporting consists of reports and graphs that supervisory personnel can use to
look at queue and agent performance from a historical perspective. Many of the metrics
will be similar to those of the status display; however, the goal of reporting is to allow
management to monitor staffing levels, identify problems, and analyze trends.

We discussed a few queue reporting interfaces in Chapter 13.

Call Detail Records
While Asterisk does a good-enough job of generating and storing CDRs, the records
are in a very raw format, which makes it difficult to perform any sort of analysis on them.

Enter the CDR reporting package. In the 1990s, when long-distance rates were complex
and expensive, an entire subindustry was spawned by companies looking to help other
companies make sense out of complex long-distance rates. Nowadays, with long-dis-
tance being far less expensive, as well as generally simpler in terms of pricing model,
there is less need for detailed analysis of call records. Nevertheless, many of these highly
experienced companies have added support for Asterisk CDR analysis, and thus if you

Call Detail Records | 563

want excellent reporting capabilities, you will find a huge industry with many experi-
enced participants.

For a simple interface to the call records, a popular program is CDR-Stats, which is the
successor to the hugely popular Asterisk-Stat package. This open source reporting in-
terface provides a simple way to examine call detail records, and some basic metrics on
calling patterns.

A2Billing
The A2Billing project is not simply a billing interface for Asterisk: it is, in fact, a com-
plete VoIP carrier-in-a-box. This complex and comprehensive product delivers much
of the technology you would need to allow you to provide a VoIP reseller service.*

The A2Billing platform has been generously released under the AGPL as open source.
The sponsor of the A2Billing project, Star2Billing, offers consultancy services to get
you up to speed faster.

Conclusion
In this brief chapter we have provided some pointers to popular graphical applications
that can be used in conjunction with Asterisk. While we didn’t cover them in detail,
we do acknowledge the importance of FreePBX and the AsteriskGUI, which are both
GUI open source projects that provide a PBX configuration interface on top of Asterisk.
If a full GUI solution for simple PBX configuration interests you, we encourage you to
take a look at them. To give them a try, we recommend using the AsteriskNOW dis-
tribution, which provides both FreePBX and AsteriskGUI as GUI options.

* It cannot provide you with business savvy, experience in running a phone company, or automatic security,
though, so please don’t think that all you have to do is download A2Billing and you can take on AT&T!

564 | Chapter 25: Web Interfaces

http://www.cdr-stats.org

CHAPTER 26

Security

We spend our time searching for security and
hate it when we get it.

—John Steinbeck

Security for your Asterisk system is critical, especially if the system is exposed to the
Internet. There is a lot of money to be made by attackers in exploiting systems to make
free phone calls. This chapter provides advice on how to provide stronger security for
your VoIP deployment.

Scanning for Valid Accounts
If you expose your Asterisk system to the public Internet, one of the things you will
almost certainly see is a scan for valid accounts. Example 26-1 contains log entries from
one of the authors’ production Asterisk systems.* This scan began with checking various
common usernames, then later went on to scan for numbered accounts. It is common
for people to name SIP accounts the same as extensions on the PBX. This scan takes
advantage of that fact. This leads to our first tip for Asterisk security:

Tip #1: Use non-numeric usernames for your VoIP accounts to make them harder to
guess. For example, in parts of this book we use the MAC address of a SIP phone as its
account name in Asterisk.

Example 26-1. Log excerpts from account scanning

[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"123"<sip:123@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"1234"<sip:1234@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from

* The real IP address has been replaced with 127.0.0.1 in the log entries.

565

'"12345"<sip:12345@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"123456"<sip:123456@127.0.0.1>' failed for '203.86.167.220:5061' - No matching
peer found
[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"test"<sip:test@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"sip"<sip:sip@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found
[Aug 22 15:17:15] NOTICE[25690] chan_sip.c: Registration from
'"user"<sip:user@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:16] NOTICE[25690] chan_sip.c: Registration from
'"admin"<sip:admin@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:16] NOTICE[25690] chan_sip.c: Registration from
'"pass"<sip:pass@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:16] NOTICE[25690] chan_sip.c: Registration from
'"password"<sip:password@127.0.0.1>' failed for '203.86.167.220:5061' - No matching
peer found
[Aug 22 15:17:16] NOTICE[25690] chan_sip.c: Registration from
'"testing"<sip:testing@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:16] NOTICE[25690] chan_sip.c: Registration from
'"guest"<sip:guest@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:16] NOTICE[25690] chan_sip.c: Registration from
'"voip"<sip:voip@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer
found
[Aug 22 15:17:16] NOTICE[25690] chan_sip.c: Registration from
'"account"<sip:account@127.0.0.1>' failed for '203.86.167.220:5061' - No matching
peer found

...

[Aug 22 15:17:17] NOTICE[25690] chan_sip.c: Registration from
'"100"<sip:100@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found
[Aug 22 15:17:17] NOTICE[25690] chan_sip.c: Registration from
'"101"<sip:101@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found
[Aug 22 15:17:17] NOTICE[25690] chan_sip.c: Registration from
'"102"<sip:102@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found
[Aug 22 15:17:17] NOTICE[25690] chan_sip.c: Registration from
'"103"<sip:103@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found
[Aug 22 15:17:17] NOTICE[25690] chan_sip.c: Registration from
'"104"<sip:104@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found
[Aug 22 15:17:17] NOTICE[25690] chan_sip.c: Registration from
'"105"<sip:105@127.0.0.1>' failed for '203.86.167.220:5061' - No matching peer found

566 | Chapter 26: Security

These account scans take advantage of the fact that the response that comes back from
the server for a registration attempt will differ depending on whether or not the account
exists. If the account exists, the server will request authentication. If the account does
not exist, the server will immediately deny the registration attempt. This behavior is
just how the protocol is defined. This leads us to our second tip for Asterisk security:

Tip #2: Set alwaysauthreject to yes in the [general] section of /etc/asterisk/sip.conf. This
option tells Asterisk to respond as if every account is valid, which makes scanning for
valid usernames useless.

Authentication Weaknesses
The first section of this chapter discussed scanning for usernames. Even if you have
usernames that are difficult to guess, it is critical that you have strong passwords as
well. If an attacker is able to obtain a valid username, he will attempt to brute-force the
password. Strong passwords make this much more difficult to do.

The default authentication scheme for both the SIP and IAX2 protocols is weak. Au-
thentication is done using an MD5 challenge and response mechanism. If an attacker
is able to capture any call traffic, such as a SIP call made from a laptop on an open
wireless network, it will be much easier to work on brute-forcing the password since it
will not require authentication requests to the server.

Tip #3: Use strong passwords. There are countless resources available on the Internet
that help define what constitutes a strong password. There are also many strong password
generators available. Use them!

IAX2 provides the option of using key-based authentication, as well as full encryption
of a call. The SIP support in Asterisk includes TLS support, which provides encryption
for the SIP signaling.

Tip #4: If you are using IAX2, use key-based authentication. This is a much stronger
authentication method than the default MD5-based challenge-response method. For
further enhanced security with IAX2, use the option to encrypt the entire call. If you are
using SIP, use TLS to encrypt the SIP signaling. This will prevent an attacker from cap-
turing a successful authentication exchange with the server.

For more information about setting up IAX2 or SIP encryption, see Chapter 7.

Fail2ban
The last two sections discussed attacks involving scanning for valid usernames and
brute-forcing passwords. Fail2ban is an application that can watch your Asterisk logs
and update firewall rules to block the source of an attack in response to too many failed
authentication attempts.

Tip #5: Use Fail2ban when exposing Voice over IP services on untrusted networks to
automatically update the firewall rules to block the sources of attacks.

Fail2ban | 567

http://www.fail2ban.org

Installation
Fail2ban is available as a package in many distributions. Alternatively, you can install
it from source by downloading it from the Fail2ban website. To install it on Ubuntu,
use the following command:

$ sudo apt-get install fail2ban

To install Fail2ban on CentOS, you must have the EPEL repository enabled. For more
information on the EPEL repository, see “Third-Party Repositories” on page 46. Once
the repository is enabled, Fail2ban can be installed by running the following command:

$ sudo yum install fail2ban

The installation of Fail2ban from a package will include an init script to
ensure that it runs when the machine boots up. If you install from
source, make sure that you take the necessary steps to ensure that
Fail2ban is always running.

iptables

For Fail2ban to be able to do anything useful after it detects an attack, you must also
have iptables installed. To install it on Ubuntu, use the following command:

$ sudo apt-get install iptables

To install iptables on CentOS, use this command:

$ sudo yum install iptables

You can verify that iptables has been installed by running the iptables command. The
-L option requests that the current firewall rules be displayed. In this case, there are no
rules configured:

$ sudo iptables -L

Chain INPUT (policy ACCEPT)
target prot opt source destination

Chain FORWARD (policy ACCEPT)
target prot opt source destination

Chain OUTPUT (policy ACCEPT)
target prot opt source destination

Sending email

It is interesting and useful to allow Fail2ban to email the system administrator when it
bans an IP address. For this to work, an MTA must be installed. If you are not sure
which one to use, the one used during testing for writing this chapter was Postfix. To
install Postfix on Ubuntu, use the following command. You may be asked to answer a
couple of questions by the installer:

568 | Chapter 26: Security

$ sudo apt-get install postfix

To install Postfix on CentOS, use this command:

$ sudo yum install postfix

To test the installation of your MTA, you can send a quick email using mutt. To install
it, use the same installation commands as given for installing Postfix, but substitute
mutt for the package name. Then run the following commands to test the MTA:

$ echo "Just testing." > email.txt
$ mutt -s "Testing" youraddress@shifteight.org < email.txt

Configuration
The first file that must be set up is the Asterisk logging configuration file. Here are the
contents of /etc/asterisk/logger.conf on a working system. Ensure that you at least have
dateformat and messages set, as those are required for Fail2ban:

[general]

dateformat = %F %T

[logfiles]

console => notice,warning,error,debug
messages => notice,warning,error

The next configuration file that must be created is the one that teaches Fail2ban what
to watch out for in Asterisk log files. Place the following contents in a new file
called /etc/fail2ban/filter.d/asterisk.conf:

[INCLUDES]

Read common prefixes. If any customizations available -- read them from
common.local
#before = common.conf

[Definition]

#_daemon = asterisk

Option: failregex
Notes.: regex to match the password failures messages in the logfile. The
host must be matched by a group named "host". The tag "<HOST>" can
be used for standard IP/hostname matching and is only an alias for
(?:::f{4,6}:)?(?P<host>\S+)
Values: TEXT
#

*** All lines below should start with NOTICE
#
failregex = NOTICE.* .*: Registration from '.*' failed for '<HOST>'
- Wrong password

Fail2ban | 569

 NOTICE.* .*: Registration from '.*' failed for '<HOST>'
- No matching peer found

 NOTICE.* .*: Registration from '.*' failed for '<HOST>'
- Username/auth name mismatch

 NOTICE.* .*: Registration from '.*' failed for '<HOST>'
- Device does not match ACL

 NOTICE.* <HOST> failed to authenticate as '.*'$
 NOTICE.* .*: No registration for peer '.*' \(from <HOST>\)
 NOTICE.* .*: Host <HOST> failed MD5 authentication for '.*' (.*)
 NOTICE.* .*: Failed to authenticate user .*@<HOST>.*

Option: ignoreregex
Notes.: regex to ignore. If this regex matches, the line is ignored.
Values: TEXT
#
ignoreregex =

Next, you must enable the new Asterisk filter that you just created. To do so, append
the following contents to /etc/fail2ban/jail.conf. You will need to modify the dest and
sender options to specify the appropriate email addresses for the To and From headers:

[asterisk-iptables]

enabled = true
filter = asterisk
action = iptables-allports[name=ASTERISK, protocol=all]
 sendmail-whois[name=ASTERISK, dest=me@shifteight.org,
 sender=fail2ban@shifteight.org]
logpath = /var/log/asterisk/messages
maxretry = 5
bantime = 259200

Finally, there are a couple of options in the [DEFAULT] section of /etc/fail2ban/jail.conf
that should be updated. The ignoreip option specifies a list of IP addresses that should
never be blocked. It is a good idea to list your IP address(es) here so that you never
accidentally block yourself if you make a mistake while trying to set up a phone, for
example.† You should consider adding other IP addresses as well, such as that of your
SIP provider. The whitelisting of good IP addresses protects you against abuse of your
Fail2ban configuration. A clever attacker could cause a denial of service by crafting a
series of packets that will result in Fail2ban blocking the IP address of their choice.

The destemail option should be set, as well. This address will be used for emails not
specific to the Asterisk filter such as the email Fail2ban sends out when it first starts
up. Here’s how you configure these options:

† Leif learned this one the hard way. He thought his PBX was down, while Russell and Jim had no problems
connecting to the conference bridge. It turned out that Fail2ban had banned him from his own PBX.

570 | Chapter 26: Security

[DEFAULT]

Multiple addresses can be specified, separated by a space.
ignoreip = 127.0.0.1 10.1.1.1

destemail = youraddress@shifteight.org

Encrypted Media
Be aware that the audio for a Voice over IP call is typically transmitted in an unencrypted
format. Anyone that can capture the traffic can listen to the audio of the phone call.
Luckily, Asterisk supports encrypting the media of VoIP calls. If you are using SIP, you
can encrypt the media using SRTP. IAX2 supports fully encrypting calls, as well. De-
tailed information on encrypting media can be found in Chapter 7.

Tip #6: Encrypt the media for calls on untrusted networks using SRTP or IAX2
encryption.

Dialplan Vulnerabilities
The Asterisk dialplan is another area where taking security into consideration is critical.
The dialplan can be broken down into multiple contexts to provide access control to
extensions. For example, you may want to allow your office phones to make calls out
through your service provider. However, you do not want to allow anonymous callers
that come into your main company menu to be able to then dial out through your
service provider. Use contexts to ensure that only the callers you intend have access to
services that cost you money.

Tip #7: Build dialplan contexts with great care. Also, avoid putting any extensions that
could cost you money in the [default] context.

One of the more recent Asterisk dialplan vulnerabilities to have been discovered and
published is the idea of dialplan injection. A dialplan injection vulnerability begins with
an extension that has a pattern that ends with the match-all character, a period. Take
this extension as an example:

exten => _X.,1,Dial(IAX2/otherserver/${EXTEN},30)

The pattern for this extension matches all extensions (of any length) that begin with a
digit. Patterns like this are pretty common and convenient. The extension then sends
this call over to another server using the IAX2 protocol, with a dial timeout of 30 sec-
onds. Note the usage of the ${EXTEN} variable here. That’s where the vulnerability exists.

In the world of Voice over IP, there is no reason that a dialed extension must be numeric.
In fact, it is quite common using SIP to be able to dial someone by name. Since it is
possible for non-numeric characters to be a part of a dialed extension, what would
happen if someone sent a call to this extension?

1234&DAHDI/g1/12565551212

Dialplan Vulnerabilities | 571

A call like this is an attempt at exploiting a dialplan injection vulnerability. In the pre-
vious extension definition, once ${EXTEN} has been evaluated, the actual Dial() state-
ment that will be executed is:

exten => _X.,1,Dial(IAX2/otherserver/1234&DAHDI/g1/12565551212,30)

If the system has a PRI configured, this call will cause a call to go out on the PRI to a
number chosen by the attacker, even though you did not explicitly grant access to the
PRI to that caller. This problem can quickly cost you a whole lot of money.

There are (at least) two approaches for avoiding this problem. The first and easiest
approach is to always use strict pattern matching. If you know the length of extensions
you are expecting and only expect only numeric extensions, use a strict numeric pattern
match. For example, this would work if you are expecting four-digit numeric extensions
only:

exten => _XXXX,1,Dial(IAX2/otherserver/${EXTEN},30)

The other approach to mitigating dialplan injection vulnerabilities is by using the FIL
TER() dialplan function. Perhaps you would like to allow numeric extensions of any
length. FILTER() makes that easy to achieve safely.

exten => _X.,1,Set(SAFE_EXTEN=${FILTER(0-9,${EXTEN})})
 same => n,Dial(IAX2/otherserver/${SAFE_EXTEN},30)

For more information about the syntax for the FILTER() dialplan function, see the out-
put of the core show function FILTER command at the Asterisk CLI.

Tip #8: Be wary of dialplan injection vulnerabilities. Use strict pattern matching or use
the FILTER() dialplan function to avoid these problems.

Securing Asterisk Network APIs
FastAGI and the AMI are two network-based APIs commonly used in Asterisk deploy-
ments. For more details on AGI, see Chapter 21. For more information on the AMI,
see Chapter 20.

In the case of FastAGI, there is no encryption or authentication available. It is up to
you as the administrator to ensure that the only communication allowed to the FastAGI
server is from Asterisk.

The AMI protocol includes authentication, but it is very weak. Further, the data ex-
changed via the AMI is often sensitive, from a privacy standpoint. It is critical to secure
AMI connectivity. It is best to only expose the AMI on trusted networks. If it must be
exposed to an untrusted networks, we recommend only allowing connections
using SSL.

It is critical to understand what power the AMI provides. If an AMI user is granted all
permissions that are available, that user will be able to run arbitrary commands on your
system. If the account has the ability to update configuration files, it will be able to add

572 | Chapter 26: Security

an extension to the dialplan that runs the System() application, enabling it to run any
command it wants. If it also has access to originate calls, it can originate a call to that
extension, resulting in the execution of that command. Be careful when opening up
AMI access on your system and restrict what permissions are granted to each account
in /etc/asterisk/manager.conf.

Tip #9: Secure Asterisk network APIs. Use firewall rules to restrict access to your FastAGI
server. Use encryption on the AMI. Restrict access provided to AMI accounts as much
as possible.

IAX2 Denial of Service
While SIP is a text-based protocol, IAX2 is a binary encoded protocol. The IAX2 stand-
ard is RFC 5456. Every IAX2 packet contains a call number that is used to associate
the packet with an active call. This is analogous to the Call-ID header in SIP. An IAX2
call number, is a 15-bit field. It is large enough to deal with the number of calls that
will be practical on one system. Unfortunately, it is also small enough that it is pretty
easy for an attacker to send enough small packets to consume all available call numbers
on a system for a short period of time, resulting in a denial of service attack.

The IAX2 support in Asterisk has been modified to automatically protect against this
type of attack. This protection is referred to as call token support and requires a three-
way handshake to occur before a call number is allocated. However, older versions of
Asterisk and some non-Asterisk IAX2 implementations may not support this, so there
are a number of options that let you tweak the behavior.

By default, the security mechanisms are enabled and no configuration changes are re-
quired. If for some reason you would like to disable call token support completely, you
can do so by using the following configuration in /etc/asterisk/iax.conf:

[general]

calltokenoptional = 0.0.0.0/0.0.0.0
maxcallnumbers = 16382

With the default configuration, a host that can pass the call token exchange can still
consume the call number table. The call token exchange ensures that call numbers are
only allocated once we know we have not received a request with a spoofed source IP
address. Once we know a request is legitimate, enforcing resource limits per host is
achievable. Consider the following options in iax.conf:

[general]

; Set the default call number limit per host
maxcallnumbers = 16

[callnumberlimits]

; Set a different call number limit for all hosts in a
; specified range.

IAX2 Denial of Service | 573

http://www.rfc-editor.org/rfc/rfc5456.txt

192.168.1.0/255.255.255.0 = 1024

[some_peer]

; A dynamic peer's address is not known until that peer
; registers. A call number limit can be specified in the
; peer's section instead of the callnumberlimits section.

type = peer
host = dynamic
maxcallnumbers = 512

If a peer does not yet support call token validation, but you would like to turn it on as
soon as you detect that the peer has been upgraded to support it, there is an option that
allows for this behavior:

[some_other_peer]

requirecalltoken = auto

If you would like to allow guest access over IAX2, you will most likely want to disable
call token validation for unauthenticated calls. This will ensure that the largest number
of people can call your system over IAX2. However, if you do so, you should also set
the option that provides a global limit to how many call numbers can be consumed by
hosts that did not pass call token validation:

[general]

maxcallnumbers_nonvalidated = 2048

[guest]

type = user
requirecalltoken = no

If at any time you would like to see some statistics on call number usage on your system,
execute the iax2 show callnumber usage command at the Asterisk CLI.

Tip #10: Be happy knowing that IAX2 has been updated to secure itself from denial of
service attacks due to call number exhaustion. If you must turn off these security features
in some cases, use the options provided to limit your exposure to an attack.

Other Risk Mitigation
There are a couple more useful features in Asterisk that can be used to mitigate the risk
of attacks. The first is to make use of the permit and deny options to build access control
lists (ACLs) for privileged accounts. Consider a PBX that has SIP phones on a local
network, but also accepts SIP calls from the public Internet. Calls coming in over the
Internet are only granted access to the main company menu, while local SIP phones
have the ability to make outbound calls that cost you money. In this case, it is a very

574 | Chapter 26: Security

good idea to set ACLs to ensure that only devices on your local network can use the
accounts for the phones. Here is an example of doing that in /etc/asterisk/sip.conf:

[phoneA] ; Use a better account name than this.

type = friend

; Start by denying everyone.
deny = 0.0.0.0/0.0.0.0

; Allow connections that originate from 192.168.X.X to attempt
; to authenticate against this account.
permit = 192.168.0.0/255.255.0.0

The permit and deny options are accepted almost everywhere that connections to IP
services are configured. Another useful place for ACLs is in /etc/asterisk/man-
ager.conf, to restrict AMI accounts to the single host that is supposed to be using the
manager interface.

Tip #11: Use ACLs when possible on all privileged accounts for network services.

Another way you can mitigate security risk is by configuring call limits. The recom-
mended method for implementing call limits is to use the GROUP() and GROUP_COUNT()
dialplan functions. Here is an example that limits the number of calls from each SIP
peer to no more than two at a time:

exten => _X.,1,Set(GROUP(users)=${CHANNEL(peername)})

; *** This line should have no line breaks
 same => n,NoOp(There are ${GROUP_COUNT(${CHANNEL(peername)})}
calls for account ${CHANNEL(peername)}.)

 same => n,GotoIf($[${GROUP_COUNT(${CHANNEL(peername)})} > 2]?denied:continue)
 same => n(denied),NoOp(There are too many calls up already. Hang up.)
 same => n,HangUp()
 same => n(continue),NoOp(continue processing call as normal here ...)

Tip #12: Use call limits to ensure that if an account is compromised, it cannot be used
to make hundreds of phone calls at a time.

Resources
Sometimes there are security vulnerabilities that require modifications to the Asterisk
source code to resolve. When those issues are discovered, the Asterisk development
team puts out new releases that contain only fixes for the security issues, to allow for
quick and easy upgrades. When this occurs, the Asterisk development team also pub-
lishes a security advisory document that discusses the details of the vulnerability. We
recommend that you subscribe to the asterisk-announce http://lists.digium.com/mail
man/listinfo/asterisk-announce mailing list to make sure that you know about these
issues when they come up.

Resources | 575

http://lists.digium.com/mailman/listinfo/asterisk-announce
http://lists.digium.com/mailman/listinfo/asterisk-announce

One of the most popular tools for SIP account scanning and password cracking is
SIPVicious. We strongly encourage that you take a look at it and use it to audit your
own systems. If your system is exposed to the Internet, others will likely run it against
your system, so make sure that you do it first.

Another resource for all things VoIP security–related is the VOIPSEC mailing list on
VOIPSA.org. The website contains some additional resources, as well.

Finally, http://www.infiltrated.net/voipabuse/ has some useful information. The author
provides a list of addresses known to be the source of VoIP attacks, as well as instruc-
tions on how to block all addresses on this list. The author also provides a sample script
called AntiToll, which blocks all addresses outside of the United States.

Conclusion—A Better Idiot
There is a maxim in the technology industry that states, “As soon as something is made
idiot-proof, nature will invent a better idiot.” The point of this statement is that there
is no development effort that can be considered complete. There is always room for
improvement.

When it comes to security, you must always bear in mind that the people who are
looking to take advantage of your system are highly motivated. No matter how secure
your system is, somebody will always be looking to crack it.

We’re not advocating paranoia, but we are suggesting that what we have written here
is by no means the final word on VoIP security. While we have tried to be as compre-
hensive as we can be in this book, you must accept responsibility for the security of
your system.

As free Internet calling becomes more common, the criminals will be working hard to
find weaknesses, and exploit them.

576 | Chapter 26: Security

http://sipvicious.org
http://voipsa.org/
http://www.infiltrated.net/voipabuse/
http://www.infiltrated.net/antitoll

CHAPTER 27

Asterisk: A Future for Telephony

Now this is not the end. It is not even the beginning of
the end. But it is, perhaps, the end of the beginning.

—Winston Churchill

We have arrived at the final chapter of this book. We’ve covered a lot, but we hope
that we have made it clear that this book has merely scratched the surface of this phe-
nomenon called Asterisk. To wrap things up, we want to spend some time exploring
what we might see from Asterisk and open source telephony in the near future.

When we wrote the first edition of Asterisk: The Future of Telephony, we confidently
asserted that open source communications engines such as Asterisk would cause a shift
in thinking that would transform the telecommunications industry. In many ways, our
belief has been proven correct. While the telecom industry still has much evolving to
do, Asterisk has played a key role in fomenting a shift in thinking that has affected the
entire industry.

The Problems with Traditional Telephony
Although Alexander Graham Bell is most famously remembered as the father of the
telephone,* the reality is that during the latter half of the 1800s, dozens of minds were
working toward the goal of carrying voice over telegraph lines. These people were
mostly business-minded folks, looking to create a product through which they might
make their fortunes.

We have come to think of traditional telephone companies as monopolies, but this was
not true in their early days. The early history of telephone service took place in a very
competitive environment, with new companies springing up all over the world, often
with little or no respect for the patents they might be violating. Many famous monop-
olies got their start through the waging (and winning) of patent wars.

* Ever heard of Elisha Gray or Antonio Meucci?

577

It’s interesting to contrast the history of the telephone with the history of Linux and
the Internet. While the telephone was created as a commercial exercise, and the telecom
industry was forged through lawsuits and corporate takeovers, Linux and the Internet
arose out of the academic community, which has always valued the sharing of knowl-
edge over profit.

The cultural differences are obvious. Telecommunications technologies tend to be
closed, confusing, and expensive, while networking technologies are comparatively
open, well documented, and competitive.

Closed Thinking
If one compares the culture of the telecommunications industry to that of the Internet,
it is sometimes difficult to believe the two are related. The technology of the Internet
was designed in large part by academics and enthusiasts, whereas contributing to the
development of the PSTN is impossible for any individual to contemplate. This is an
exclusive club; membership is not open to just anyone.†

Although the ITU is the United Nations’s sanctioned body responsible for international
telecommunications, many of the VoIP protocols (SIP, MGCP, RTP, STUN) come not
from the ITU, but rather from the IETF (which publishes all of its standards free to all,
and allows anyone to submit an Internet Draft for consideration).

Open protocols such as SIP may have a tactical advantage over ITU protocols such as
H.323 due to the ease with which one can obtain them.‡ Although H.323 is widely
deployed by carriers as a VoIP protocol in the backbone, it is much more difficult to
find H.323-based endpoints; newer products are far more likely to support SIP.

The success of the IETF’s open approach has not gone unnoticed by the ITU. Since the
first edition of this book, the ITU has made all of the ITU-T and ITU-R recommenda-
tions available as free downloads in PDF form from its website (http://www.itu.int).

As for Asterisk, it embraces both the past and the future—H.323 support is available,
although the community has for the most part shunned H.323 in favor of the IETF
protocol SIP and the darling of the Asterisk community, IAX.

Limited Standards Compliancy
One of the oddest things about all the standards that exist in the world of legacy tele-
communications is the various manufacturers’ seeming inability to implement them

† Contrast this with the IETF’s membership page, which states: “The IETF is not a membership organization
(no cards, no dues, no secret handshakes :-)…It is open to any interested individual…Welcome to the IETF.”
Talk about community!

‡ Many people who are familiar with both protocols suggest that H.323 is in fact technically superior. Betamax,
anyone?

578 | Chapter 27: Asterisk: A Future for Telephony

http://www.itu.int

consistently. Each manufacturer desires a total monopoly, so the concept of intero-
perability tends to take a back seat to being first to market with a creative new idea.

The ISDN protocols are a classic example of this. Deployment of ISDN was (and in
many ways still is) a painful and expensive proposition, as each manufacturer decided
to implement it in a slightly different way. ISDN could very well have helped to usher
in a massive public data network, 10 years before the Internet. Unfortunately, due to
its cost, complexity, and compatibility issues, ISDN never delivered much more than
voice, with the occasional video or data connection for those willing to pay. ISDN is
quite common (especially in Europe, and in North America in larger PBX implemen-
tations), but it is not delivering anywhere near the capabilities that were envisioned
for it.

As VoIP becomes more and more ubiquitous, the need for ISDN will disappear.

Slow Release Cycles
It can take months, or sometimes years, for the big guys to admit to a trend, let alone
release a product that is compatible with it. It seems that before a new technology can
be embraced, it must be analyzed to death, and then it must pass successfully through
various layers of bureaucracy before it is even scheduled into the development cycle.
Months or even years must pass before any useful product can be expected. When those
products are finally released, they are often based on hardware that is obsolete; they
also tend to be expensive and to offer no more than a minimal feature set.

These slow release cycles simply don’t work in today’s world of business communica-
tions. On the Internet, new ideas can take root in a matter of weeks and become viable
in extremely short periods of time. Since every other technology must adapt to these
changes, so too must telecommunications.

Open source development is inherently better able to adapt to rapid technological
change, which gives it an enormous competitive advantage.

The spectacular crash of the telecom industry may have been caused in large part by
an inability to change. Perhaps that continued inability is why recovery has been so
slow. Now, there is no choice: change, or cease to be. Community-driven technologies
such as Asterisk are seeing to that.

Refusing to Let Go of the Past and Embrace the Future
Traditional telecommunications companies have lost touch with their customers.
While the concept of adding functionality beyond the basic telephone is well under-
stood, the idea that the user should be the one defining this functionality is not.

Nowadays, people have nearly limitless flexibility in every other form of communica-
tion. They simply cannot understand why telecommunications cannot be delivered as
flexibly as the industry has been promising for so many years. The concept of flexibility

The Problems with Traditional Telephony | 579

is not familiar to the telecom industry, and very well might not be until open source
products such as Asterisk begin to transform the fundamental nature of the industry.
This is a revolution similar to the one Linux and the Internet willingly started over 10
years ago (and IBM unwittingly started with the PC, 15 years before that). What is this
revolution? The commoditization of telephony hardware and software, enabling a pro-
liferation of tailor-made telecommunications systems.

Paradigm Shift
In his article “Paradigm Shift” (http://tim.oreilly.com/articles/paradigmshift_0504
.html), Tim O’Reilly talks about a paradigm shift that is occurring in the way technology
(both hardware and software) is delivered.§ O’Reilly identifies three trends: the com-
moditization of software, network-enabled collaboration, and software customizability
(software as a service). These three concepts provide evidence to suggest that open
source telephony is an idea whose time has come.

The Promise of Open Source Telephony
Every good work of software starts by scratching a developer’s personal itch.

—Eric S. Raymond, The Cathedral and the Bazaar

In his book The Cathedral and the Bazaar (O’Reilly), Eric S. Raymond explains that
“Given enough eyeballs, all bugs are shallow.” The reason open source software de-
velopment produces such consistent quality is simple: crap can’t hide.

The Itch That Asterisk Scratches
In this era of custom database and website development, people are not only tired of
hearing that their telephone system “can’t do that,” but quite frankly just don’t believe
it. The creative needs of the customers, coupled with the limitations of the technology,
have spawned a type of creativity born of necessity: telecom engineers are like contest-
ants in an episode of Junkyard Wars, trying to create functional devices out of a pile of
mismatched components.

The development methodology of a proprietary telephone system dictates that it will
have a huge number of features, and that the number of features will in large part
determine the price. Manufacturers will tell you that their products give you hundreds
of features, but if you only need five of them, who cares? Worse, if there’s one missing
feature you really can’t do without, the value of that system will be diluted by the fact
that it can’t completely address your needs.

§ Much of the following section is merely our interpretation of O’Reilly’s article. To get the full gist of these
ideas, the full read is highly recommended.

580 | Chapter 27: Asterisk: A Future for Telephony

http://tim.oreilly.com/articles/paradigmshift_0504.html
http://tim.oreilly.com/articles/paradigmshift_0504.html
http://oreilly.com/catalog/9780596001087/

The fact that a customer might only need five out of five hundred features is ignored,
and that customer’s desire to have five unavailable features that address the needs of
his business is dismissed as unreasonable.‖ Until flexibility becomes standard, telecom
will remain stuck in the last century—all the VoIP in the world notwithstanding.

Asterisk addresses that problem directly, and solves it in a way that few other telecom
systems can. This is extremely disruptive technology, in large part because it is based
on concepts that have been proven time and time again: “the closed-source world can-
not win an evolutionary arms race with open-source communities that can put orders
of magnitude more skilled time into a problem.”#

Open Architecture
One of the stumbling blocks of the traditional telecommunications industry has been
its apparent refusal to cooperate with itself. The big telecommunications giants have
all been around for over a hundred years. The concept of closed, proprietary systems
is so ingrained in their culture that even their attempts at standards compliancy are
tainted by their desire to get the jump on the competition, by adding that one feature
that no one else supports. For an example of this thinking, one simply has to look at
the VoIP products being offered by the telecom industry today. While they claim
standards compliance, the thought that you would actually expect to be able to connect
a Cisco phone to a Nortel switch, or that an Avaya voicemail system could be integrated
via IP to a Siemens PBX, is not one that bears discussing.

In the computer industry, things are different. Twenty years ago, if you bought an IBM
server, you needed an IBM network and IBM terminals to talk to it. Now, that IBM
server is likely to interconnect to Dell terminals though a Cisco network (and run Linux,
of all things). Anyone can easily think of thousands of variations on this theme. If any
one of these companies were to suggest that we could only use their products with
whatever they told us, they would be laughed out of business.

The telecommunications industry is facing the same changes, but it’s in no hurry to
accept them. Asterisk, on the other hand, is in a big hurry to not only accept change,
but embrace it.

Cisco, Nortel, Avaya, and Polycom IP phones (to name just a few) have all been suc-
cessfully connected to Asterisk systems. There is no other PBX in the world today that
can make this claim. None. Openness is the power of Asterisk.

‖ From the perspective of the closed-source industry, their attitude is understandable. In his book The Mythical
Man-Month: Essays on Software Engineering (Addison-Wesley), Fred Brooks opined that “the complexity
and communication costs of a project rise with the square of the number of developers, while work done
only rises linearly.” Without a community-based development methodology, it is very difficult to deliver
products that at best are little more than incremental improvements over their predecessors, and at worst are
merely collections of patches.

#Eric S. Raymond, The Cathedral and the Bazaar.

The Promise of Open Source Telephony | 581

http://oreilly.com/catalog/9780596001087/

Standards Compliance
In the past few years, it has become clear that standards evolve at such a rapid pace
that to keep up with them requires an ability to quickly respond to emerging technology
trends. Asterisk, by virtue of being an open source, community-driven development
effort, is uniquely suited to the kind of rapid development that standards compliance
demands.

Asterisk does not focus on cost-benefit analysis or market research. It evolves in re-
sponse to whatever the community finds exciting—or necessary.

Lightning-Fast Response to New Technologies
After Mark Spencer attended his first SIP Interoperability Test (SIPIT) event, he had a
rudimentary but working SIP stack for Asterisk coded within a few days. This was
before SIP had emerged as the protocol of choice in the VoIP world, but he saw its value
and momentum and ensured that Asterisk would be ready.

This kind of foresight and flexibility is typical in an open-source development com-
munity (and very unusual in a large corporation).

Passionate Community
The Asterisk-Users list receives over three hundred email messages per day. Over ten
thousand people are subscribed to it. This kind of community support is unheard of
in the world of proprietary telecommunications, while in the open source world it is
commonplace.

The very first AstriCon event was expected to attract one hundred participants. Nearly
five hundred showed up (far more wanted to but couldn’t attend). This kind of com-
munity support virtually guarantees the success of an open source effort.

Some Things That Are Now Possible
So what sorts of things can be built using Asterisk? Let’s look at some of the things
we’ve come up with.

Legacy PBX migration gateway

Asterisk can be used as a fantastic bridge between an old PBX and the future. You can
place it in front of the PBX as a gateway (and migrate users off the PBX as needs dictate),
or you can put it behind the PBX as a peripheral application server. You can even do
both at the same time, as shown in Figure 27-1.

582 | Chapter 27: Asterisk: A Future for Telephony

Here are some of the options you can implement:

Keep your old PBX, but evolve to IP
Companies that have spent vast sums of money in the past few years buying pro-
prietary PBX equipment want a way out of proprietary jail, but they can’t stomach
the thought of throwing away all of their otherwise functioning equipment. No
problem—Asterisk can solve all kinds of problems, from replacing a voicemail
system to providing a way to add IP-based users beyond the nominal capacity of
the system.

Find-me-follow-me
Provide the PBX a list of numbers where you can be reached, and it will ring them
all whenever a call to your DID (Direct Inward Dialing, a.k.a. phone) number
arrives. Figure 27-2 illustrates this technology.

VoIP calling
If a legacy telephony connection from an Asterisk PBX to an old PBX can be es-
tablished, Asterisk can provide access to VoIP services, while the old PBX continues
to connect to the outside world as it always has. As a gateway, Asterisk simply
needs to emulate the functions of the PSTN, and the old PBX won’t know that
anything has changed. Figure 27-3 shows how you can use Asterisk to VoIP-enable
a legacy PBX.

Low-barrier IVR

Many people confuse Interactive Voice Response (IVR) systems with automated at-
tendants (AAs). Since the automated attendant was the very first thing IVR was used
for, this is understandable. Nevertheless, to the telecom industry, the term IVR repre-
sents far more than an AA. An AA generally does little more than present a way for

Figure 27-1. Asterisk as a PBX gateway

The Promise of Open Source Telephony | 583

callers to be transferred to extensions, and it is built into most proprietary voicemail
systems—but IVR can be so much more.

IVR systems are generally very expensive, not only to purchase, but also to configure.
A custom IVR system will usually require connectivity to an external database or ap-
plication. Asterisk is arguably the perfect IVR, as it embraces the concepts of connec-
tivity to databases and applications at its deepest level.

Figure 27-2. Find-me-follow-me

Figure 27-3. VoIP-enabling a legacy PBX

584 | Chapter 27: Asterisk: A Future for Telephony

Here are a few examples of relatively simple IVRs an Asterisk system could be used to
create:

Weather reporting
Using the Internet, you can obtain text-based weather reports from around the
world in a myriad of ways. Capturing these reports and running them through a
purpose-built parser (Perl would probably eat this up) would allow the information
to be available to the dialplan. Asterisk’s sound library already contains all the
required prompts, so it would not be an onerous task to produce an interactive
menu to play current forecasts for anywhere in the world.

Math programs
Ed Guy (the architect of Pulver’s FWD network) did a presentation at AstriCon
2004 in which he talked about a little math program he’d cooked up for his daugh-
ter to use. The program took him no more than an hour to write. What it did was
present her with a number of math questions, the answers to which she keyed into
the telephone. When all the questions were tabulated, the system presented her
with her score. This extremely simple Asterisk application would cost tens of
thousands of dollars to implement on any closed PBX platform, assuming it could
be done at all. As is so often the case, things that are simple for Asterisk would be
either impossible or massively expensive with any other IVR system.

Distributed IVR
The cost of a proprietary IVR system is such that when a company with many small
retail locations wants to provide IVR, it is forced to transfer callers to a central
server to process the transactions. With Asterisk, it becomes possible to distribute
the application to each node, and thus handle the requests locally. Literally thou-
sands of little Asterisk systems deployed at retail locations across the world could
serve up IVR functionality in a way that would be impossible to achieve with any
other system. No more long-distance transfers to a central IVR server, no more
huge trunking facility dedicated to the task—more power with less expense.

These are three rather simple examples of the potential of Asterisk.

Conference rooms

This little gem is going to end up being one of the killer functions of Asterisk. In the
Asterisk community, people find themselves using conference rooms more and more,
for purposes such as these:

• Small companies need an easy way for business partners to get together for a chat.

• Sales teams want to have weekly meetings where reps can dial in from wherever
they are.

• Development teams need to designate a common place and time to update each
other on progress.

The Promise of Open Source Telephony | 585

Home automation

Asterisk is still too much of an über-geek’s tool to be able to serve in the average home,
but with no more than average Linux and Asterisk skills, the following things become
plausible:

Monitoring the kids
Parents who want to check up on the babysitter (or the kids home alone) could
dial an extension context protected by a password. Once authenticated, a two-way
audio connection would be created to all the IP phones in the house, allowing Mom
and Dad to listen for trouble. Creepy? Yes. But an interesting concept nonetheless.

Locking down your phones
Going out for the night? Don’t want the babysitter tying up the phone? No problem!
A simple tweak to the dialplan, and the only calls that can be made are to 911, your
cell phone, and the pizza parlor. Any other call attempt will get the recording “We
are paying you to babysit our kids, not make personal calls.”

Pretty evil, huh?

Controlling the alarm system
You get a call while on vacation from your mom who wants to borrow some cook-
ing utensils. She forgot her key, and is standing in front of the house shivering.
Piece of cake: a call to your Asterisk system, a quick digit string into the context
you created for the purpose, and your alarm system is instructed to disable the
alarm for 15 minutes. Mom better get her stuff and get out quick, though, or the
cops’ll be showing up!

Managing teenagers’ calls
How about allocating a specific phone-time limit to your teenagers? To use the
phone, they have to enter their access codes. They can earn extra minutes by doing
chores, scoring all As, dumping that annoying bum with the bad haircut—you get
the idea. Once they’ve used up their minutes…click…you get your phone back.

Incoming calls can be managed as well, via caller ID. “Donny, this is Suzy’s father.
She is no longer interested in seeing you, as she has decided to raise her standards
a bit. Also, you should consider getting a haircut.”

The Future of Asterisk
We’ve come to love the Internet, both because it is so rich in content and inexpensive
and, perhaps more importantly, because it allows us to define how we communicate.
As its ability to carry richer forms of media advances, we’ll find ourselves using it more
and more. Once Internet voice delivers quality that rivals (or betters) the capabilities
of the PSTN, the phone company had better look for another line of business. The
PSTN will cease to exist; all its complexity will be absorbed into the Internet, as just
one more technology. As with most of the rest of the Internet, open source technologies
will lead this transformation.

586 | Chapter 27: Asterisk: A Future for Telephony

Speech Processing
The dream of having our technical inventions talk to us is older than the telephone
itself. Each new advance in technology spurs a new wave of eager experimentation.
Generally, results never quite meet expectations, possibly because as soon as a machine
says something that sounds intelligent, most people assume that it is intelligent.

People who program and maintain computers realize their limitations, and thus tend
to allow for their weaknesses. Everybody else just expects their computers and software
to work. The amount of thinking a user must do to interact with a computer is often
inversely proportional to the amount of thinking the design team did. Simple interfaces
belie complex design decisions.

The challenge, therefore, is to design a system that has anticipated the most common
desires of its users, and can also adroitly handle unexpected challenges.

Festival

The Festival text-to-speech server can transform text into spoken words. While this is
a whole lot of fun to play with, there are many challenges to overcome (for more on
integrating Festival with Asterisk, refer back to “Text-to-Speech Utilities”
on page 440).

For Asterisk, an obvious value of text-to-speech might be the ability to have your tel-
ephone system read your emails back to you. If you’ve noticed the somewhat poor
grammar, punctuation, and spelling typically found in email messages these days, you
can perhaps appreciate the challenges this poses.

One cannot help but wonder if the emergence of text-to-speech will inspire a new
generation of people dedicated to proper writing. Seeing spelling and punctuation er-
rors on the screen is frustrating enough—having to hear a computer speak such things
will require a level of Zazen that few possess.

Speech recognition

If text-to-speech is rocket science, speech recognition is science fiction.

Speech recognition can actually work very well, but unfortunately this is generally true
only if you provide it with the right conditions—and the right conditions are not those
found on a telephone network. Even a perfect PSTN connection is considered to be at
the lowest acceptable limit for accurate speech recognition. Add in compressed and
lossy VoIP connections, or a cell phone, and you will discover far more limitations
than uses.

Asterisk now has an entire speech API, so that outside companies (or even open source
projects) can tie their speech recognition engines into Asterisk. One company that has
done this is LumenVox. By using LumenVox’s speech recognition engine along with

The Future of Asterisk | 587

Asterisk, you can make voice-driven menus and IVR systems in record time! For more
information, see http://www.lumenvox.com.

High-Fidelity Voice
As we gain access to more and more bandwidth, it becomes less and less easy to un-
derstand why we still use low-fidelity codecs. Many people do not realize that Skype
provides higher fidelity than a telephone; it’s a large part of the reason why Skype has
a reputation for sounding so good.

If you were ever to phone CNN, wouldn’t you love to hear James Earl Jones’s mellif-
luous voice saying “This is CNN,” instead of some tinny electronic recording? And if
you think Allison Smith* sounds good through the phone, you should hear her in
person!

In the future, we will expect, and get, high-fidelity voice through our communications
equipment.

As more and more hardware vendors start building support for high-fidelity voice into
their VoIP hardware, you’ll see more support in Asterisk for making better-than-PSTN-
quality calls.

Video
While most of this book focuses on audio, video is also supported in many ways within
Asterisk. Video support is not complete, however. The problem is not so much one of
functionality as one of bandwidth and processing power. Asterisk 1.10 is expected to
contain better support for handling media, including video.

The challenge of videoconferencing

The concept of videoconferencing has been around since the invention of the cathode
ray tube. The telecom industry has been promising a videoconferencing device in every
home for decades.

As with so many other communications technologies, if you have videoconferencing
in your house, you are probably running it over the Internet, with a simple, inexpensive
webcam. Still, it seems that people see videoconferencing as a bit gimmicky. Yes, you
can see the person you’re talking to, but there’s something missing.

* Allison Smith is The Voice of Asterisk—it is her voice in all of the system prompts. To have Allison produce
your own prompt, simply visit http://www.theivrvoice.com.

588 | Chapter 27: Asterisk: A Future for Telephony

http://www.lumenvox.com
http://www.theivrvoice.com

Why we love videoconferencing

Videoconferencing promises a richer communications experience than the telephone.
Rather than simply hearing a disembodied voice, you have access to all the nuances of
speech that come from face-to-face communication.

Why videoconferencing may never totally replace voice

There are some challenges to overcome, though, and not all of them are technical.

Consider this: using a plain telephone, people working from their home offices can
have business conversations, unshowered, in their underwear, feet on the desk, coffee
in hand—if they use a telephone. A similar video conversation would require half an
hour of grooming to prepare for, and couldn’t happen in the kitchen, on the patio, or…
well, you get the idea.

Also, the promise of eye-to-eye communication over video will never happen as long
as the focal points of the participants are not in line with the cameras. If you look at
the camera, your audience will see you looking at them, but you won’t see them. If you
look at your screen to see whom you are talking to, the camera will show you looking
down at something—not at your audience. That looks impersonal. Perhaps if a video-
phone could be designed like a Tele-Prompt-R, where the camera was behind the
screen, it wouldn’t feel so unnatural. As it stands, there’s something psychological
that’s missing. Video ends up being a gimmick.

Wireless
Since Asterisk is fully VoIP-enabled, wireless is all part of the package.

WiFi

WiFi is going to be the office mobility solution for VoIP phones. This technology is
already quite mature. The biggest hurdle is the cost of handsets, which can be expected
to improve as competitive pressure from around the world drives down prices.

WiMAX

Since we are so bravely predicting so many things, it’s not hard to predict that WiMAX
spells the beginning of the end for traditional cellular telephone networks.

With wireless Internet access within the reach of most communities, what value will
there be in expensive cellular service?

The Future of Asterisk | 589

Unified Messaging
This is a term that has been hyped by the telecom industry for years, but adoption has
been far slower than predicted.

Unified messaging refers to the concept of tying voice and text-messaging systems into
one. With Asterisk, the two don’t need to be artificially combined, as Asterisk already
treats them the same way.

Just by examining the terms, unified and messaging, we can see that the integration of
email and voicemail must be merely the beginning—unified messaging needs to do a
lot more than just that if it is to deserve its name.

Perhaps we need to define “messaging” as communication that does not occur in real
time. In other words, when you send a message, you expect that the reply may take
moments, minutes, hours, or even days to arrive. You compose what you wish to say,
and your audience is expected to compose a reply.

Contrast this with conversing, which happens in real time. When you talk to someone
on a telephone connection, you expect no more than a few seconds’ delay before the
response arrives.

Several years ago, Tim O’Reilly delivered a speech entitled “Watching the Alpha Geeks:
OS X and the Next Big Thing” (http://www.macdevcenter.com/pub/a/mac/2002/05/14/
oreilly_wwdc_keynote.html), in which he talked about someone piping IRC through a
text-to-speech engine. One could imagine doing the reverse as well, allowing us to join
an IRC or instant messaging chat over a WiFi phone, with our Asterisk PBX providing
the speech-to-text-to-speech translations.

Peering
As monopoly networks such as the PSTN give way to community-based networks like
the Internet, there will be a period of time where it is necessary to interconnect the two.
While the traditional providers would prefer that the existing model be carried into the
new paradigm, it is increasingly likely that telephone calls will become little more than
another application the Internet happily carries.

But a challenge remains: how to manage the telephone numbering plan with which we
are all familiar and comfortable?

E.164

The ITU defined a numbering plan in its E.164 specification. If you’ve used a telephone
to make a call across the PSTN, you can confidently state that you are familiar with the
concept of E.164 numbering. Prior to the advent of publicly available VoIP, nobody
cared about E.164 except the telephone companies—nobody needed to.

590 | Chapter 27: Asterisk: A Future for Telephony

http://www.macdevcenter.com/pub/a/mac/2002/05/14/oreilly_wwdc_keynote.html
http://www.macdevcenter.com/pub/a/mac/2002/05/14/oreilly_wwdc_keynote.html

Now that calls are hopping from PSTN to Internet to who-knows-what, some consid-
eration must be given to E.164.

ENUM

In response to this challenge, the IETF has sponsored the Electronic NUmber Mapping
(ENUM) working group, the purpose of which is to map E.164 numbers into the Do-
main Name System (DNS).

While the concept of ENUM is sound, it requires cooperation from the telecom industry
to achieve success. However, cooperation is not what the telecom industry is famous
for, and thus far ENUM has foundered.

e164.org

The folks at http://e164.org are trying to contribute to the success of ENUM. You can
log onto this site, register your phone number, and inform the system of alternative
methods of communicating with you. This means that someone who knows your phone
number can connect a VoIP call to you, as the http://e164.org DNS zone will provide
the IP addressing and protocol information needed to connect to your location.

As more and more people publish VoIP connectivity information, fewer and fewer calls
will be connected through the PSTN.

Challenges
As is true with any worthwhile thing, Asterisk will face challenges. Let’s take a glance
at what some of them may be.

Too much change, too few standards

These days, the Internet is changing so fast, and offers so much diverse content, that it
is impossible for even the most attentive geek to keep on top of it all. While this is as
it should be, it also means that an enormous amount of technology churn is an inevi-
table part of keeping any communications system current.

Toll fraud

As long as long-distance calls cost money, there will be criminals who will wish to steal.
Toll fraud is nothing new, but with many unsecured Asterisk systems now on the In-
ternet, the popularity of scripts to find these systems and compromise them has ex-
ploded. Administrators of Internet-connected telephone systems will need to carefully
design their security to ensure that any calls made from their systems are made only by
authorized users.

The Future of Asterisk | 591

http://e164.org
http://e164.org

VoIP spam

Yes, it’s coming. There will always be people who believe they have the right to incon-
venience and harass others in their pursuit of money. Efforts are under way to try to
address this, but only time will tell how efficacious they will be.

Fear, uncertainty, and doubt

The industry is making the transition from ignorance to laughter. If Gandhi is correct,
we can expect the fight to begin soon.

As their revenue streams become increasingly threatened by open source telephony,
the traditional industry players are certain to mount a fear campaign, in hopes of un-
dermining the revolution.

Bottleneck engineering

There is a rumor that the major network providers will artificially cripple VoIP traffic
by tagging and prioritizing the traffic of their premium VoIP services and, worse, de-
tecting and bumping any VoIP traffic generated by services not approved by them.

Some of this is already taking place, with service providers blocking traffic of certain
types through their networks, ostensibly as some public service (such as blocking pop-
ular file-sharing services to protect us from piracy). In the United States, the FCC has
taken a clear stand on the matter and fined companies that engage in such practices.
In the rest of the world, regulatory bodies are not always as accepting of VoIP.

What seems clear is that the community and the network will find ways around block-
ages, just as they always have.

Regulatory wars

A former chairman of the United States Federal Communications Commission,
Michael Powell delivered a gift that may well have altered the path of the VoIP revo-
lution. Rather than attempting to regulate VoIP as a telecom service, he championed
the concept that VoIP represents an entirely new way of communicating and requires
its own regulatory space in which to evolve.

VoIP will become regulated, but not everywhere as a telephony service. Some of the
regulations that may be created include:

Presence information for emergency services
One of the characteristics of a traditional PSTN circuit is that it is always in the
same location. This is very helpful to emergency services, as they can pinpoint the
location of a caller by identifying the address of the circuit from which the call was
placed. The proliferation of cell phones has made this much more difficult to
achieve, since a cell phone does not have a known address. A cell phone can be
plugged into any network and can register to any server. If the phone does not

592 | Chapter 27: Asterisk: A Future for Telephony

identify its physical location, an emergency call from it will provide no clue as to
where the caller is. VoIP creates similar challenges.

Call monitoring for law enforcement agencies
Law enforcement agencies have always been able to obtain wiretaps on traditional
circuit-switched telephone lines. While regulations are being enacted that are de-
signed to achieve the same end on the network, the technical challenges of deliv-
ering this functionality will probably never be completely solved. People value their
privacy, and the more governments want to stifle it, the more effort will be put
toward maintaining it.

Anti-monopolistic practices
These practices are already being seen in the US, with fines being levied against
network providers who attempt to filter traffic based on content.

When it comes to regulation, Asterisk is both a saint and a devil: a saint because it feeds
the poor, and a devil because it empowers the phrackers and spammers like nothing
ever has. The regulation of open source telephony may in part be determined by how
well the community regulates itself. Concepts such as DUNDi, which incorporate anti-
spam processes, are an excellent start. On the other hand, concepts such as caller ID–
spoofing are ripe with opportunities for abuse.

Quality of service

Due to the best-effort reality of the TCP/IP-based Internet, it is not yet known how
increasing real-time VoIP traffic will affect overall network performance. Currently,
there is so much excess bandwidth in the backbone that best-effort delivery is generally
quite good indeed. Still, it has been proven time and time again that whenever we are
provided with more bandwidth, we figure out a way to use it up. The 1-MB DSL con-
nection undreamt of five years ago is now barely adequate.

Perhaps a corollary of Moore’s Law† will apply to network bandwidth. QoS may be-
come moot, due to the network’s ability to deliver adequate performance without any
special processing. Organizations that require higher levels of reliability may elect to
pay a premium for a higher grade of service. Perhaps the era of paying by the minute
for long-distance connections will give way to paying by the millisecond for guaranteed
low latency, or by the percentage point for reduced packet loss. Premium services will
offer the five-nines‡ reliability the traditional telecom companies have always touted as
their advantage over VoIP.

† Gordon Moore wrote a paper in 1965 that predicted the doubling of transistors on a processor every few years.

‡ This term refers to 99.999%, which is touted as the reliability of traditional telecom networks. Achieving five
nines requires that service interruptions for an entire year total no more than 5 minutes and 15 seconds. Many
people believe that VoIP will need to achieve this level of reliability before it can fully replace the PSTN. Many
other people believe that the PSTN doesn’t even come close to five-nines reliability. This could have been an
excellent term to describe high reliability, but marketing departments abuse it far too frequently.

The Future of Asterisk | 593

Complexity

Open systems require new approaches to solution design. Just because the hardware
and software are cheap doesn’t mean the solution will be. Asterisk does not come out
of the box ready to run; an Asterisk system has to be designed and built, and then
maintained. While the base software is free, and the hardware costs will be based on
commodity pricing, it is fair to say that the configuration costs for a highly customized
system will be a sizable part of the overall solution cost. In fact, in many cases, because
of Asterisk’s high degree of complexity and configurability, the cost will be more than
would be expected with a traditional PBX.

The rule of thumb is generally considered to be something like this: if it can be done
in the dialplan, the system design will be roughly the same as for any similarly featured
traditional PBX. Beyond that, only experience will allow one to accurately estimate the
time required to build a system.

There is much to learn.

Opportunities
Open source telephony creates limitless opportunities. Here are some of the more
compelling ones.

Tailor-made private telecommunications networks

Some people will tell you that price is the key, but we believe that the real reason Asterisk
will succeed is because it is now possible to build a telephone system as one would a
website: with complete, total customization of each and every facet of the system. Cus-
tomers have wanted this for years. Only Asterisk can deliver.

Low barrier to entry

Anyone can contribute to the future of communicating. It is now possible for someone
with an old $200 PC to develop a communications system that has the intelligence to
rival the most expensive proprietary systems. Granted, the hardware would not be
production-ready, but there is no reason the software couldn’t be. This is one of the
reasons why closed systems will have a hard time competing. The sheer number of
people who have access to the required equipment is impossible to equal in a
closed shop.

Hosted solutions of similar complexity to corporate websites

The design of a PBX was always a kind of art form, but before Asterisk, the art lay in
finding creative ways to overcome the limitations of the technology. With limitless
technology, those same creative skills can now be properly applied to the task of com-
pletely answering the needs of the customer. Open source telephony engines such as
Asterisk will enable this. Telecom designers will dance for joy, as their considerable

594 | Chapter 27: Asterisk: A Future for Telephony

creative skills will now actually serve the needs of their customers, rather than being
focused on managing kludge.

Proper integration of communications technologies

Ultimately, the promise of open source comes to nothing if it cannot fulfill the need
people have to solve problems. The closed industries lost sight of the customer, and
tried to fit the customer to the product.

Open source telephony brings voice communications in line with other information
technologies. It is finally possible to properly begin the task of integrating email, voice,
video, and anything else we might conceive of over flexible transport networks (whether
wired or wireless), in response to the needs of the user, not the whims of monopolies.

Welcome to the future of telecom!

The Future of Asterisk | 595

APPENDIX A

Understanding Telephony

Utility is when you have one telephone, luxury is when
you have two, opulence is when you have three—and

paradise is when you have none.

—Doug Larson

In this appendix, we are going to talk about some of the technologies of the traditional
telephone network—especially those that people most commonly want to connect to
Asterisk. (We’ll discuss Voice over IP in Appendix B.)

While tomes could be written about the technologies in use in telecom networks, the
material included here was chosen based on our experiences in the community, which
helped us to define the specific items that might be most useful. Although this knowl-
edge may not be strictly required in order to configure your Asterisk system, it will be
of great benefit when interconnecting to systems (and talking with people) from the
world of traditional telecommunications.

Analog Telephony
The purpose of the Public Switched Telephone Network (PSTN) is to establish and
maintain audio connections between two endpoints in order to carry speech.

Although humans can perceive sound vibrations in the range of 20–20,000 Hz,* most
of the sounds we make when speaking tend to be in the range of 250–3,000 Hz. Since
the purpose of the telephone network is to transmit the sounds of people speaking, it
was designed with a bandwidth of somewhere in the range of 300–3,500 Hz. This

* If you want to play around with what different frequencies look like on an oscilloscope, grab a copy of Sound
Frequency Analyzer, from Reliable Software. It’s a really simple and fun way to visualize what sounds “look”
like. The spectrograph gives a good picture of the complex harmonics our voices can generate, as well as an
appreciation for the background sounds that always surround us. You should also try the delightfully
annoying NCH Tone Generator, from NCH Swift Sound.

597

limited bandwidth means that some sound quality will be lost (as anyone who’s had
to listen to music on hold can attest to), especially in the higher frequencies.

Parts of an Analog Telephone
An analog phone is composed of five parts: the ringer, the dialpad, the hybrid (or net-
work), and the hook switch and handset (both of which are considered parts of the
hybrid). The ringer, the dialpad, and the hybrid can operate completely independently
of one another.

Ringer

When the central office (CO) wants to signal an incoming call, it will connect an al-
ternating current (AC) signal of roughly 90 volts to your circuit. This will cause the bell
in your telephone to produce a ringing sound. (In electronic telephones, this ringer may
be a small electronic warbler rather than a bell. Ultimately, a ringer can be anything
that is capable of reacting to the ringing voltage; for example, strobe lights are often
employed in noisy environments such as factories.)

Ringing voltage can be hazardous. Be very careful to take precautions
when working with an in-service telephone line.

Many people confuse the AC voltage that triggers the ringer with the direct current
(DC) voltage that powers the phone. Remember that a ringer needs an alternating cur-
rent in order to oscillate (just as a church bell won’t ring if you don’t supply the move-
ment), and you’ve got it.

In North America, the number of ringers you can connect to your line is dependent on
the Ringer Equivalence Number (REN) of your various devices. (The REN must be
listed on each device.) The total REN for all devices connected to your line cannot
exceed 5.0. An REN of 1.0 is equivalent to an old-fashioned analog set with an elec-
tromechanical ringer. Some electronic phones have RENs of 0.3 or even less. If you
connect too many devices that require too much current, you will find that none of
them will be able to ring.

Dialpad

When you place a telephone call, you need some way of letting the network know the
address of the party you wish to reach. The dialpad is the portion of the phone that
provides this functionality. In the early days of the PSTN, dialpads were in fact rotary
devices that used pulses to indicate digits. This was a rather slow process, so the tele-
phone companies eventually introduced touch-tone dialing. With touch-tone—also
known as Dual-Tone Multi Frequency (DTMF)—dialing, the dialpad consists of 12
buttons. Each button has two frequencies assigned to it (see Table A-1).

598 | Appendix A: Understanding Telephony

Table A-1. DTMF digits

 1209 Hz 1336 Hz 1477 Hz 1633 Hz a

697 Hz 1 2 3 A

770 Hz 4 5 6 B

852 Hz 7 8 9 C

941 Hz * 0 # D
a Notice that this column contains letters that are not typically present as keys on a telephone dialpad. They are part of the DTMF standard

nonetheless, and any proper telephone contains the electronics required to create them, even if it doesn’t contain the buttons themselves.
(These buttons actually do exist on some telephones, which are mostly used in military and government applications.)

When you press a button on your dialpad, the two corresponding frequencies are
transmitted down the line. The far end can interpret these frequencies and note which
digit was pressed.

Hybrid (or network)

The hybrid is a type of transformer that handles the need to combine the signals trans-
mitted and received across a single pair of wires in the PSTN and two pairs of wires in
the handset. One of the functions the hybrid performs is regulating sidetone, which is
the amount of your transmitted signal that is returned to your earpiece; its purpose is
to provide a more natural-sounding conversation. Too much sidetone, and your voice
will sound too loud; too little, and you’ll think the line has gone dead.

This device signals the state of the telephone circuit to the CO.
When you pick up your telephone, the hook switch closes the loop between you and
the CO, which is seen as a request for a dialtone. When you hang up, the hook switch
opens the circuit, which indicates that the call has ended.†

The hook switch can also be used for signaling purposes. Some electronic analog
phones have a button labeled Link that causes an event called a flash. You can perform
a flash manually by depressing the hook switch for a duration of between 200 and 1,200
milliseconds. If you leave it down for longer than that, the carrier may assume you’ve
hung up. The purpose of the Link button is to handle this timing for you. If you’ve ever
used call waiting or three-way calling on an analog line, you have performed a hook-
switch flash for the purpose of signaling the network.

The handset is composed of the transmitter and receiver. It performs the con-
version between the sound energy humans use and the electrical energy the telephone
network uses.

Hook switch (or switch hook).

Handset.

† When referring to the state of an analog circuit, people often speak in terms of “off-hook” and “on-hook.”
When your line is “off-hook,” your telephone is “on” a call. If your phone is “on-hook,” the telephone is
essentially “off,” or idle.

Analog Telephony | 599

Tip and Ring
In an analog telephone circuit, there are two wires. In North America, these wires are
referred to as Tip and Ring.‡ This terminology comes from the days when telephone
calls were connected by live operators sitting at cord boards. The plugs that they used
had two contacts—one located at the tip of the plug and the other connected to the
ring around the middle (Figure A-1).

Figure A-1. Tip and Ring

The Tip lead is the positive polarity wire. In North America, this wire is typically green
and provides the return path. The Ring wire is the negative polarity wire. In North
America, this wire is normally red. For modern Cat 5 and 6 cables, the Tip is usually
the white wire, and Ring is the colored wire. When your telephone is on-hook, this
wire will have a potential of –48V DC with respect to Tip. Off-hook, this voltage drops
to roughly –7V DC.

Digital Telephony
Analog telephony is almost dead.

In the PSTN, the famous Last Mile is the final remaining piece of the telephone network
still using technology pioneered well over a hundred years ago.§

One of the primary challenges when transmitting analog signals is that all sorts of things
can interfere with those signals, causing low volume, static, and all manner of other
undesired effects. Instead of trying to preserve an analog waveform over distances that
may span thousands of miles, why not simply measure the characteristics of the original
sound and send that information to the far end? The original waveform wouldn’t get
there, but all the information needed to reconstruct it would.

This is the principle of all digital audio (including telephony): sample the characteristics
of the source waveform, store the measured information, and send that data to the far

‡ They may have other names elsewhere in the world (such as “A” and “B”).

§ “The Last Mile” is a term that was originally used to describe the only portion of the PSTN that had not been
converted to fiber optics: the connection between the central office and the customer. The Last Mile is more
than that, however, as it also has significance as a valuable asset of the traditional phone companies; they
own a connection into your home. The Last Mile is becoming more and more difficult to describe in technical
terms, as there are now so many ways to connect the network to the customer. As a thing of strategic value
to telecom, cable, and other utilities, its importance is obvious.

600 | Appendix A: Understanding Telephony

end. Then, at the far end, use the transmitted information to generate a completely new
audio signal that has the same characteristics as the original. The reproduction is so
good that the human ear can’t tell the difference.

The principal advantage of digital audio is that the sampled data can be mathematically
checked for errors all along the route to its destination, ensuring that a perfect duplicate
of the original arrives at the far end. Distance no longer affects quality, and interference
can be detected and eliminated.

Pulse-Code Modulation
There are several ways to digitally encode audio, but the most common method (and
the one used in telephony systems) is known as Pulse-Code Modulation (PCM). To
illustrate how this works, let’s go through a few examples.

Digitally encoding an analog waveform

The principle of PCM is that the amplitude‖ of the analog waveform is sampled at
specific intervals so that it can later be re-created. The amount of detail that is captured
is dependent both on the bit resolution of each sample and on how frequently the
samples are taken. A higher bit resolution and a higher sampling rate will provide
greater accuracy, but more bandwidth will be required to transmit this more detailed
information.

To get a better idea of how PCM works, consider the waveform displayed in Figure A-2.

Figure A-2. A simple sinusoidal (sine) wave

‖ Amplitude is essentially the power or strength of the signal. If you have ever held a skipping rope or garden
hose and given it a whip, you have seen the resultant wave. The taller the wave, the greater the amplitude.

Digital Telephony | 601

To digitally encode the wave, it must be sampled on a regular basis, and the amplitude
of the wave at each moment in time must be measured. The process of slicing up a
waveform into moments in time and measuring the energy at each moment is called
quantization, or sampling.

The samples will need to be taken frequently enough and will need to capture enough
information to ensure that the far end can re-create a sufficiently similar waveform. To
achieve a more accurate sample, more bits will be required. To explain this concept,
we will start with a very low resolution, using 4 bits to represent our amplitude. This
will make it easier to visualize both the quantization process itself and the effect that
resolution has on quality.

Figure A-3 shows the information that will be captured when we sample our sine wave
at 4-bit resolution.

Figure A-3. Sampling our sine wave using four bits

At each time interval, we measure the amplitude of the wave and record the corre-
sponding intensity—in other words, we sample it. You will notice that the 4-bit reso-
lution limits our accuracy. The first sample has to be rounded to 0011, and the next
quantization yields a sample of 0101. Then comes 0100, followed by 1001, 1011, and so
forth. In total, we have 14 samples (in reality, several thousand samples must be taken
per second).

If we string together all the values, we can send them to the other side as:

0011 0101 0100 1001 1011 1011 1010 0001 0101 0101 0000 1100 1100 1010

On the wire, this code might look something like Figure A-4.

When the far end’s digital-to-analog (D/A) converter receives this signal, it can use the
information to plot the samples, as shown in Figure A-5.

602 | Appendix A: Understanding Telephony

From this information, the waveform can be reconstructed (see Figure A-6).

Figure A-6. Delineated signal

As you can see if you compare Figure A-2 with Figure A-6, this reconstruction of the
waveform is not very accurate. This was done intentionally, to demonstrate an

Figure A-4. PCM encoded waveform

Figure A-5. Plotted PCM signal

Digital Telephony | 603

important point: the quality of the digitally encoded waveform is affected by the reso-
lution and rate at which it is sampled. At too low a sampling rate, and with too low a
sample resolution, the audio quality will not be acceptable.

Increasing the sampling resolution and rate

Let’s take another look at our original waveform, this time using 5 bits to define our
quantization intervals (Figure A-7).

Figure A-7. The same waveform, on a higher-resolution overlay

In reality, there is no such thing as 5-bit PCM. In the telephone network,
PCM samples are encoded using 8 bits. Other digital audio methods
may employ 16 bits or more.

We’ll also double our sampling frequency. The points plotted this time are shown in
Figure A-8.

We now have twice the number of samples, at twice the resolution. Here they are:

00111 01000 01001 01001 01000 00101 10110 11000 11001 11001 11000 10111
10100 10001 00010 00111 01001 01010 01001 00111 00000 11000 11010 11010
11001 11000 10110 10001

When received at the other end, that information can now be plotted as shown in
Figure A-9.

604 | Appendix A: Understanding Telephony

Figure A-8. The same waveform at double the resolution

Figure A-9. Five-bit plotted PCM signal

Digital Telephony | 605

From this information, the waveform shown in Figure A-10 can then be generated.

As you can see, the resultant waveform is a far more accurate representation of the
original. However, you can also see that there is still room for improvement.

Note that 40 bits were required to encode the waveform at 4-bit reso-
lution, while 156 bits were needed to send the same waveform using 5-
bit resolution (and also doubling the sampling rate). The point is, there
is a tradeoff: the higher the quality of audio you wish to encode, the
more bits are required to do it, and the more bits you wish to send (in
real time, naturally), the more bandwidth you will need to consume.

Figure A-10. Waveform delineated from five-bit PCM

Nyquist’s Theorem

So how much sampling is enough? That very same question was considered in the 1920s
by an electrical engineer (and AT&T/Bell employee) named Harry Nyquist. Nyquist’s
Theorem states: “When sampling a signal, the sampling frequency must be greater than
twice the bandwidth of the input signal in order to be able to reconstruct the original
perfectly from the sampled version.”#

In essence, what this means is that to accurately encode an analog signal you have to
sample it twice as often as the total bandwidth you wish to reproduce. Since the

#Nyquist published two papers, “Certain Factors Affecting Telegraph Speed” (1924) and “Certain Topics in
Telegraph Transmission Theory” (1928), in which he postulated what became known as Nyquist’s Theorem.
Proven in 1949 by Claude Shannon (“Communication in the Presence of Noise”), it is also referred to as the
Nyquist-Shannon sampling theorem.

606 | Appendix A: Understanding Telephony

telephone network will not carry frequencies below 300 Hz and above 4,000 Hz, a
sampling frequency of 8,000 samples per second will be sufficient to reproduce any
frequency within the bandwidth of an analog telephone. Keep that 8,000 samples per
second in mind; we’re going to talk about it more later.

Logarithmic companding

So, we’ve gone over the basics of quantization, and we’ve discussed the fact that more
quantization intervals (i.e., a higher sampling rate) give better quality but also require
more bandwidth. Lastly, we’ve discussed the minimum sampling rate needed to accu-
rately measure the range of frequencies we wish to be able to transmit (in the case of
the telephone, it’s 8,000 Hz). This is all starting to add up to a fair bit of data being
sent on the wire, so we’re going to want to talk about companding.

Companding is a method of improving the dynamic range of a sampling method without
losing important accuracy. It works by quantizing higher amplitudes in a much coarser
fashion than lower amplitudes. In other words, if you yell into your phone, you will
not be sampled as cleanly as you will be when speaking normally. Yelling is also not
good for your blood pressure, so it’s best to avoid it.

Two companding methods are commonly employed: μlaw* in North America, and alaw
in the rest of the world. They operate on the same principles but are otherwise not
compatible with each other.

Companding divides the waveform into cords, each of which has several steps. Quan-
tization involves matching the measured amplitude to an appropriate step within a
cord. The value of the band and cord numbers (as well as the sign—positive or negative)
becomes the signal. The following diagrams will give you a visual idea of what com-
panding does. They are not based on any standard, but rather were made up for the
purpose of illustration (again, in the telephone network, companding will be done at
an 8-bit, not 5-bit, resolution).

Figure A-11 illustrates 5-bit companding. As you can see, amplitudes near the zero-
crossing point will be sampled far more accurately than higher amplitudes (either pos-
itive or negative). However, since the human ear, the transmitter, and the receiver will
also tend to distort loud signals, this isn’t really a problem.

A quantized sample might look like Figure A-12. It yields the following bit stream:

00000 10011 10100 10101 01101 00001 00011 11010 00010 00001 01000 10011
10100 10100 00101 00100 00101 10101 10011 10001 00011 00001 00000 10100
10010 10101 01101 10100 00101 11010 00100 00000 01000

* μlaw is often referred to as “ulaw” because, let’s face it, how many of us have μ keys on our keyboards? μ is
in fact the Greek letter Mu; thus, you will also see μlaw written (more correctly) as “Mu-law.” When spoken,
it is correct to confidently say “Mew-law,” but if folks look at you strangely, and you’re feeling generous, you
can help them out and tell them it’s “ulaw.” Many people just don’t appreciate trivia.

Digital Telephony | 607

Figure A-11. Five-bit companding

608 | Appendix A: Understanding Telephony

Figure A-12. Quantized and companded at 5-bit resolution

Digital Telephony | 609

Aliasing

If you’ve ever watched the wheels on a wagon turn backward in an old Western movie,
you’ve seen the effects of aliasing. The frame rate of the movie cannot keep up with the
rotational frequency of the spokes, and a false rotation is perceived.

In a digital audio system (which the modern PSTN arguably is), aliasing always occurs
if frequencies that are greater than one-half the sampling rate are presented to the an-
alog-to-digital (A/D) converter. In the PSTN, that includes any audio frequencies above
4,000 Hz (half the sampling rate of 8,000 Hz). This problem is easily corrected by
passing the audio through a low-pass filter† before presenting it to the A/D converter.‡

The Digital Circuit-Switched Telephone Network
For over a hundred years, telephone networks were exclusively circuit-switched. What
this meant was that for every telephone call made, a dedicated connection was estab-
lished between the two endpoints, with a fixed amount of bandwidth allocated to that
circuit. Creating such a network was costly, and where distance was concerned, using
that network was costly as well. Although we are all predicting the end of the circuit-
switched network, many people still use it every day, and it really does work rather well.

Circuit Types
In the PSTN, there are many different sizes of circuits serving the various needs of the
network. Between the central office and a subscriber, one or more analog circuits, or a
few dozen channels delivered over a digital circuit, generally suffice. Between PSTN
offices (and with larger customers), fiber-optic circuits are generally used.

The humble DS-0―The foundation of it all

Since the standard method of digitizing a telephone call is to record an 8-bit sample
8,000 times per second, we can see that a PCM-encoded telephone circuit will need a
bandwidth of eight times 8,000 bits per second, or 64,000 bps. This 64-Kbps channel
is referred to as a DS-0 (that’s “Dee-Ess-Zero”). The DS-0 is the fundamental building
block of all digital telecommunications circuits.

† A low-pass filter, as its name implies, allows through only frequencies that are lower than its cut off frequency.
Other types of filters are high-pass filters (which remove low frequencies) and band-pass filters (which filter
out both high and low frequencies).

‡ If you ever have to do audio recordings for a system, you might want to take advantage of the band-pass filter
that is built into most telephone sets. Doing a recording using even high-end recording equipment can pick
up all kinds of background noise that you don’t even hear until you downsample, at which point the
background noise produces aliasing (which can sound like all kinds of weird things). Conversely, the phone
records in the correct format already, so the noise never enters the audio stream. Having said all that, no
matter what you use to do recordings, avoid environments that have a lot of background noise. Typical offices
can be a lot noisier than you’d think, as HVAC equipment can produce noise that we don’t even realize is there.

610 | Appendix A: Understanding Telephony

Even the ubiquitous analog circuit is sampled into a DS-0 as soon as possible. Some-
times this happens where your circuit terminates at the central office, and sometimes
well before.§

T-carrier circuits

The venerable T1 is one of the more recognized digital telephony terms. A T1 is a digital
circuit consisting of 24 DS-0s multiplexed together into a 1.544-Mbps bit stream.‖ This
bit stream is properly defined as a DS-1. Voice is encoded on a T1 using the μlaw
companding algorithm.

The European version of the T1 was developed by the European Con-
ference of Postal and Telecommunications Administrations# (CEPT),
and was first referred to as a CEPT-1. It is now called an E1.

The E1 is composed of 32 DS-0s, but the method of PCM encoding is
different: E1s use alaw companding. This means that connecting be-
tween an E1-based network and a T1-based network will always require
a transcoding step. Note that an E1, although it has 32 channels, is also
considered a DS-1. It is likely that E1 is far more widely deployed, as it
is used everywhere in the world except North America and Japan.

The various other T-carriers (T2, T3, and T4) are multiples of the T1, each based on
the humble DS-0. Table A-2 illustrates the relationships between the different T-carrier
circuits.

Table A-2. T-carrier circuits

Carrier Equivalent data bitrate Number of DS-0s Data bitrate

T1 24 DS-0s 24 1.544 Mbps

T2 4 T1s 96 6.312 Mbps

T3 7 T2s 672 44.736 Mbps

T4 6 T3s 4,032 274.176 Mbps

At densities above T3, it is very uncommon to see a T-carrier circuit. For these speeds,
optical carrier (OC) circuits may be used.

§ Digital telephone sets (including IP sets) do the analog-to-digital conversion right at the point where the
handset plugs into the phone, so the DS-0 is created right at the phone set.

‖ The 24 DS-0s use 1.536 Mbps, and the remaining .008 Mbps is used by framing bits.

#Conférence Européenne des Administrations des Postes et des Télécommunications.

The Digital Circuit-Switched Telephone Network | 611

SONET and OC circuits

The Synchronous Optical Network (SONET) was developed out of a desire to take the
T-carrier system to the next technological level: fiber optics. SONET is based on the
bandwidth of a T3 (44.736 Mbps), with a slight overhead making it 51.84 Mbps. This
is referred to as an OC-1 or STS-1. As Table A-3 shows, all higher-speed OC circuits
are multiples of this base rate.

Table A-3. OC circuits

Carrier Equivalent data bitrate Number of DS-0s Data bitrate

OC-1 1 DS-3 (plus overhead) 672 51.840 Mbps

OC-3 3 DS-3s 2,016 155.520 Mbps

OC-12 12 DS-3s 8,064 622.080 Mbps

OC-48 48 DS-3s 32,256 2488.320 Mbps

OC-192 192 DS-3s 129,024 9953.280 Mbps

SONET was created in an effort to standardize optical circuits, but due to its high cost,
coupled with the value offered by many newer schemes, such as Dense Wave Division
Multiplexing (DWDM), there is some controversy surrounding its future.

Digital Signaling Protocols
As with any circuit, it is not enough for the circuits used in the PSTN to just carry (voice)
data between endpoints. Mechanisms must also be provided to pass information about
the state of the channel between the endpoints. (Disconnect and answer supervision
are two examples of basic signaling that might need to take place; caller ID is an example
of a more complex form of signaling.)

Channel Associated Signaling (CAS)

Also known as robbed-bit signaling, CAS is what you will use to transmit voice on a
T1 when ISDN is not available. Rather than taking advantage of the power of the digital
circuit, CAS simulates analog channels. CAS works by stealing bits from the audio
stream for signaling purposes. Although the effect on audio quality is not really no-
ticeable, the lack of a powerful signaling channel limits your flexibility.

When configuring a CAS T1, the signaling options at each end must match. E&M (Ear
& Mouth or recEive & transMit) signaling is generally preferred, as it offers the best
supervision. Having said that, in an Asterisk environment the most likely reason for
you to use CAS would be for a channel bank, which means you are most likely going
to have to use FXS signaling.

CAS is very rarely used on PSTN circuits anymore, due to the superiority of ISDN-PRI.
One of the limitations of CAS is that it does not allow the dynamic assignment of
channels to different functions. Also, caller ID information (which may not even be

612 | Appendix A: Understanding Telephony

supported) has to be sent as part of the audio stream. CAS is commonly used on the
T1 link in channel banks.

ISDN

The Integrated Services Digital Network (ISDN) has been around for more than 20
years. Because it separates the channels that carry the traffic (the bearer channels, or
B-channels) from the channel that carries the signaling information (the D-channel),
ISDN allows for the delivery of a much richer set of features than CAS.

In the beginning, ISDN promised to deliver much the same sort of functionality that
the Internet has given us, including advanced capabilities for voice, video, and data
transfer. Unfortunately, rather than ratifying a standard and sticking to it, the respective
telecommunications manufacturers all decided to add their own tweaks to the protocol,
in the belief that their versions were superior and would eventually come to dominate
the market. As a result, getting two ISDN-compliant systems to connect to each other
was often a painful and expensive task. The carriers who had to implement and support
this expensive technology, in turn, priced it so that it was not rapidly adopted. Cur-
rently, ISDN is rarely used for much more than basic trunking—in fact, the acronym
ISDN has become a joke in the industry: “It Still Does Nothing.”

Having said that, ISDN has become quite popular for trunking, and it is now (mostly)
standards-compliant. If you have a PBX with more than a dozen lines connected to the
PSTN, there’s a very good chance that you’ll be running an ISDN-PRI (Primary Rate
Interface) circuit. Also, in places where DSL and cable access to the Internet are not
available (or are too expensive), an ISDN-BRI (Basic Rate Interface) circuit might pro-
vide you with an affordable 128-Kbps connection. In much of North America, the use
of BRI for Internet connectivity has been deprecated in favor of DSL and cable modems
(and it is never used for voice), but in many European countries it has almost totally
replaced analog circuits.

The Basic Rate Interface (or Basic Rate Access) flavor of ISDN is designed
to service small endpoints such as workstations.

This flavor is often referred to simply as “ISDN,” but this can be a source of confusion,
as ISDN is a protocol, not a type of circuit (not to mention that PRI circuits are also
correctly referred to as ISDN!).

A Basic Rate ISDN circuit consists of two 64-Kbps B-channels controlled by a 16-Kbps
D-channel, for a total of 144 Kbps.

Basic Rate ISDN has been a source of much confusion during its life, due to problems
with standards compliance, technical complexity, and poor documentation. Still, many
European telecos have widely implemented ISDN-BRI, and thus it is more popular in
Europe than in North America.

The Primary Rate Interface (or Primary Rate Access) flavor of ISDN is used
to provide ISDN service over larger network connections. A Primary Rate ISDN circuit

ISDN-BRI/BRA.

ISDN-PRI/PRA.

The Digital Circuit-Switched Telephone Network | 613

uses a single DS-0 channel as a signaling link (the D-channel); the remaining channels
serve as B-channels.

In North America, Primary Rate ISDN is commonly carried on one or more T1 circuits.
Since a T1 has 24 channels, a North American PRI circuit typically consists of 23 B-
channels and 1 D-channel. For this reason, PRI is often referred to as 23B+D.*

In Europe, a 32-channel E1 circuit is used, so a Primary Rate ISDN
circuit is referred to as 30B+D (the final channel is used for
synchronization).

Primary Rate ISDN is very popular, due to its technical benefits and generally compet-
itive pricing at higher densities. If you believe you will require more than a dozen or so
PSTN lines, you should look into Primary Rate ISDN pricing.

From a technical perspective, ISDN-PRI is always preferable to CAS.

Signaling System 7

Signaling System 7 (SS7) is the signaling system used by carriers. It is conceptually
similar to ISDN, and it is instrumental in providing a mechanism for the carriers to
transmit the additional information ISDN endpoints typically need to pass. However,
the technology of SS7 is different from that of ISDN; one big difference is that SS7 runs
on a completely separate network than the actual trunks that carry the calls.

SS7 support in Asterisk is on the horizon, as there is much interest in making Asterisk
compatible with the carrier networks. An open source version of SS7 (http://www
.openss7.org) exists, but work is still needed for full SS7 compliance, and as of this
writing it is not known whether this version will be integrated with Asterisk. Another
promising source of SS7 support comes from Sangoma Technologies, which offers SS7
functionality in many of its products.

It should be noted that adding support for SS7 in Asterisk is not going to be as simple
as writing a proper driver. Connecting equipment to an SS7 network will not be possible
without that equipment having passed extremely rigorous certification processes. Even
then, it seems doubtful that any traditional carrier is going to be in a hurry to allow
such a thing to happen, mostly for strategic and political reasons.

* PRI is actually quite a bit more flexible than that, as it is possible to span a single PRI circuit across multiple
T1 spans. This can give rise, for example, to a 47B+D circuit (where a single D-channel serves two T1s) or a
46B+2D circuit (where primary and backup D-channels serve a pair of T1s). You will sometimes see PRI
described as nB+nD, because the number of B- and D-channels is, in fact, quite variable. For this reason, you
should never refer to a T1 carrying PRI as “a PRI.” For all you know, the PRI circuit spans multiple T1s, as
is common in larger PBX deployments.

614 | Appendix A: Understanding Telephony

http://www.openss7.org
http://www.openss7.org

Packet-Switched Networks
In the mid-1990s, network performance improved to the point where it became possible
to send a stream of media information in real time across a network connection. Because
the media stream is chopped up into segments, which are then wrapped in an address-
ing envelope, such connections are referred to as packet-based. The challenge, of course,
is to send a flood of these packets between two endpoints, ensuring that the packets
arrive in the same order in which they were sent, in less than 150 milliseconds, with
none lost. This is the essence of Voice over IP.

Conclusion
This appendix has explored the technologies currently in use in the PSTN. In Appen-
dix B, we will discuss protocols for VoIP: the carrying of telephone connections across
IP-based networks. These protocols define different mechanisms for carrying telephone
conversations, but their significance is far greater than just that. Bringing the telephone
network into the data network will finally erase the line between telephones and com-
puters, which holds the promise of a revolutionary evolution in the way we
communicate.

Conclusion | 615

APPENDIX B

Protocols for VoIP

The Internet is a telephone system that’s gotten uppity.

—Clifford Stoll

The telecommunications industry spans over 100 years, and Asterisk integrates most—
if not all—of the major technologies that it has made use of over the last century. To
make the most out of Asterisk, you need not be a professional in all areas, but under-
standing the differences between the various codecs and protocols will give you a
greater appreciation and understanding of the system as a whole.

This appendix explains Voice over IP and what makes VoIP networks different from
the traditional circuit-switched voice networks that were the topic of Appendix A. We
will explore the need for VoIP protocols, outlining the history and potential future of
each. We’ll also look at security considerations and these protocols’ abilities to work
within topologies such as Network Address Translation (NAT). The following VoIP
protocols will be discussed (some more briefly than others):

• IAX

• SIP

• H.323

• MGCP

• Skinny/SCCP

• UNISTIM

Codecs are the means by which analog voice can be converted to a digital signal and
carried across the Internet. Bandwidth at any location is finite, and the number of
simultaneous conversations any connection can carry is directly related to the type of
codec implemented. We’ll also explore the differences between the following codecs
in regard to bandwidth requirements (compression level) and quality:

• G.711

• G.726

617

• G.729A

• GSM

• iLBC

• Speex

• MP3

We will then conclude the appendix with a discussion of how voice traffic can be routed
reliably, what causes echo and how to deal with it, and how Asterisk controls the au-
thentication of inbound and outbound calls.

The Need for VoIP Protocols
The basic premise of VoIP is the packetization* of audio streams for transport over
Internet Protocol-based networks. The challenges to accomplishing this relate to the
manner in which humans communicate. Not only must the signal arrive in essentially
the same form that it was transmitted in, but it needs to do so in less than 150 milli-
seconds. If packets are lost or delayed, there will be degradation to the quality of the
communications experience, meaning that two people will have difficulty in carrying
on a conversation.

The transport protocols that collectively are called “the Internet” were not originally
designed with real-time streaming of media in mind. Endpoints were expected to re-
solve missing packets by waiting longer for them to arrive, requesting retransmission,
or, in some cases, considering the information to be gone for good and simply carrying
on without it. In a typical voice conversation, these mechanisms will not serve. Our
conversations do not adapt well to the loss of letters or words, nor to any appreciable
delay between transmittal and receipt.

The traditional PSTN was designed specifically for the purpose of voice transmission,
and it is perfectly suited to the task from a technical standpoint. From a flexibility
standpoint, however, its flaws are obvious to even people with a very limited under-
standing of the technology. VoIP holds the promise of incorporating voice communi-
cations into all of the other protocols we carry on our networks, but due to the special
demands of a voice conversation, special skills are needed to design, build, and maintain
these networks.

The problem with packet-based voice transmission stems from the fact that the way in
which we speak is totally incompatible with the way in which IP transports data.
Speaking and listening consist of the relaying of a stream of audio, whereas the Internet
protocols are designed to chop everything up, encapsulate the bits of information into

* This word hasn’t quite made it into the dictionary, but it is a term that is becoming more and more common.
It refers to the process of chopping a steady stream of information into discrete chunks (or packets), suitable
for delivery independently of one another.

618 | Appendix B: Protocols for VoIP

thousands of packages, and then deliver each package in whatever way possible to the
far end. Clearly, some way of dealing with this is required.

VoIP Protocols
The mechanism for carrying a VoIP connection generally involves a series of signaling
transactions between the endpoints (and gateways in between), culminating in two
persistent media streams (one for each direction) that carry the actual conversation.
There are several protocols in existence to handle this. In this section, we will discuss
some that are important to VoIP in general and to Asterisk specifically.

IAX (The “Inter-Asterisk eXchange” Protocol)
If you claim to be one of the folks in the know when it comes to Asterisk, your test will
come when you have to pronounce the name of this protocol. It would seem that you
should say “eye-ay-ex,” but this hardly rolls off the tongue very well.† Fortunately, the
proper pronunciation is in fact “eeks.”‡ IAX is an open protocol, meaning that anyone
can download and develop for it.§

In Asterisk, IAX is supported by the chan_iax2.so module.

History

The IAX protocol was developed by Digium for the purpose of communicating with
other Asterisk servers (hence the Inter-Asterisk eXchange protocol). It is very important
to note that IAX is not at all limited to Asterisk. The standard is open for anyone to
use, and it is supported by many other open source telecom projects, as well as by
several hardware vendors. IAX is a transport protocol (much like SIP) that uses a single
UDP port (4569) for both the channel signaling and media streams. As discussed later
in this appendix, this makes it easier to manage when behind NATed firewalls.

IAX also has the unique ability to trunk multiple sessions into one dataflow, which can
result in a tremendous bandwidth advantage when sending a lot of simultaneous chan-
nels to a remote box. Trunking allows multiple media streams to be represented with
a single datagram header, which lowers the overhead associated with individual
channels. This helps to lower latency and reduce the processing power and bandwidth
required, allowing the protocol to scale much more easily with a large number of active
channels between endpoints. If you have a large quantity of IP calls to pass between
two endpoints, you should take a close look at IAX trunking.

† It sounds like the name of a Dutch football team.

‡ Go ahead. Say it. That sounds much better, doesn’t it?

§ Officially, the current version is IAX2 (officially standardized by the IETF in RFC 5456), but all support for
IAX1 has been dropped, so whether you say “IAX” or “IAX2,” it is expected that you are talking about
version 2.

VoIP Protocols | 619

Future

Since IAX was optimized for voice, it has received some criticism for not better sup-
porting video—but in fact, IAX holds the potential to carry pretty much any media
stream desired. Because it is an open protocol, future media types are certain to be
incorporated as the community desires them.

Security considerations

IAX includes the ability to authenticate in three ways: plain text, MD5 hashing, and
RSA key exchange. This, of course, does nothing to encrypt the media path or headers
between endpoints. Many solutions involve using a Virtual Private Network (VPN)
appliance or software to encrypt the stream in another layer of technology, which re-
quires the endpoints to pre-establish a method of configuring and opening these tun-
nels. However, IAX is now also able to encrypt the streams between endpoints with
dynamic key exchange at call setup (using the configuration option encryp
tion=aes128), allowing the use of automatic key rollover.

IAX and NAT

The IAX2 protocol was deliberately designed to work from behind devices performing
NAT. The use of a single UDP port for both signaling and transmission of media also
keeps the number of holes required in your firewall to a minimum. These considerations
have helped make IAX one of the easiest protocols (if not the easiest) to implement in
secure networks.

SIP
The Session Initiation Protocol (SIP) has taken the telecommunications industry by
storm. SIP has pretty much dethroned the once-mighty H.323 as the VoIP protocol of
choice—certainly at the endpoints of the network. The premise of SIP is that each end
of a connection is a peer; the protocol negotiates capabilities between them. What
makes SIP compelling is that it is a relatively simple protocol, with a syntax similar to
that of other familiar protocols such as HTTP and SMTP. SIP is supported in Asterisk
with the chan_sip.so module.‖

History

SIP was originally submitted to the Internet Engineering Task Force (IETF) in February
1996 as “draft-ietf-mmusic-sip-00.” The initial draft looked nothing like the SIP we

‖ Having just called SIP simple, it should be noted that it is by no means lightweight. It has been said that if
one were to read all of the IETF RFCs that are relevant to SIP, one would have more than 3,000 pages of
reading to do. SIP is quickly earning a reputation for being far too bloated, but that does nothing to lessen
its popularity.

620 | Appendix B: Protocols for VoIP

know today and contained only a single request type: a call setup request. In March
1999, after 11 revisions, SIP RFC 2543 was born.

At first, SIP was all but ignored, as H.323 was considered the protocol of choice for
VoIP transport negotiation. However, as the buzz grew, SIP began to gain in popularity,
and while there may be a lot of different factors that accelerated its growth, we’d like
to think that a large part of its success is due to its freely available specification.

SIP is an application-layer signaling protocol that uses the well-known port 5060 for
communications. SIP can be transported with either the UDP or TCP transport-layer
protocols. Asterisk does not currently have a TCP implementation for transporting SIP
messages, but it is possible that future versions may support it (and patches to the code
base are gladly accepted). SIP is used to “establish, modify, and terminate multimedia
sessions such as Internet telephony calls.”#

SIP does not transport media (i.e., voice) between endpoints. Instead, the Real-time
Transport Protocol (RTP) is used for this purpose. RTP uses high-numbered, unprivi-
leged ports in Asterisk (10,000 through 20,000, by default).

A common topology to illustrate SIP and RTP, commonly referred to as the “SIP tra-
pezoid,” is shown in Figure B-1. When Alice wants to call Bob, Alice’s phone contacts
her proxy server, and the proxy tries to find Bob (often connecting through his proxy).
Once the phones have started the call, they communicate directly with each other (if
possible), so that the data doesn’t have to tie up the resources of the proxy.

Figure B-1. The SIP trapezoid

SIP was not the first, and is not the only, VoIP protocol in use today (others include
H.323, MGCP, IAX, and so on), but currently it seems to have the most momentum
with hardware vendors. The advantages of the SIP protocol lie in its wide acceptance
and architectural flexibility (and, we used to say, simplicity!).

Future

SIP has earned its place as the protocol that justified VoIP. All new user and enterprise
products are expected to support SIP, and any existing products will now be a tough

#RFC 3261, “SIP: Session Initiation Protocol,” p. 9, Section 2.

VoIP Protocols | 621

sell unless a migration path to SIP is offered. SIP is widely expected to deliver far more
than VoIP capabilities, including the ability to transmit video, music, and any type of
real-time multimedia. While its use as a ubiquitous general-purpose media transport
mechanism seems doubtful, SIP is unarguably poised to deliver the majority of new
voice applications for the next few years.

Security considerations

SIP uses a challenge/response system to authenticate users. An initial INVITE is sent to
the proxy with which the end device wishes to communicate. The proxy then sends
back a 407 Proxy Authorization Request message, which contains a random set of
characters referred to as a nonce. This nonce is used along with the password to generate
an MD5 hash, which is then sent back in the subsequent INVITE. Assuming the MD5
hash matches the one that the proxy generated, the client is then authenticated.

Denial of service (DoS) attacks are probably the most common type of attack on VoIP
communications. A DoS attack can occur when a large number of invalid INVITE re-
quests are sent to a proxy server in an attempt to overwhelm the system. These attacks
are relatively simple to implement, and their effects on the users of the system are
immediate. SIP has several methods of minimizing the effects of DoS attacks, but ulti-
mately they are impossible to prevent.

SIP implements a scheme to guarantee that a secure, encrypted transport mechanism
(namely Transport Layer Security, or TLS) is used to establish communication between
the caller and the domain of the callee. Beyond that, the request is sent securely to the
end device, based upon the local security policies of the network. Note that the en-
cryption of the media (that is, the RTP stream) is beyond the scope of SIP itself and
must be dealt with separately.

More information regarding SIP security considerations, including registration hijack-
ing, server impersonation, and session teardown, can be found in Section 26 of
SIP RFC 3261.

SIP and NAT

Probably the biggest technical hurdle SIP has to conquer is the challenge of carrying
out transactions across a NAT layer. Because SIP encapsulates addressing information
in its data frames, and NAT happens at a lower network layer, the addressing infor-
mation is not automatically modified, and thus the media streams will not have the
correct addressing information needed to complete the connection when NAT is in
place. In addition to this, the firewalls normally integrated with NAT will not consider
the incoming media stream to be part of the SIP transaction, and will block the con-
nection. Newer firewalls and session border controllers (SBCs) are SIP-aware, but this
is still considered a shortcoming in this protocol, and it causes no end of trouble to
network professionals needing to connect SIP endpoints using existing network
infrastructure.

622 | Appendix B: Protocols for VoIP

H.323
This International Telecommunication Union (ITU) protocol was originally designed
to provide an IP transport mechanism for videoconferencing. It has become the stand-
ard in IP-based video-conferencing equipment, and it briefly enjoyed fame as a VoIP
protocol as well. While there is much heated debate over whether SIP or H.323 (or
IAX) will come to dominate the VoIP protocol world, in Asterisk, H.323 has largely
been deprecated in favor of IAX and SIP. H.323 has not enjoyed much success among
users and enterprises, although it might still be the most widely used VoIP protocol
among carriers.

The three versions of H.323 supported in Asterisk are handled by the modules
chan_h323.so (supplied with Asterisk), chan_oh323.so (available as a free addon), and
chan_ooh323.so (supplied in asterisk-addons).

You have probably used H.323 without even knowing it—Microsoft’s
NetMeeting client is arguably the most widely deployed H.323 client.

History

H.323 was developed by the ITU in May 1996 as a means to transmit voice, video, data,
and fax communications across an IP-based network while maintaining connectivity
with the PSTN. Since that time, H.323 has gone through several versions and annexes
(which add functionality to the protocol), allowing it to operate in pure VoIP networks
and more widely distributed networks.

Future

The future of H.323 is a subject of debate. If the media is any measure, it doesn’t look
good for H.323; it hardly ever gets mentioned (certainly not with the regularity of SIP).
H.323 is often regarded as technically superior to SIP, but, that sort of thing is seldom
the deciding factor in whether a technology enjoys success. One of the factors that
makes H.323 unpopular is its complexity (although many argue that the once-simple
SIP is starting to suffer from the same problem).

H.323 still carries by far the majority of worldwide carrier VoIP traffic, but as people
become less and less dependent on traditional carriers for their telecom needs, the
future of H.323 becomes more difficult to predict with any certainty. While H.323 may
not be the protocol of choice for new implementations, we can certainly expect to have
to deal with H.323 interoperability issues for some time to come.

VoIP Protocols | 623

Security considerations

H.323 is a relatively secure protocol and does not require many security considerations
beyond those that are common to any network communicating with the Internet. Since
H.323 uses the RTP protocol for media communications, it does not natively support
encrypted media paths. The use of a VPN or other encrypted tunnel between endpoints
is the most common way of securely encapsulating communications. Of course, this
has the disadvantage of requiring the establishment of these secure tunnels between
endpoints, which may not always be convenient (or even possible). As VoIP becomes
used more often to communicate with financial institutions such as banks, we’re likely
to require extensions to the most commonly used VoIP protocols to natively support
strong encryption methods.

H.323 and NAT

The H.323 standard uses the Internet Engineering Task Force (IETF) RTP protocol to
transport media between endpoints. Because of this, H.323 has the same issues as SIP
when dealing with network topologies involving NAT. The easiest method is to simply
forward the appropriate ports through your NAT device to the internal client.

To receive calls, you will always need to forward TCP port 1720 to the client. In addi-
tion, you will need to forward the UDP ports for the RTP media and RTCP control
streams (see the manual for your device for the port range it requires). Older clients,
such as Microsoft NetMeeting, will also require TCP ports forwarded for H.245 tun-
neling (again, see your client’s manual for the port number range).

If you have a number of clients behind the NAT device, you will need to use a gate-
keeper running in proxy mode. The gatekeeper will require an interface attached to the
private IP subnet and the public Internet. Your H.323 client on the private IP subnet
will then register to the gatekeeper, which will proxy calls on the clients’ behalf. Note
that any external clients that wish to call you will also be required to register with the
proxy server.

At this time, Asterisk can’t act as an H.323 gatekeeper. You’ll have to use a separate
application, such as the open source OpenH323 Gatekeeper (http://www.gnugk.org),
for this purpose.

MGCP
The Media Gateway Control Protocol (MGCP) also comes to us from the IETF. While
MGCP deployment is more widespread than one might think, it is quickly losing
ground to protocols such as SIP and IAX. Still, Asterisk loves protocols, so naturally it
has rudimentary support for it.

624 | Appendix B: Protocols for VoIP

http://www.gnugk.org

MGCP is defined in RFC 3435.* It was designed to make the end devices (such as
phones) as simple as possible, and have all the call logic and processing handled by
media gateways and call agents. Unlike SIP, MGCP uses a centralized model. MGCP
phones cannot directly call other MGCP phones; they must always go through some
type of controller.

Asterisk supports MGCP through the chan_mgcp.so module, and the endpoints are
defined in the configuration file mgcp.conf. Since Asterisk provides only basic call agent
services, it cannot emulate an MGCP phone (to register to another MGCP controller
as a user agent, for example).

If you have some MGCP phones lying around, you will be able to use them with
Asterisk. If you are planning to put MGCP phones into production on an Asterisk
system, keep in mind that the community has moved on to more popular protocols,
and you will therefore need to budget your software support needs accordingly. If pos-
sible (for example, with Cisco phones), you should upgrade MGCP phones to SIP.

Proprietary Protocols
Finally, let’s take a look at two proprietary protocols that are supported in Asterisk.

Skinny/SCCP

The Skinny Client Control Protocol (SCCP) is proprietary to Cisco VoIP equipment. It
is the default protocol for endpoints on a Cisco Call Manager PBX.† Skinny is supported
in Asterisk, but if you are connecting Cisco phones to Asterisk, it is generally recom-
mended that you obtain SIP images for any phones that support this and connect via
SIP instead.

UNISTIM

Asterisk’s Support for Nortel’s proprietary VoIP protocol, UNISTIM, makes it the first
PBX in history to natively support proprietary IP terminals from the two biggest players
in VoIP: Nortel and Cisco. UNISTIM support is totally experimental and does not yet
work well enough to put it into production, but the fact that somebody has taken the
trouble to implement it demonstrates the power of the Asterisk platform.

Codecs
Codecs are generally understood to be various mathematical models used to digitally
encode (and compress) analog audio information. Many of these models take into ac-
count the human brain’s ability to form an impression from incomplete information.

* RFC 3435 obsoletes RFC 2705.

† Cisco has recently announced that it will be migrating toward SIP in its future products.

Codecs | 625

We’ve all seen optical illusions; likewise, voice-compression algorithms take advantage
of our tendency to interpret what we believe we should hear, rather than what we
actually hear.‡ The purpose of the various encoding algorithms is to strike a balance
between efficiency and quality.§

Originally, the term codec referred to a COder/DECoder: a device that converts between
analog and digital. Now, the term seems to relate more to COmpression/
DECompression.

Before we dig into the individual codecs, take a look at Table B-1—it’s a quick reference
that you may want to refer back to.

Table B-1. Codec quick reference

Codec Data bitrate (Kbps) License required?

G.711 64 Kbps No

G.726 16, 24, 32, or 40 Kbps No

G.729A 8 Kbps Yes (no for pass-through)

GSM 13 Kbps No

iLBC 13.3 Kbps (30-ms frames) or 15.2 Kbps (20-ms frames) No

Speex Variable (between 2.15 and 22.4 Kbps) No

G.722 64 Kbps No

G.711
G.711 is the fundamental codec of the PSTN. In fact, if someone refers to PCM (dis-
cussed in Appendix A) with respect to a telephone network, you are allowed to think
of G.711. Two companding methods are used: μlaw in North America and alaw in the
rest of the world. Either one delivers an 8-bit word transmitted 8,000 times per second.
If you do the math, you will see that this requires 64,000 bits to be transmitted per
second.

Many people will tell you that G.711 is an uncompressed codec. This is not exactly
true, as companding is considered a form of compression. What is true is that G.711
is the base codec from which all of the others are derived.

‡ Read the following: “Aoccdrnig to rsereach at an Elingsh uinervtisy, it deosn’t mttaer in waht oredr the ltteers
in a wrod are, the olny iprmoetnt tihng is taht frist and lsat ltteres are in the rghit pclae. The rset can be a
toatl mses and you can sitll raed it wouthit a porbelm. Tihs is bcuseae we do not raed ervey lteter by istlef,
but the wrod as a wlohe.” (The source of this quote is unknown.) We do the same thing with sound: if there
is enough information, our brains can fill in the gaps.

§ On an audio CD, quality is far more important than saving bandwidth, so the audio is quantized at 16 bits
(times 2, as it’s stereo), with a sampling rate of 44,100 Hz. Considering that the CD was invented in the late
1970s, this was quite impressive stuff back then. The telephone network does not require this level of quality
(and needs to optimize bandwidth), so telephone signals are encoded using 8 bits, at a sampling frequency
of 8,000 Hz.

626 | Appendix B: Protocols for VoIP

G.711 imposes minimal (almost zero) load on the CPU.

G.726
This codec has been around for some time (it used to be G.721, which is now obsolete),
and it is one of the original compressed codecs. It is also known as Adaptive Differential
Pulse-Code Modulation (ADPCM), and it can run at several bitrates. The most com-
mon rates are 16 Kbps, 24 Kbps, and 32 Kbps. As of this writing, Asterisk supports
only the ADPCM-32 rate, which is far and away the most popular rate for this codec.

G.726 offers nearly identical quality to G.711, but it uses only half the bandwidth. This
is possible because rather than sending the result of the quantization measurement, it
sends only enough information to describe the difference between the current sample
and the previous one. G.726 fell from favor in the 1990s due to its inability to carry
modem and fax signals, but because of its bandwidth/CPU performance ratio it is now
making a comeback. G.726 is especially attractive because it does not require a lot of
computational work from the system.

G.729A
Considering how little bandwidth it uses, G.729A delivers impressive sound quality. It
does this through the use of Conjugate-Structure Algebraic-Code-Excited Linear Pre-
diction (CS-ACELP).‖ Because of patents, you can’t use G.729A without paying a li-
censing fee; however, it is extremely popular and is well supported on many different
phones and systems.

To achieve its impressive compression ratio, this codec requires an equally impressive
amount of effort from the CPU. In an Asterisk system, the use of heavily compressed
codecs will quickly bog down the CPU.

G.729A uses 8 Kbps of bandwidth.

GSM
The Global System for Mobile Communications (GSM) codec is the darling of Asterisk.
This codec does not come encumbered with a licensing requirement the way that
G.729A does, and it offers outstanding performance with respect to the demand it
places on the CPU. The sound quality is generally considered to be of a lesser grade

‖ CELP is a popular method of compressing speech. By mathematically modeling the various ways humans
make sounds, a codebook of sounds can be built. Rather than sending an actual sampled sound, a code
corresponding to the sound is determined. CELP codecs take this information (which by itself would produce
a very robot-like sound) and attempt to add the personality back in. (Of course, there is much more to it than
that.) Jason Woodward’s Speech Coding page (http://www-mobile.ecs.soton.ac.uk/speech_codecs/) is a source
of helpful information for the non-mathematically inclined. This is fairly heavy stuff, though, so wear your
thinking cap.

Codecs | 627

http://www-mobile.ecs.soton.ac.uk/speech_codecs/

than that produced by G.729A, but much of this comes down to personal opinion; be
sure to try it out. GSM operates at 13 Kbps.

iLBC
The Internet Low Bitrate Codec (iLBC) provides an attractive mix of low bandwidth
usage and quality, and it is especially well suited to sustaining reasonable quality on
lossy network links.

Naturally, Asterisk supports it (and support elsewhere is growing), but it is not as
popular as the ITU codecs, and thus may not be compatible with common IP telephones
and commercial VoIP systems. IETF RFCs 3951 and 3952 have been published in sup-
port of iLBC, and iLBC is on the IETF standards track.

Because iLBC uses complex algorithms to achieve its high levels of compression, it has
a fairly high CPU cost in Asterisk.

While you are allowed to use iLBC without paying royalty fees, the holder of the iLBC
patent, Global IP Sound (GIPS), wants to know whenever you use it in a commercial
application. The way you do that is by downloading and printing a copy of the iLBC
license, signing it, and returning it to GIPS. If you want to read about iLBC and its
license, you can do so at http://www.ilbcfreeware.org.

iLBC operates at 13.3 Kbps (30-ms frames) and 15.2 Kbps (20-ms frames).

Speex
Speex is a variable bitrate (VBR) codec, which means that it is able to dynamically
modify its bitrate to respond to changing network conditions. It is offered in both
narrowband and wideband versions, depending on whether you want telephone quality
or better.

Speex is a totally free codec, licensed under the Xiph.org variant of the BSD license.

An Internet draft for Speex is available, and more information about Speex can be found
at its home page (http://www.speex.org).

Speex can operate at anywhere from 2.15 to 22.4 Kbps, due to its variable bitrate.

G.722
G.722 is an ITU-T standard codec that was approved in 1988. The G.722 codec pro-
duces a much higher-quality voice in the same space as G.711 (64 Kbps) and is starting
to become popular among VoIP device manufacturers. The patents for G.722 have
expired, so it is freely available. If you have access to devices that support G.722, you’ll
be impressed by the quality improvement.

628 | Appendix B: Protocols for VoIP

http://www.ilbcfreeware.org
http://www.speex.org

MP3
Sure thing, MP3 is a codec. Specifically, it’s the Moving Picture Experts Group Audio
Layer 3 Encoding Standard.# With a name like that, it’s no wonder we call it MP3! In
Asterisk, the MP3 codec is typically used for music on hold (MoH). MP3 is not a tel-
ephony codec, as it is optimized for music, not voice; nevertheless, it’s very popular
with VoIP telephony systems as a method of delivering MoH.

Be aware that music cannot usually be broadcast without a license.
Many people assume that there is no legal problem with connecting a
radio station or CD as a music on hold source, but this is very rarely true.

Quality of Service
Quality of Service, or QoS as it’s more popularly termed, refers to the challenge of
delivering a time-sensitive stream of data across a network that was designed to deliver
data in an ad hoc, best-effort sort of way. Although there is no hard rule, it is generally
accepted that if you can deliver the sound produced by the speaker to the listener’s ear
within 150 milliseconds, a normal flow of conversation is possible. When delay exceeds
300 milliseconds, it becomes difficult to avoid interrupting each other. Beyond 500
milliseconds, normal conversation becomes increasingly awkward and frustrating.

In addition to getting it there on time, it is also essential to ensure that the transmitted
information arrives intact. Too many lost packets will prevent the far end from com-
pletely reproducing the sampled audio, and gaps in the data will be heard as static or,
in severe cases, entire missed words or sentences. Even packet loss of 5 percent can
severely impede a VoIP network.

TCP, UDP, and SCTP
If you’re going to send data on an IP-based network, it will be transported using one
of the three transport protocols discussed here.

Transmission Control Protocol

The Transmission Control Protocol (TCP) is almost never used for VoIP, for while it
does have mechanisms in place to ensure delivery, it is not inherently in any hurry to
do so. Unless there is an extremely low-latency interconnection between the two end-
points, TCP will tend to cause more problems than it solves.

#If you want to learn all about MPEG audio, do a web search for Davis Pan’s paper titled “A Tutorial on
MPEG/Audio Compression.”

Quality of Service | 629

The purpose of TCP is to guarantee the delivery of packets. In order to do this, several
mechanisms are implemented, such as packet numbering (for reconstructing blocks of
data), delivery acknowledgment, and re-requesting of lost packets. In the world of VoIP,
getting the packets to the endpoint quickly is paramount—but 20 years of cellular
telephony has trained us to tolerate a few lost packets.*

TCP’s high processing overhead, state management, and acknowledgment of arrival
work well for transmitting large amounts of data, but they simply aren’t efficient
enough for real-time media communications.

User Datagram Protocol

Unlike TCP, the User Datagram Protocol (UDP) does not offer any sort of delivery
guarantee. Packets are placed on the wire as quickly as possible and released into the
world to find their way to their final destinations, with no word back as to whether
they got there or not. Since UDP itself does not offer any kind of guarantee that the
data will arrive,† it achieves its efficiency by spending very little effort on what it is
transporting.

TCP is a more “socially responsible” protocol because the bandwidth
is more evenly distributed to clients connecting to a server. As the per-
centage of UDP traffic increases, it is possible that a network could be-
come overwhelmed.

Stream Control Transmission Protocol

Approved by the IETF as a proposed standard in RFC 2960, SCTP is a relatively new
transport protocol. From the ground up, it was designed to address the shortcomings
of both TCP and UDP, especially as related to the types of services that used to be
delivered over circuit-switched telephony networks.

Some of the goals of SCTP were:

• Better congestion-avoidance techniques (specifically, avoiding denial of service
attacks)

• Strict sequencing of data delivery

• Lower latency for improved real-time transmissions

* The order of arrival is important in voice communication, because the audio will be processed and sent to
the caller ASAP. However, with a jitter buffer the order of arrival isn’t as important, as it provides a small
window of time in which the packets can be reordered before being passed on to the caller.

† Keep in mind that the upper-layer protocols or applications can implement their own packet-
acknowledgment systems.

630 | Appendix B: Protocols for VoIP

By addressing the major shortcomings of TCP and UDP, SCTP’s developers hoped to
create a robust protocol for the transmission of SS7 and other types of PSTN signaling
over an IP-based network.

Differentiated Service
Differentiated service, or DiffServ, is not so much a QoS mechanism as a method by
which traffic can be flagged and given specific treatment. Obviously, DiffServ can help
to provide QoS by allowing certain types of packets to take precedence over others.
While this will certainly increase the chance of a VoIP packet passing quickly through
each link, it does not guarantee anything.

Guaranteed Service
The ultimate guarantee of QoS is provided by the PSTN. For each conversation, a 64-
Kbps channel is completely dedicated to the call; the bandwidth is guaranteed. Simi-
larly, protocols that offer guaranteed service can ensure that a required amount of
bandwidth is dedicated to the connection being served. As with any packetized net-
working technology, these mechanisms generally operate best when traffic is below
maximum levels. When a connection approaches its limits, it is next to impossible to
eliminate degradation.

MPLS

Multiprotocol Label Switching (MPLS) is a method for engineering network traffic
patterns independent of layer-3 routing tables. The protocol works by assigning short
labels (MPLS frames) to network packets, which routers then use to forward the packets
to the MPLS egress router, and ultimately to their final destinations. Traditionally,
routers make an independent forwarding decision based on an IP table lookup at each
hop in the network. In an MPLS network, this lookup is performed only once, when
the packet enters the MPLS cloud at the ingress router. The packet is then assigned to
a stream, referred to as a Label Switched Path (LSP), and identified by a label. The label
is used as a lookup index in the MPLS forwarding table, and the packet traverses the
LSP independent of layer-3 routing decisions. This allows the administrators of large
networks to fine-tune routing decisions and make the best use of network resources.
Additionally, information can be associated with a label to prioritize packet forwarding.

RSVP

MPLS contains no method to dynamically establish LSPs, but you can use the Reser-
vation Protocol (RSVP) with MPLS. RSVP is a signaling protocol used to simplify the
establishment of LSPs and to report problems to the MPLS ingress router. The advant-
age of using RSVP in conjunction with MPLS is the reduction in administrative over-
head. If you don’t use RSVP with MPLS, you’ll have to go to every single router and
configure the labels and each path manually. Using RSVP makes the network more

Quality of Service | 631

dynamic by distributing control of labels to the routers. This enables the network to
become more responsive to changing conditions, because it can be set up to change the
paths based on certain conditions, such as a certain path going down (perhaps due to
a faulty router). The configuration within the router will then be able to use RSVP to
distribute new labels to the routers in the MPLS network, with no (or minimal) human
intervention.

Best Effort
The simplest, least expensive approach to QoS is not to provide it at all—the “best
effort” method. While this might sound like a bad idea, it can in fact work very well.
Any VoIP call that traverses the public Internet is almost certain to be best-effort, as
QoS mechanisms are not yet common in this environment.

Echo
You may not realize it, but echo has been a problem in the PSTN for as long as there
have been telephones. You probably haven’t often experienced it, because the telecom
industry has spent large sums of money designing expensive echo-cancellation devices.
Also, when the endpoints are physically close—e.g., when you phone your neighbor
down the street—the delay is so minimal that anything you transmit will be returned
back so quickly that it will be indistinguishable from the sidetone‡ normally occurring
in your telephone. So, the fact of the matter is that there is echo on your local calls
much of the time, but you cannot perceive it with a regular telephone because it happens
almost instantaneously. It may help you to understand this if you consider that when
you stand in a room and speak, everything you say echos back to you off of the walls
and ceiling (and possibly the floor, if it’s not carpeted), but this does not cause any
problems because it happens so fast you do not perceive a delay.

The reason that VoIP telephone systems such as Asterisk can experience echo is that
the addition of a VoIP telephone introduces a slight delay. It takes a few milliseconds
for the packets to travel from your phone to the server (and vice versa). Suddenly there
is an appreciable delay, which allows you to perceive the echo that was always there,
but never really noticeable.

Why Echo Occurs
Before we discuss measures to deal with echo, let’s first take a look at why echo occurs
in the analog world.

‡ As discussed in Appendix A, sidetone is a function in your telephone that returns part of what you say back
to your own ear, to provide a more natural-sounding conversation.

632 | Appendix B: Protocols for VoIP

If you hear echo, it’s not your phone that’s causing the problem; it’s the far end of the
circuit. Conversely, echo heard on the far end is being generated at your end. Echo can
be caused by the fact that an analog local loop circuit has to transmit and receive on
the same pair of wires. If this circuit is not electrically balanced, or if a low-quality
telephone is connected to the end of the circuit, signals it receives can be reflected back,
becoming part of the return transmission. When this reflected circuit gets back to you,
you will hear the words you spoke just moments before. Humans will perceive an echo
beyond a certain amount of delay (possibly as low as 20 milliseconds for some people).
This echo will become annoying as the delay increases.

In a cheap telephone, it is possible for echo to be generated in the body of the handset.
This is why some cheap IP phones can cause echo even when the entire end-to-end
connection does not contain an analog circuit.§ In the VoIP world, echo is usually
introduced either by an analog circuit somewhere in the connection, or by a cheap
endpoint reflecting back some of the signal (e.g., feedback through a hands-free or
poorly designed handset or headset). The greater the latency on the network, the more
annoying this echo can be.

Managing Echo on DAHDI Channels
You can enable and disable echo cancellation for DAHDI interfaces in the
chan_dahdi.conf file. The default configuration enables echo cancellation with echocan
cel=yes. echocancelwhenbridged=yes will enable echo cancellation for TDM bridged
calls. While bridged calls should not require echo cancellation, this may improve call
quality.

When echo cancellation is enabled, the echo canceller learns of echo on the line by
listening for it throughout the duration of the call. Consequently, echo may be heard
at the beginning of a call and lessen after a period of time. To avoid this situation, you
can employ a method called echo training, which will mute the line briefly at the be-
ginning of a call, and send a tone from which the amount of echo on the line can be
determined. This allows Asterisk to deal with the echo more quickly. Echo training can
be enabled with echotraining=yes.

Hardware Echo Cancellation
The most effective way to handle echo cancellation is not in software. If you are plan-
ning on deploying a good-quality system, spend the extra money and purchase cards
for the system that have onboard hardware echo cancellation. These cards are a bit
more expensive, but they quickly pay for themselves in terms of reduced load on the
CPU, as well as reduced load on you due to fewer user complaints.

§ Actually, the handset in any phone, be it traditional or VoIP, is an analog connection.

Echo | 633

Asterisk and VoIP
It should come as no surprise that Asterisk loves to talk VoIP. But in order to do so,
Asterisk needs to know which function it is to perform: that of client, server, or both.
One of the most complex and often confusing concepts in Asterisk is the configuration
of inbound and outbound authentication.

Users and Peers and Friends—Oh My!
Connections that authenticate to us, or that we authenticate, are defined in the
iax.conf and sip.conf files as users and peers. Connections that do both may be defined
as friends. When determining which way the authentication is occurring, it is always
important to view the direction of the channels from Asterisk’s viewpoint, as connec-
tions are accepted and created by the Asterisk server.

Users

A connection defined as a user is any system/user/endpoint that we allow to connect
to us. Keep in mind that a user definition does not provide a method with which to call
that user; the user type is used simply to create a channel for incoming calls.‖ A user
definition will require a context name to be defined to indicate where the incoming
authenticated call will enter the dialplan (in extensions.conf).

Peers

A connection defined as a peer type is an outgoing connection. Think of it this way:
users place calls to us, while we place calls to our peers. Since peers do not place calls
to us, a peer definition does not typically require the configuration of a context name.
However, there is one exception: if calls that originate from your system are returned
to your system in a loopback, the incoming calls (which originate from a SIP proxy,
not a user agent) will be matched on the peer definition. The default context should
handle these incoming calls appropriately, although it’s preferable for contexts to be
defined for them on a per-peer basis.

In order to know where to send a call to a host, we must know its location in relation
to the Internet (that is, its IP address). The location of a peer may be defined either
statically or dynamically. A dynamic peer is configured with host=dynamic under the
peer definition heading. Because the IP address of a dynamic peer may change
constantly, it must register with the Asterisk box so calls can successfully be routed to

‖ In SIP, this is not always the case. If the endpoint is a SIP proxy service (as opposed to a user agent), Asterisk
will authenticate based on the peer definition, matching the IP address and port in the Contact field of the
SIP header against the hostname (and port, if specified) defined for the peer (if the port is not specified, the
one defined in the [general] section will be used).

634 | Appendix B: Protocols for VoIP

it. If the remote end is another Asterisk box, the use of a register statement is required,
as discussed in the next section.

Friends

Defining a type as a friend is a shortcut for defining it as both a user and a peer.
However, connections that are both users and peers aren’t always defined this way,
because defining each direction of call creation individually (using both a user and a
peer definition) allows more granularity and control over the individual connections.

Figure B-2 shows the flow of authentication control in relation to Asterisk.

Figure B-2. Call origination relationships of users, peers, and friends to Asterisk

register Statements
A register statement is a way of telling a remote peer where your Asterisk box is in
relation to the Internet. Asterisk uses register statements to authenticate to remote
providers when you are employing a dynamic IP address, or when the provider does
not have your IP address on record. There are situations when a register statement is
not required, but to demonstrate when a register statement is required, let’s look at
an example.

Say you have a remote peer that is providing DID services to you. When someone calls
the number +1-800-555-1212, the call goes over the physical PSTN network to your
service provider and into its Asterisk server, possibly over its T1 connection. This call
is then routed to your Asterisk server via the Internet.

Asterisk and VoIP | 635

Your service provider will have a definition in either its sip.conf or iax.conf configuration
file (depending on whether you are connecting with the SIP or IAX protocol, respec-
tively) for your Asterisk server. If you only receive calls from this provider, you will
define it as a user (if it is another Asterisk system, you might be defined in its system
as a peer).

Now let’s say that your box is on your home Internet connection, with a dynamic IP
address. Your service provider has a static IP address (or perhaps a fully qualified do-
main name), which you place in your configuration file. Since you have a dynamic
address, your service provider specifies host=dynamic in its configuration file. In order
to know where to route your +1-800-555-1212 call, your service provider needs to know
where you are located in relation to the Internet. This is where the register statement
comes into use.

The register statement is a way of authenticating and telling your peer where you are.
In the [general] section of your configuration file, you place a statement similar to this:

register => username:secret@my_remote_peer

You can verify a successful registration with the use of the iax2 show registry and sip
show registry commands at the Asterisk console.

VoIP Security
We can barely scratch the surface of the complex matter of VoIP security in this ap-
pendix; therefore, before we dig in, we want to steer you in the direction of the VoIP
Security Alliance (http://www.voipsa.org). This fantastic resource contains an excellent
mailing list, white papers, howtos, and a general compendium of all matters relating
to VoIP security. Just as email has been abused by the selfish and criminal, so too will
voice. The fine folks at VoIPSA are doing what they can to ensure that we address these
challenges now, before they become an epidemic. In the realm of books on the subject,
we recommend the most excellent Hacking Exposed VoIP by David Endler and Mark
Collier (McGraw-Hill Osborne Media). If you are responsible for deploying any VoIP
system, you need to be aware of this stuff.

Spam over Internet Telephony (SPIT)
We don’t want to think about this, but we know it’s coming. The simple fact is that
there are people in this world who lack certain social skills, and that coupled with a
kind of mindless greed, means that these folks think nothing of flooding the Internet
with massive volumes of email. These same types of characters will think little of doing
the same with voice. We already know what it’s like to get inundated with telemarketing
calls; try to imagine what might happen when those telemarketers realize they can send
voice spam at almost no cost. Regulation has not stopped email spam, and it will prob-
ably not stop voice spam, so it will be up to us to prevent it.

636 | Appendix B: Protocols for VoIP

http://www.voipsa.org

Encrypting Audio with Secure RTP
If you can sniff the packets coming out of an Asterisk system, you can extract the audio
from the RTP streams. This data can be fed offline to a speech processing system, which
can listen for keywords such as “credit card number” or “PIN” and present the data it
gathers to someone who has an interest in it. The stream can also be evaluated to see
if there are DTMF tones embedded in it, which is dangerous because many services ask
for passwords and credit card information to be input via the dialpad. In business,
strategic information could also be gleaned from captured audio.

Using Secure RTP can combat this problem by encrypting the RTP streams. More in-
formation about SRTP is available in “Encrypting SIP calls” on page 150.

Spoofing
In the traditional telephone network, it is very difficult to successfully adopt someone
else’s identity. Your activities can (and will) be traced back to you, and the authorities
will quickly put an end to the fun. In the world of IP, it is much easier to remain
anonymous. As such, it is no stretch to imagine that there are hordes of enterprising
criminals out there who will be only too happy to make calls to your credit card com-
pany or bank, pretending to be you. If a trusted mechanism is not discovered to combat
spoofing, we will quickly learn that we cannot trust VoIP calls.

What Can Be Done?
The first thing to keep in mind when considering security on a VoIP system is that VoIP
is based on network protocols, and needs be evaluated from that perspective. This is
not to say that traditional telecom security should be ignored, but we need to pay
attention to the underlying network.

Basic network security

One of the most effective things that can be done is to secure access to the voice network.
The use of firewalls and VLANs are examples of how this can be achieved. By default,
the voice network should be accessible only to those things that have a need. For ex-
ample, if you do not have any softphones in use, do not allow client PCs access to the
voice network.

Unless there is a need to have voice and data on the same
network, there may be some value in keeping them separate (this can have other benefits
as well, such as simplifying QoS configurations). It is not unheard of to build the in-
ternal voice network on a totally separate LAN, using existing CAT3 cabling and ter-
minating on inexpensive network switches. This configuration can even be less
expensive.

Segregating voice and data traffic.

VoIP Security | 637

Placing your VoIP system in a demilitarized zone (DMZ) can provide an additional
layer of protection for your LAN, while still allowing connectivity for relevant appli-
cations. Should your VoIP system be compromised, it will be much more difficult to
use it to launch an attack on the rest of your network, since it is not trusted. Regardless
of whether you deploy within a DMZ, any abnormal traffic coming out of the system
should be considered suspect.

Hardening your Asterisk server is critical. Not only are there perform-
ance benefits to doing this (running nonessential processes can eat up valuable CPU
and RAM resources), but the elimination of anything not required will reduce the
chance that an exploited vulnerability in the operating system can be used to gain access
and launch an attack on other parts of your network.

Running Asterisk as non-root is an essential part of system hardening. See Chapter 3
for more information.

Encryption

Asterisk 1.8 includes the ability to use both SIP TLS for the encryption of signaling and
SRTP for the encryption of the media between endpoints. More information about
encrypting SIP calls can be found in “Encrypting SIP calls” on page 150. Asterisk has
also supported encryption between endpoints using IAX2 since version 1.4). Informa-
tion about enabling encryption across IAX2 trunks can be found in “IAX encryp-
tion” on page 154.

Physical security

Physical security should not be ignored. All terminating equipment (such as switches,
routers, and the PBX itself) should be secured in an environment that can only be
accessed by authorized persons. At the user end (such as under desks), it can be more
difficult to deliver physical security, but if the network responds only to devices that it
is familiar with (e.g., restricting DHCP to devices whose MAC addresses are known),
the risk of unauthorized intrusions can be mitigated somewhat.

Conclusion
Over the last couple of years the telecom industry has embraced VoIP, which sets
Asterisk up to do quite well. While Asterisk has been doing VoIP for years (well over
a decade now), the integration of VoIP and traditional telephony into a single, powerful
platform has made Asterisk a major player in the telecommunications industry.

DMZ.

Server hardening.

638 | Appendix B: Protocols for VoIP

APPENDIX C

Preparing a System for Asterisk

Very early on, I knew that someday in some “perfect”
future out there over the horizon, it would be common-
place for computers to handle all of the necessary pro-
cessing functionality internally, making the necessary
external hardware to connect up to telecom interfaces

very inexpensive and, in some cases, trivial.

—Jim Dixon, “The History of Zapata Telephony and
How It Relates to the Asterisk PBX”

By this point, you must be anxious to get your Asterisk system up and running. For a
mission-critical deployment, however, some thought must be given to the environment
in which the Asterisk system will run. Make no mistake: Asterisk, being a very flexible
piece of software, will happily and successfully install on nearly any Linux platform
you can conceive of, and several non-Linux platforms as well.* However, to arm you
with an understanding of the type of operating environment Asterisk will really thrive
in, this appendix will discuss issues you need to be aware of in order to deliver a reliable,
well-designed system.

In terms of its resource requirements, Asterisk’s needs are similar to those of an em-
bedded, real-time application. This is due in large part to its need to have priority access
to the processor and system buses. It is, therefore, imperative that any functions on the
system not directly related to the call-processing tasks of Asterisk be run at a low pri-
ority, if at all. On smaller systems and hobby systems, this might not be as much of an
issue. However, on high-capacity systems, performance shortcomings will manifest as
audio quality problems for users, often experienced as echo, static, and the like. The
symptoms will resemble those experienced on a cell phone when going out of range,

* People have successfully compiled and run Asterisk on WRAP boards, Linksys WRT54G routers, Soekris
systems, Pentium 100s, PDAs, Apple Macs, Sun SPARCs, laptops, and more. Of course, whether you would
want to put such a system into production is another matter entirely. (Actually, the AstLinux distribution,
by Kristian Kielhofner, runs very well indeed on the Soekris 4801 board. Once you’ve grasped the basics of
Asterisk, this is something worth looking into further. Check out http://www.astlinux.org.)

639

http://www.astlinux.org

although the underlying causes will be different. As loads increase, the system will have
increasing difficulty maintaining connections. For a PBX, such a situation is nothing
short of disastrous, so careful attention to performance requirements is a critical con-
sideration during the platform selection process.

Table C-1 lists some very basic guidelines that you’ll want to keep in mind when plan-
ning your system. The next section takes a close look at the various design and imple-
mentation issues that will affect its performance. Keep in mind that no guide can tell
you exactly how many calls a server can handle. There are an incredibly high number
of variables that can affect the answer to the question of how many calls Asterisk can
handle. The only way to figure out how many calls a server can handle is to test it
yourself in your own environment.

The size of an Asterisk system is actually not dictated by the number of
users or sets, but rather by the number of simultaneous calls it will be
expected to support. These numbers are very conservative, so feel free
to experiment and see what works for you.

Table C-1. System requirement guidelines

Purpose Number of channels Minimum recommended

Hobby system No more than 5 400-MHz x86, 256 MB RAM

SOHO system (small office/home office—
less than three lines and five sets)

5 to 10 1-GHz x86, 512 MB RAM

Small business system Up to 25 3-GHz x86, 1 GB RAM

Medium to large system More than 25 Dual CPUs, possibly also multiple servers in a distributed
architecture

With large Asterisk installations, it is common to deploy functionality across several
servers. One or more central units will be dedicated to call processing; these will be
complemented by one or more ancillary servers handling peripherals (such as a data-
base system, a voicemail system, a conferencing system, a management system, a web
interface, a firewall, and so on). As is true in most Linux environments, Asterisk is well
suited to growing with your needs: a small system that used to be able to handle all
your call-processing and peripheral tasks can be distributed among several servers when
increased demands exceed its abilities. Flexibility is a key reason why Asterisk is ex-
tremely cost-effective for rapidly growing businesses; there is no effective maximum or
minimum size to consider when budgeting the initial purchase. While some scalability
is possible with most telephone systems, we have yet to hear of one that can scale as
flexibly as Asterisk. Having said that, distributed Asterisk systems are not simple to
design—this is not a task for someone new to Asterisk.

640 | Appendix C: Preparing a System for Asterisk

If you are sure that you need to set up a distributed Asterisk system, you
will want to study the DUNDi protocol, the Asterisk Realtime Archi-
tecture (ARA), func_odbc, and the various other database tools at your
disposal. This will help you to abstract the data your system requires
from the dialplan logic your Asterisk systems will utilize, creating a ge-
neric set of dialplan logic that can be used across multiple boxes. This
in turn will enable you to scale more simply by adding additional boxes
to the system. However, this is far beyond the scope of this book and
will be left as an exercise for the reader. If you want a teaser of some
tools you can use for scaling, see Chapter 22.

Server Hardware Selection
The selection of a server is both simple and complicated: simple because, really, any
x86-based platform will suffice, but complicated because the reliable performance of
your system will depend on the care that is put into the platform design. When selecting
your hardware, you must carefully consider the overall design of your system and what
functionality you need to support. This will help you determine your requirements for
the CPU, motherboard, and power supply. If you are simply setting up your first
Asterisk system for the purpose of learning, you can safely ignore the information in
this section. If, however, you are building a mission-critical system suitable for deploy-
ment, these are issues that require some thought.

Performance Issues
Among other considerations, when selecting the hardware for an Asterisk installation
you must bear in mind this critical question: how powerful must the system be? This
is not an easy question to answer, because the manner in which the system is to be used
will play a big role in the resources it will consume. There is no such thing as an Asterisk
performance-engineering matrix, so you will need to understand how Asterisk uses the
system in order to make intelligent decisions about what kinds of resources will be
required. You will need to consider several factors, including:

The maximum number of concurrent connections the system will be expected to support
Each connection will increase the workload on the system.

The percentage of traffic that will require processor-intensive DSP of compressed codecs
(such as G.729 and GSM)

The digital signal processing (DSP) work that Asterisk performs in software can
have a staggering impact on the number of concurrent calls it will support. A system
that might happily handle 50 concurrent G.711 calls could be brought to its knees
by a request to conference together 10 G.729 compressed channels. We talk more
about G.729, GSM, G.711, and many other codecs in Appendix B.

Server Hardware Selection | 641

Whether conferencing will be provided, and what level of conferencing activity is expected
Will the system be used heavily? Conferencing requires the system to transcode
and mix each individual incoming audio stream into multiple outgoing streams.
Mixing multiple audio streams in near-real time can place a significant load on
the CPU.

Echo cancellation
Echo cancellation may be required on any call where a Public Switched Telephone
Network (PSTN) interface is involved. Since echo cancellation is a mathematical
function, the more of it the system has to perform, the higher the load on the CPU
will be.† Some telephony hardware vendors offer hardware-based echo cancella-
tion to remove the burden of this task from the host CPU. Echo cancellation is
discussed briefly later in this appendix and in more depth in Appendix B.

Dialplan scripting logic
Whenever Asterisk has to pass call control to an external program, there is a per-
formance penalty. As much logic as possible should be built into the dialplan. If
external scripts are used, they should be designed with performance and efficiency
as critical considerations.

As for the exact performance impact of these factors, it’s difficult to know for sure. The
effect of each is known in general terms, but an accurate performance calculator has
not yet been successfully defined. This is partly because the effect of each component
of the system is dependent on numerous variables, such as CPU power, motherboard
chipset and overall quality, total traffic load on the system, Linux kernel optimizations,
network traffic, number and type of PSTN interfaces, and PSTN traffic—not to mention
any non-Asterisk services the system is performing concurrently. Let’s take a look at
the effects of several key factors:

Codecs and transcoding
Simply put, a codec (short for coder/decoder, or compression/decompression) is a
set of mathematical rules that define how an analog waveform will be digitized.
The differences between the various codecs are due in large part to the levels of
compression and quality that they offer. Generally speaking, the more compression
that’s required, the more work the DSP must do to code or decode the signal.
Uncompressed codecs, therefore, put far less strain on the CPU (but require more
network bandwidth). Codec selection must strike a balance between bandwidth
and processor usage. For more on codecs, see Appendix B.

Central processing unit (and floating point unit)
A CPU is composed of several components, one of which is the floating point unit
(FPU). The speed of the CPU, coupled with the efficiency of its FPU, will play a
significant role in the number of concurrent connections a system can effectively

† Roughly 30 MHz of CPU power per channel.

642 | Appendix C: Preparing a System for Asterisk

support. The next section (“Choosing a Processor” on page 644) offers some
general guidelines for choosing a CPU that will meet the needs of your system.

Other processes running concurrently on the system
Being Unix-like, Linux is designed to be able to multitask several different pro-
cesses. A problem arises when one of those processes (such as Asterisk) demands
a very high level of responsiveness from the system. By default, Linux will distribute
resources fairly among every application that requests them. If you install a system
with many different server applications, those applications will each be allowed
their fair use of the CPU. Since Asterisk requires frequent high-priority access to
the CPU, it does not get along well with other applications, and if Asterisk must
coexist with other apps, the system may require special optimization. This pri-
marily involves the assignment of priorities to various applications in the system
and, during installation, careful attention to which applications are installed as
services.

Kernel optimizations
A kernel optimized for the performance of one specific application is something
that very few Linux distributions offer by default, and thus it requires some
thought. At the very minimum—whichever distribution you choose—you should
download and compile on your platform a fresh copy of the Linux kernel (available
from http://www.kernel.org). You may also be able to acquire patches that will yield
performance improvements, but these are considered hacks to the officially sup-
ported kernels.

IRQ latency
Interrupt request (IRQ) latency is basically the delay between the moment a pe-
ripheral card (such as a telephone interface card) requests the CPU to stop what
it’s doing and the moment when the CPU actually responds and is ready to handle
the task. Asterisk’s peripherals (especially the DAHDI cards) have historically been
intolerant of IRQ latency, though there have been extensive improvements in
DAHDI to help improve these issues. This is not due to any problem with the cards,
but rather is part of the nature of how a software-based TDM engine has to work.
If we buffer the TDM data and send it on the bus as a larger packet, that may be
more efficient from a system perspective, but it will create a delay between the time
the audio is received on the card, and when it is delivered to the CPU. This makes
real-time processing of TDM data next to impossible. In the design of DAHDI, it
was decided that sending the data every 1 ms would create the best tradeoff, but a
side effect of this is that any card in the system that uses the DAHDI interface is
going to ask the system to process an interrupt every millisecond. This used to be
a factor on older motherboards, but it has largely ceased to be a cause for concern.

Server Hardware Selection | 643

http://www.kernel.org

Linux has historically had problems with its ability to service IRQs
quickly; this problem has caused enough trouble for audio devel-
opers that several patches have been created to address this short-
coming. So far, there has been some mild controversy over how to
incorporate these patches into the Linux kernel.

Kernel version
Asterisk is officially supported on Linux version 2.6. Almost all of Asterisk itself
does not really care about the kernel version, but DAHDI requires 2.6.

Linux distribution
Linux distributions are many and varied. Asterisk should work on all of them.
Choose the one that you are most comfortable with.

Choosing a Processor
Since the performance demands of Asterisk will generally involve a large number of
math calculations, it is essential that you select a processor with a powerful FPU. The
signal processing that Asterisk performs can quickly demand a staggering quantity of
complex mathematical computations from the CPU. The efficiency with which these
tasks are carried out will be determined by the power of the FPU within the processor.

Actually naming a best processor for Asterisk in this book would fly in the face of
Moore’s Law. Even in the time between the authoring and publishing of this book,
processor speeds will undergo rapid improvements, as will Asterisk’s support for var-
ious architectures. Obviously, this is a good thing, but it also makes the giving of advice
on the topic a thankless task. Naturally, the more powerful the FPU is, the more
concurrent DSP tasks Asterisk will be able to handle, so that is the ultimate consider-
ation. When you are selecting a processor, the raw clock speed is only part of the
equation. How well it handles floating-point operations will be a key differentiator, as
DSP operations in Asterisk will place a large demand on that process.

Both Intel and AMD CPUs have powerful FPUs. Current-generation chips from either
of those manufacturers can be expected to perform well.‡

The obvious conclusion is that you should get the most powerful CPU your budget will
allow. However, don’t be too quick to buy the most expensive CPU out there. You’ll
need to keep the requirements of your system in mind; after all, a Formula 1 Ferrari is
ill-suited to the rigors of rush-hour traffic. Slower CPUs will often run cooler, so you
might be able to build a lower-powered, fanless Asterisk system for a small office, which
could work well in a dusty environment, for example.

‡ If you want to be completely up-to-the-minute on which CPUs are leading the performance race, surf on over
to Tom’s Hardware (http://www.tomshardware.com) or AnandTech (http://www.anandtech.com), where you
will find a wealth of information about both current and out-of-date CPUs, motherboards, and chipsets.

644 | Appendix C: Preparing a System for Asterisk

http://www.tomshardware.com
http://www.anandtech.com

To attempt to provide you with a frame of reference from which you can contemplate
your platform decision, we have chosen to define three sizes of Asterisk systems: small,
medium, and large.

Small systems

Small systems (up to 10 phones) are not immune to the performance requirements of
Asterisk, but the typical load that will be placed on a smaller system will generally fall
within the capabilities of a modern processor.

If you are building a small system from older components you have lying around, be
aware that the resulting system cannot be expected to perform at the same level as a
more powerful machine, and performance will begin to degrade under a much lighter
load. Hobby systems can be run successfully on very low-powered hardware, although
this is by no means recommended for anyone who is not a whiz at Linux performance
tuning.§

If you are setting up an Asterisk system for the purposes of learning, you will be able
to build a fully featured platform using a relatively low-powered CPU. The authors of
this book run several Asterisk lab systems with 433-MHz to 700-MHz Celeron pro-
cessors, but the workload of these systems is minimal (never more than two concurrent
calls).

AstLinux and Asterisk on OpenWRT
If you are really comfortable working with Linux on embedded platforms, you will want
to join the AstLinux mailing list and run Kristian Kielhofner’s creation, AstLinux, or
get yourself a Linksys WRT54GL and install Brian Capouch’s version of Asterisk for
that platform.

These projects strip Asterisk down to its essentials, and allow incredibly powerful PBX
applications to be deployed on very inexpensive hardware.

While both projects require a fair amount of knowledge and effort on your part, they
also share a huge coolness factor, are extremely popular, and are of excellent quality.

Medium systems

Medium-sized systems (from 10 to 50 phones) are where performance considerations
will be the most challenging to resolve. Generally, these systems will be deployed on
one or two servers only, and thus each machine will be required to handle more than
one specific task. As loads increase, the limits of the platform will become increasingly

§ Greg Boehnlein once compiled and ran Asterisk on a 133-MHz Pentium system, but that was mostly as an
experiment. Performance problems are far more likely in such conditions, and properly configuring such a
system requires an expert knowledge of Linux. We do not recommend running Asterisk on anything less
than a 500-MHz system (for a production system, 2 GHz might be a sensible minimum). Still, we think the
fact that Asterisk is so flexible is remarkable.

Server Hardware Selection | 645

stressed. Users may begin to perceive quality problems without realizing that the system
is not faulty in any way, but simply exceeding its capacity. These problems will get
progressively worse as more and more load is placed on the system, with the user ex-
perience degrading accordingly. It is critical that performance problems be identified
and addressed before users notice them.

Monitoring performance on these systems and quickly acting on any developing trends
is key to ensuring that a quality telephony platform is provided.

Large systems

Large systems (more than 120 channels) can be distributed across multiple systems and
sites, and performance concerns can be managed through the addition of machines.
Very large Asterisk systems have been created in this way.

Building a large system requires an advanced level of knowledge in many different
disciplines. We will not discuss it in detail in this book, other than to say that the issues
you’ll encounter will be similar to those encountered during any deployment of mul-
tiple servers handling a single, distributed task.

Choosing a Motherboard
Just to get any anticipation out of the way, we also cannot recommend specific moth-
erboards in this book. With new motherboards coming out on a weekly basis, any
recommendations we could make would be rendered moot by obsolescence before the
published copy hit the shelves. Not only that, but motherboards are like automobiles:
while they are all very similar in principle, the difference is in the details. And as Asterisk
is a performance application, the details matter.

What we will do, therefore, is give you some idea of the kinds of motherboards that
can be expected to work well with Asterisk, and the features that will make for a good
motherboard. The key is to have both stability and high performance. Here are some
guidelines to follow:

• The various system buses must provide the minimum possible latency. If you are
planning a PSTN connection using analog or PRI interfaces (discussed later in this
appendix), having DAHDI cards in the system will generate 1,000 interrupt re-
quests per second. Having devices on the bus that interfere with this process will
result in degradation of call quality. Chipsets from Intel (for Intel CPUs) and nVidia
nForce (for AMD CPUs) seem to score the best marks in this area. Review the
specific chipset of any motherboard you are evaluating to ensure that it does not
have known problems with IRQ latency.

• If you are running DAHDI cards in your system, you will want to ensure that your
BIOS allows you maximum control over IRQ assignment. As a rule, high-end
motherboards will offer far greater flexibility with respect to BIOS tweaking; value-
priced boards will generally offer very little control. This may be a moot point,

646 | Appendix C: Preparing a System for Asterisk

however, as APIC-enabled motherboards turn IRQ control over to the operating
system.

• Server-class motherboards generally implement a different PCI standard than
workstation-class motherboards. While there are many differences, the most ob-
vious and well known is that the two versions have different voltages. Depending
on which cards you purchase, you will need to know if you require 3.3V or 5V PCI
slots.‖ Figure C-1 shows the visual differences between 3.3V and 5V slots. Most
server motherboards will have both types, but workstations will typically have only
the 5V version.

There is some evidence that suggests connecting together two com-
pletely separate, single-CPU systems may provide far more benefits
than simply using two processors in the same machine. You not
only double your CPU power, but you also achieve a much better
level of redundancy at a similar cost to a single-chassis, dual-CPU
machine. Keep in mind, though, that a dual-server Asterisk solu-
tion will be more complex to design than a single-machine solution.

Figure C-1. Visual identification of PCI slots

• Consider using multiple processors, or processors with multiple cores. This will
provide an improvement in the system’s ability to handle multiple tasks. For
Asterisk, this will be of special benefit in the area of floating-point operations.

‖ With the advent of PCI-X and PCI-Express, it is becoming harder and harder to select a motherboard with
the correct type of slots. Be very certain that the motherboard you select has the correct type and quantity of
card slots for your hardware. Keep in mind that most companies that produce hardware cards for Asterisk
offer PCI and PCI-Express versions, but it’s still up to you to make sure they make sense in whatever
motherboard and chassis combination you choose.

Server Hardware Selection | 647

• If you need a modem, install an external unit that connects to a serial port. If you
must have an internal modem, you will need to ensure that it is not a so-called
“Win-modem”—it must be a completely self-sufficient unit (note that these are
very difficult, if not impossible, to find).

• Consider that with built-in networking, if you have a network component failure,
the entire motherboard will need to be replaced. On the other hand, if you install
a peripheral Network Interface Card (NIC), there may be an increased chance of
failure due to the extra mechanical connections involved. It can also be useful to
have separate network cards serving sets and users (the internal network) and VoIP
providers and external sites (the external network). NICs are cheap; we suggest
always having at least two.

• The stability and quality of your Asterisk system will be dependent on the com-
ponents you select for its architecture. Asterisk is a beast, and it expects to be fed
the best. As with just about anything, high cost is not always synonymous with
quality, but you will want to become a connoisseur of computer components.

Having said all that, we need to get back to the original point: Asterisk can and will
happily install on pretty much any system that will run Linux. The lab systems used to
write this book, for example, included everything from a Linksys WRT to a dual-Xeon
locomotive.# We have not experienced any performance or stability problems running
less than five concurrent telephone connections. For the purposes of learning, do not
be afraid to install Asterisk on whatever system you can scrounge up. When you are
ready to put your system into production, however, you will need to understand the
ramifications of the choices you make with respect to your hardware.

Power Supply Requirements
One often-overlooked component in a PC is the power supply (and the supply of
power). For a telecommunications system,* these components can play a significant
role in the quality of the user experience.

Computer power supplies

The power supply you select for your system will play a vital role in the stability of the
entire platform. Asterisk is not a particularly power-hungry application, but anything
relating to multimedia (whether it be telephony, professional audio, video, or the like)
is generally sensitive to power quality.

#OK, it wasn’t actually a locomotive, but it sure sounded like one. Does anyone know where to get quiet CPU
fans for Xeon processors? It’s getting too loud in the lab here.

* Or any system that is expected to process audio.

648 | Appendix C: Preparing a System for Asterisk

This oft-neglected component can turn an otherwise top-quality system into a poor
performer. By the same token, a top-notch power supply might enable an otherwise
cheap PC to perform like a champ.

The power supplied to a system must provide not only the energy a system needs to
perform its tasks but also stable, clean signal lines for all of the voltages the system
expects from it.

Spend the money and get a top-notch power supply (gamers are pretty passionate about
this sort of thing, so there are lots of choices out there).

Redundant power supplies

In a carrier-grade or high-availability environment, it is common to deploy servers that
use a redundant power supply. Essentially, this involves two completely independent
power supplies, either one of which is capable of meeting the power requirements of
the system.

If this is important to you, keep in mind that best practices suggest that to be properly
redundant, these power supplies should be connected to completely independent un-
interruptible power supplies (UPSs) that are in turn fed by totally separate electrical
circuits. In truly mission-critical environments (such as hospitals), even the main elec-
trical feeds into the building are redundant, and diesel-powered generators are on-site
to generate electricity during extended power failures (such as the one that hit North-
eastern North America on August 15, 2003).

Environment
Your system’s environment consists of all of those factors that are not actually part of
the server itself but nevertheless play a crucial role in the reliability and quality that can
be expected from the system. Electrical supplies, room temperature and humidity,
sources of interference, and security are all factors that should be contemplated.

Power Conditioning and Uninterruptible Power Supplies
When selecting the power sources for your system, consideration should be given not
only to the amount of power the system will use, but also to the manner in which this
power is delivered.

Power is not as simple as voltage coming from the outlet in the wall, and you should
never just plug a production system into whatever electrical source is near at hand.†

Giving some consideration to the supply of power to your system can ensure that you
provide a far more stable power environment, leading to a far more stable system.

† Okay, look, you can plug it in wherever you’d like, and it’ll probably work, but if your system has strange
stability problems, please give this section another read. Deal?

Environment | 649

One of the benefits of clean power is a reduction in heat, which means less stress on
components, leading to a longer life expectancy.

Properly grounded, conditioned power feeding a premium-quality power supply will
ensure a clean logic ground (a.k.a. 0-volt) reference‡ for the system and keep electrical
noise on the motherboard to a minimum. These are industry-standard best practices
for this type of equipment, which should not be neglected. A relatively simple way to
achieve this is through the use of a power-conditioned UPS.§

Power-conditioned UPSs

The UPS is well known for its role as a battery backup, but the power-conditioning
benefits that high-end UPS units also provide are less well understood.

Power conditioning can provide a valuable level of protection from the electrical envi-
ronment by regenerating clean power through an isolation transformer. A quality
power conditioner in your UPS will eliminate most electrical noise from the power feed
and help to ensure a rock-steady supply of power to your system.

Unfortunately, not all UPS units are created equal; many of the less expensive units do
not provide clean power. What’s worse, manufacturers of these devices will often
promise all kinds of protection from surges, spikes, overvoltages, and transients. While
such devices may protect your system from getting fried in an electrical storm, they will
not clean up the power being fed to your system, and thus will do nothing to contribute
to stability.

Make sure your UPS is power conditioned. If it doesn’t say exactly that, it isn’t.

Grounding
Voltage is defined as the difference in electrical potential between two points. When
considering a ground (which is basically nothing more than an electrical path to earth),
the common assumption is that it represents 0 volts. But if we do not define that 0V in
relation to something, we are in danger of assuming things that may not be so. If you
measure the voltage between two grounding references, you’ll often find that there is
a voltage potential between them. This voltage potential between grounding points can
be significant enough to cause logic errors—or even damage—in a system where more
than one path to ground is present.

‡ In electronic devices, a binary zero (0) is generally related to a 0-volt signal, while a binary one (1) can be
represented by many different voltages (commonly between 2.5 and 5 volts). The grounding reference that
the system will consider 0 volts is often referred to as the logic ground. A poorly grounded system might have
electrical potential on the logic ground to such a degree that the electronics mistake a binary zero for a binary
one. This can wreak havoc with the system’s ability to process instructions.

§ It is a common misconception that all UPSs provide clean power. This is not at all true.

650 | Appendix C: Preparing a System for Asterisk

One of the authors recalls once frying a sound card he was trying to
connect to a friend’s stereo system. Even though both the computer and
the stereo were in the same room, more than 6 volts of difference was
measured between the ground conductors of the two electrical outlets
they were plugged into! The wire between the stereo and the PC (by way
of the sound card) provided a path that the voltage eagerly followed,
thus frying a sound card that was not designed to handle that much
current on its signal leads. Connecting both the PC and the stereo to the
same outlet fixed the problem.

When considering electrical regulations, the purpose of a ground is primarily human
safety. In a computer, the ground is used as a 0V logic reference. An electrical system
that provides proper safety will not always provide a proper logic reference—in fact,
the goals of safety and power quality are sometimes in disagreement. Naturally, when
a choice must be made, safety has to take precedence.

Since the difference between a binary zero and a binary one is represen-
ted in computers by voltage differences of sometimes less than 3V, it is
entirely possible for unstable power conditions caused by poor ground-
ing or electrical noise to cause all kinds of intermittent system problems.
Some power and grounding advocates estimate that more than 80 per-
cent of unexplained computer glitches can be traced to power quality.
Most of us blame Microsoft.

Modern switching power supplies are somewhat isolated from power quality issues,
but any high-performance system will always benefit from a well-designed power en-
vironment. In mainframes, proprietary PBXs, and other expensive computing
platforms, the grounding of the system is never left to chance. The electronics and
frames of these systems are always provided with a dedicated ground that does not
depend on the safety grounds supplied with the electrical feed.

Regardless of how much you are willing to invest in grounding, when you specify the
electrical supply to any PBX, ensure that the electrical circuit is completely dedicated
to your system (as discussed in the next section) and that an insulated, isolated ground-
ing conductor is provided. This can be expensive to provision, but it will contribute
greatly to a quality power environment for your system.‖

‖ On a hobby system, this is probably too much to ask, but if you are planning on using Asterisk for anything
important, at least be sure to give it a fighting chance; don’t put anything like air conditioners, photocopiers,
laser printers, or motors on the same circuit. The strain such items place on your power supply will shorten
its life expectancy.

Environment | 651

It is also vital that each and every peripheral you connect to your system be connected
to the same electrical receptacle (or, more specifically, the same ground reference). This
will cut down on the occurrence of ground loops, which can cause anything from
buzzing and humming noises to damaged or destroyed equipment.

Electrical Circuits
If you’ve ever seen the lights dim when an electrical appliance kicks in, you’ve seen the
effect that a high-energy device can have on an electrical circuit. If you were to look at
the effects of a multitude of such devices, each drawing power in its own way, you
would see that the harmonically perfect 50- or 60-Hz sine wave you may think you’re
getting with your power is anything but. Harmonic noise is extremely common on
electrical circuits , and it can wreak havoc on sensitive electronic equipment. For a PBX,
these problems can manifest as audio problems, logic errors, and system instability.

Ideally, you should never install a server on an electrical circuit that is shared with other
devices. There should be only one outlet on the circuit, and you should connect only
your telephone system (and associated peripherals) to it. The wire (including the
ground) should be run unbroken directly back to the electrical panel. The grounding
conductor should be insulated and isolated. There are far too many stories of photo-
copiers, air conditioners, and vacuum cleaners wreaking havoc with sensitive electron-
ics to ignore this rule of thumb.

The electrical regulations in your area must always take precedence over
any ideas presented here. If in doubt, consult a power quality expert in
your area on how to ensure that you adhere to electrical regulations.
Remember, electrical regulations take into account the fact that human
safety is far more important than the safety of the equipment.

The Equipment Room
Environmental conditions can wreak havoc on systems, yet it is quite common to see
critical systems deployed with little or no attention given to these matters. When the
system is installed, everything works well, but after as little as six months, components
begin to fail. Talk to anyone with experience in maintaining servers and systems, and
it becomes obvious that attention to environmental factors can play a significant role
in the stability and reliability of systems.

Humidity

Simply put, humidity is water in the air. Water is a disaster for electronics for two main
reasons: 1) water is a catalyst for corrosion, and 2) water is conductive enough that it
can cause short circuits. Do not install any electronic equipment in areas of high hu-
midity without providing a means to remove the moisture.

652 | Appendix C: Preparing a System for Asterisk

Temperature

Heat is the enemy of electronics. The cooler you keep your system, the more reliably
it will perform, and the longer it will last. If you cannot provide a properly cooled room
for your system, at a minimum ensure that it is placed in a location that ensures a steady
supply of clean, cool air. Also, keep the temperature steady. Changes in temperature
can lead to condensation and other damaging changes.

Dust

An old adage in the computer industry holds that dust bunnies inside of a computer
are lucky. Let’s consider some of the realities of dust bunnies:

• Significant buildup of dust can restrict airflow inside the system, leading to in-
creased levels of heat.

• Dust can contain metal particles, which, in sufficient quantities, can contribute to
signal degradation or shorts on circuit boards.

Put critical servers in a filtered environment, and clean out dust bunnies regularly.

Security

Server security naturally involves protecting against network-originated intrusions, but
the environment also plays a part in the security of a system. Telephone equipment
should always be locked away, and only persons who have a need to access the equip-
ment should be allowed near it.

Telephony Hardware
If you are going to connect Asterisk to any traditional telecommunications equipment,
you will need the correct hardware. The hardware you require will be determined by
what it is you want to achieve.

Connecting to the PSTN
Asterisk allows you to seamlessly bridge circuit-switched telecommunications net-
works# with packet-switched data networks.*

#Often called TDM networks, due to the time division multiplexing used to carry traffic through the PSTN.

* Popularly called VoIP networks, although Voice over IP is not the only method of transmitting voice over
packet networks (Voice over Frame Relay was very popular in the late 1990s).

Telephony Hardware | 653

Because of Asterisk’s open architecture (and open source code), it is ultimately possible
to connect any standards-compliant interface hardware. The selection of open source
telephony interface boards is currently limited, but as interest in Asterisk grows, that
will rapidly change.† At the moment, one of the most popular and cost-effective ways
to connect to the PSTN is to use the interface cards that evolved from the work of the
Zapata Telephony Project (http://www.zapatatelephony.org), which has evolved into
DAHDI.

Analog interface cards

Unless you need a lot of channels (or a have lot of money to spend each month on
telecommunications facilities), chances are that your PSTN interface will consist of one
or more analog circuits, each of which will require a Foreign eXchange Office (FXO)
port.

Digium, the company that sponsors Asterisk development, produces analog interface
cards for Asterisk. Check out its website (http://www.digium.com) for details on its
extensive line of analog cards, including the venerable TDM400P, the latest TDM800P,
and the high-density TDM2400P. As an example, the TDM800P is an eight-port base
card that allows for the insertion of up to two daughter cards, which each deliver either
four FXO or four FXS ports.‡ The TDM800P can be purchased with these modules
preinstalled, and a hardware echo-canceller can be added as well.

Other companies that produce Asterisk-compatible analog cards include:

• Rhino (http://www.rhinoequipment.com)

• Sangoma (http://www.sangoma.com)

• Voicetronix (http://www.voicetronix.com)

• Pika Technologies (http://www.pikatechnologies.com)

Digital interface cards

If you require more than 10 circuits, or require digital connectivity, chances are you’re
going to be in the market for a T1 or E1 card.§ Bear in mind, though, that the monthly
charges for a digital PSTN circuit vary widely. In some places, as few as five circuits can
justify a digital circuit; in others, the technology may never be cost-justifiable. The more
competition there is in your area, the better chance you have of finding a good deal. Be
sure to shop around.

† The evolution of inexpensive, commodity-based telephony hardware is only slightly behind the telephony
software revolution. New companies spring up on a weekly basis, each one bringing new and inexpensive
standards-based devices into the market.

‡ FXS and FXO refer to the opposing ends of an analog circuit. Which one you need will be determined by
what you want to connect to. Appendix A discusses these in more detail.

§ T1 and E1 are digital telephony circuits. We discuss them further in Appendix A.

654 | Appendix C: Preparing a System for Asterisk

http://www.zapatatelephony.org
http://www.digium.com
http://www.rhinoequipment.com
http://www.sangoma.com
http://www.voicetronix.com
http://www.pikatechnologies.com

The Zapata Telephony Project originally produced a T1 card, the Tormenta, that is the
ancestor of most Asterisk-compatible T1 cards. The original Tormenta cards are now
considered obsolete, but they do still work with Asterisk.

Digium makes several different digital circuit interface cards. The features on the cards
are the same; the primary differences are whether they provide T1 or E1 interfaces, and
how many spans each card provides. Digium has been producing DAHDI cards for
Linux longer than anyone else; it was deeply involved with the development of DAHDI
(formerly Zaptel) on Linux, and has been the driving force behind DAHDI development
over the years.

Sangoma, which has been producing open source WAN cards for many years, added
Asterisk support for its T1/E1 cards a few years ago.‖ Rhino has had T1 hardware for
Asterisk for a while now, and there are many other companies that offer digital interface
cards for Asterisk as well.

Channel banks

A channel bank is loosely defined as a device that allows a digital circuit to be de-
multiplexed into several analog circuits (and vice versa). More specifically, a channel
bank lets you connect analog telephones and lines into a system across a T1 line.
Figure C-2 shows how a channel bank fits into a typical office phone system.

Figure C-2. One way you might connect a channel bank

Although they can be expensive to purchase, many people feel very strongly that the
only proper way to integrate analog circuits and devices into Asterisk is through a
channel bank. Whether that is true or not depends on a lot of factors, but if you have
the budget, they can be very useful.# You can often pick up used channel banks on

‖ It should be noted that a Sangoma Frame Relay card played a role in the original development of Asterisk
(see http://linuxdevices.com/articles/AT8678310302.html); Sangoma has a long history of supporting open
source WAN interfaces with Linux.

#We use channel banks to simulate a central office. One 24-port channel bank off an Asterisk system can
provide up to 24 analog lines—perfect for a classroom or lab.

Telephony Hardware | 655

http://linuxdevices.com/articles/AT8678310302.html

eBay. Look for units from Adtran and Carrier Access Corp. (Rhino makes great channel
banks, and they are very competitively priced, but they may be hard to find used.) Don’t
forget that you will need a T1 card in order to connect a channel bank to Asterisk.

Other types of PSTN interfaces

Many VoIP gateways exist that can be configured to provide access to PSTN circuits.
Generally speaking, these will be of most use in a smaller system (one or two lines).
They can also be very complicated to configure, as grasping the interaction between
the various networks and devices requires a solid understanding of both telephony and
VoIP fundamentals. For that reason, we will not discuss these devices in detail in this
book. They are worth looking into, however; popular units are made by Sipura, Grand-
stream, Digium, and many other companies.

Another way to connect to the PSTN is through the use of Basic Rate Interface (BRI)
ISDN circuits. BRI is a digital telecom standard that specifies a two-channel circuit that
can carry up to 144 Kbps of traffic.* Due to the variety of ways this technology has been
implemented, and a lack of testing equipment, we will not be discussing BRI in very
much detail in this book.

Connecting Exclusively to a Packet-Based Telephone Network
If you do not need to connect to the PSTN, Asterisk requires no hardware other than
a server with a Network Interface Card. However, you still may need to install the
DAHDI kernel modules, as DAHDI is required for using the MeetMe() application for
conferencing.

Echo Cancellation
One of the issues that can arise if you use analog interfaces on a VoIP system is echo.
Echo is simply what you say being reflected back to you a short time later. The echo is
caused by the far end, but you are the one that hears it. It is a little-known fact that
echo would be a massive problem in the PSTN were it not for the fact that the carriers
employ complex (and expensive) strategies to eliminate it. We suggest that you consider
adding echo-cancellation hardware to any card you purchase for use as a PSTN inter-
face. While Asterisk can do some work with echo in software, it does not provide nearly
enough power to deal with the problem. Also, echo cancellation in software imposes
a load on the processor; hardware echo cancellers built into the PSTN card take this
burden away from the CPU.

Hardware echo cancellation can add several hundred dollars to your equipment cost,
but if you are serious about having a quality system, invest the extra money now instead

* BRI is very rarely used in North America but is very popular in Europe, and Digium has produced the B410P
card to address this need.

656 | Appendix C: Preparing a System for Asterisk

of suffering later. Echo problems are not pleasant at all, and your users will hate the
system if they experience it.

Several software echo cancellers have recently become available. We have not had a
chance to evaluate any of them, but we know that they employ the same algorithms
the hardware echo cancellers do. If you have a recently purchased Digium analog card,
you can call Digium sales for a keycode to allow its latest software echo canceller to
work with your system.† There are other software options available for other types of
cards, but you will have to look into whether you have to purchase a license to use
them.‡ Keep in mind that there is a performance cost to using software echo cancellers.
They will place a measurable load on the CPU that needs to be taken into account when
you design a system using these technologies.

For more on the topic of echo cancellation, see Appendix B.

Types of Phones
We all know what a telephone is—but will it be the same five years from now? Part of
the revolution that Asterisk is contributing to is the evolution of the telephone, from a
simple audio communications device into a multimedia communications terminal pro-
viding all kinds of yet-to-be-imagined functions.

As an introduction to this exciting concept, we will briefly discuss the various kinds of
devices we currently call “telephones” (any of which can easily be integrated with
Asterisk). We will also discuss some ideas about what these devices may evolve into in
the future (devices that will also easily integrate with Asterisk).

Physical Telephones
Any physical device whose primary purpose is terminating an on-demand audio com-
munications circuit between two points can be classified as a physical telephone. At a
minimum, such a device has a handset and a dial pad; it may also have feature keys, a
display screen, and various audio interfaces.

† This software is not part of a normal Asterisk download because Digium has to pay to license it separately.
Nevertheless, it has grandfathered it into all of its cards, so it is available for free to anyone who has a Digium
analog card that is still under warranty. If you are running a non-Digium analog card, you can purchase a
keycode for this software echo canceller from Digium’s website.

‡ Sangoma also offers free software echo cancellation on its analog cards (up to six channels).

Types of Phones | 657

This section takes a brief look at the various user (or endpoint) devices you might want
to connect to your Asterisk system. We delve more deeply into the mechanics of analog
and digital telephony in Appendix A.

Analog telephones

Analog phones have been around since the invention of the telephone. Up until about
20 years ago, all telephones were analog. Although analog phones have some technical
differences in different countries, they all operate on similar principles.

When a human being speaks, the vocal cords, tongue, teeth, and lips create a complex
variety of sounds. The purpose of the telephone is to capture these sounds and convert
them into a format suitable for transmission over wires. In an analog telephone, the
transmitted signal is analogous to the sound waves produced by the person speaking.
If you could see the sound waves passing from the mouth to the microphone, they
would be proportional to the electrical signal you could measure on the wire.

Analog telephones are the only kind of phones that are commonly available in any retail
electronics store. In the next few years, that can be expected to change dramatically.

Proprietary digital telephones

As digital switching systems developed in the 1980s and 1990s, telecommunications
companies developed digital private branch exchanges (PBXs) and key telephone sys-
tems (KTSs). The proprietary telephones developed for these systems were completely
dependent on the systems to which they were connected and could not be used on any
other systems. Even phones produced by the same manufacturer were not cross-com-
patible (for example, a Nortel Norstar set will not work on a Nortel Meridian 1 PBX).
The proprietary nature of digital telephones limits their future. In this emerging era of
standards-based communications, they will quickly be relegated to the dustbin of
history.

The handset in a digital telephone is generally identical in function to the handset in
an analog telephone, and they are often compatible with each other. Where the digital
phone is different is that inside the telephone, the analog signal is sampled and con-
verted into a digital signal—that is, a numerical representation of the analog waveform.
We discuss digital signals in more detail in Appendix A; for now, suffice it to say that
the primary advantage of a digital signal is that it can be transmitted over limitless
distances with no loss of signal quality.

658 | Appendix C: Preparing a System for Asterisk

The chances of anyone ever making a proprietary digital phone directly compatible
with Asterisk are slim, but companies such as Citel (http://www.citel.com)§ have created
gateways that convert the proprietary signals to Session Initiation Protocol (SIP).‖

ISDN telephones

Prior to VoIP, the closest thing to a standards-based digital telephone was an ISDN-
BRI terminal. Developed in the early 1980s, ISDN was expected to revolutionize the
telecommunications industry in exactly the same way that VoIP promises to finally
achieve today.

There are two types of ISDN: Primary Rate Interface (PRI) and Basic
Rate Interface (BRI). PRI is commonly used to provide trunking facilities
between PBXs and the PSTN, and is widely deployed all over the world.
BRI is not at all popular in North America, but is common in Europe.

While ISDN was widely deployed by the telephone companies, many consider the
standard to have been a flop, as it generally failed to live up to its promises. The high
costs of implementation, recurring charges, and lack of cooperation among the major
industry players contributed to an environment that caused more problems than it
solved.

BRI was intended to service terminal devices and smaller sites (a BRI loop provides two
digital circuits). A wealth of BRI devices have been developed, but BRI has largely been
deprecated in favor of faster, less expensive technologies such as ADSL, cable modems,
and VoIP.

BRI is still very popular for use in videoconferencing equipment, as it provides a fixed-
bandwidth link. Also, BRI does not have the type of quality of service issues a VoIP
connection might, as it is circuit-switched.

BRI is still sometimes used in place of analog circuits to provide trunking to a PBX.
Whether or not this is a good idea depends mostly on how your local phone company
prices the service, and what features it is willing to provide.#

§ Citel has produced a fantastic product, but it is limited by the fact that it is too expensive. If you have old
proprietary PBX telephones, and you want to use them with your Asterisk system, Citel’s technology can do
the job, but make sure you understand how the per-port cost of these units stacks up against replacing the
old sets with pure VoIP telephones.

‖ SIP is currently the most well-known and popular protocol for VoIP. We discuss it further in Appendix B.

#If you are in North America, give up on this idea, unless you have a lot of patience and money and are a bit
of a masochist.

Types of Phones | 659

http://www.citel.com

IP telephones

IP telephones are heralds of the most exciting change in the telecommunications in-
dustry. Already, standards-based IP telephones are available in retail stores. The wealth
of possibilities inherent in these devices will cause an explosion of interesting applica-
tions, from video phones to high-fidelity broadcasting devices to wireless mobility sol-
utions to purpose-built sets for particular industries to flexible all-in-one multimedia
systems.

The revolution that IP telephones will spawn has nothing to do with a new type of wire
to connect your phone to, and everything to do with giving you the power to commu-
nicate the way you want.

The early-model IP phones that have been available for several years now do not rep-
resent the future of these exciting appliances. They are merely a stepping-stone, a fa-
miliar package in which to wrap a fantastic new way of thinking.

The future is far more promising.

Softphones
A softphone is a software program that provides telephone functionality on a non-tel-
ephone device, such as a PC or PDA. So how do we recognize such a beast? What might
at first glance seem a simple question actually raises many. A softphone should probably
have some sort of dial pad, and it should provide an interface that reminds users of a
telephone. But will this always be the case?

The term softphone can be expected to evolve rapidly, as our concept of what exactly
a telephone is undergoes a revolutionary metamorphosis.* As an example of this evo-
lution, consider the following: would we correctly define popular communication pro-
grams such as Instant Messenger as softphones? IM provides the ability to initiate and
receive standards-based VoIP connections. Does this not qualify it as a softphone? An-
swering that question requires knowledge of the future that we do not yet possess.
Suffice it to say that, while at this point in time softphones are expected to look and
sound like traditional phones, that conception is likely to change in the very near future.

As standards evolve and we move away from the traditional telephone and toward a
multimedia communications culture, the line between softphones and physical tele-
phones will become blurred indeed. For example, we might purchase a communica-
tions terminal to serve as a telephone and install a softphone program onto it to provide
the functions we desire.

* Ever heard of Skype?

660 | Appendix C: Preparing a System for Asterisk

Having thus muddied the waters, the best we can do at this point is to define what the
term softphone will refer to in relation to this book, with the understanding that the
meaning of the term can be expected to undergo a massive change over the next few
years. For our purposes, we will define a softphone as any device that runs on a personal
computer, presents the look and feel of a telephone, and provides as its primary function
the ability to make and receive full-duplex audio communications (formerly known as
“phone calls”)† through E.164 addressing.‡

Telephony Adaptors
A telephony adaptor (usually referred to as an ATA, or Analog Terminal Adaptor) can
loosely be described as an end-user device that converts communications circuits from
one protocol to another. Most commonly, these devices are used to convert from some
digital (IP or proprietary) signal to an analog connection that you can plug a standard
telephone or fax machine into.

These adaptors could be described as gateways, for that is their function. However,
popular usage of the term telephony gateway would probably best describe a multiport
telephony adaptor, generally with more complicated routing functions.

Telephony adaptors will be with us for as long as there is a need to connect incompatible
standards and old devices to new networks. Eventually, our reliance on these devices
will disappear, as did our reliance on the modem—obsolescence through irrelevance.

Communications Terminals
Communications terminal is an old term that disappeared for a decade or two and is
being reintroduced here, very possibly for no other reason than that it needs to be
discussed so that it can eventually disappear again—once it becomes ubiquitous.

First, a little history. When digital PBX systems were first released, manufacturers of
these machines realized that they could not refer to their endpoints as telephones—
their proprietary nature prevented them from connecting to the PSTN. They were
therefore called terminals, or stations. Users, of course, weren’t having any of it. It
looked like a telephone and acted like a telephone, and therefore it was a telephone.
You will still occasionally find PBX sets referred to as terminals, but for the most part
they are called telephones.

The renewed relevance of the term communications terminal has nothing to do with
anything proprietary—rather, it’s the opposite. As we develop more creative ways of
communicating with each other, we gain access to many different devices that will allow
us to connect. Consider the following scenarios:

† OK, so you think you know what a phone call is? So did we. Let’s just wait a few years, shall we?

‡ E.164 is the ITU standard that defines how phone numbers are assigned. If you’ve used a telephone, you’ve
used E.164 addressing.

Types of Phones | 661

• If I use my PDA to connect to my voicemail and retrieve my voice messages (con-
verted to text), does my PDA become a phone?

• If I attach a video camera to my PC, connect to a company’s website, and request
a live chat with a customer service rep, is my PC now a telephone?

• If I use the IP phone in my kitchen to surf for recipes, is that a phone call?

The point is simply this: we’ll probably always be “phoning” each other, but will we
always use “telephones” to do so?

Linux Considerations
If you ask anyone at the Free Software Foundation, they will tell you that what we know
as Linux is in fact GNU/Linux. All etymological arguments aside, there is some valuable
truth to this statement. While the kernel of the operating system is indeed Linux, the
vast majority of the utilities installed on a Linux system and used regularly are in fact
GNU utilities. “Linux” is probably only 5 percent Linux, possibly 75 percent GNU,
and perhaps 20 percent everything else.

Why does this matter? Well, the flexibility of Linux is both a blessing and a curse. It is
a blessing because with Linux you can truly craft your very own operating system from
scratch. Since very few people ever do this, the curse is in large part due to the respon-
sibility you must bear in determining which of the GNU utilities to install, and how to
configure the system.

Conclusion
In this appendix, we’ve discussed all manner of issues that can contribute to the stability
and quality of an Asterisk installation. How much time and effort you should devote
to following the best practices and engineering tips in this appendix all depends on how
much work you expect the Asterisk server to perform, and how much quality and
reliability your system must provide. If you are experimenting with Asterisk, don’t
worry too much; just be aware that any problems you have may not be the fault of the
Asterisk system.

What we have attempted to do in this appendix is give you a feel for the kinds of best
practices that will help to ensure that your Asterisk system will be built on a reliable,
stable platform. Asterisk is quite willing to operate under far worse conditions, but the
amount of effort and consideration you decide to give these matters will play a part in
the stability of your PBX. Your decision should depend on how critical your Asterisk
system will be.

662 | Appendix C: Preparing a System for Asterisk

Index

Symbols
! (exclamation mark), in section name, 92
(hash symbol)

comment, 188
delimiter between map names, 226

$[] (dollar sign square brackets)
Asterisk expressions, 195

${DIALSTATUS} variable, 170
${eventextra} CEL variable, 544
${eventtime} CEL variable, 544
${eventtype} CEL variable, 544
${EXTEN} channel variable, 128, 240
${IPADDR} option (dundi.conf), 506
${NUMBER} option (dundi.conf), 506
${SECRET} option (dundi.conf), 506
${SECRET} variable, 514
* (asterisk), Asterisk character separator, 251
* logger.conf type, 525
, (comma), voicemail.conf, 417
/var mount point, 36
3WAY_END event, 538
3WAY_START event, 538
9, accessing external lines, 132
=> (same) operator, 112
[] (square brackets) contexts, 108
_ (underscore), pattern matching, 125
| (pipe character)

delimiter, 167
support for, 113
voicemail.conf, 417

A
a(folder) (VoiceMailMain() application), 171
A(x) (Page() application), 230

A2Billing, 564
AA (Automated Attendant), 331–340

building, 336–340
dialplan, 338
incoming calls, 339
recording prompts, 336

compared to an IVR, 331
designing for you, 332–336

dial by extension, 336
greeting, 333
invalid handler, 335
main menu, 334
timeout, 335

Aastra, SIP-based paging, 232
ABANDON event, 298
accent of prompts, internationalization, 190
acceptdtmf option (agents.conf), 281
accountcode CDR field, 527
accountcode CEL event field, 539
accountlogs option (cdr.conf), 532
accounts

connecting to the AMI over HTTP, 459
scanning for valid accounts, 565
XMPP accounts, 316

ACD queues, 261–299
agents.conf, 281
announcement control, 287–291
changing penalties dynamically, 285
local channels, 293–296
overflow, 291
priority queue, 283
queue member priority, 284
queue members, 266–274
queues.conf, 275–280
simple ACD queue, 262–266

We’d like to hear your suggestions for improving our indexes. Send email to index@oreilly.com.

663

statistics: queue_log file, 296–299
ackcall option (agents.conf), 281
ACLs (access control lists), 574
actions, AMI message encoding, 467
adaptors, VoIP paging adaptors, 234
ADDMEMBER event, 298
addon modules, 23
AddQueueMember() application, 268, 285,

295
Adhearsion, 488
adsifdn option (voicemail.conf), 160
adsipark (features.conf), 223
adsisec option (voicemail.conf), 160
adsiver option (voicemail.conf), 160
agent option (agents.conf), 282
agent option (manager.conf), 463
AGENTDUMP event, 298
AGENTLOGIN event, 298
AGENTLOGOFF event, 298
agents header section, agents.conf, 281
agents, defined, 262
agents.conf, 281
AGI (Asterisk Gateway Interface), 69, 475–

488
AGI variants, 477–480

async AGI, 479
DeadAGI, 478
FastAGI, 478
process-based AGI, 477

communication overview, 480–487
AGI sessions, 480
commands and responses, 482–486
ending an AGI session, 486

development frameworks, 487
environment variables, 480
quick start overview, 475
scripts: triggering with an application map,

226
agi option (manager.conf), 463
agi set debug off command, 485
agi set debug on command, 485
agi show commands topic, 483
agi show commands topic ANSWER, 483
alarm systems, 586
aliasing, pulse-code modulation, 610
all option (manager.conf), 463
allow (sip.conf), 98
allowguest (sip.conf), 91

allowmultiplelogin option (manager.conf),
461

allowsubscribe option (sip.conf), 306
alwaysfork (asterisk.conf), 72
amaflags CDR field, 528
amaflags CEL event field, 539
AMI (Asterisk Manager Interface), 69, 457–

473
about, 393
AMI-Controlled AGI: async AGI, 479
AsteriskGUI, 472
configuration, 460–465

http.conf, 464
manager.conf, 460–464

development frameworks, 471
FOP, 473
protocol overview, 465–470

AMI over HTTP, 467–470
message encoding, 466

quick start overview, 457–460
AMI over HTTP, 459
AMI over TCP, 458

AMI over HTTP
authentication and session handling, 467
manager encoding type, 469
manager events, 470
mxml encoding type, 470
rawman encoding type, 468

analog circuits
caller ID, 194
configuring, 142

analog interface cards, requirements, 654
analog phones

about, 183
configuration, 100–103
internationalization, 185–189
requirements, 658

analog telephony, 597–600
parts of an analog telephone, 598
PSTN circuits, 134
Tip and Ring, 600

Analog Terminal Adaptors (see ATAs)
analog trunks, SLA key system example with

analog trunks, 319–323
announce option (queues.conf), 275
announce-frequency option (queues.conf),

278, 288
announce-holdtime option (queues.conf), 278
announce-holdtime option queues.conf, 288

664 | Index

announce-position option (queues.conf), 278,
288

announce-position-limit option (queues.conf),
278, 288

announce-round-seconds option
(queues.conf), 278, 288

announcement control, 287–291
ANSWER AGI command, 483
answer CDR field, 528
ANSWER CEL event type, 537
Answer() application, 113
anti-monopolistic practices, 593
aoc option (manager.conf), 464
APIs, securing Asterisk network APIs, 572
app dialplan applications, 12–15
appdata CEL event field, 539
application map grouping, 227
[applicationmap] section, features.conf, 225
applications

AddQueueMember() application, 268, 285,
295

AGI() application, 477
dahdi_genconf application, 137
Dial() application, 207, 211, 434
dialplan applications, 529, 540
dialplan syntax, 113
Directory() application, 171
DISA() application, 324, 325
Festival application, 434, 440
GoSub() dialplan application, 207–211
GotoIf() application, 199, 201
GotoIfTime() application, 202
Hangup() application, 200
JabberSend() dialplan application, 421
Macro() application, 205
MeetMe() application, 218, 319
MeetMeCount() application, 219
NoOp() dialplan application, 516
Page() application, 229, 231, 235
PauseQueueMember() application, 268
Playback() application, 337
prompt-recording application, 394
Queue() application, 291, 294, 499
Read() application, 390
Record() application, 337
RemoveQueueMember() application, 268,

295
SendFAX() dialplan application, 450
Set() application, 198

SIPAddHeader() voicemail application, 176
SLA applications, 318
SLATrunk() application, 321, 326
text2wave application, 442
UnpauseQueueMember() application, 268
VoiceMail() application, 292
Zapateller() application, 217

appname CEL event field, 539
apps option (cel.conf), 540
APP_END CEL event type, 538
app_mysql addon module, 23
app_saycountpl addon module, 23
app_set (asterisk.conf), 75
APP_START CEL event type, 538
app_voicemail.so module, 162
ARA (Asterisk Realtime Architecture), 368–

375
dynamic realtime, 371–375
static realtime, 368

architecture, 9–28
dialplan, 25
file structure, 24–25

configuration files, 24
logging, 25
modules, 24
resource library, 25
spool, 25

hardware requirements, 26
modules, 10–24

addon modules, 23
bridging modules, 15
CDR modules, 15
channel drivers, 17
channel event logging modules, 16
codec translators, 18
dialplan applications, 12–15
dialplan functions, 19
format interpreters, 18
PBX modules, 21
resource modules, 21
test modules, 24

versioning, 26
arguments

using in GoSub() subroutines, 209
using in macros, 206

ARRAY() function, 362
astagidir (asterisk.conf), 72
astctl (asterisk.conf), 75
astctlgroup (asterisk.conf), 75

Index | 665

astctlowner (asterisk.conf), 75
astctlpermissions (asterisk.conf), 75
astdatadir (asterisk.conf), 72
AstDB (Asterisk Database), 214–216

deleting data from, 215
retrieving data from, 214
storing data in, 214
using in the dialplan, 215

astdbdir (asterisk.conf), 72
Asterisk

AA, 331–340
ACD queues, 261–299
AGI, 475–488
AMI, 457–473
architecture, 9–28
clustering, 489–501
connectivity, 131–156
device states, 301–329
dialplan, 107–130, 195–219
DUNDi, 503–522
external services, 397–442
fax, 443–455
initial configuration tasks, 71–81
installing Asterisk, 29–70
internationalization, 181–194
Internet call routing, 237–259
IVR, 389–396
parking and paging, 221–236
protocols for VoIP, 617–638
relational database integration, 341–387
requirements, 639–662
security, 565–576
system monitoring and logging, 523–559
telephony future, 577–595
telephony revolution, 1–8
understanding telephony, 597–615
user device configuration, 83–105
voicemail, 157–179
web interfaces, 561–564

asterisk (*), Asterisk character separator, 251
Asterisk CLI, loading new channel

configurations, 99
Asterisk Documentation Project, 8
Asterisk Gateway Interface (see AGI)
Asterisk Manager Interface (see AMI)
Asterisk Realtime Architecture (see ARA)
Asterisk server, devices external to the Asterisk

server, 182–185
asterisk shell command, 55

Asterisk Test Suite, 24
Asterisk wiki, 110
Asterisk-Biz mailing list, 6
Asterisk-Dev mailing list, 6
Asterisk-Java, 488
Asterisk-perl, 488
Asterisk-Users mailing list, 7
asterisk.conf, 53, 71
AsteriskGUI, 472
astetcdir (asterisk.conf), 72
astkeydir (asterisk.conf), 72
AstLinux, 645
astlogdir (asterisk.conf), 72
astmoddir (asterisk.conf), 72
astrundir (asterisk.conf), 72
astspooldir (asterisk.conf), 72
astvarlibdir (asterisk.conf), 72
ast_hotdesk table, 357
ast_tls_cert script, 150
async AGI, 479, 482, 485
ASYNCAGI BREAK AGI command, 483
ATAs (Analog Terminal Adaptors)

configuration, 86
IP phone configuration, 185

attach option (voicemail.conf), 158, 163
attachfmt option (voicemail.conf), 163
attemptcallerid option (sla.conf), 327
attempts argument (Read() application), 391
ATTENDEDTRANSFER CEL event type, 538
atxfer (features.conf), 225
atxfercallbackretries (features.conf), 223
atxferdropcall (features.conf), 223
atxferloopdelay (features.conf), 223
atxfernoanswertimeout (features.conf), 223
audio

conference bridge, 218
encrypting with Secure RTP, 637
formats: translation cost, 114
stream formats: codec translators, 18

authentication
AMI, 467
security weakness, 567
VoIP, 634

authpassword option (voicemail.conf), 417
authuser option (voicemail.conf), 417
auth_policy option (jabber.conf), 420
auto attendants, 117
autocontext option (sla.conf), 327
autofill option (queues.conf), 263, 275, 276

666 | Index

autokill option (dundi.conf), 506
autokill option (sip.conf), 96
autoload (modules.conf), 77
autologoff option (agents.conf), 281
autologoffunavail option (agents.conf), 281
automixmon (features.conf), 225
automon (features.conf), 225
autopause option (queues.conf), 276
autoprune option (jabber.conf), 420
autoregister option (jabber.conf), 420
autosystemname (asterisk.conf), 73

B
b (VoiceMail() application), 170
B-channels, 138
B2BUA (Back to Back User Agent), 104
backends, 530–536

CDRs
cdr_adaptive_odbc, 530
cdr_csv, 532
cdr_custom, 532
cdr_manager, 533
cdr_mysql, 534
cdr_odbc, 534
cdr_pgsql, 534
cdr_radius, 534
cdr_sqlite, 535
cdr_sqlite3_custom, 535
cdr_syslog, 535
cdr_tds, 536

CEL
cel_custom, 543
cel_manager, 544
cel_odbc, 541
cel_pgsql, 545
cel_radius, 545
cel_sqlite3_custom, 546
cel_tds, 546

Background() application, 117
backupdeleted option (voicemail.conf), 166
barge option (sla.conf), 327
barriers to entry, 594
Basic Rate Interfaces (BRIs), 185
batch option (cdr.conf), 530
best effort, 632
billing applications, call detail records, 15
billsec CDR field, 528
binary data

verifying binary data stored in MySQL, 386

verifying binary data stored in PostgreSQL,
385

bindaddr option (dundi.conf), 505
bindaddr option (http.conf), 464
bindaddr option (manager.conf), 460
bindport option (http.conf), 464
BLA (Bridged Line Appearances), 325
BLACKLIST() function, 215
BLF (Busy Lamp Field), 306
blind transfer, 548
BLINDTRANSFER CEL event type, 538
blindxfer (features.conf), 225
Bogen UTI1, 231
Boolean operators, 196
bottleneck engineering, 592
branching

conditional branching, 199–203
GotoIf() application, 199
time-based conditional branching with

GotoIfTime(), 202
BRI ISDN

configuring, 140
bridge_builtin_features bridging module, 15
BRIDGE_END CEL event type, 538
bridge_multiplexed bridging module, 15
bridge_simple bridging module, 15
bridge_softmix bridging module, 15
BRIDGE_START CEL event type, 538
BRIDGE_UPDATE CEL event type, 538
bridging modules, 15
BRIs (Basic Rate Interfaces), 185
brokeneventsaction option (manager.conf),

461
buddy option (jabber.conf), 421
Busy Lamp Field (BLF), 306
busylevel option (sip.conf), 306

C
CA (certificate authority), 150
cachetime option (dundi.conf), 505
cache_record_files (asterisk.conf), 74
calendar show calendar <myGoogleCal>

function, 401
calendar.conf, 408
Calendar:<calendar name> virtual device, 302
calendars, 398–411

compiling support for, 398
configuring support for, 399–402

Index | 667

controlling calls based on calendar
information, 407

triggering calendar reminders, 402–406
writing call information to a calendar, 408–

411
CALENDAR_BUSY() dialplan function, 407,

411
CALENDAR_EVENT() dialplan function, 403
CALENDAR_QUERY() function, 411
CALENDAR_QUERY_RESULT() function,

411
call centers, 489
call centers, inbound and outbound, 261
call detail records (see CDRs)
call information, writing to a calendar, 408–

411
call monitoring for law enforcement agencies,

593
call option (manager.conf), 463
call parking, 217
call progress tones, 194
call token support, 573
call-limit option (sip.conf), 306
callback option (voicemail.conf), 164
callcounter option (sip.conf), 273, 306
caller ID

analog circuits, 194
internationalization, 189
SLA, 328

CALLERID() function, 432
calling

GoSub() subroutines from the dialplan,
208

macros from the dialplan, 205
calls

accepting calls to your system, 240–246
receiving on your ITAD, 256

CAS (Channel Associated Signaling), 612
cc option (manager.conf), 463
CCITT (Comité consultatif international

téléphonique et télégraphique), 247
CDR modules, 15
cdr option (manager.conf), 463
CDR() dialplan function, 375, 410
CDR-Stats, 564
cdr.conf, 529
CDRs (call detail records), 527–537

backends, 530–536
cdr_adaptive_odbc, 530

cdr_csv, 532
cdr_custom, 532
cdr_manager, 533
cdr_mysql, 534
cdr_odbc, 534
cdr_pgsql, 534
cdr_radius, 534
cdr_sqlite, 535
cdr_sqlite3_custom, 535
cdr_syslog, 535
cdr_tds, 536

caveats, 537
cdr.conf, 529
contents, 527
dialplan applications, 529
example call detail records, 536
relational databases, 375
testing, 69
web interfaces, 563

cdr_adaptive_odbc module, 16, 530
cdr_adaptive_odbc.conf, 377, 531
cdr_csv module, 16, 532
cdr_custom module, 16, 532
cdr_manager module, 16, 533
cdr_mysql addon module, 23
cdr_mysql module, 534
cdr_odbc module, 16, 534
cdr_pgsql module, 16, 534
cdr_radius module, 16, 534
cdr_sqlite module, 16, 535
cdr_sqlite3_custom module, 16, 535
cdr_syslog module, 16, 535
cdr_tds module, 16, 536
CEL (Channel event logging), 537–549

backends, 540–546
cel_custom, 543
cel_manager, 544
cel_odbc, 541
cel_pgsql, 545
cel_radius, 545
cel_sqlite3_custom, 546
cel_tds, 546

cel.conf, 540
channel event contents, 539
channel event types, 537
dialplan applications, 540
example channel events, 546–549

blind transfer, 548
single-party call, 547

668 | Index

two-party call, 547
cel.conf, 540
cel_custom, 543
cel_custom module, 16
cel_manager, 544
cel_manager module, 16
cel_odbc, 541
cel_odbc module, 16
cel_pgsql, 545
cel_pgsql module, 16
cel_radius, 545
cel_radius module, 16
cel_sqlite3_custom, 546
cel_sqlite3_custom module, 16
cel_tds, 546
cel_tds module, 16
CentOS Server, 35–40

adding a system user, 39
base system installation, 35
base system update, 38
calendars, 398
compiling LDAP support, 437
compiling support for XMPP, 419
compiling voicemail support, 412
converting music format, 80
cURL module, 393
enabling NTP for accurate system time, 38
installing Asterisk, 31
installing Festival, 440
installing MySQL, 343
installing PostgreSQL, 342
installing SNMP module, 551

central option (voicemail.conf), 166
central24 option (voicemail.conf), 166
Cepstral, 442
certificate authority (CA), 150
certificates, obtaining, 150
CHANGES, 68
channame CEL event field, 539
Channel Associated Signaling (CAS), 612
channel banks, hardware requirements, 655
channel CDR field, 527
channel configuration files, 88

dialplan, 88
loading new configurations, 98
modifying for your environment, 98

channel drivers, 17
Channel event logging (see CEL)
channel event logging modules, 16

CHANNEL STATUS AGI command, 483
channel variables, 123
channel variables, ${EXTEN} channel

variable, 128
CHANNEL() dialplan function, 191
CHANNEL() function, 77
channels

about, 9
contexts, 109, 144
local channels with dialplan, 211–214

channelvars option (manager.conf), 461
chan_agent driver, 17
chan_alsa driver, 17
chan_bridge driver, 17
chan_console driver, 17
chan_dahdi driver, 17
CHAN_END CEL event type, 537
chan_gtalk driver, 17
chan_gtalk module, 425–428

configuration, 425
Google Talk, 427, 428
Google Voice, 427, 428

chan_h323 driver, 17
chan_iax2 driver, 17
chan_jingle channel module, 425
chan_jingle driver, 17
chan_local driver, 17
chan_mgcp driver, 17
chan_misdn driver, 17
chan_mobile addon module, 23
chan_multicast_rtp channel, 233
chan_multicast_rtp driver, 17
chan_nbs driver, 17
chan_ooh323 addon module, 23
chan_oss driver, 17
chan_phone driver, 17
chan_sip driver, 17
chan_skinny driver, 17
chan_skype.conf, 429
CHAN_START CEL event type, 537
chan_unistim driver, 17
chan_usbradio driver, 17
chan_vpb driver, 17
charset option (voicemail.conf), 160
CheckPublicExtensionResult channel variable,

242
children and security, 586
ciddnid CEL event field, 539

Index | 669

cidinternalcontexts option (voicemail.conf),
163

cidname, 539
cidnum CEL event field, 539
cidrdnis CEL event field, 539
circuit types, 610
Cisco SPA

phones: multicast paging, 234
SIP-based paging, 232

Class (SIP SRV record), 239
CLI (command-line interface), controlling

queue members, 266
clid CDR field, 527
closetimeout option (voicemail.conf), 417
clustering, 489–501

call centers, 489
databases, 493–496

replicated databases, 495
single database, 493

distributed device states, 496–499
over a LAN, 496
over a WAN, 497

hybrid systems, 490
multiple queues, multiple sites, 499
pure Asterisk, nondistributed, 492

codecs, 625–629
about, 642
configuration for, 98
G.711, 626
G.722, 628
G.722 codec, 626
G.726, 627
G.726 codec, 626
G.729A, 627
G.729A codec, 626
GSM, 627
GSM codec, 626
iLBC, 628
MP3, 629
Speex, 628
translators, 18

codec_adpcm translator, 18
codec_alaw translator, 18
codec_a_mu, 18
codec_dahdi translator, 18
codec_g722 translator, 18
codec_g726 translator, 18
codec_gsm translator, 18
codec_ilbc translator, 18

codec_lpc10 translator, 18
codec_resample translator, 18
codec_speex translator, 18
codec_ulaw translator, 18
combination paging, 234
comebacktoorigin (features.conf), 222, 224
Comedian Mail, 157–169

contexts section, 167
[general] section, 158–166
sample voicemail.conf file, 168
[zonemessages] section, 166

Comité consultatif international téléphonique
et télégraphique (CCITT), 247

comma (,), voicemail.conf, 417
command option (manager.conf), 463
command, moh show classes command, 371
command-line interface (CLI), controlling

queue members, 266
commands

AGI commands, 483
agi set debug off command, 485
agi set debug on command, 485
agi show commands topic, 483
agi show commands topic ANSWER, 483
asterisk shell commend, 55
core set debug 0 command, 525
core set verbose 0 command, 525
core show application festival command,

441
core show hints command, 304, 313
dahdi_cfg command, 188
dahdi_genconf command, 188
dahdi_genconf modules, 143
dahdi_genconf modules application, 138
dahdi_genconf modules command, 139,

141
dahdi_hardware command, 138, 142
dahdi_tool command, 188
dialplan reload command, 265, 441, 515
dialplan set global CLI command, 313
dundi lookup command, 513
dundi show peer command, 513
features show CLI command, 226
gi show commands, 483
jabber purge nodes command, 421
jabber show buddies command, 317
jabber show connected command, 317
ldapadd command, 435
lsdahdi application, 138

670 | Index

lsdahdi command, 142
make menuselect command, 50, 352
manager show command, 467
manager show command AGI command,

485
manager show commands, 467
md5sum command, 435
menuselect command, 76
module reload app_queue.so command,

283, 287
ntpd command, 38
odbc show CLI command, 352
Page() command, 234
queue add command, 266
queue add member command, 267
queue pause member command, 267
queue remove member command, 267
queue unpause member command, 267
reload command, 368
sip reload command, 439
sip show peers command, 149
sip show settings CLI command, 240

commercial option (dundi.conf), 506
communications terminals, requirements, 661
community, 5–8

Asterisk Documentation Project, 8
IRC channels, 7
mailing lists, 6
user groups, 7
wiki sites, 7

companding, 607
[compat] section (asterisk.conf), 75
compiling

calendar support, 398
res_calendar_ews module, 399
res_snmp, 551
spandsp, 444
spandsp support, 445
voicemail support, 412–418

COMPLETEAGENT event, 298
COMPLETECALLER event, 298
Computer-Supported Telecommunications

Applications (CSTA), 471
concatenating text, 198
concurrent connections, 641
conditional branching, 199–203

GotoIf() application, 199
time-based conditional branching with

GotoIfTime(), 202

conference rooms, 585
conferencing

activity level, 642
calling meeting participants and placing

them into a conference, 405
MeetMe() application, 218

config option (manager.conf), 463
CONFIGRELOAD event, 298
configuration, 51–64, 71–81, 83–105

agents.conf, 281
AMI, 460–465

http.conf, 464
manager.conf, 460–464

analog circuits, 142
analog phones, 100–103
Asterisk, 87–98

channel configuration files and dialplan,
88

iax.conf, 95–98
modifying channel configuration files for

your environment, 98
sip.conf, 89–95

asterisk.conf, 53, 71
calendar support, 399–402
calendar.conf, 408
cdr_adaptive_odbc.conf, 377, 531
cel.conf, 540
chan_gtalk module, 425
chan_skype.conf, 429
configuration files, 24
dialplan for testing your devices, 103
digital circuits, 138
disabling SELinux, 51
DUNDi and Asterisk, 507–522

controlling responses, 516–519
general, 507
initial DUNDi peer definition, 509
lookups from Dialplan, 519
mapping contexts, 510–514
remote connections, 514

dundi.conf, 505
extconfig.conf, 371, 382, 439
extensions.conf, 89, 107, 241, 321, 324,

326, 356, 516
Fail2ban, 569
features.conf, 221–229
FX and FXO ports, 135
hardphones, softphones, and ATAs, 86
http.conf, 464

Index | 671

IAX trunks, 153
iax.conf, 95–98, 514, 515, 573
indications.conf, 77
initial configuration, 52–59
IP phones, 184
jail.conf, 570
LDAP support, 437
loading new channel configurations, 98
make menuselect, 59–64

about, 59
interfaces, 60
scripting, 63
using, 61

manager.conf, 460–464
modules.conf, 56, 75
musiconhold.conf, 79
MySQL, 345
ODBC for Microsoft SQL, 350
ODBC for MySQL, 349
ODBC for PostgreSQL, 347
OpenAIS, 311
OpenLDAP, 435
OpenNMS, 552–558
PostgreSQL, 343
PRI circuits, 138
queuerules.conf, 285
res_ldap.conf, 437
res_odbc, 352
res_odbc.conf, 382
res_snmp.conf, 553
sample configuration files, 108
SIP presence, 306
SIP trunks, 147
sip.conf for realtime, 439
SLA, 319
SLA key system example with analog trunks,

319–323
sla.conf, 320, 323, 325
system.conf, 143
telephone naming concepts, 84
testing device registration, 99
users.conf, 84
voicemail support, 414
voicemail.conf, 168, 192, 382, 415
VoIP trunks, 147–154
XMPP, 316
your first call, 104

configuration matching, SIP, 93
configure script, 63

CONF_END event, 538
CONF_ENTER event, 538
CONF_EXIT event, 538
CONF_START event, 538
CONNECT event, 298
connection option (cel_odbc.conf), 543
connectivity, 131–156

dialplan, 132
emergency dialing, 154
PSTN circuits, 133–144
trunking, 131
VoIP, 144–154

configuring VoIP trunks, 147–154
PSTN origination, 145
PSTN termination, 144
VoIP to VoIP, 147

console (asterisk.conf), 73
Console/DSP, 230
context

access to external lines, 133
default, 90

context (features.conf), 217, 222
context (sip.conf), 98
context CEL event field, 539
context option (queues.conf), 276
contexts

dialplan syntax, 108
LocalSets context, 284
mapping contexts, 510–514
naming, 144
number-mapping context, 146
queues, 275
security, 571
subFreenum context, 255

contexts section, Comedian Mail, 167
CONTROL STREAM FILE AGI command,

484
converting music formats, 79
core set debug 0 command, 525
core set verbose 0 command, 525
core show application festival command, 441
core show hints command, 304, 313
country option (dundi.conf), 505
courtesytone (features.conf), 222
CPU, 642
CSTA (Computer-Supported

Telecommunications Applications),
471

CSV_QUOTE() dialplan function, 532

672 | Index

cURL module, installing, 393
CURL() dialplan function, 392, 394
Custom:<custom name> virtual device, 301
custom_beep option (agents.conf), 282

D
d (Page() application), 230
d([c]) (VoiceMail() application), 170
D-channels, 138
DAHDI (Digium Asterisk Hardware Device

Interface)
about, 26
downloading and installing, 136
installing, 49
internationalization, 185–189

DAHDI-linux, 49
DAHDI-tools, 49
dahdi_cfg command, 188
dahdi_dummy, 137
dahdi_genconf application, 137
dahdi_genconf command, 188
dahdi_genconf modules, 137, 143
dahdi_genconf modules command, 138, 139,

141
dahdi_hardware command, 138, 142
dahdi_tool command, 188
dastAGI, 486
DATABASE DEL AGI command, 483
DATABASE DELTREE AGI command, 483
DATABASE GET AGI command, 483
database lookup, 244
DATABASE PUT AGI command, 483
databases

replicated databases, 495
single database, 493

dateformat option (cel.conf), 540
days_of_month (GotoIfTime() application),

202
days_of_week (GotoIfTime() application),

202
dbsecret, 515
DB_EXISTS() function, 519
dcontext CDR field, 527
DeadAGI, 478
debug (asterisk.conf), 72
debug logger.conf type, 525
debug option (jabber.conf), 420
debug option (manager.conf), 461
defaultrule option (queues.conf), 280

defaults
asterisk.conf, 71
blindxfer and disconnect codes

(features.conf), 225
CDR fields, 527
context, 90
DAHDI modules, 136
internationalization, 181
sound prompt files, 59
starting Asterisk with no modules, 10
timeouts, 117
traditional PBXs, 108
voicemail context, 167

delayed dialing using Local channels, 212
delete option (voicemail.conf), 164
deleting data from AstDB, 215
demilitarized zone (DMZ), 638
denial of service, 573
deny option (dundi.conf), 507
departme option (dundi.conf)nt, 505
dependencies

dependency information, 45
installing, 61
module dependencies, 62
software dependencies, 44

destemail option (jail.conf), 570
destination argument, Dial() application, 120
device states, 273, 301–329

about, 301
custom device states, 307
device state information, 295
distributed device states, 309–318

OpenAIS, 310–314
XMPP, 314–318

extension states, 303–305
replicated database, 496–499
SLA, 318–328

additional configuration, 327
configuration, 319
installing SLA applications, 318
key system example with analog trunks,

319–323
key system example with SIP trunks,

323
limitations, 328
presence, 306
shared extension example, 325

devices
dialplan for testing your devices, 103

Index | 673

external to the Asterisk server, 182–185
state information, 295
testing device registration, 99

DEVICE_STATE() dialplan function, 302
dial by extension, 336
Dial() application, 119–122, 207, 211, 434
dial-by-name directories, 171
dialing SIP URIs from Asterisk, 246
dialout option (voicemail.conf), 163
dialpad, 598
dialplan, 107–130, 195–219

AA, 337–339
about, 25
accepting calls to your system, 240
applications, 12–15
AstDB, 214–216

deleting data from, 215
retrieving data from, 214
storing data in, 214
using in the dialplan, 215

Asterisk as a standalone voicemail server,
176

call parking, 217
channel configuration files, 88
channels, 9
conditional branching, 199–203

GotoIf() application, 199
time-based conditional branching with

GotoIfTime(), 202
conferencing with MeetMe() application,

218
contexts and security, 571
controlling queue members, 268
CURL() dialplan function, 394
expressions and variable manipulation,

195–198
basic expressions, 195
operators, 196

functions, 19, 198
functions in mappings, 517
GoSub() dialplan application, 207–211

calling subroutines from the dialplan,
208

defining subroutines, 207
returning from a subroutine, 210
using arguments in subroutines, 209

Hello World example, 115
interactive dialplan, 116–129

Dial() application, 119–122

Goto(), Background(), and WaitExten()
applications, 116

includes, 129
invalid entries and timeouts, 119
pattern matching, 125–129
variables, 122–125

Jabber dialplan commands, 419–425
connecting to an XMPP server, 419
receiving messages with

JABBER_RECEIVE(), 422
Local channels, 211–214
lookups, 519
macros, 204–207

calling macros from the dialplan, 205
defining, 204
using arguments in, 206

outside connectivity, 132
security vulnerabilities, 571
sending messages with JabberSend(), 421
Skype, 429–434

calling without assigning extension
numbers, 433

configuring chan_skype.conf, 429
placing and receiving calls, 430
sending and receiving messages, 432

syntax, 107–115
Answer(), Playback(), and Hangup()

applications, 113
applications, 113
contexts, 108
extensions, 110
priorities, 111

for testing your devices, 103
voicemail, 169–172

dial-by-name directories, 171
jitterbuffers, 172
VoiceMail() dialplan application, 169
VoiceMailMain() dialplan application,

171
Zapateller() application, 217

dialplan applications
CDRs, 529
CEL, 540

dialplan option (manager.conf), 463
dialplan reload command, 265, 441, 515
dialplan scripting logic, 642
dialplan set global CLI command, 313
DIALPLAN_EXISTS() function, 242
DIALSTATUS variable, 120, 207

674 | Index

DIDs (direct inward dialing numbers), 145
differentiated service, 631
digit 9, accessing external lines, 132
digital circuit-switched telephone network,

610–614
digital circuits, configuring, 138
digital interface cards, requirements, 654
digital signaling protocols, 612
digital telephones, requirements, 658
digital telephony

about, 600–610
PSTN circuits, 135

digitally encoding an analog waveform, 601
Digium

cards, 100, 136, 185–189, 186
FAA, 446
packages, 46

Digium Asterisk Hardware Device Interface
(see DAHDI)

direct inward dialing numbers (DIDs), 145
[directories] section (asterisk.conf), 71
Directory() application, 171
directoryintro option (voicemail.conf), 160
DISA() application, 324, 325
disabling

Digium FAA, 446
spandsp, 446

disallow (sip.conf), 94, 98
disconnect (features.conf), 225
displayconnects option (manager.conf), 461,

462
disposition CDR field, 528
distributed denial of service attacks, 258
distributed device states, 309–318, 496–499

OpenAIS, 310–314
Asterisk configuration, 312
installation, 310
OpenAIS configuration, 311
testing device state changes, 313

over a LAN, 496
over a WAN, 497
XMPP, 314–318

Asterisk configuration, 316
installation, 315
testing, 317
XMPP accounts, 316

distributed IVR, 585
Distributed Universal Number Discovery (see

DUNDi)

distribution installation, 35–44
CentOS Server, 35–40

adding a system user, 39
base system installation, 35
base system update, 38
enabling NTP for accurate system time,

38
Ubuntu Server, 40–44

base system installation, 40
base system update, 43
enabling NTP for accurate system time,

43
DMZ (demilitarized zone), 638
DNIS number, 146
DNS and SIP URIs, 237–246

accepting calls to your system, 240–246
dialing SIP URIs from Asterisk, 246
SIP URI, 238
SRV records, 238

documentation_language (asterisk.conf), 74
dollar sign square brackets ($[]), Asterisk

expressions, 195
dontwarn (asterisk.conf), 73
downloading

DAHDI, 136
software, 46

drivers
channel drivers, 17
DAHDI drivers, 187

DS-0, 610
dst CDR field, 527
dstchannel CDR field, 527
DTMF digits, 598
dtmf logger.conf type, 525
dtmf option (manager.conf), 463
DTMF-based features, 221
dtmfmode (sip.conf), 94
dumpcore (asterisk.conf), 73
DUNDi (Distributed Universal Number

Discovery), 503–522
about, 503
Asterisk configuration, 507–522

controlling responses, 516–519
general, 507
initial DUNDi peer definition, 509
lookups from dialplan, 519
mapping contexts, 510–514
remote connections, 514

dundi.conf, 505

Index | 675

echo on DAHDi channels, 633
dundi lookup command, 513
dundi show peer command, 513
dundi.conf, 505
DUNDILOOKUP() function, 519
DUNDIQUERY() function, 519, 520
DUNDIRESULT() function, 519, 520
duration CDR field, 528
dust requirements, 653
dynamic realtime, 176, 368, 371–375
dynamically adding extension numbers, 517
DYNAMIC_FEATURES variable, 226, 227

E
E.164, 590
e164.org, 591
EAGI (Enhanced AGI), 477
eastern option (voicemail.conf), 166
echo, 632–633

DAHDi channels, 633
echo cancellation, 101, 642, 656
hardware echo cancellation, 633
why echo occurs, 632

electric circuits requirements, 652
email

email to fax, 451
fax to email, 447
sending, 568

email option (dundi.conf), 505
emailbody option (voicemail.conf), 161
emaildateformat option (voicemail.conf), 161
emailsubject option (voicemail.conf), 161
emergency dialing, 154
enable option (cdr.conf), 529
enable option (cel.conf), 540
enabled option (http.conf), 464
enabled option (manager.conf), 460
enabling

NTP for accurate system time, 38, 43
SNMPv3, 555

encryption
audio with Secure RTP, 637
IAX protocol, 154
media, 571
SIP calls, 150
VoIP, 638

end CDR field, 528
endbeforehexten option (cdr.conf), 529
endcall option (agents.conf), 281

enddtmf option (agents.conf), 282
Enhanced AGI (EAGI), 477
ENTERQUEUE event, 298
entityid option (dundi.conf), 505
ENUM, 591
ENUM and E.164, 247–250

Asterisk and ENUM, 249
E.164 and the ITU, 247
ENUM, 248

ENUMLOOKUP() function, 250, 255
envelope option (voicemail.conf), 164
environment

modifying channel configuration files for,
98

requirements, 649–653
environment variables

about, 124
AGI environment variables, 480

equipment room requirements, 652
error logger.conf type, 524
european option (voicemail.conf), 166
event, 538
eventfilter option (manager.conf), 462
eventmemberstatus option (queues.conf), 280
events

AMI message encoding, 467
channel events, 537–539
manager events: AMI, 470

events option (cel.conf), 540
eventtime CEL event field, 539
eventtype CEL event field, 539
eventwhencalled option (queues.conf), 280
exclamation mark (!), in section name, 92
EXEC AGI command, 483
execincludes (asterisk.conf), 73
exitcontext option (voicemail.conf), 164
EXITEMPTY event, 298
EXITWITHKEY event, 298
EXITWITHTIMEOUT event, 298
expressions, 195–198

basic expressions, 195
operators, 196

expungeonhangup option (voicemail.conf),
416

extconfig.conf, 371, 382, 439
exten CEL event field, 539
Extensible Messaging and Presence Protocol

(see XMPP)

676 | Index

extension numbers, DUNDi and Asterisk
configuration, 517

extension states, 303–305
extensions

about, 84
adding special extensions, 119
dialplan syntax, 110
traditional phone systems, 363

extensions.conf, 89, 107, 241, 321, 324, 326,
356, 516

EXTENSION_STATE() function, 305
external dialing, 132
external lines

access to, 133
accessing with digit 9, 132

external paging, 230
external scripts, databases, 355
[external] section, dialplan, 133
external services, 397–442

calendars, 398–411
compiling support for, 398
configuring support for, 399–402
controlling calls based on calendar

information, 407
triggering calendar reminders, 402–406
writing call information to a calendar,

408–411
LDAP, 434–440

compiling LDAP support, 437
configuring Asterisk for LDAP support,

437
OpenLDAP, 435

Skype, 429–434
dialplan, 429–434
installing, 429

text-to-speech utilities, 440–442
Cepstral, 442
Festival, 440

voicemail IMAP integration, 411–418
XMPP, 418–428

chan_gtalk module, 425–428
compiling support for, 419
Jabber dialplan commands, 419–425

external validation of voicemail passwords,
162

externnotify option (voicemail.conf), 160, 174
externpass option (voicemail.conf), 160
externpasscheck option (voicemail.conf), 160
externpassnotify option (voicemail.conf), 160

Extra Sound Package, 114

F
Fail2ban, 567–570

configuring, 569
installing, 568

fail2ban daemon, 257
failover, 495
false conditional path, 200
families, AstDB, 214
FASST (Freenum Automated Self-Service

Tool), 253
FastAGI, 478, 480, 485
fax, 443–455

about, 443
in Asterisk, 443
Digium FAA, 446
fax pass-through, 454
fax to PDF, 448
incoming fax handling, 447–449

fax detection, 448
fax to email, 447
fax to TIFF, 447

outgoing fax handling, 449–453
email to fax, 451
file format, 450
transmitting a fax from Asterisk, 450

spandsp, 444
fax logger.conf type, 525
fax.py, 451
faxdetect option (chan_dahdi.conf), 448
faxdetect option (sip.conf), 449
featuredigittimeout (features.conf), 223
[featuremap] section, 225
features show CLI command, 226
features.conf, 221–229

application map grouping, 227
[applicationmap] section, 225
[featuremap] section, 225
[general] section, 222–224
parking lots, 228

Festival application, 434, 440
Festival server, 587
files, 24–25

configuration files, 24
log files, 25
modules, 24
parsing, 242
permissions, 50

Index | 677

resource library, 25
spool, 25

FILTER() function, 242
FilteredExtension channel variable, 242
findslot (features.conf), 223
findslot directive, 228
Flash Operator Panel (FOP), 473, 562
floating point unit, 642
FOP (Flash Operator Panel), 473, 562
forcegreetings option (voicemail.conf), 165
forcename option (voicemail.conf), 164
format

interpreters, 18
music, 79
outgoing fax handling, 450

format option (voicemail.conf), 158
format_g723 interpreter, 19
format_g726 interpreter, 19
format_g729 interpreter, 19
format_gsm interpreter, 19
format_h263 interpreter, 19
format_h264 interpreter, 19
format_ilbc interpreter, 19
format_jpeg interpreter, 19
format_mp3 addon module, 23
format_ogg_vorbis interpreter, 19
format_pcm interpreter, 19
format_siren14 interpreter, 19
format_siren7 interpreter, 19
format_sln interpreter, 19
format_sln16 interpreter, 19
format_vox interpreter, 19
format_wav interpreter, 19
format_wav_gsm interpreter, 19
forward_urgent_auto option (voicemail.conf),

159
fraud, toll fraud, 257
Freenum Automated Self-Service Tool

(FASST), 253
freenum.org, 237, 251
FreePBX, 561
French prompts, 190
friends, authentication, 635
fromstring option (voicemail.conf), 160
func dialplan functions, 19–21
functions

ARRAY() function, 362
BLACKLIST() function, 215

calendar show calendar <myGoogleCal>
command, 401

CALENDAR_BUSY() dialplan function,
407

CALENDAR_BUSY() function, 411
CALENDAR_EVENT() dialplan function,

403
CALENDAR_QUERY() function, 411
CALENDAR_QUERY_RESULT()

function, 411
CALLERID() function, 432
CDR() dialplan function, 375, 410
CHANNEL() dialplan function, 191
CHANNEL() function, 77
CSV_QUOTE() dialplan function, 532
CURL() dialplan function, 392, 394
DB_EXISTS() function, 519
DEVICE_STATE() dialplan function, 302
dialplan, 19, 198
dialplan functions in mappings, 517
DIALPLAN_EXISTS() function, 242
DUNDILOOKUP() function, 519
DUNDIQUERY() function, 519, 520
DUNDIRESULT() function, 519, 520
ENUMLOOKUP() function, 250, 255
EXTENSION_STATE() function, 305
FILTER() function, 242
IF() dialplan function, 207
ISNULL() function, 215
JABBER_RECEIVE() dialplan function,

422
module reload cdr_adaptive_odbc.so

function, 376
ODBC_FETCH() function, 361
SkypeChatSend() dialplan function, 432
SKYPE_BUDDIES() dialplan function, 434
SKYPE_BUDDY_FETCH() dialplan

function, 434
SKYPE_CHAT_RECEIVE() dialplan

function, 432
SMDI_MSG() function, 178

func_odbc, 354–368, 360, 392
func_odbc.conf.sample, 359
future (see telephony future)
FX ports, 134
FXO ports, 134

G
g(#) (VoiceMail() application), 170

678 | Index

g(#) (VoiceMailMain() application), 171
G.711 codec, 626
G.722 codec, 626, 628
G.726 codec, 626, 627
G.729A codec, 626, 627
[general] section

agents.conf, 281
cdr.conf, 529
cel.conf, 540
Comedian Mail, 158–166
context, 109
dundi.conf, 505
features.conf, 222–224
http.conf, 464
jabber.conf, 420
manager.conf, 460
queues.conf, 275
sip.conf, 374
sla.conf, 327

GET DATA AGI command, 483
GET OPTION AGI command, 483
ghostscript PDF interpreter, 450
gi show commands, 483
global variables, 123
Globally Unique IDs, 375
[globals] section, context, 109
Gmail accounts, IMAPs, 415
goodbye option (agents.conf), 282
Google Talk, chan_gtalk module, 427, 428
Google Voice, chan_gtalk module, 427, 428
GOSUB AGI command, 485
GoSub() dialplan application, 207–211

calling subroutines from the dialplan, 208
defining subroutines, 207
returning from a subroutine, 210
using arguments in subroutines, 209

GOSUB_RETVAL channel variable, 242
Goto() application, 116
GotoIf() application, 199, 201
GotoIfTime() application, 202
greeting, 333
greetingfolder option (voicemail.conf), 417
greetingsfolder option (voicemail.conf), 162
grounding requirements, 650
group option (agents.conf), 282
grouping, application map grouping, 227
GSM codec, 626, 627
guaranteed service, 631

H
H.323, 623–624
handset, 599
HANGUP AGI command, 483
HANGUP CEL event type, 537
Hangup() application, 113, 114, 200
hardphones, configuration, 86
hardware echo cancellation, 633
hash symbol (#)

comment, 188
delimiter between map names, 226

Hello World example, dialplan, 115
hideconnect (asterisk.conf), 74
hidefromdir option (voicemail.conf), 165
high-fidelity voice, 588
highpriority (asterisk.conf), 73
hints, extension states, 303
hold option (sla.conf), 327
home automation, 586
hook switch, 599
HOOKFLASH event, 538
host (sip.conf), 93
host option (dundi.conf), 506
host option (sip.conf), 148
hostname, 253
hot-desking

about, 85
func_odbc, 354–368

HTTP, AMI over HTTP, 459, 467–470
http.conf, 464
httptimeout option (manager.conf), 461
humidity requirements, 652
hybrid (transformer), 599
hybrid systems, 490

I
i (Page() application), 230
i18n, defined, 182
IAX protocol

about, 619–620
encryption, 154
trunks: configuring, 153

IAX softphone, 98
iax.conf, 95–98, 514, 515, 573
IAX2 protocol

authentication, 567
denial of service, 573

IF() dialplan function, 207

Index | 679

ignoreip option (jail.conf), 570
ignoreregexpire option (sip.conf), 374
iLBC (Internet Low Bitrate Codec)

about, 628
quick reference, 626

IMAP (Internet Message Access Protocol)
enabling on your Gmail account, 415
library: compiling voicemail support, 413
voicemail integration, 411–418

IMAP (Internet message application protocol)
voicemail storage backends, 173

imapflags option (voicemail.conf), 416
imapfolder option (voicemail.conf), 417
imapgreetings option (voicemail.conf), 162,

417
imapparentfolder option (voicemail.conf), 162,

417
include option (dundi.conf), 507
includes, dialplan, 129
incoming calls, AA, 339
incoming fax handling, 447–449

fax detection, 448
fax to email, 447
fax to TIFF, 447

indications.conf, 53
initcrypto (asterisk.conf), 73
initiatedseconds option (cdr.conf), 529
inkey option (dundi.conf), 506
installation

OpenAIS, 310
XMPP, 315

installing
cURL module, 393
DAHDI, 136
Fail2ban, 568
Festival application, 440
MySQL for CentOS, 343
MySQL for Ubuntu, 343
OpenNMS, 552
PostgreSQL for CentOS, 342
PostgreSQL for Ubuntu, 342
PSTN trunks, 136–144
Skype, 429
SLA applications, 318
SNMP module, 551
spandsp, 444
telephony hardware, 139

installing Asterisk, 29–70
base configuration, 51–64

disabling SELinux, 51
initial configuration, 52–59
make menuselect, 59–64

common issues, 66–68
distribution installation, 35–44

CentOS Server, 35–40
Ubuntu Server, 40–44

downloading software, 46
installing software, 48–51
software dependencies, 44
summary “cheat” sheet, 31–35
updating Asterisk, 64
upgrading Asterisk, 68

Integrated Services Digital Network (see ISDN)
Interactive Voice Response (see IVR)
interfaces (see web interfaces)
internal_timing (asterisk.conf), 73
International Telecommunication Union

(ITU), E.164, 247
internationalization, 181–194

Asterisk, 189–193
caller ID, 189
language and/or accent of prompts, 190
time/date stamps and pronunciation,

191
configuration, 101
devices external to the Asterisk server, 182–

185
PSTN connectivity, DAHDI, Digium cards,

and analog phones, 185–189
summary “cheat” sheet, 194

Internet call routing, 237–259
DNS and SIP URIs, 237–246

accepting calls to your system, 240–246
dialing SIP URIs from Asterisk, 246
SIP URI, 238
SRV records, 238

ENUM and E.164, 247–250
Asterisk and ENUM, 249
E.164 and the ITU, 247
ENUM, 248

ISN, ITAD, and freenum.org, 250–256
create a DNS entry for your ITAD, 253
ISNs, 251
ITADs, 252
management of Internet numbering,

251
testing your ITAD, 254

ISN, ITAD, and freenum.org

680 | Index

ISNs, 254
security and identity, 256–259

distributed denial of service attacks,
258

phishing, 258
security as an ongoing process, 259
SPIT, 258
toll fraud, 257

Internet Low Bitrate Codec (see iLBC)
Internet message application protocol (see

IMAP)
interpreters, format interpreters, 18
invalid handler, AA, 335
IP multicast

about, 233
support for, 233

IP telephones
about, 183
requirements, 660

iptables, 568
IPv6 localhost, PostgreSQL, 344
IPv6, sip.conf, 92
IRC channels, Asterisk community, 7
IRQ latency, 643
ISDN (Integrated Services Digital Network),

613
ISDN telephones, requirements, 659
ISNs (ITAD Subscriber Numbers)

about, 251
using in your Asterisk system, 254

ISNULL() function, 215
ITADs (IP Telephony Administrative Domains)

about, 252
testing, 254

ITU (International Telecommunication
Union), E.164, 247

IVR (Interactive Voice Response), 389–396
about, 389
Asterisk modules for building IVRs, 392
compared to an AA, 331
components, 390
design considerations, 392
prompt-recording application, 394
simple IVR using CURL, 393
speech recognition and text-to-speech, 395

J
Jabber, 314
Jabber dialplan commands, 419–425

connecting to an XMPP server, 419
receiving messages with

JABBER_RECEIVE(), 422
sending message with JabberSend(), 421

jabber purge nodes command, 421
jabber show buddies command, 317
jabber show connected command, 317
JabberSend() dialplan application, 421
JABBER_RECEIVE() dialplan function, 422
jail.conf, 570
jitterbuffers, 172
joinempty option (queues.conf), 264, 279, 292
joining queues, 292

K
kernel optimizations, 643
kernel version, 644
keys, AstDB, 214

L
label (GotoIfTime() application), 203
labels, priority labels, 112
LAN (local area network), distributed device

states, 496
language, internationalization, 190
languageprefix (asterisk.conf), 73
lastapp CDR field, 527
lastdata CDR field, 528
latency, IRQ latency, 643
LDAP (Lightweight Directory Access Protocol),

434–440
compiling LDAP support, 437
configuring Asterisk for LDAP support,

437
OpenLDAP, 435

ldapadd command, 435
leavewhenempty option (queues.conf), 264,

280, 292
leaving queues, 292
legacy PBX migration gateway, 582
libopenr2 library, 141
libpath, spandsp, 445
LibPRI library, installing, 48
libraries

IMAP library, 413
libopenr2 library, 141
LibPRI library, 48
resource library, 25

Index | 681

spandsp, 444
LibSRTP, 150
licensing, music on hold, 79
lightbackground (asterisk.conf), 74
Lightweight Directory Access Protocol (see

LDAP)
limit option (res_odbc.conf), 352
linkedid CEL event field, 539
LINKEDID_END CEL event type, 537
Linksys Key System Parameters (SPA phones),

234
Linksys phones, SIP-based paging, 232
Linux

distributions, 644
filesystem: storage backends, 172
ODBC, 346
requirements, 662
syslog daemon, 526

listen-control-forward-key option
(voicemail.conf), 165

listen-control-pause-key option
(voicemail.conf), 165

listen-control-restart-key option
(voicemail.conf), 165

listen-control-reverse-key option
(voicemail.conf), 165

listen-control-stop-key option
(voicemail.conf), 166

load (modules.conf), 77
loading

DAHDI modules, 136
new channel configurations, 98

loadzone, 187
local area network (LAN), distributed device

states, 496
local channels

ACD queues, 293–296
dialplan, 211–214

locale option (voicemail.conf), 163
locality option (dundi.conf), 505
LocalSets context, 284
lockconfdir (asterisk.conf), 74
log files, 25
log option (manager.conf), 463
logarithmic companding, 607
logger.conf, 523–527
logging, 523

(see also system monitoring and logging)
into and out of multiple queues, 270–273

verbose Logging, 524
loguniqueid option (cdr.conf), 532, 534
loguserfield option (cdr.conf), 532, 534
lookups, dialplan, 519
low-barrier IVR, 583
lsdahdi command, 138, 142

M
macros, 204–207

calling macros from the dialplan, 205
defining, 204
using arguments in, 206

mailboxes, definitions, 167
mailcmd option (voicemail.conf), 161
mailing lists, 6
main menu, AA, 334
make menuselect command, 50, 352
manager actions, 465
manager encoding type, 469
manager events, 470
manager show command, 467
manager show command AGI command, 485
manager show commands, 467
manager.conf, 460–464
mapping contexts, DUNDi, 510–514
[mappings section], dundi.conf, 506
mappings, dialplan functions in, 517
math programs, 585
mathematical operators, 197
maxcalls (asterisk.conf), 73
maxdigits argument (Read() application), 390
maxfiles (asterisk.conf), 73
maxgreet option (voicemail.conf), 159
maxlen option (queues.conf), 276
maxload (asterisk.conf), 73
maxloginretries option (agents.conf), 281
maxlogins option (voicemail.conf), 159
maxmsg option (voicemail.conf), 158
maxsecs option (voicemail.conf), 158
maxsilence option (voicemail.conf), 159
md5sum command, 435
Media Gateway Control Protocol (MGCP),

624
media, encryption, 571
MeetMe() application, 319
MeetMeCount() application, 219
MeetMequeue_log, 301
member option (queues.conf), 280
memberdelay option (queues.conf), 280

682 | Index

membermacro option (queues.conf), 278
members

penalizing, 284
menuselect, 59–64

about, 59
interfaces, 60
scripting, 63
using, 61

menuselect command, 76
menuselect system, 59
menuselect.makeopts, 64
message encoding, AMI, 466
messages, voice messages, 172
messagewrap option (voicemail.conf), 165
messaging, unified messaging, 590
metrics, static realtime, 370
MFC/R2 protocol, configuring, 141
MG2, 101
MGCP (Media Gateway Control Protocol),

624
Microsoft SQL, configuring ODBC for, 350
military option (voicemail.conf), 166
min-announce-frequency option

(queues.conf), 278, 288
minmemfree (asterisk.conf), 74
minpassword option (voicemail.conf), 165
minsecs option (voicemail.conf), 159
mobile option (dundi.conf), 506
model option (dundi.conf), 507
module reload app_queue.so command, 283,

287
module reload cdr_adaptive_odbc.so function,

376
modules, 10–24

addon modules, 23
bridging modules, 15
CDR modules, 15
channel drivers, 17
channel event logging modules, 16
codec translators, 18
dialplan applications, 12–15
dialplan functions, 19
file structure, 24
format interpreters, 18
PBX modules, 21
resource modules, 21
test modules, 24

[modules] section (modules.conf), 76
modules.conf, 56, 75

moh show classes command, 371
monitor-format option (queues.conf), 279
monitor-type option (queues.conf), 275, 279
months (GotoIfTime() application), 203
motherboards, requirements, 646
moveheard option (voicemail.conf), 159
MP3 codec, 629
MP3 format, 79
MPLS (Multiprotocol Label Switching), 631
multicast paging

Cisco SPA Telephones, 234
MulticastRTP channel, 233

multiplelogin option (agents.conf), 281
Multiprotocol Label Switching (MPLS), 631
multirow Functionality with func_odbc, 360
music on hold, licensing, 79
music, format, 79
musicclass option (queues.conf), 264, 275,

288
musiconhold option (agents.conf), 282
musiconhold.conf, 58, 79
mxml encoding type, 470
MySQL

configuration, 345
configuring ODBC for, 349
installing CentOS, 343
installing for Ubuntu, 343
verifying binary data, 386

N
n (Page() application), 230
name-to-extension mapping, 244
naming

contexts, 144
extensions, 110
macros, 205
phones, 85
variables, 123

NANP (North American Number Plan)
about, 248
ENUM, 249
toll fraud, 127

NAPTR records, 250, 253
NAT (Network Address Translation)

H.323, 624
IAX, 620
SIP, 622

nat (sip.conf), 93
network APIs, security, 572

Index | 683

Network Time Protocol (see NTP)
networks

digital circuit-switched telephone network,
610–614

packet-switched networks, 615
nextaftercmd option (voicemail.conf), 164
nocallerid (Zapateller() application), 217
nocolor (asterisk.conf), 73
nocomunsolicit option (dundi.conf), 506
nofork (asterisk.conf), 72
noinclude option (dundi.conf), 507
noload (modules.conf), 77
noload directive, 76
NOOP AGI command, 483
NoOp() dialplan application, 516
nopartial option (dundi.conf), 506
Nortel’s DMS switch, 140
North American Number Plan (see NANP)
notice logger.conf type, 524
notifycid option (sip.conf), 307
notifyhold option (sip.conf), 307
notifyringing option (sip.conf), 307
nounsolicited option (dundi.conf), 506
NTP (Network Time Protocol)

enabling for accurate system time, 38
NTP for accurate system time, 43

ntpd command, 38
number-mapping context, 146
Nyquist’s Theorem, 606

O
OC circuits, 612
ODBC (Open Database Connectivity)

configuring for Microsoft SQL, 350
configuring for MySQL, 349
configuring for PostgreSQL, 347
configuring res_odbc to allow Asterisk to

connect through ODBC, 352
validating the ODBC connector, 351
voicemail, 378–387

configuring voicemail.conf for ODBC
storage, 382

creating the large object type for
PostgreSQL, 379

storage table layout, 381
testing, 383–387

voicemail storage backends, 173
ODBC connector, 341
odbc show CLI command, 352

odbcstorage option (res_odbc.conf), 382
odbcstorage option (voicemail.conf), 160
odbctable option (voicemail.conf), 160
ODBC_FETCH() function, 361
office-phone (sip.conf), 93
onboard hardware echo cancellation, 633
open architecture, 581
open source telephony, 580–586

community, 582
conference rooms, 585
consumers needs, 580
home automation, 586
legacy PBX migration gateway, 582
low-barrier IVR, 583
open architecture, 581
response to new technologies, 582
standards compliance, 582

OpenAIS, 310–314, 496
Asterisk configuration, 312
installation, 310
OpenAIS configuration, 311
testing device state changes, 313

OpenLDAP, configuration, 435
OpenNMS

about, 551
configuring SNMP, 552–558
monitoring Asterisk, 558

OpenR2 project, 141
OpenSSL, 150
opentimeout option (voicemail.conf), 417
OpenWRT, 645
operator option (voicemail.conf), 164
operators

dialplan, 196
same (=>) operator, 112

option argument, Dial() application, 121
options argument (Read() application), 390
[options] section (asterisk.conf), 72
order option (dundi.conf), 506
organization option (dundi.conf), 505
originate option (manager.conf), 463
outgoing fax handling, 449–453

email to fax, 451
file format, 450
transmitting a fax from Asterisk, 450

outkey option (dundi.conf), 506
overflow, ACD queues, 291
overhead and “underchin” paging, 229–236
overhead paging, 229

684 | Index

P
P (VoiceMail() application), 170
p (VoiceMailMain() application), 171
packages, Asterisk packages, 30
packet-switched networks

about, 615
hardware requirements, 656

Page() application, 231, 235
Page() command, 234
PAGELIST variable, 235
pagerbody option (voicemail.conf), 161
pagerdateformat option (voicemail.conf), 161
pagerfromstring option (voicemail.conf), 161
pagersubject option (voicemail.conf), 161
paging, 229–236

places to send your pages, 230–235
combination paging, 234
external paging, 230
multicast paging via the MulticastRTP

channel, 233
set-based paging, 231
VoIP paging adaptors, 234

zone paging, 235
paradigm shift, telephony, 580
parameters, configuring Asterisk, 88
Park:<exten@context> virtual device, 302
parkcall (features.conf), 225
parked calls, timed-out parked calls, 224
parkedcallhangup (features.conf), 223
parkedcallrecording (features.conf), 223
parkedcallreparking (features.conf), 222
parkedcalltransfers (features.conf), 222
parkeddynamic (features.conf), 223
parkedmusicclass (features.conf), 223
parkedplay (features.conf), 222
parkext (features.conf), 217, 222
parking

call parking with dialplan, 217
features.conf, 221–229

application map grouping, 227
[applicationmap] section, 225
[featuremap] section, 225
[general] section, 222–224
parking lots, 228

parkinghints (features.conf), 222
parkingtime (features.conf), 217, 222
parkpos (features.conf), 217, 222
PARK_END CEL event type, 538
PARK_START CEL event type, 538

parsing files, 242
passwordlocation option (voicemail.conf),

165
passwords

generating, 97
secure passwords, 94
setting, 257
strong passwords, 567
validating, 162

pattern matching
dialplan, 125–129

${EXTEN} channel variable, 128
examples, 127
syntax, 125

DUNDi and Asterisk configuration, 516
PAUSE event, 298
PAUSEALL event, 298
PauseQueueMember() application, 268
PBX modules, 21
PBXs, and IVR systems, 389
pbxskip option (voicemail.conf), 160
pbx_ael module, 21
pbx_config module, 21
pbx_dundi module, 21
pbx_loopback module, 21
pbx_lua module, 21
pbx_realtime (asterisk.conf), 75
pbx_realtime module, 21
pbx_spool module, 21
PDFs, fax to PDF, 448
peer CEL event field, 539
peer definitions, dundi.conf, 506
peering, 590
peers, authentication, 634
penalizing queue members, 284
penalties, changing dynamically, 285
PENALTY event, 299
penaltymemberslimit option (queues.conf),

276
performance

paging multiple sets, 232
server requirements, 641
transcoding, 18

periodic-announce option (queues.conf), 279,
289

periodic-announce-frequency option
(queues.conf), 278, 288

permit option (dundi.conf), 507
permit option (manager.conf), 462

Index | 685

persistentmembers option (queues.conf), 275
phishing, 258
phone option (dundi.conf), 505
phones

naming, 85
requirements, 657–662
security, 586

PHPAGI, 488
physical security, 638
pickupexten (features.conf), 223
pickupfailsound (features.conf), 223
pickupsound (features.conf), 223
pipe character (|)

delimiter, 167
support for, 113
voicemail.conf, 417

Playback() application, 114, 337
playback, prompts within a queue, 288
pollfreq option (voicemail.conf), 162, 416
pollmailboxes option (voicemail.conf), 161,

416
Polycom, SIP-based paging, 232
pooling option (res_odbc.conf), 352
Port (SIP SRV record), 239
port option (dundi.conf), 505, 506
port option (manager.conf), 460
PostgreSQL

configuration, 343
configuring ODBC for, 347
installing for CentOS, 342
installing for Ubuntu, 342
verifying binary data, 385

power conditioning requirements, 649
power supplies, requirements, 648
power-condition UPSs, 650
precache option (dundi.conf), 507
preload (modules.conf), 77
preload-require (modules.conf), 77
presence information for emergency services,

592
PRI connections, terminating, 185
PRI ISDN, configuring, 138
PRI/BRI, changing type of, 194
priorities

dialplan syntax, 111
s extension, 143

Priority (SIP SRV record), 239
priority labels, dialplan syntax, 112
priority option (jabber.conf), 421

priority queue, 283
process-based AGI, 477, 480, 485, 486
processors, requirements, 644
Progress() application, 113
projects, Asterisk-based projects, 30
prompt argument (Read() application), 390
prompt-recording application, 394
prompts

language: changing, 194
playback with a queue, 288
recording prompts, 336
studio prompts, 337

pronunciation
internationalization, 191
voicemail, 194

Proto (SIP SRV record), 239
protocols, digital signaling protocols, 612
PSTN (Public Switched Telephone Network)

circuits, 133–144
about, 134
installing PSTN trunks, 136–144

connections: changing, 194
connectivity: internationalization, 185–189
hardware requirements, 653
origination, 145
termination, 144
trunks: emergency dialing, 154

public address, “underchin” paging and
overhead, 229–236

pulse-code Modulation, 601

Q
q (Page() application), 230
QoS (Quality of Service), 629–632

best effort, 632
differentiated service, 631
future, 593
guaranteed service, 631
SCTP, 630
TCP, 629
UDP, 630

queue add command, 266
queue add member command, 267
queue member priority, 284
queue members, defined, 262
queue pause member command, 267
queue remove member command, 267
queue unpause member command, 267
queue weighting, 283

686 | Index

Queue() application, 291, 294, 499
queue-callswaiting option (queues.conf), 279,

289
queue-holdtime option (queues.conf), 279,

289
queue-minutes option (queues.conf), 279, 289
queue-reporthold option (queues.conf), 279,

289
queue-seconds option (queues.conf), 279, 289
queue-thankyou option (queues.conf), 278,

288
queue-thereare option (queues.conf), 278, 289
queue-youarenext option (queues.conf), 278,

289
queuerules.conf, 285
queues, 261

(see also ACD queues)
call centers, 262
clustering, 499
contexts, 275
reporting, 563
status, 563

queues.conf, 262, 275–280
queue_log file, 296–299
QUEUE_MAX_PENALTY channel variable,

285
QUEUE_MIN_PENALTY channel variable,

285
quiet (asterisk.conf), 73

R
r (Page() application), 230
[radius] section

cdr.conf, 534
cel.conf, 545

radiuscfg option (cdr.conf), 534
radiuscfg option (cel.conf), 545
random-periodic-announce option

(queues.conf), 278, 288
rawman encoding type, 468
read option (manager.conf), 462
Read() application, 390
read/write options, AMI user accounts, 462
readtimeout option (voicemail.conf), 417
realtime, sip.conf, 439
RECEIVE CHAR AGI command, 483
RECEIVE TEXT AGI command, 483
receiving calls to your ITAD, 256
RECORD FILE AGI command, 483

Record() application, 337
recordagentcalls option (agents.conf), 282
recordformat option (agents.conf), 282
recording prompts, AA, 336
record_cache_dir (asterisk.conf), 74
redundant power supplies, 649
referencing variables, 122
regcontext option (iax.conf), 517
regexten option option (iax.conf), 517
register statements, 635
registration

handling for defined devices, 99
SIP registrations, 257
testing device registration, 99

regular expression operators, 197
regulatory wars, 592
relational databases, 341–387

ARA, 368–375
dynamic realtime, 371–375
static realtime, 368

CDRs, 375
compared to AstDB, 214
func_odbc, 354–368
installing and configuring ODBC, 346–352
installing and configuring PostgreSQL and

MySQL, 342–346
managing, 353
ODBC voicemail, 378–387

configuring voicemail.conf for ODBC
storage, 382

creating the large object type for
PostgreSQL, 379

storage table layout, 381
testing, 383–387

relative-periodic-announce option
(queues.conf), 278, 288

release cycles, telephony, 579
releases, versioning, 26
reload command, 368
reminders, calendar reminders, 402–406
remote connections, DUNDi, 514
REMOVEMEMBER event, 299
RemoveQueueMember() application, 268,

295
replicated databases, 495
reportholdtime option (queues.conf), 280
reporting option (manager.conf), 463
reporting, queues, 563
repositories, third-party, 46

Index | 687

require (modules.conf), 77
requirements, 639–662

environment, 649–653
hardware, 26
Linux, 662
phones, 657–662
servers, 641–649
telephony hardware, 653–657

residential option (dundi.conf), 506
resource library, 25
resource modules, 21
res_agi (asterisk.conf), 75
res_calendar_ews module, 399
res_config_mysql addon module, 23
res_ldap.conf, 437
res_odbc

configuring to allow Asterisk to connect
through ODBC, 352

res_odbc.conf, 382
res_snmp, 551
res_snmp.conf, 553
retry option (queues.conf), 276
returning from a GoSub() subroutine, 210
review option (voicemail.conf), 164
ringdelay option (sla.conf), 328
ringer, 598
ringinuse option (queues.conf), 264, 280
RINGNOANSWER event, 299
ringtimeout option (sla.conf), 327, 328
RJ45 connection, 185
robbed-bit signaling, 612
RSVP (Reservation Protocol), 631
rtautoclear option (sip.conf), 374
rtcachefriends option (sip.conf), 374
RTP multicast, 233
rtsavesysname option (sip.conf), 374
rtupdate option (sip.conf), 374
rungroup (asterisk.conf), 74
runuser (asterisk.conf), 74

S
s (Page() application), 230
s (VoiceMail() application), 170
s extension, configuring, 143
safeshutdown option (cdr.conf), 530
safe_asterisk script, 56
same (=>) operator, 112
sample configuration files, 108

sampling resolution and rate, digital telephony,
604

savecallsin option (agents.conf), 282
SAY ALPHA AGI command, 483
SAY DATE AGI command, 484
SAY DIGITS AGI command, 484
SAY NUMBER AGI command, 484
SAY TIME AGI command, 484
saycid option (voicemail.conf), 163
sayduration option (voicemail.conf), 163
saydurationm option (voicemail.conf), 163
scalability, distributed device states, 309
scams, NANP and toll fraud, 127
scanning for valid accounts, 565
SCCP (Skinny Client Control Protocol), 625
scheduleronly option (cdr.conf), 530
scheduling calls between two participants,

403–405
screen size, curses interface, 60
scripts

ast_tls_cert command, 150
configure script, 63
external scripts and databases, 355
make menuselect, 63
safe_asterisk script, 56

SCTP (Stream Control Transmission Protocol),
630

searchcontexts option (voicemail.conf), 164
secret (sip.conf), 93, 97
secret option (jabber.conf), 420
secret option (manager.conf), 462
secretpath option (dundi.conf), 506
secure passwords, 94
Secure RTP (see SRTP)
security, 256–259, 565–576

Asterisk network APIs, 572
authentication, 567
dialplan, 571
distributed denial of service attacks, 258
encrypted media, 571
Fail2ban, 567–570

configuring, 569
installing, 568

H.323, 624
IAX, 620
IAX2 denial of service, 573
information on Asterisk wiki, 110
as an ongoing process, 259
other risk mitigation, 574

688 | Index

phishing, 258
PSTN circuits and VoIP connections, 145
scanning for valid accounts, 565
servers, 653
SIP, 622
SPIT, 258
test users, 383
toll fraud, 257
VoIP, 636–638

DMZ, 638
encryption, 637, 638
physical security, 638
segregating voice and data traffic, 637
server hardening, 638
SPIT, 636
spoofing, 637

segregating voice and data traffic, 637
SELinux (Security-Enhanced Linux), 51
SEND IMAGE AGI command, 484
SEND TEXT AGI command, 484
SendFAX() dialplan application, 450
sending email, 568
sendvoicemail option (voicemail.conf), 164
server certificates, 151
serveremail option (voicemail.confl), 158
serverhost option (jabber.conf), 420
servers, 641

(see also CentOS Server; Ubuntu Server)
Asterisk as a standalone voicemail server,

174–178
Asterisk server, 182–185
Festival server, 587
hardening: VoIP, 638
requirements, 641–649
security, 653
server hardening, 638

Service (SIP SRV record), 239
servicelevel option (queues.conf), 276
session handling, AMI, 467
Session Initiation Protocol (see SIP)
SET AUTOHANGUP AGI command, 484
SET CALLERID AGI command, 484
SET CONTEXT AGI command, 484
SET EXTENSION AGI command, 484
SET MUSIC AGI command, 484
SET PRIORITY AGI command, 484
SET VARIABLE AGI command, 484
Set() application, 198
set-based paging, 231

setinterfacevar option (queues.conf), 277
setqueueentryvar option (queues.conf), 277
setqueuevar option (queues.conf), 277
shared extensions, example, 325
Shared Line Appearances (see SLA)
shared_lastcall option (queues.conf), 263, 275
Signaling System 7 (SS7), 614
silencethreshold option (voicemail.conf), 159
Simple Network Management Protocol (see

SNMP)
Simplified Message Desk Interface (SMDI),

voicemail, 177
single-party call, 547
single-party call CDR, 536
single-port firewall penetration, 95
SIP (Session Initiation Protocol)

about, 83, 147, 620–622
Asterisk as a standalone voicemail server,

174–177
authentication, 567
calls: encryption, 150
channels

device state information, 295
transfers on, 222

configuration matching, 93
denial of service attacks, 258
headers, 176
providers: connecting Asterisk systems to,

149
registrations, 257
trunks

configuring, 147
SLA key system example with SIP trunks,

323
URI, 238

sip reload command, 439
sip show peers command, 149
sip show settings CLI command, 240
SIP-based paging, 232
sip.conf, 89–95, 175, 240, 356, 374, 439
SIPAddHeader() voicemail application, 176
sippeers, 439
size option (cdr.conf), 530
Skinny Client Control Protocol (SCCP), 625
skipms option (voicemail.conf), 159
Skype, 429–434

dialplan, 429–434
calling without assigning extension

numbers, 433

Index | 689

configuring chan_skype.conf, 429
placing and receiving calls, 430
sending and receiving messages, 432

installing, 429
SkypeChatSend() dialplan function, 432
SKYPE_BUDDIES() dialplan function, 434
SKYPE_BUDDY_FETCH() dialplan function,

434
SKYPE_CHAT_RECEIVE() dialplan function,

432
SLA (Shared Line Appearances), 318–328

additional configuration, 327
configuration, 319
installing SLA applications, 318
key system example with analog trunks,

319–323
key system example with SIP trunks, 323
limitations, 328
presence, 306
shared extension example, 325

sla.conf, 320, 323, 325
SLA:<shared line> virtual device, 301
SLATrunk() application, 321, 326
SMDI (Simplified Message Desk Interface),

voicemail, 177
smdienable option (voicemail.conf), 160
smdiport option (voicemail.conf), 160
SMDI_MSG() function, 178
SNMP (Simple Network Management

Protocol), 551–559
configuring, 552–558
installing, 551
monitoring Asterisk with OpenNMS, 558

snmpusm, 555
SNMPv3, enabling, 555
snmpwalk, 551
Snom, SIP-based paging, 232
softphones

configuration, 86
requirements, 660

software dependencies, 44, 45
SONET circuits, 612
sound files, 114
spam, VoIP, 592
spandsp, 444
SPEECH ACTIVATE GRAMMAR AGI

command, 484
SPEECH CREATE AGI command, 484

SPEECH DEACTIVATE GRAMMAR AGI
command, 485

SPEECH DESTROY AGI command, 484
SPEECH LOAD GRAMMAR AGI command,

484
speech processing, 587
speech recognition

about, 587
IVR, 395

SPEECH RECOGNIZE AGI command, 485
SPEECH SET AGI command, 484
SPEECH UNLOAD GRAMMAR AGI

command, 484
Speex, 626
Speex codec, 628
SPIT (Spam over Internet Telephony), 258,

636
spoofing, 637
spool, 25
spool folder, 172
SQL (see Microsoft SQL; MySQL)
square brackets ([]) contexts, 108
src CDR field, 527
SRTP (Secure RTP)

encrypting audio, 637
encrypting SIP calls, 150

SRV records, 238
srvlookup (sip.conf), 91, 96
SS7 (Signaling System 7), 614
standards

Asterisk future, 591
compliance, 578, 582

StarPy, 488
start CDR field, 528
stateprov option (dundi.conf), 505
states, 273

(see also device states)
extension states, 303–305

static realtime, 368
stations, in Asterisk compared to other PBXs,

9
statistics, queue_log file, 296–299
status option (jabber.conf), 421
status, queues, 563
statusmessage option (jabber.conf), 421
storage

AstDB, 214–216
deleting data from, 215
retrieving data from, 214

690 | Index

storing data in, 214
using in the dialplan, 215

backends, 172–173
IMAP, 173
Linux filesystem, 172
ODBC, 173

storehistory option (dundi.conf), 506
strategy option (queues.conf), 264, 275
STREAM FILE AGI command, 484
strong passwords, 567
studio prompts, 337
stunaddr option (gtalk.conf), 426
subFreenum context, 255
subroutines, GoSub() dialplan application,

207–211
subscribecontext option (sip.conf), 307
Subversion, 47
switch hook, 599
switchtype, 140
syntax

dialplan, 107–115
dialplan functions, 198
dialplan pattern matching, 125

SYSCOMPAT event, 299
syslog daemon, 526
system monitoring and logging, 523–559

CDRs, 527–537
backends, 530–536
caveats, 537
cdr.conf, 529
contents, 527
dialplan applications, 529
example call detail records, 536

CEL, 537–549
backends, 540–546
cel.conf, 540
channel event contents, 539
channel event types, 537
dialplan applications, 540
example channel events, 546–549

logger.conf, 523–527
SNMP, 551–559

configuring, 552–558
installing, 551
monitoring Asterisk with OpenNMS,

558
system option (manager.conf), 463
system time, enabling NTP for accurate system

time, 43

system users, adding in CentOS Server, 39
system.conf, 143
systemname, 375
systemname (asterisk.conf), 73

T
T-carrier circuits, 611
T1 lines, 138
table option (cel_odbc.conf), 543
tailor-made private telecommunications

networks, 594
Target (SIP SRV record), 239
TCP (Transmission Control Protocol)

about, 629
AGI over TCP: FastAGI, 478
AMI over TCP, 458

tcpbindaddr (sip.conf), 91
tcpenable (sip.conf), 92
TDD MODE AGI command, 484
teenagers and security, 586
telemarketing calls, Zapateller() application,

217
telephone naming concepts, 84
telephony, 597–615

analog telephony, 597–600
digital circuit-switched telephone network,

610–614
digital telephony, 600–610
hardware requirements, 653–657
packet-switched networks, 615

telephony adaptors, requirements, 661
telephony future, 1–8, 577–595

Asterisk, 586–595
barriers to entry, 594
bottleneck engineering, 592
complexity, 594
fear, uncertainty and doubt, 592
high-fidelity voice, 588
hosted solutions of similar complexity to

corporate websites, 594
integration of communications

technologies, 595
peering, 590
quality of service, 593
regulatory wars, 592
speech processing, 587
standards, 591
tailor-made private telecommunications

networks, 594

Index | 691

toll fraud, 591
unified messaging, 590
video, 588
VoIP spam, 592
wireless, 589

Asterisk community, 5–8
Asterisk Documentation Project, 8
IRC channels, 7
mailing lists, 6
user groups, 7
wiki sites, 7

Asterisk: the hacker’s PBX, 4
Asterisk: the professional’s PBX, 5
business case, 8
change and flexibility, 3
open source telephony, 580–586

community, 582
conference rooms, 585
consumers needs, 580
home automation, 586
legacy PBX migration gateway, 582
low-barrier IVR, 583
open architecture, 581
response to new technologies, 582
standards compliance, 582

paradigm shift, 580
problems with traditional telephony, 577
VoIP, 2

telephony hardware, installing, 139
Telephony Routing over IP (TRIP), 252
telnet, AMI connectivity, 458
temperature requirements, 653
tempgreetwarn option (voicemail.conf), 165
test modules, 24
test users, security, 383
testing

CDRs, 69
device registration, 99
device state changes, 313
dialplan for testing your devices, 103
ITADs, 254
ODBC voicemail, 383–387

verifying binary data stored in MySQL,
386

verifying binary data stored in
PostgreSQL, 385

when upgrading Asterisk, 69
XMPP, 317

text

concatenating, 198
text-to-speech, 440–442

Cepstral, 442
Festival, 440
IVR, 395

text2wave application, 442
third-party repositories, 46
TIFF, fax to TIFF, 447
Tigase, 315
Tigase XMPP server, 498
time option (cdr.conf), 530
time, enabling NTP for accurate system time,

38, 43
time-based conditional branching with

GotoIfTime(), 202
time/date stamps

internationalization, 191
what to change, 194

timed-out parked calls, 224
timeout argument (Read() application), 391
timeout argument, Dial() application, 121
timeout option (jabber.conf), 421
timeout option (queues.conf), 276
timeoutpriority option (queues.conf), 276,

292
timeoutrestart option (queues.conf), 280
timeouts, 117

AA, 335
invalid, 119
Queue() application, 291
specifying, 291

times (GotoIfTime() application), 202
timestamp (asterisk.conf), 73
timestampevents option (manager.conf), 461
Tip and Ring, 600
tlsbindaddr (sip.conf), 92
tlsbindaddr option (http.conf), 464
tlsbindaddr option (manager.conf), 461
tlsbindport option (http.conf), 464
tlsbindport option (manager.conf), 460
tlscertfile option (http.conf), 464
tlscertfile option (manager.conf), 461
tlscipher option (http.conf), 465
tlscipher option (manager.conf), 461
tlsenable option (http.conf), 464
tlsenable option (manager.conf), 460
tlsprivatekey option (http.conf), 464
tlsprivatekey option (manager.conf), 461
toll fraud

692 | Index

about, 257
future of telephony, 591
NANP and toll fraud, 127

toll lines, accessing, 133
tones, changing, 194
tos option (dundi.conf), 505
transcode_via_sln (asterisk.conf), 74
transcoding

codecs, 642
performance, 18

TRANSFER event, 299, 538
transferdigittimeout (features.conf), 223
translation cost, audio formats, 114
translators, codec translators, 18
Transmission Control Protocol (see TCP)
transmit_silence (asterisk.conf), 74
triggering calendar reminders, 402–406
TRIP (Telephony Routing over IP), 252
troubleshooting database issues, 353
trunk option (sla.conf), 328
trunking

about, 131
IAX trunking, 154

trunks
in Asterisk compared to other PBXs, 9
SLA key system example with analog trunks,

319–323
SLA key system example with SIP trunks,

323
TTL (SIP SRV record), 239
ttl option (dundi.conf), 505
two-party call, 547
two-party call CDR, 536
type option (jabber.conf), 420
type option (sip.conf), 93
types, logger.conf types, 524
tz option (voicemail.conf), 163

U
u (VoiceMail() application), 170
U (VoiceMail() application), 170
Ubuntu Server, 40–44

base system installation, 40
base system update, 43
calendars, 399
compiling LDAP support, 437
compiling support for XMPP, 419
compiling voicemail support, 412
converting music format, 80

cURL module, 394
installing Asterisk, 31
installing Festival, 440
installing PostgreSQL, 342
installing SNMP module, 551
MySQL, 343, 345
ODBC, 350

UDP (User Datagram Protocol), 630
udpbindaddr (sip.conf), 91
unanswered option (cdr.conf), 529
unauthenticated calls, 91
“underchin” paging and overhead, 229–236
underscore (_), pattern matching, 125
unified messaging, 173, 590
uniform resource identifiers (see URIs)
uninterruptible power supplies, 649
uniqueid CDR field, 528
uniqueid CEL event field, 539
UNISTIM, 625
unixODBC, 546
unnumbered priorities, dialplan syntax, 111
UNPAUSE event, 298
UNPAUSEALL event, 298
UnpauseQueueMember() application, 268
updatecdr option (agents.conf), 282
updatecdr option (queues.conf), 275
updating

Asterisk, 64
the dialplan, 122

UPGRADE.txt, 68
upgrading versus updating, 64
URI argument, Dial() application, 121
URIs (uniform resource identifiers)

dialing with, 91
passing URI information, 121

urlprefix option (agents.conf), 282
usedirectory option (voicemail.conf), 160
usegmtime option (cdr.conf), 532, 534
usegmtime option (cel.conf), 545
usegmtime option (cel_odbc.conf), 543
User Datagram Protocol (UDP), 630
user groups, 7
user option (manager.conf), 463
userfield CDR field, 528
userfield CEL event field, 539
username option (jabber.conf), 420
[username] section, manager.conf, 462
users

adding a system user in CentOS Server, 39

Index | 693

authentication, 634
chan_skype.conf, 430

users.conf, 84
userscontext option (voicemail.conf), 160
USER_DEFINED CEL event type, 538
usesasl option (jabber.conf), 420
usetls option (jabber.conf), 420

V
validating

ODBC connector, 351
passwords, 162

variable argument (Read() application), 390
variables, 122–125

adding to dialplan, 124
channel variables, 123
environment variables, 124
global variables, 123

verbose (asterisk.conf), 72
VERBOSE AGI command, 484
verbose logger.conf type, 525
verbose Logging, 524
verbose option (manager.conf), 463
verifying

binary data stored in MySQL, 386
binary data stored in PostgreSQL, 385
encryption status, 153
logging, 527
ODBC-related modules, 352

versioning
about, 47
Asterisk, 26

video, Asterisk future, 588
videoconferencing, 588
virtual devices, 301
vm-invalid-password option (voicemail.conf),

165
vm-mismatch option (voicemail.conf), 165
vm-newpassword option (voicemail.conf), 165
vm-passchanged option (voicemail.conf), 165
vm-password option (voicemail.conf), 165
vm-pls-try-again option (voicemail.conf), 165
vm-reenterpassword option (voicemail.conf),

165
voice menus, 117
voice messages, storing, 172
voicemail, 157–179

Asterisk as a standalone voicemail server,
174–178

Comedian Mail, 157–169
contexts section, 167
[general] section, 158–166
sample voicemail.conf file, 168
[zonemessages] section, 166

dialplan, 169–172
dial-by-name directories, 171
jitterbuffers, 172
VoiceMail() dialplan application, 169
VoiceMailMain() dialplan application,

171
IMAP integration, 411–418
ODBC, 378–387

configuring voicemail.conf for ODBC
storage, 382

creating the large object type for
PostgreSQL, 379

storage table layout, 381
testing, 383–387

storage backends, 172–173
IMAP, 173
Linux filesystem, 172
ODBC, 173

VoiceMail() application, 292
voicemail.conf

IMAP, 415
ODBC, 382
sample, 168
[zonemessages] section, 192

VoiceMailMain() dialplan application, 171
VoIP (Voice over Internet Protocol), 144–154,

619–625, 634–636
authentication, 634
configuring VoIP trunks, 147–154
emergency dialing, 154
H.323, 623–624
IAX, 619–620
MGCP, 624
paging adaptors, 234
PSTN origination, 145
PSTN termination, 144
register statements, 635
SCCP, 625
security, 636–638

DMZ, 638
encryption, 637, 638
physical security, 638
segregating voice and data traffic, 637
server hardening, 638

694 | Index

SPIT, 636
spoofing, 637

SIP, 620–622
spam, 592
telephony future, 2
UNISTIM, 625
VoIP to VoIP, 147

volgain option (voicemail.conf), 164

W
WAIT FOR DIGIT AGI command, 484
WaitExten() application, 117
wakeup calls, 402
WAN (wide area network), distributed device

states, 497
warning logger.conf type, 524
warning messages, when updating Asterisk,

65
WAV file format, 336
weather reporting, 585
web interfaces, 561–564

A2Billing, 564
CDRs, 563
FOP, 562
queue reporting, 563
queue status, 563

webenabled option (manager.conf), 460
Weight (SIP SRV record), 239
weight option (queues.conf), 276
weight option option (agents.conf), 283
wget, 47, 66
WiFi, 589
wiki sites, 7
wildcard pattern matching, 126
WiMAX, 589
wireless, 589
wrapuptime option (agents.conf), 282
wrapuptime option (queues.conf), 276
write option (manager.conf), 462
writetimeout option (manager.conf), 462
writetimeout option (voicemail.conf), 417

X
X-Voicemail-Context header, 176
X-Voicemail-Mailbox header, 176
xferfailsound (features.conf), 223
xfersound (features.conf), 223

XMPP (Extensible Messaging and Presence
Protocol), 314–318, 418–428

Asterisk configuration, 316
chan_gtalk module, 425–428

configuring, 425
Google Talk, 427, 428
Google Voice, 427, 428

compiling support for, 419
device state distribution, 497
installation, 315
Jabber dialplan commands, 419–425

connecting to an XMPP server, 419
receiving messages with

JABBER_RECEIVE(), 422
sending message with JabberSend(),

421
testing, 317
XMPP accounts, 316

Z
Zapata Telephony Project, 2
Zapateller() application, 217
zone paging, 235
[zonemessages] section, voicemail.conf, 166,

192

Index | 695

About the Authors
Leif Madsen first got involved with the Asterisk community when he was looking for
a voice conferencing solution. Once he learned that there was no official Asterisk doc-
umentation, he co-founded the Asterisk Documentation Project. Leif is currently work-
ing as a consultant, specializing in Asterisk clustering and call-center integration. You
can find out more about him at http://www.leifmadsen.com.

Jim Van Meggelen is a founding partner and CTO of Core Telecom Innovations, Inc.,
and iConverged LLC, providers of open source telephony solutions for the enterprise.
He has more than 20 years of enterprise telecom experience, and has been working
with VoIP for most of his career.

Russell Bryant is the Engineering Manager for the Open Source Software team at
Digium, Inc. He has been a core member of the Asterisk development team since the
Fall of 2004. At the first AstriCon in 2004, he was named the release maintainer for
Asterisk’s first major release series, Asterisk 1.0. He has since contributed to almost all
areas of Asterisk development, from project management to core architectural design
and development.

Colophon
The animals on the cover of Asterisk: The Definitive Guide are starfish (Asteroidea), a
group of echinoderms (spiny-skinned invertebrates found only in the sea). Most starfish
have fivefold radial symmetry (arms or rays branching from a central body disc in mul-
tiples of five), though some species have four or nine arms. There are over 1,500 species
of starfish.

Starfish live on the floor of the sea and in tidal pools, clinging to rocks and moving
(slowly) using a water-based vascular system to manipulate hundreds of tiny, tube-like
legs, called podia. A small bulb or ampulla at the top of the tube contracts, expelling
water and expanding the starfish’s leg. The ampulla relaxes, and the leg retracts. At the
tip of each leg is a suction cup that allows the starfish to pry open clam, oyster, or
mussel shells. Starfish are carnivores; they eat coral, fish, and snails, as well as bivalves.

Starfish can flex and manipulate their arms to fit into small places. At the end of each
arm is an eyespot, a primitive sensor that detects light and helps the starfish determine
direction. Starfish also have the ability to regenerate a missing limb. Some species can
even regrow a complete, new starfish from a severed arm.

The cover image is from the Dover Pictorial Archive. The cover font is Adobe ITC
Garamond. The text font is Linotype Birka; the heading font is Adobe Myriad Con-
densed; and the code font is LucasFont’s TheSans Mono Condensed.

http://www.leifmadsen.com

	Table of Contents
	Foreword
	Preface
	Audience
	Organization
	Software
	Conventions Used in This Book
	Using Code Examples
	Safari Books Online
	How to Contact Us
	Acknowledgments
	Leif Madsen
	Jim Van Meggelen
	Russell Bryant

	Chapter 1. A Telephony Revolution
	Asterisk and VoIP: Bridging the Gap Between Traditional and Network Telephony
	The Zapata Telephony Project

	Massive Change Requires Flexible Technology
	Asterisk: The Hacker’s PBX
	Asterisk: The Professional’s PBX
	The Asterisk Community
	The Asterisk Mailing Lists
	Asterisk Wiki Sites
	The IRC Channels
	Asterisk User Groups
	The Asterisk Documentation Project

	The Business Case
	Conclusion

	Chapter 2. Asterisk Architecture
	Modules
	Applications
	Bridging Modules
	Call Detail Recording Modules
	Channel Event Logging Modules
	Channel Drivers
	Codec Translators
	Format Interpreters
	Dialplan Functions
	PBX Modules
	Resource Modules
	Addon Modules
	Test Modules

	File Structure
	Configuration Files
	Modules
	The Resource Library
	The Spool
	Logging

	The Dialplan
	Hardware
	Asterisk Versioning
	Previous Release Methodologies
	The New Release Methodology

	Conclusion

	Chapter 3. Installing Asterisk
	Installation Cheat Sheet
	Distribution Installation
	CentOS Server
	Base system installation
	Base system update
	Enabling NTP for accurate system time
	Adding a system user

	Ubuntu Server
	Base system installation
	Base system update
	Enable NTP for accurate system time

	Software Dependencies
	Downloading What You Need
	Getting the Source via Subversion
	Getting the Source via wget

	How to Install It
	LibPRI
	DAHDI
	Asterisk
	Setting File Permissions

	Base Configuration
	Disable SELinux
	Initial Configuration
	indications.conf and asterisk.conf
	modules.conf
	musiconhold.conf

	make menuselect
	Uses for menuselect
	menuselect interfaces
	Using menuselect
	Scripting menuselect

	Updating Asterisk
	Common Issues
	-bash: wget: command not found
	configure: error: no acceptable C compiler found in $PATH
	make: gcc: command not found
	configure: error: C++ preprocessor “/lib/cpp” fails sanity check
	configure: error: *** Please install GNU make. It is required to build Asterisk!
	configure: *** XML documentation will not be available because the ‘libxml2’ development package is missing.
	configure: error: *** termcap support not found
	You do not appear to have the sources for the 2.6.18-164.6.1.el5 kernel installed.
	E: Unable to lock the administration directory (/var/lib/dpkg/), are you root?

	Upgrading Asterisk
	Conclusion

	Chapter 4. Initial Configuration Tasks
	asterisk.conf
	The [directories] Section
	The [options] Section
	The [files] Section
	The [compat] Section

	modules.conf
	The [modules] Section

	indications.conf
	musiconhold.conf
	Converting Music to a Format That Works Best with Asterisk
	CentOS
	Ubuntu
	Completing file conversion

	Conclusion

	Chapter 5. User Device Configuration
	Telephone Naming Concepts
	Hardphones, Softphones, and ATAs
	Configuring Asterisk
	How Channel Configuration Files Work with the Dialplan
	sip.conf
	iax.conf
	Modifying Your Channel Configuration Files for Your Environment

	Loading Your New Channel Configurations
	The Asterisk CLI

	Testing to Ensure Your Devices Have Registered
	Analog Phones
	A Basic Dialplan to Test Your Devices
	Under the Hood: Your First Call
	Conclusion

	Chapter 6. Dialplan Basics
	Dialplan Syntax
	Contexts
	Extensions
	Priorities
	Unnumbered priorities
	The 'same =>' operator
	Priority labels

	Applications
	The Answer(), Playback(), and Hangup() Applications

	A Simple Dialplan
	Hello World

	Building an Interactive Dialplan
	The Goto(), Background(), and WaitExten() Applications
	Handling Invalid Entries and Timeouts
	Using the Dial() Application
	Argument 1: Destination
	Argument 2: Timeout
	Argument 3: Option
	Argument 4: URI
	Updating the dialplan
	Blank arguments

	Using Variables
	Global variables
	Channel variables
	Environment variables
	Adding variables to our dialplan

	Pattern Matching
	Pattern-matching syntax
	Pattern-matching examples
	Using the ${EXTEN} channel variable

	Includes

	Conclusion

	Chapter 7. Outside Connectivity
	The Basics of Trunking
	Fundamental Dialplan for Outside Connectivity
	PSTN Circuits
	Traditional PSTN Trunks
	Analog telephony
	Digital telephony

	Installing PSTN Trunks
	Downloading and installing DAHDI
	Configuring digital circuits
	PRI ISDN
	BRI ISDN
	MFC/R2

	Configuring analog circuits
	The s extension

	VoIP
	PSTN Termination
	PSTN Origination
	VoIP to VoIP
	Configuring VoIP Trunks
	Configuring SIP trunks between Asterisk systems
	Connecting two Asterisk systems together with SIP
	Connecting an Asterisk system to a SIP provider
	Encrypting SIP calls

	Configuring IAX trunks between Asterisk systems

	Emergency Dialing
	Conclusion

	Chapter 8. Voicemail
	Comedian Mail
	The [general] Section
	The [zonemessages] Section
	The Contexts Section
	An Initial voicemail.conf File

	Dialplan Integration
	The VoiceMail() Dialplan Application
	The VoiceMailMain() Dialplan Application
	Creating a Dial-by-Name Directory
	Using a Jitterbuffer

	Storage Backends
	Linux Filesystem
	ODBC
	IMAP

	Using Asterisk As a Standalone Voicemail Server
	Integrating Asterisk into a SIP Environment As a Standalone Voicemail Server
	Dialplan requirements
	sip.conf requirements

	SMDI (Simplified Message Desk Interface)

	Conclusion

	Chapter 9. Internationalization
	Devices External to the Asterisk Server
	PSTN Connectivity, DAHDI, Digium Cards, and Analog Phones
	DAHDI Drivers

	Asterisk
	Caller ID
	Language and/or Accent of Prompts
	Time/Date Stamps and Pronunciation

	Conclusion—Easy Reference Cheat Sheet

	Chapter 10. Deeper into the Dialplan
	Expressions and Variable Manipulation
	Basic Expressions
	Operators

	Dialplan Functions
	Syntax
	Examples of Dialplan Functions

	Conditional Branching
	The GotoIf() Application
	Time-Based Conditional Branching with GotoIfTime()

	Macros
	Defining Macros
	Calling Macros from the Dialplan
	Using Arguments in Macros

	GoSub()
	Defining Subroutines
	Calling Subroutines from the Dialplan
	Using Arguments in Subroutines
	Returning from a Subroutine

	Local Channels
	Using the Asterisk Database (AstDB)
	Storing Data in the AstDB
	Retrieving Data from the AstDB
	Deleting Data from the AstDB
	Using the AstDB in the Dialplan

	Handy Asterisk Features
	Zapateller()
	Call Parking
	Conferencing with MeetMe()

	Conclusion

	Chapter 11. Parking and Paging
	features.conf
	The [general] section
	The [featuremap] Section
	The [applicationmap] Section
	Application Map Grouping
	Parking Lots

	Overhead and “Underchin” Paging (a.k.a. Public Address)
	Places to Send Your Pages
	External paging
	Set paging
	Multicast paging via the MulticastRTP channel
	VoIP paging adaptors
	Combination paging
	Bringing it all together

	Zone Paging

	Conclusion

	Chapter 12. Internet Call Routing
	DNS and SIP URIs
	The SIP URI
	SRV Records
	Accepting Calls to Your System
	Modifying sip.conf
	Standard dialplan
	File parsing
	Database lookup

	Dialing SIP URIs from Asterisk

	ENUM and E.164
	E.164 and the ITU
	ENUM
	Asterisk and ENUM

	ISN, ITAD, and freenum.org
	Got ISN?
	ITAD Subscriber Numbers (ISNs)
	Management of Internet Numbering
	IP Telephony Administrative Domains (ITADs)
	Create a DNS Entry for Your ITAD
	Testing Your ITAD
	Using ISNs in Your Asterisk System
	Receiving calls to your ITAD

	Security and Identity
	Toll Fraud
	Spam over Internet Telephony (SPIT)
	Distributed Denial of Service Attacks
	Phishing
	Security Is an Ongoing Process

	Conclusion

	Chapter 13. Automatic Call Distribution (ACD) Queues
	Creating a Simple ACD Queue
	Queue Members
	Controlling Queue Members via the CLI
	Controlling Queue Members with Dialplan Logic
	Automatically Logging Into and Out of Multiple Queues
	An Introduction to Device State

	The queues.conf File
	The agents.conf File
	Advanced Queues
	Priority Queue (Queue Weighting)
	Queue Member Priority
	Changing Penalties Dynamically (queuerules.conf)
	Announcement Control
	Overflow
	Controlling timeouts
	Controlling when to join and leave a queue

	Using Local Channels

	Queue Statistics: The queue_log File
	Conclusion

	Chapter 14. Device States
	Device States
	Checking Device States

	Extension States
	Hints
	Checking Extension States

	SIP Presence
	Asterisk Configuration

	Using Custom Device States
	An Example

	Distributed Device States
	Using OpenAIS
	Installation
	OpenAIS configuration
	Asterisk configuration
	Testing device state changes

	Using XMPP
	Installation
	Creating XMPP accounts
	Asterisk configuration
	Testing

	Shared Line Appearances
	Installing the SLA Applications
	Configuration Overview
	Key System Example with Analog Trunks
	sla.conf
	extensions.conf
	Additional phone configuration tasks

	Key System Example with SIP Trunks
	sla.conf
	extensions.conf

	Shared Extension Example
	sla.conf
	extensions.conf

	Additional Configuration
	Limitations

	Conclusion

	Chapter 15. The Automated Attendant
	An Auto Attendant Is Not an IVR
	Designing Your Auto Attendant
	The Greeting
	The Main Menu
	Selection 1
	Selection 2
	Selection #
	Selection 3
	Selection 9
	Selection 0

	Timeout
	Invalid
	Dial by Extension

	Building Your Auto Attendant
	Recording Prompts
	Using the dialplan to create recordings

	The Dialplan
	Delivering Incoming Calls to the Auto Attendant
	IVR

	Conclusion

	Chapter 16. Relational Database Integration
	Installing and Configuring PostgreSQL and MySQL
	Installing PostgreSQL for CentOS
	Installing PostgreSQL for Ubuntu
	Installing MySQL for CentOS
	Installing MySQL for Ubuntu
	Configuring PostgreSQL
	Configuring MySQL

	Installing and Configuring ODBC
	Configuring ODBC for PostgreSQL
	Configuring ODBC for MySQL
	Configuring ODBC for Microsoft SQL
	Validating the ODBC Connector
	Configuring res_odbc to Allow Asterisk to Connect Through ODBC

	Managing Databases
	Troubleshooting Database Issues

	A Gentle Introduction to func_odbc
	Getting Funky with func_odbc: Hot-Desking
	Using Realtime
	Static Realtime
	Dynamic Realtime

	Storing Call Detail Records (CDRs)
	ODBC Voicemail
	Creating the Large Object Type for PostgreSQL
	ODBC Voicemail Storage Table Layout
	Configuring voicemail.conf for ODBC Storage
	Testing ODBC Voicemail
	Verifying binary data stored in PostgreSQL
	Verifying binary data stored in MySQL

	Conclusion

	Chapter 17. Interactive Voice Response
	What Is IVR?
	Components of an IVR
	IVR Design Considerations
	Do
	Don’t

	Asterisk Modules for Building IVRs
	CURL
	func_odbc
	AGI
	AMI

	A Simple IVR Using CURL
	Installing the cURL Module
	The Dialplan

	A Prompt-Recording Application
	Speech Recognition and Text-to-Speech
	Text-to-Speech
	Speech Recognition

	Conclusion

	Chapter 18. External Services
	Calendar Integration
	Compiling Calendaring Support into Asterisk
	CentOS dependencies
	Ubuntu dependencies

	Configuring Calendar Support for Asterisk
	Triggering Calendar Reminders to Your Phone
	Triggering a wakeup call
	Scheduling calls between two participants
	Calling meeting participants and placing them into a conference

	Controlling Calls Based on Calendar Information
	Writing Call Information to a Calendar
	Conclusion

	VoiceMail IMAP Integration
	Compiling IMAP VoiceMail Support into Asterisk
	CentOS dependencies
	Ubuntu dependencies
	Compiling the IMAP library
	Compiling Asterisk
	Configuring Asterisk
	Enabling IMAP on your Gmail account
	Configuring voicemail.conf for IMAP

	Using XMPP (Jabber) with Asterisk
	Compiling Jabber Support into Asterisk
	CentOS dependencies
	Ubuntu dependencies

	Jabber Dialplan Commands
	Connecting to an XMPP server
	Sending messages with JabberSend()
	Receiving messages with JABBER_RECEIVE()

	chan_gtalk
	Configuring gtalk.conf
	Accepting calls from Google Talk
	Accepting calls from Google Voice
	Outgoing calls via Google Talk
	Outgoing calls via Google Voice

	Skype Integration
	Installation of Skype for Asterisk
	Using Skype for Asterisk
	Configuring chan_skype.conf
	Placing and receiving calls via Skype
	Sending and receiving messages via Skype
	Calling your Skype buddies without assigning extension numbers

	LDAP Integration
	Configuring OpenLDAP
	Compiling LDAP Support into Asterisk
	Ubuntu dependencies
	CentOS dependencies

	Configuring Asterisk for LDAP Support
	Configuring res_ldap.conf
	Configuring extconfig.conf
	Configuring sip.conf for realtime

	Text-to-Speech Utilities
	Festival
	Installing Festival on CentOS
	Installing Festival on Ubuntu
	Using Festival with Asterisk

	Cepstral

	Conclusion

	Chapter 19. Fax
	What Is a Fax?
	Ways to Handle Faxes in Asterisk
	spandsp
	Obtaining spandsp
	Compiling and Installing spandsp
	Adding the spandsp Library to Your libpath
	Recompiling Asterisk with spandsp Support
	Disabling spandsp (Should You Want to Test Digium Fax)

	Digium Fax For Asterisk
	Obtaining Digium FFA
	Disabling Digium FFA (Should You Want to Test spandsp)

	Incoming Fax Handling
	Fax to TIFF
	Fax to Email
	Fax Detection

	Outgoing Fax Handling
	Transmitting a Fax from Asterisk
	File Format for Faxing
	An Experiment in Email to Fax

	Fax Pass-Through
	Using Fax Buffers in chan_dahdi.conf

	Conclusion

	Chapter 20. Asterisk Manager Interface (AMI)
	Quick Start
	AMI over TCP
	AMI over HTTP

	Configuration
	manager.conf
	http.conf

	Protocol Overview
	Message Encoding
	Events
	Actions

	AMI over HTTP
	Authentication and session handling
	/rawman encoding
	/manager encoding
	/mxml encoding
	Manager events

	Development Frameworks
	CSTA

	Interesting Applications
	AsteriskGUI
	Flash Operator Panel

	Conclusion

	Chapter 21. Asterisk Gateway Interface (AGI)
	Quick Start
	AGI Variants
	Process-Based AGI
	EAGI

	DeadAGI Is Dead
	FastAGI—AGI over TCP
	Async AGI—AMI-Controlled AGI

	AGI Communication Overview
	Setting Up an AGI Session
	Process-based AGI/FastAGI
	Async AGI

	Commands and Responses
	Process-based AGI/FastAGI
	Async AGI

	Ending an AGI Session
	Process-based AGI/FastAGI
	Async AGI

	Development Frameworks
	Conclusion

	Chapter 22. Clustering
	Traditional Call Centers
	Hybrid Systems
	Pure Asterisk, Nondistributed
	Asterisk and Database Integration
	Single Database
	Replicated Databases

	Asterisk and Distributed Device States
	Distributing Device States over a LAN
	Distributing Device States over a WAN

	Multiple Queues, Multiple Sites
	Conclusion

	Chapter 23. Distributed Universal Number Discovery (DUNDi)
	How Does DUNDi Work?
	The dundi.conf File
	Configuring Asterisk for Use with DUNDi
	General Configuration
	Initial DUNDi Peer Definition
	Creating Mapping Contexts
	Using Mapping Contexts with Peers
	Allowing Remote Connections
	Controlling Responses
	Manually adding responses
	Using pattern matches
	Dynamically adding extension numbers
	Using dialplan functions in mappings

	Performing Lookups from the Dialplan

	Conclusion

	Chapter 24. System Monitoring and Logging
	logger.conf
	Reviewing Asterisk Logs
	Logging to the Linux syslog Daemon
	Verifying Logging

	Call Detail Records
	CDR Contents
	Dialplan Applications
	cdr.conf
	Backends
	cdr_adaptive_odbc
	cdr_csv
	cdr_custom
	cdr_manager
	cdr_mysql
	cdr_odbc
	cdr_pgsql
	cdr_radius
	cdr_sqlite
	cdr_sqlite3_custom
	cdr_syslog
	cdr_tds

	Example Call Detail Records
	Single-party call
	Two-party call

	Caveats

	CEL (Channel Event Logging)
	Channel Event Types
	Channel Event Contents
	Dialplan Applications
	cel.conf
	Backends
	cel_odbc
	cel_custom
	cel_manager
	cel_pgsql
	cel_radius
	cel_sqlite3_custom
	cel_tds

	Example Channel Events
	Single-party call
	Two-party call
	Blind transfer

	SNMP
	Installing the SNMP Module for Asterisk
	CentOS dependency
	Ubuntu dependency
	Recompiling Asterisk with the res_snmp module

	Configuring SNMP for Asterisk Using OpenNMS
	Installing OpenNMS
	Editing /etc/asterisk/res_snmp.conf to work with your OpenNMS server
	Editing /etc/snmp/snmpd.conf to work with your OpenNMS server
	Enabling SNMPv3

	Monitoring Asterisk with OpenNMS

	Conclusion

	Chapter 25. Web Interfaces
	Flash Operator Panel
	Queue Status and Reporting
	Queue Status Display
	Queue Reporting

	Call Detail Records
	A2Billing
	Conclusion

	Chapter 26. Security
	Scanning for Valid Accounts
	Authentication Weaknesses
	Fail2ban
	Installation
	iptables
	Sending email

	Configuration

	Encrypted Media
	Dialplan Vulnerabilities
	Securing Asterisk Network APIs
	IAX2 Denial of Service
	Other Risk Mitigation
	Resources
	Conclusion—A Better Idiot

	Chapter 27. Asterisk: A Future for Telephony
	The Problems with Traditional Telephony
	Closed Thinking
	Limited Standards Compliancy
	Slow Release Cycles
	Refusing to Let Go of the Past and Embrace the Future

	Paradigm Shift
	The Promise of Open Source Telephony
	The Itch That Asterisk Scratches
	Open Architecture
	Standards Compliance
	Lightning-Fast Response to New Technologies
	Passionate Community
	Some Things That Are Now Possible
	Legacy PBX migration gateway
	Low-barrier IVR
	Conference rooms
	Home automation

	The Future of Asterisk
	Speech Processing
	Festival
	Speech recognition

	High-Fidelity Voice
	Video
	The challenge of videoconferencing
	Why we love videoconferencing
	Why videoconferencing may never totally replace voice

	Wireless
	WiFi
	WiMAX

	Unified Messaging
	Peering
	E.164
	ENUM
	e164.org

	Challenges
	Too much change, too few standards
	Toll fraud
	VoIP spam
	Fear, uncertainty, and doubt
	Bottleneck engineering
	Regulatory wars
	Quality of service
	Complexity

	Opportunities
	Tailor-made private telecommunications networks
	Low barrier to entry
	Hosted solutions of similar complexity to corporate websites
	Proper integration of communications technologies

	Appendix A. Understanding Telephony
	Analog Telephony
	Parts of an Analog Telephone
	Ringer
	Dialpad
	Hybrid (or network)
	Hook switch (or switch hook)
	Handset

	Tip and Ring

	Digital Telephony
	Pulse-Code Modulation
	Digitally encoding an analog waveform
	Increasing the sampling resolution and rate
	Nyquist’s Theorem
	Logarithmic companding
	Aliasing

	The Digital Circuit-Switched Telephone Network
	Circuit Types
	The humble DS-0―The foundation of it all
	T-carrier circuits
	SONET and OC circuits

	Digital Signaling Protocols
	Channel Associated Signaling (CAS)
	ISDN
	ISDN-BRI/BRA
	ISDN-PRI/PRA

	Signaling System 7

	Packet-Switched Networks
	Conclusion

	Appendix B. Protocols for VoIP
	The Need for VoIP Protocols
	VoIP Protocols
	IAX (The “Inter-Asterisk eXchange” Protocol)
	History
	Future
	Security considerations
	IAX and NAT

	SIP
	History
	Future
	Security considerations
	SIP and NAT

	H.323
	History
	Future
	Security considerations
	H.323 and NAT

	MGCP
	Proprietary Protocols
	Skinny/SCCP
	UNISTIM

	Codecs
	G.711
	G.726
	G.729A
	GSM
	iLBC
	Speex
	G.722
	MP3

	Quality of Service
	TCP, UDP, and SCTP
	Transmission Control Protocol
	User Datagram Protocol
	Stream Control Transmission Protocol

	Differentiated Service
	Guaranteed Service
	MPLS
	RSVP

	Best Effort

	Echo
	Why Echo Occurs
	Managing Echo on DAHDI Channels
	Hardware Echo Cancellation

	Asterisk and VoIP
	Users and Peers and Friends—Oh My!
	Users
	Peers
	Friends

	register Statements

	VoIP Security
	Spam over Internet Telephony (SPIT)
	Encrypting Audio with Secure RTP
	Spoofing
	What Can Be Done?
	Basic network security
	Segregating voice and data traffic

	Encryption
	Physical security

	Conclusion

	Appendix C. Preparing a System for Asterisk
	Server Hardware Selection
	Performance Issues
	Choosing a Processor
	Small systems
	Medium systems
	Large systems

	Choosing a Motherboard
	Power Supply Requirements
	Computer power supplies
	Redundant power supplies

	Environment
	Power Conditioning and Uninterruptible Power Supplies
	Power-conditioned UPSs

	Grounding
	Electrical Circuits
	The Equipment Room
	Humidity
	Temperature
	Dust
	Security

	Telephony Hardware
	Connecting to the PSTN
	Analog interface cards
	Digital interface cards
	Channel banks
	Other types of PSTN interfaces

	Connecting Exclusively to a Packet-Based Telephone Network
	Echo Cancellation

	Types of Phones
	Physical Telephones
	Analog telephones
	Proprietary digital telephones
	ISDN telephones
	IP telephones

	Softphones
	Telephony Adaptors
	Communications Terminals

	Linux Considerations
	Conclusion

	Index

